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Abstract.

The Kerr-Schild version of the Schwarzschild metric contains a Minkowski

background which provides a definition of a boosted black hole. There are two

Kerr-Schild versions corresponding to ingoing or outgoing principle null directions.

We show that the two corresponding Minkowski backgrounds and their associated

boosts have an unexpected difference. We analyze this difference and discuss the

implications in the nonlinear regime for the gravitational memory effect resulting from

the ejection of massive particles from an isolated system. We show that the nonlinear

effect agrees with the linearized result based upon the retarded Green function only

if the velocity of the ejected particle corresponds to a boost symmetry of the ingoing

Minkowski background. A boost with respect to the outgoing Minkowski background

is inconsistent with the absence of ingoing radiation from past null infinity.

PACS numbers: 04.20.-q, 04.20.Cv, 04.20.Ex, 04.25.D-, 04.30-w

1. Introduction

By considering retarded solutions of the linearized Einstein equation on a Minkowski

background, Zeldovich and Polnarev [1] pointed out the existence of a memory effect in

the gravitational waves produced by the ejection of massive particles to infinity. Our

previous work [2] has shown that this effect could also be obtained in linearized theory

by considering the transition from an initial state whose exterior was described by a

Schwarzschild metric at rest to a final state whose exterior was a boosted Schwarzschild

metric. The results were based upon a Kerr-Schild version of the Schwarzschild metric

to describe the far field exterior to what we referred to as a Schwarzschild body. For such

a body in linearized theory which is initially at rest, then goes through a radiative stage
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and finally emerges in a boosted state, we showed that the proper retarded solution for

the resulting memory effect is described in terms of the ingoing version of the Kerr-Schild

metric for both the initial and final states. An outgoing Kerr-Schild or time symmetric

Schwarzschild metric would give the wrong result. The result was independent of the

details of the intervening radiative period. Because the Kerr-Schild metrics are solutions

both in the linearized and nonlinear sense, we extrapolated this result to the nonlinear

case.

Here, we investigate this problem from the purely nonlinear perspective. There are

two major differences from the linearized view.

The first major difference is that the linearized result in [2] was obtained using the

boost associated with the Lorentz symmetry of the unperturbed Minkowski background.

The Kerr-Schild metrics [3, 4] have the form

gµν = ηµν +Hℓµℓν (1)

where ηµν is a Minkowski metric, ℓµ is a principle null vector field (with respect to both

ηµν and gµν) and H is a scalar function. In the nonlinear case, there are two natural

choices of “Minkowski background” ηµν depending on whether the null vector ℓµ in the

Kerr-Schild metric (1) is chosen to be in the ingoing or outgoing direction. §.

The second major difference in the nonlinear case is that there is no analogue of

the Green function to construct a retarded solution. Instead, the retarded solution due

to the emission of radiation from an accelerated particle is characterized by the absence

of ingoing radiation from I−. A necessary condition that there be no ingoing radiation

is that the analogue of the radiation memory at past null infinity I− vanishes. In that

case the ingoing radiation strain, which forms the free characteristic initial data on I−,

may be set to zero. Otherwise, as explained in Sec. 3, non-vanishing radiation memory

at I− requires that there must ingoing radiation from I−.

Consequently, since an initial unboosted Kerr-Schild-Schwarzschild metric has

vanishing radiation strain at I−, the final boosted metric must also have vanishing

radiation strain at I− if there is no intervening ingoing radiation. This is the case if

the boost belongs to the Lorentz subgroup of the BMS group at I−. This corresponds

to the boost symmetry of the Minkowski metric associated with the ingoing version of

the Kerr-Schild metric. On the contrary, a boost with respect to the Minkowski metric

associated with the outgoing version of the Kerr-Schild metric leads to non-vanishing

radiation memory at I− so that it is inconsistent with the requirement of vanishing

ingoing radiation.

This leads to our main result: the calculation in the nonlinear regime of the memory

effect due to the ejection of a massive particle is correctly described by the boost

associated with Minkowski background of the ingoing Kerr-Schild metric. The key

ingredient is that this boost is a BMS symmetry at I− but not at I+. This leads to

vanishing radiation memory at I− but to non-zero radiation memory at I+, which is

§ Note that a time symmetric version of the Schwarzschild metric, see (2), does not single out such a

preferred Minkowski background in the nonlinear case.
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in precise agreement with the extrapolation from the linearized result based upon the

retarded Green function.

