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Abstract: We study physical consequences of adding orientifolds to the ABJ triality,

which is among 3d N = 6 superconformal Chern-Simons theory known as ABJ theory,

type IIA string in AdS4 × CP
3 and N = 6 supersymmetric (SUSY) Vasiliev higher spin

theory in AdS4. After adding the orientifolds, it is known that the gauge group of the

ABJ theory becomes O(N1) × USp(2N2) while the background of the string theory is

replaced by AdS4 × CP
3/Z2, and the supersymmetries in the both theories reduce to

N = 5. We propose that adding the orientifolds to the N = 6 Vasiliev theory leads

to N = 5 SUSY Vasiliev theory. It turns out that the N = 5 case is more involved

because there are two formulations of the N = 5 Vasiliev theory with either O or USp

internal symmetry. We show that the two N = 5 Vasiliev theories can be understood as

certain projections of the N = 6 Vasiliev theory, which we identify with the orientifold

projections in the Vasiliev theory. We conjecture that the O(N1)×USp(2N2) ABJ theory

has the two vector model like limits: N2 ≫ N1 and N1 ≫ N2 which correspond to the

semi-classical N = 5 Vasiliev theories with O(N1) and USp(2N2) internal symmetries

respectively. These correspondences together with the standard AdS/CFT correspondence

comprise the ABJ quadrality among the N = 5 ABJ theory, string/M-theory and two N =

5 Vasliev theories. We provide a precise holographic dictionary for the correspondences

by comparing correlation functions of stress tensor and flavor currents. Our conjecture is

supported by various evidence such as agreements of the spectra, one-loop free energies and

SUSY enhancement on the both sides. We also predict the leading free energy of the N = 5

Vasiliev theory from the CFT side. As a byproduct, we give a derivation of the relation

between the parity violating phase in the N = 6 Vasiliev theory and the parameters in the

N = 6 ABJ theory, which was conjectured in [1].
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1 Introduction

At extremely high energy scale, string theory has been expected to exhibit a huge gauge

symmetry as infinitely many massless higher spin (HS) particles emerge in the spectrum [2].

Then the usual string scale 1/
√
α′ might arise as a dynamical scale via Higgsing the HS

gauge symmetry. While these expectations are still speculative, there exist a self-consistent

description of interacting HS gauge fields known as Vasiliev theory [3] independently of

string theory. It is then natural to explore the relation between string theory and Vasiliev

theory. The answer to this question remains largely open despite some attempts were made

to directly connect Vasiliev theory to the tensionless limit of string (field) theory [4–7]. One

of the indirect but steady steps towards answering this question is to reinterpret stringy

objects or concepts in the framework of the Vasiliev theory. In this paper we aim at un-

derstanding orientifolds in the context of higher spin AdS4/CFT3 correspondence between

Vasiliev theory in AdS4 and 3d conformal field theory (CFT) [8–12], which generalizes the

usual AdS/CFT correspondence [13].

To be specific, we study physical consequences of adding orientifolds into the setup

of ABJ triality [1, 14], which relates three apparently distinct theories as summarized in

figure 1. It involves i) 3d N = 6 superconformal Chern-Simons (CS) theory called N = 6

ABJ theory [15, 16], which is the U(N)k ×U(N +M)−k CS matter theory coupled to two

bi-fundamental hyper multiplets; ii) Type IIA string theory in AdS4 × CP
3; iii) Parity-

violating N = 6 supersymmetric (SUSY) Vasiliev theory with U(N) internal symmetry in

AdS4. The N = 6 ABJ theory is expected to describe low energy dynamics of N coincident

M2-branes probing1 C4/Zk, together with M coincident fractional M2-branes localized at

the singularity. The M-theory background associated with this setup is AdS4×S7/Zk with

the nontrivial 3-form holonomy
∫
C3 ∼ M/k. For k ≪ N1/5, the M-theory circle shrinks

and the M-theory is well approximated by type IIA string on AdS4×CP
3. It is conjectured

in [1, 14, 17] that the N = 6 ABJ theory is also dual to the N = 6 Vasiliev theory with

1The Zk orbifolding acts on the C
4 coordinate (z1, z2, z3, z4) as (z1, z2, z3, z4) ∼ e

2πi
k (z1, z2, z3, z4).
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U(N) internal symmetry, in which the Newton constant GN ∼ 1/M . Especially the semi-

classical approximation of the Vasiliev theory becomes accurate in the following limit of

the ABJ theory

M, |k| → ∞ with t ≡ M

|k| : finite and N : finite . (1.1)

In this limit, the ABJ theory approaches a vector-like model which is the U(N + M)

SUSY CS theory coupled to 2N fundamental hyper multiplets with a weakly gauged U(N)

symmetry. This correspondence is a generalization of the duality between Vasiliev theory

and U(M) CS vector model [14, 18–22] to the case with weakly gauged flavor symmetries.2

In the ABJ triality, the fundamental string in the string theory is expected to be realized

as “flux tube” solution or “glueball”-like bound state in the Vasiliev theory when the bulk

coupling is large. The N = 6 ABJ triality was further investigated in [24, 25].

Now we add orientifolds into this scenario. For this purpose, it is convenient to begin

with the type IIB brane construction of theN = 6 ABJ theory shown in figure 2 (see [15] for

detail). There are four ways to consistently add orientifold 3-planes in this setup. Recall

that there are four orientifold 3-planes3 O3−, O3+, Õ3
−

and Õ3
+
, whose combinations

with N D3-branes lead to the gauge groups O(2N), USp(2N), O(2N + 1) and USp(2N)

respectively. Specifically, consistently adding O3± into the N = 6 set up with k → 2k

leads to the N = 5 ABJ theory with the gauge group O(N1)2k × USp(2N2)−k, where N1

is an even integer. The odd N1 case is obtained by adding Õ3
±
. In summary, the N = 5

ABJ theory can have the four types of the gauge group:

1. O(2N)2k ×USp(2N + 2M)−k ,

2. O(2N + 2M)2k ×USp(2N)−k ,

3. O(2N + 1)2k ×USp(2N + 2M)−k ,

4. O(2N + 2M + 1)2k ×USp(2N)−k .

The M-theory background dual to the N = 5 ABJ theory is given by4 AdS4 × S7/D̂k.

Similar to theN = 6 case, the M-theory circle shrinks for k ≪ N1/5 and the M-theory is well

approximated by the type IIA string in AdS4 ×CP
3/Z2 with the NS-NS 2-form holonomy∫

B2 ∝ M/k. While this is well known, inspired by the N = 6 ABJ triality it is natural

to ask whether the N = 5 ABJ theory also admits some dual higher spin description. To

the best of our knowledge, this aspect has not been studied in literature. The focus of this

paper is to establish the AdS/CFT correspondence among the N = 5 ABJ theory, type

IIA string in AdS4 ×CP
3/Z2 and N = 5 Vasiliev theory in AdS4 with internal symmetry.

We carry out this by first constructing the N = 5 Vasiliev theory. As shown in

section 2, there are two types of allowed internal symmetry for the N = 5 HS theory,

2There is also a study on this type of correspondence for non-SUSY cases [23].
3Õ3

−
can be regarded as O3− plane with a half D3-brane. Õ3

+
and O3+ planes are equivalent pertur-

batively but different non-perturbatively [26].
4
D̂k is the binary dihedral group which consists of the Z2k orbifolding and (z1, z2, z3, z4) ∼

(iz∗2 ,−iz∗1 , iz
∗
4 ,−iz∗3).
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U(N)k × U(N +M)−k ABJ

M− theory on AdS4 × S7=Zk

IIA string on AdS4 ×CP
3

N = 6 Vasiliev theory

k ≪ N1=5

N 1=5
≪ k ≪ N

k;M ≫ 1;

M
k : fixed; N : fixed

Figure 1. Summary of the N = 6 ABJ triality.

Figure 2. The type IIB brane constructions for the ABJ theories. All the objects share three

common dimensions and the D3-branes wind the S1-direction. [Left] The N = 6 case with the gauge

group U(N)k×U(N+M)
−k. [Right] The N = 5 case with the gauge group O(N1)2k×USp(2N2)−k

where (rank[O(N1)], N2) = (N,N +M) or (N +M,N).

which is either O or USp group. These two possibilities should correspond to two vector

limits of the N = 5 ABJ theory. Recalling that the gauge group of the N = 5 ABJ theory is

O(N1)×USp(N2), we first propose that the N = 5 ABJ theory is dual to the semi-classical

N = 5 Vasiliev theory with O(N1) internal symmetry in the following limit

N2 = |O(N1)|+M , M, |k| → ∞ with t ≡ M

|k| and N1 : finite , (1.2)

where |O(N1)| is the rank of O(N1). We also propose that the second limit corresponding

to the semi-classical Vasiliev theory with USp(2N2) internal symmetry is

|O(N1)| = N2 +M , M, |k| → ∞ with t ≡ M

|k| and N2 : finite . (1.3)