In Sec. 2, we discuss unexpected features which result in defining the boost in

terms of the Lorentz symmetries of the Minkowski backgrounds of either the ingoing or

outgoing versions of the Kerr-Schild metric. This requires considerable notational care,

which warrants the formalism presented in Sec. 2. We show that the boost symmetry

of the Minkowski metric associated with the ingoing version of the Kerr-Schild metric

corresponds to the boost symmetry of the Bondi-Metzner-Sachs (BMS) [5] asymptotic

symmetry group at I− but is a singular transformation at future null infinity I+.

Conversely, the boost symmetry of the Minkowski metric associated with the outgoing

version of the Kerr-Schild metric corresponds to the boost symmetry of the BMS group

at I+ but is a singular transformation at I−.

The Kerr-Schild metrics have played an important role in the construction of exact

solutions; see [6]. The most important examples are the Schwarzschild and Kerr black

hole metrics. Because their metric form (1) is invariant under the Lorentz symmetry of

the Minkowski background ηµν , the boosted Kerr-Schild versions of the Schwarzschild

and Kerr metrics have also played an important role in numerical relativity in prescribing

initial data for superimposed black holes in a binary orbit [7, 8]. The initial data for

the numerical simulations are prescribed in terms of the ingoing version of the Kerr-

Schild metric, whose coordinatization in terms of advanced time covers the interior of

the future event horizon. The initial velocities of the black holes are generated by the

boost symmetry of the Minkowski background for the ingoing version of the Kerr-Schild

metric. Surprisingly, this boost symmetry, which is a well-behaved BMS transformation

at I−, has singular behavior at I+. This overlooked asymptotic property of the boost

symmetry could possibly introduce spurious asymptotic behavior in the Kerr-Schild

construction of binary black hole initial data.

We concentrate here on the boosted Schwarzschild metric. The Kerr case is

more complicated because the twist of the principle null direction ℓµ does not allow

a straightforward construction of well-behaved advanced or retarded null coordinate

systems. Although an exact Schwarzschild exterior is unrealistic in a dynamic spacetime

it is reasonable to expect that our results are valid if it is a good far field approximation

in the neighborhood of null infinity in the limit of both infinite future and infinite past

retarded and advanced times. In this respect, our results might also apply to the Kerr

case since the metric terms involving the angular momentum parameter fall off faster

with r than the terms involving the mass.

2. Boosts and the Kerr-Schild-Schwarzschild metrics

In time symmetric coordinates xµ = (t, r, xA), with xA = (θ, φ) being standard spherical

coordinates, the Schwarzschild metric is

gµν = −
(

1−
2M

r

)

t,µt,ν +
(

1−
2M

r

)−1

r,µr,ν + r2qµν(x
A). (2)
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Here we use standard comma notation to denote partial derivatives, e.g. f,µ = ∂µf , and

qµν(x
A) is the round unit sphere metric defined with respect to the Cartesian coordinates

xi = rri, ri(xA) = (sin θ cos φ, sin θ sin φ, cos θ) so that

qµνdx
µdxν = δijr

i
,Ar

j
,Bdx

AdxB = dθ2 + sin2 θdφ2.

Introduction of the “tortoise” coordinate r∗ = r + 2M ln( r
2M

− 1), with r∗,µ = (rr,µ)(r−

2M)−1, gives

gµν = −
(

1−
2M

r

)

(t,µt,ν − r∗,µr
∗

,ν) + r2qµν(x
A). (3)

In terms of the retarded time u = t− r∗,

gµν = −
(

1−
2M

r

)

u,µu,ν − u,µr,ν − u,νr,µ + r2qµν (4a)

and in terms of the advanced time v = t+ r∗,

gµν = −
(

1−
2M

r

)

v,µv,ν + v,µr,ν + v,νr,µ + r2qµν . (4b)

The retarded time version of the Schwarzschild metric (4a) has the Kerr-Schild

form with Minkowski metric η
(−)
µν ,

gµν = η(−)
µν +

2M

r
kµkν , kµ = −u,µ. (5)