The correspondence between the HS and CFT parameters is as follows. As the N = 5

ABJ theory has the three parameters (k,M,N), the N = 5 Vasiliev theory also has the

three parameters (GN , θ,N), where GN is the Newton constant, θ is the parity-violating

phase and N is the rank of the internal symmetry group. We derive the precise holographic

dictionary by matching correlation functions of stress tensor and flavor symmetry currents,

which we compute on the CFT side by SUSY localization [27]. As we will discuss in

– 3 –
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O(N1)2k × USp(2N2)−k ABJ

M− theory on AdS4 × S7=D̂k

IIA string on AdS4 ×CP
3=Z2

N = 5 Vasiliev with O(N1)

k ≪ N1=5

N 1=5
≪ k ≪ N

(

k;N2 ≫ 1; N2

k : fixed; N1 : fixed
)

N = 5 Vasiliev with USp(2N2)
(

k;N1 ≫ 1; N1

k : fixed; N2 : fixed
)

Figure 3. Summary of our proposal on the ABJ quadrality among the N = 5 ABJ theory,

string/M-theory and two N = 5 Vasiliev theories. The parameter N is the rank of “smaller” gauge

group, namely N = min(rank(O(N1)), N2). The main difference from the N = 6 case is that we

have two higher spin limits corresponding to the N = 5 Vasiliev theories with different internal

symmetries.

section 4.7, the analysis of the stress tensor correlation function suggests that the Newton

constant GN is related to M by

GN

L2
AdS

=
t

M sinπt
, (1.4)

while the comparison of the flavor current correlation function indicates that the parity-

violating phase θ is related to t by

θ =
πt

2
. (1.5)

We also show that the relation (1.5) is true also for the N = 6 ABJ triality, where (1.5) was

conjectured but not proven in [1]. In the limit (1.2), the N = 5 ABJ theory approaches

the USp(2N2) SUSY CS theory coupled to N1 fundamental hyper multiplets with a weakly

gauged O(N1) symmetry while the limit (1.3) provides the O(N1) SUSY CS theory coupled

to N2 fundamental hyper multiplets with a weakly gauged USp(2N2) symmetry. Our corre-

spondence is a generalization of the duality between Vasiliev theory and O(M) or USp(2M)

CS vector model [18–20, 28] to the case with weakly gauged flavor symmetries.5 As in the

N = 6 case, we expect that the fundamental string in the dual string theory is realized as

a “flux tube” in the N = 5 Vasiliev theory. Combined with the standard AdS/CFT cor-

respondence, we conjecture the duality-like relations among the four apparently different

theories, namely the N = 5 ABJ theory, string/M-theory and two N = 5 Vasiliev theories

with O and USp internal symmetries. Thus we shall call it ABJ quadrality as summarized

in figure 3. Since the N = 5 Vasiliev theories with O and USp internal symmetries have the

bulk ’t Hooft couplings ∼ N1/N2 and ∼ N2/N1 respectively, the relation between the two

Vasiliev theories looks like a strong-weak duality of the bulk ’t Hooft coupling as a result.

We have various evidence for the proposed correspondence between the N = 5 ABJ

theory and Vasiliev theory. First we will see in section 4.3 that the spectrum of higher spin

5There are also proposals on dS/CFT correspondence between Vasiliev theory in dS4 and USp(2M) CS

vector model coupled to matters with wrong statistics [29] (see also [30]).
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particles in the N = 5 Vasiliev theory agrees with that of the higher spin currents in the

N = 5 ABJ theory.

Second, there is a non-trivial consistency among the spectra, N = 6 ABJ triality and

“orientifold projection”. It is known [16] that the N = 5 ABJ theory can be understood as

a certain projection of the N = 6 ABJ theory. We show in section 3 that one can also derive

the N = 5 Vasiliev theory by applying a projection on the N = 6 Vasiliev theory, which we

identify with the counterpart of the orientifold projection in the Vasiliev theory. Roughly

speaking, the projection acts on both the R-symmetry part and the internal symmetry

part of master fields6 and preserves the USp(4) ⊂ SU(4) R-symmetry. More precisely, this

is achieved by projection conditions (3.5) induced by two automorphisms of the N = 6 HS

algebra. Then we prove in section 4.4 that the action of the projection on the higher spin

currents in the ABJ theory is the same as the one on the Vasiliev theory. For example,

the N = 5 Vasiliev theory contains two short multiplets: a usual supergravity (SUGRA)

multiplet and gravitino multiplet. The gravitino multiplet carries adjoint representation

of O or USp internal symmetry. These two short N = 5 supermultiplets appear once

imposing the projection conditions on the U(N) adjoint N = 6 SUGRA multiplet in the

N = 6 Vasiliev theory.