Here, in the associated inertial coordinates x(−)µ = (t(−), x(−)i) = (t(−), x(−), y(−), z(−)),

with t(−) = u+ r and x(−)i = rri(xA),

η(−)
µν dx(−)µdx(−)ν = −dt(−)2 + δijdx

(−)idx(−)j . (6)

Similarly, the advanced time version (4b) has the Kerr-Schild form with the

background Minkowski metric η
(+)
µν ,

gµν = η(+)
µν +

2M

r
nµnν , nµ = −v,µ (7)

where in the associated inertial coordinates x(+)µ = (t(+), x(+)i) = (t(+), x(+), y(+), z(+)),

with t(+) = v − r(−) and x(+)i = rri(xA),

η(+)
µν dx(+)µdx(+)ν = −dt(+)2 + δijdx

(+)idx(+)j . (8)

Note that the inertial time coordinates are related by

t(+) = t(−) + 4M ln
( r

2M
− 1

)

(9)

whereas the inertial spatial coordinates are related by x(+)i = x(−)i. As a result, it is

unambiguous to write x(+)i = x(−)i = xi and r(+) = r(−) = r, where r(+)2 := δijx
(+)ix(+)j

and r(−)2 := δijx
(−)ix(−)j . However, the corresponding directional derivatives are related

by

∂t(+) = ∂t(−) , ∂x(+)i = ∂x(−)i −
4M

r − 2M

xi

r
∂t(−) (10)

and

∂r(+) = ∂r(−) −
4M

r − 2M
∂t(−) . (11)
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As will be seen, these transformations have important bearing on the relation between

the generators of the BMS group at past and future null infinity.

In [2], we showed that the linearized memory effect could be based upon the boosted

version of the advanced time Kerr-Schild metric (7). In that linearized treatment, it

was assumed that the boost was a Lorentz symmetry of the Minkowski background.

However, this cannot be extended unambiguously to the nonlinear case, where there are

two distinct Minkowski backgrounds η
(−)
αβ and η

(+)
αβ defined, respectively, by the retarded

and advanced time Kerr-Schild metrics (5) and (7). Since the metrics (5) and (7) are

algebraically identical, it cannot be the choice of retarded or advanced metric but the

corresponding choice of boost that gives the essential result.

In spherical null coordinates, the Minkowski background metric (6) has the standard

retarded time Bondi-Sachs form at I+,

η(−)
µν dxµdxν = −du2 − 2dudr + r2qABdx

AdxB (12)

and (8) has the standard advanced time Bondi-Sachs form at I−,

η(+)
µν dxµdxν = −dv2 + 2dvdr + r2qABdx

AdxB. (13)

(See [9] for a review of the Bondi-Sachs formalism.) These Minkowski line elements

transform into each other under the Minkowski space relation u = v− 2r but not under

the Schwarzschild relation between retarded and advanced time u = v − 2r∗. The

retarded and advanced Minkowski metrics (6) and (8) are related by

η(+)
µν = η(−)

µν +
2M

r

(

kµkν − nµnν

)

= η(−)
µν −

4M

r − 2M
(u,µr,ν + u,νr,µ)−

8Mr

(r − 2M)2
r,µr,ν . (14)

Because of the non-vanishing r,µr,ν term in (14), although η
(+)
µν has the advanced time

Bondi-Sachs form (13) near I− it does not have the retarded time Bondi-Sachs form

near I+. The reverse is true of η
(−)
αβ , which has the retarded time Bondi-Sachs form

(12) near I+ but not the advanced time form near I−. This leads to a non-trivial

difference between the boosts B(−) and B(+), with generators Bx(−)i and Bx(+)i, which

are symmetries of η
(−)
αβ and η

(+)
αβ , respectively.

To be specific, consider a boost in the z(−)-direction intrinsic to η
(−)
µν with generator

Bz(−) = z(−)∂t(−) + t(−)∂z(−) . In retarded spherical null coordinates

∂t(−) = ∂u , ∂z(−) = − cos θ(∂u − ∂r(−))−
sin θ

r
∂θ. (15)

This leads to the retarded time dependence

Bz(−) = −u cos θ∂u + (u+ r) cos θ∂r(−) − (
u

r
+ 1) sin θ∂θ, (16)

which has the proper asymptotic behavior to be the generator of a BMS boost symmetry

at I+.
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However, expressed in terms of advanced null coordinates, using u = v − 2r∗,

Bz(−) = − (v − 2r∗) cos θ∂v + (2∂rr
∗)(v − 2r∗ + r) cos θ∂v

+ (v − 2r∗ + r) cos θ∂r(+) −

(

v − 2r∗

r
+ 1

)

sin θ∂θ

=

{

(r + 2M)[v − 4M ln( r
2M

− 1)]− 4Mr

r − 2M

}

cos θ∂v

+
[

v − r − 4M ln
( r

2M
− 1

)]

(cos θ∂r(+) −
1

r
sin θ∂θ). (17)

Here, because the ∂v coefficient goes to infinity as ln( r
2M

−1) for large r, Bz(−) generates

a singular transformation at I−.

Now consider the corresponding boost in the z(+)-direction intrinsic to η
(+)
µν with

generator Bz(+) = z(+)∂t(+) + t(+)∂z(+). In advanced null coordinates,

∂t(+) = ∂v, ∂z(+) = cos θ(∂v + ∂r(+))−
sin θ

r
∂θ. (18)

This leads to the advanced time dependence

Bz(+) = v cos θ∂v + (v − r) cos θ∂r(+) −
(v

r
− 1

)

sin θ∂θ, (19)

which has the proper asymptotic behavior to be the generator of a BMS boost symmetry

at I−. However, expressed in terms of retarded null coordinates

Bz(+) = −

{

(r + 2M)[u+ 4M ln( r
2M

− 1)] + 4Mr

r − 2M

}

cos θ∂u

+
[

u+ r + 4M ln
( r

2M
− 1

)]

(cos θ∂r(−) −
1

r
sin θ∂θ), (20)

which generates a singular transformation at I+. As will be seen in the next section,

these unexpected gauge singularities of Bz(−) at I− and Bz(+) at I+ do not affect

calculation of the radiation memory.

3. Boosts and radiation memory

In retarded null coordinates xµ = (u, r, xA), where the angular coordinates xA = (θ, φ),

are constant along the outgoing null rays and r is an areal coordinate which varies along

the null rays, the metric takes the Bondi-Sachs form

gµνdx
µdxν = −

V

r
e2βdu2 − 2e2βdudr + r2hAB

(

dxA − UAdu
)(

dxB − UBdu
)

. (21)

The choice of areal coordinate r and the choice xA = (θ, φ) as angular coordinates

requires

det[hAB] = det[qAB] = sin2 θ. (22)

As a result, the conformal 2-metric hAB has only two degrees of freedom, which encode

the two polarization modes of a gravitational wave.
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In the neighborhood of I+, asymptotic flatness allows the construction of inertial

coordinates such that the metric approaches the Minkowski metric,

V

r
= 1 +O(1/r) , β = O(1/r2) , UA = −

1

2r2
ðEc

EA +O(1/r3) (23)

and

hAB = qAB + cAB/r +O(1/r2). (24)

Here ðA is the covariant derivative with respect to qAB and the determinant condition

(22) implies that cAB(u, x
C) is traceless, qABcAB = 0. Evaluation of the geodesic

deviation equation in the linearised limit of the Bondi-Sachs metric shows that σAB =
1
2
cAB is the O(1/r) strain tensor of the gravitational radiation.

The gravitational wave memory effect is determined by the change in the radiation

strain between infinite future and past retarded time,

∆σAB(x
C) := σAB(u = ∞, θ, φ)− σAB(u = −∞, θ, φ). (25)

This produces a net displacement in the relative angular position of distant test

particles,‖

∆(xA
2 − xA

1 ) =
1

r
(xC

2 − xC
1 )q

AB∆σBC . (26)

A compact way to describe the radiation is in terms of a complex polarization dyad

qA satisfying

qAB =
1

2
(qAq̄B + q̄AqB), qAq̄A = 2, qAqA = 0. (27)

For the standard form of the unit sphere metric in spherical coordinates xA = (θ, φ), we

set qA∂A = ∂θ + (i/ sin θ)∂φ. In the associated inertial Cartesian coordinates, the dyad

qA has components qµ = rQµ = (0, rQi), where

Qi = ri,Aq
A = (cos θ cosφ− i sinφ, cos θ sinφ+ i cosφ,− sin θ)

and δijQ
iQ̄j = 2. The dyad decompsition

σAB =
1

4

[

(qEqFσEF )q̄Aq̄B + (q̄E q̄FσEF )qAqB

]

, (28)

leads to the spin-weight-2 representation of the strain,

σ :=
1

2
qAqBσAB. (29)

Note that σ also corresponds to the leading (r−2) coefficient of the shear of the null

hypersurfaces u = const. Its retarded time derivative N(u, xA) := ∂uσ(u, x
A) is the

Bondi news function.

The shear-free property of the Schwarzschild metric in its rest frame implies that

σ = 0. For a transition from an initially static Schwarzschild frame to a final boosted

state, the resulting spin-weighted radiation memory is then

∆σ(xC) = σ(u = ∞, xC)− σ(u = −∞, xC), (30)

‖ Note (26) corrects a missing 1/r factor in the corresponding equation in [11].
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where σ(u = ∞, xC) is the radiation strain of the final boosted state and initially

σ(u = −∞, xC) = 0.

Under the retarded time transformation u → u+ α(xA), which corresponds to the

supertranslation freedom in the BMS group [5], the asymptotic strain has the gauge

freedom

σ(u, xA) → σ(u, xA) + ð
2α(xA), (31)

where ð is the Newman-Penrose spin-weight raising operator [10]. Since the finiteness

of the radiative mass loss requires that the news function N = ∂uσ vanish as u → ±∞,

the strain σ can be gauged to zero either as u → ∞ or u → −∞. The memory effect

∆σ (25) is gauge invariant but determines a supertranslation α(xA) according to

ð
2α(xA) = ∆σ(xA),

which relates the strains at u = ±∞. The energy flux of the radiation is given by the

absolute square, NN̄ , of the Bondi news function N , which is also gauge invariant. If

the memory effect (30) is non-zero then there must be intervening radiation.

These attributes of I+ have corresponding attributes at I−. In particular, the

outgoing radiation strain σ(u, xA) has as its analogue an ingoing radiation strain

Σ(v, xA). In analogy with (30), the gravitational wave memory at I− due to ingoing

radiation is

∆Σ(xC) = Σ(v = ∞, xC)− Σ(v = −∞, xC). (32)

If there is no ingoing radiation, as required in the linearized case by a retarded solution,

then ∆Σ(xC) = 0.

Of the BMS transformations, only the supertranslations (31) affect the radiation

strain. As shown in Sec. 2, a B(−) boost is a BMS boost symmetry at I+ so that it does

not introduce outgoing radiation memory ∆σ. Conversely, a B(+) boost is a BMS boost

symmetry at I− so that it does not introduce ingoing radiation memory ∆Σ. These

results are explicitly demonstrated below.

3.1. Effect of a B(−) boost

Consider first the transition from a static Kerr-Schild-Schwarzschild metric to the B(−)

boosted version with 4-velocity vµ = Γ(1, V i), where Γ = (1 − δijV
iV j)−1/2. For a

B(−) boost, η
(−)
µν → η

(−)
µν . The boosted version of the static retarded time Kerr-Schild-

Schwarzschild metric (5), can be obtained by the further substitutions

∂µt
(−) → −vµ, r2 → R(−)2 = x(−)

µ x(−)µ + (x(−)
µ vµ)2, kµ → Kµ = vµ +R(−)

µ , (33)

where

∂µr → R(−)
µ =

1

R(−)
(x(−)

µ + vµx
(−)
ν vν). (34)

The boosted metric is

g(B
−)

µν = η(−)
µν +

2M

R(−)
KµKν . (35)
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This Lorentz covariant transformation reduces to the rest frame expression when V i = 0.

In order to calculate the resulting radiation strain, we note that qµqνη
(−)
µν = 0 and

qµxµ =0 so that

σ(B−) =
1

4
rqµqνg(B

−)
µν |

I+ =
Mr

2R−
(qµKµ)

2|
I+,

where qµKµ = qµvµ(1 +R−1x
(−)
ν vν).

For the limit at I+, in retarded null coordinates

R(−)2 = r2
[

−
u2

r2
−

2u

r
+ Γ2

(

1−
xiV

i

r
+

u

r

)2]

, (36a)

x(−)
ν vν = Γ(−u− r + xiV

i) , (36b)

so that

lim
r→∞

u=const

R(−)

r
= Γ(1−

V ixi

r
) , (37a)

lim
r→∞

u=const

x
(−)
ν vν

r
= − Γ(1−

V ixi

r
) . (37b)

Consequently,

lim
r→∞

u=const

x
(−)
ν vν

R(−)
= −1 (38)

and

lim
r→∞

u=const

qµKµ = 0. (39)

Therefore σ(B−)(u, xC) = 0 and in particular σ(B−)(u = ∞, xC) = 0. So, as expected

from the BMS property of the B(−) boost at I+, it produces no radiation memory at

I+. Now consider the boosted strain on I−,

Σ(B−) =
r

4
qµqνg(B

−)
µν |I− =

Mr

2R(−)
(qµvµ)

2
(

1 +
x
(−)
ν vν

R(−)

)2∣
∣

∣

I−

. (40)

In order to calculate the limit at I−, for which r → ∞ holding v = t(+) + r constant,

we must express Σ(B−) as a function of the unboosted advanced coordinates (v, r, xA).

Using (9), a straightforward calculation gives

x(−)
µ vµ = rΓ

[

1−
v

r
+

4M

r
ln(

r

2M
− 1) + riV

i
]

, (41)

x(−)
µ x(−)µ = r[v − 4M ln(

r

2M
− 1)][2−

v

r
+

4M

r
ln(

r

2M
− 1)], (42)

which leads to the limits

lim
r→∞

v=const

R(−)

r
= Γ(1 + V iri), (43)

lim
r→∞

v=const

x
(−)
µ vµ

R(−)
= lim

r→∞

v=const

[
r

R(−)
][
x
(−)
µ vµ

r
] = 1. (44)
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We then obtain

Σ(B−) =
2Mr

R(−)
(qµvµ)

2|I− =
2MΓ(qiVi)

2

1 + V iri
. (45)

Consequently, for a non zero boost, the resulting radiation memory on I− does not

vanish, which requires the existence of ingoing radiation.

Thus the B(−) boost is inconsistent with vanishing ingoing radiation and produces

zero radiation memory on I+. Both of these results contradict the linearized result

based upon the retarded Green function so that B(−) is not the appropriate boost to

model the memory effect.

3.2. Effect of a B(+) boost

Consider now the transition from a static to a B(+) boosted version of the Kerr-Schild-

Schwarzschild metric with 4-velocity vµ = Γ(1, V i). For the B(+) boost, η
(+)
ab → η

(+)
ab .

With respect to the advanced time version of the static Kerr-Schild-Schwarzschild metric

(7), the boosted version can be obtained by the further substitutions

∂µt
(+) → −vµ, r2 → R(+)2 = x(+)

µ x(+)µ + (x(+)
µ vµ)2, nµ → Nµ = vµ −R(+)

µ , (46)

where

∂µr → R(+)
µ =

1

R(+)
(x(+)

µ + vµx
(+)
ν vν). (47)

The boosted metric is

g(B
+)

µν = η(+)
µν +

2M

R(+)
NµNν (48)

with the corresponding boosted strain on I− given by

Σ(B+) =
r

4
qµqνg(B

+)
µν

∣

∣

∣

I−

=
Mr

2R(+)
(qµNµ)

2
∣

∣

∣

I−

=
Mr

2R(+)
(qµvµ)

2
(

1−
x
(+)
ν vν

R(+)

)2∣
∣

∣

I−

. (49)

The calculation of the limit proceeds in a time reversed sense as in Sec. 3.1.

In advanced null coordinates

R(+)2 = r2
[

−
v2

r2
+

2v

r
+ Γ2

(

1 +
xiV

i

r
−

v

r

)2]

, (50a)

x(+)
ν vν = Γ(−v + r + xiV

i) , (50b)

so that

lim
r→∞

v=const

R(+)

r
= Γ(1 +

V ixi

r
) , (51a)

lim
r→∞

v=const

x
(+)
ν vν

r
= Γ(1 +

V ixi

r
) . (51b)

Consequently,

lim
r→∞

v=const

x
(+)
ν vν

R(+)
= lim

r→∞

v=const

[
r

R(+)
][
x
(+)
ν vν

r
] = 1 (52)
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and therefore Σ(B+)(v, xC) = 0. So, as expected from the BMS property of the B(+)

boost at I−, there is no radiation memory at I−. It is thus consistent to set the free

characteristic initial data Σ to zero on I− so that there is no ingoing radiation.

Now consider the boosted strain on I+,

σ(B+) =
r

4
qµqνg(B

+)
µν |I+ =

Mr

2R(+)
(qµvµ)

2
(

1−
x
(+)
ν vν

R(+)

)2∣
∣

∣

I+
. (53)

In order to calculate the limit at I+, for which r → ∞ holding u = t(−) − r constant,

we must express σ(B+) as a function of the unboosted retarded coordinates (u, r, xA). A

straightforward calculation gives

x(+)
µ vµ = −rΓ

[

1 +
u

r
+

4M

r
ln(

r

2M
− 1)− riV

i
]

, (54)

x(+)
µ x(+)µ = −r[u+ 4M ln(

r

2M
− 1)][2 +

u

r
+

4M

r
ln(

r

2M
− 1)], (55)

which leads to the limits

lim
r→∞

u=const

R(+)

r
= Γ(1− V iri), (56)

lim
r→∞

u=const

xνv
ν

R(+)
= lim

r→∞

u=const

−Γr
[

1− V iri +
u
r
+ 4M

r
ln( r

2M
− 1)]

R(+)
= −1. (57)

We then obtain

σ(B+) =
2Mr

R(+)
(qµvµ)

2|I+ =
2MΓ

(1− riV i)
(qiVi)

2. (58)

The resulting radiation memory due to the ejection of a Schwarzschild body is

∆σ(B+) =
2MΓ

1− riV i
(qiVi)

2. (59)

This is in exact agreement with the linearized result.

4. Discussion

We have shown that the boost symmetry B(+) of the Minkowski background η
(+)
µν of the

ingoing Kerr-Schild version of the Schwarzschild metric leads to a nonlinear model for

determining the memory effect due to the ejection of a massive particle. An initially

stationary Kerr-Schild-Schwarzschild metric followed by an accelerating interval which

produces radiation and leads to a final B(+) boosted state is consistent with the absence

of ingoing radiation and produces outgoing radiation in agreement with the linearized

memory effect obtained from a retarded solution. The corresponding results for a B(−)

boost of the Minkowski background η
(−)
µν produces results expected in the linearized limit

from the use of an advanced Green function.

In [2], we have given an analysis of how radiation memory affects angular

momentum conservation. In a non-radiative regime, a preferred Poincaré subgroup

can be picked out from the BMS group. This difference ∆σ between initial and final
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radiation strains induces the supertranslation shift (31) between the preferred Poincaré

groups at u = ±∞. The rotation subgroups associated with the initial and final

Poincaré groups differ by a supertranslation. As a result, the corresponding components

of angular momentum intrinsic to the initial and final states differ by supermomenta.

This complicates the interpretation of angular momentum flux conservation laws. There

might be a distinctly general relativistic mechanism for angular momentum loss. This

is a ripe area for numerical investigation.

In prescribing initial data for the numerical simulation of binary black holes using

superimposed Kerr-Schild metrics [3, 4], B(+) is used to induce the orbital motion.

Although B(+) has a logarithmic singularity (20) at I+, this is a pure gauge effect

which does not show up in the memory effect measured by the change in asymptotic

strain ∆σ but it could introduce spurious effects in the prescription of binary black hole

initial data. Whether this adversely affects the asymptotic gauge behavior of the data

deserves further study.

The model presented here provides a scheme for studying these issues. Although

our example of a transition from a asymptotically stationary to boosted state is highly

idealized, the chief criterion for the model is that, to an asymptotic approximation, the

far field behavior of the initial and final states consist of the Kerr-Schild superposition

of distant Schwarzschild bodies. The model is also applicable to an initial state whose

far field is a superposition of boosted Schwarzschild bodies which, after some dynamic,

radiative process, coalesce to form a boosted Kerr black hole. Of course, the intermediate

radiative epoch, which determines the final mass and velocity, must be treated by

numerical methods. The Kerr-Schild model offers a framework for interpreting such

results.
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