Third, SUSY enhancement occurs on the both sides under the same circumstance as

discussed in section 4.5. It is known [31, 32] that the SUSY of the O(N1)2k ×USp(2N2)−k

ABJ theory is enhanced from N = 5 to N = 6 when N1 = 2. Interestingly the dual N = 5

Vasiliev theory with the O(N1) internal symmetry has also enhanced N = 6 SUSY in the

O(2) case as explained in section 2.1.

Finally we find agreement of the sphere free energies on the both sides at O(logGN )

up to a subtlety in the comparison. The subtlety is that the free energy of the ABJ theory

behaves as O(M2) while the one of the Vasiliev theory should behave as O(G−1
N ) = O(M).

Therefore the ABJ theory has apparently more degrees of freedom than the Vasiliev theory

and we have to subtract some degrees of freedom appropriately. This problem appears

also in CS matter theory coupled to fundamental matters [14, 22]. and the N = 6 ABJ

theory [24]. We propose that the free energy which should be compared to the one in

Vasiliev theory is

F vec
N,M ≡ − log

|ZGN,M
|

|ZG0,M
| , (1.6)

where GN,M denotes the gauge group of each case in (4.10) and ZGN,M
is the sphere

partition function of the ABJ theory with the gauge group GN,M . This quantity satisfies

the following reasonable properties: i) 1/M -expansion starts at O(M); ii) Invariance under

Seiberg-like duality; iii) The O(logM) term agrees with that in the one-loop free energy of

the N = 5 Vasiliev theory. Our proposal implies that the open string degrees of freedom

corresponding to the Vasiliev theory are given by figure 4 from the viewpoint of the brane

construction. Utilizing localization method and matrix model technique, we compute F vec
N,M

6This projection for the O(N) internal symmetry case is SUSY generalization of a known projection

between non-SUSY Vasiliev theories with U(N) and O(N) internal symmetries, which are dual to U(M)

and O(M) CS theories coupled to N fundamental scalars or fermions at fixed points. One of differences is

that our projection acts also on the R-symmetry part.

– 5 –
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NS5 (1; k)5

N D3 + O3

M fractional D3 + O3

Higher spin

Figure 4. Identification of degrees of freedom corresponding to those of the Vasiliev theory from

the viewpoint of the brane construction. Strings denoted by the red solid lines are the HS degrees

of freedom while the blue dashed line is what we are subtracting.

up to the O(1) term in 1/M expansion but exact in t. Using this result and our holographic

dictionary, we propose that the free energy of the N = 5 Vasiliev theory with O(N1) or

USp(2N2) internal symmetry takes the form in the small GN expansion

FHS =
8L2

AdSI(θ)

GNπ sin 2θ
− min{dimO(N1), dimUSp(2N2)}

2
logGN +O(1) , (1.7)

where7

I(x) = Im
[
Li2(i tanx)

]
− x log tanx . (1.8)

The first term in (1.7) should correspond to the tree level action of Vasiliev theory evaluated

on AdS4 which we cannot currently compare with any results in literature, since the full

action of the Vasiliev theory has not been constructed. Hence we regard our result as

prediction to the on-shell action of the N = 5 Vasiliev theory in AdS4. As mentioned

above, the second term agrees with the one-loop free energy of the Vasiliev theory on AdS4,

which is free of logarithmic divergences [33–35] and equal to (−1/2) times the number of

bulk spin-1 gauge fields obeying the mixed boundary condition [36].

In section 6, we summarize and discuss possible extensions of this work.

2 N = 5 supersymmetric Vasiliev theory

In this section, we explain some details on the N = 5 SUSY Vasiliev theory. First we

construct the N = 5 Vasiliev theory for the two cases with O(N) and USp(2N) internal

symmetries. Next we linearize the N = 5 Vasiliev theory around the AdS4 vacuum preserv-

ing N = 5 SUSY. We explicitly write down the equations of motion, gauge transformations

and SUSY transformations around the AdS4 vacuum.

2.1 Construction

Here we construct the N = 5 Vasiliev theory. The N = 5 Vasiliev theory is based on

husp(4; 4|4) SUSY higher spin algebra [37], which contains the maximal compact subal-

gebra usp(4) ⊕ usp(4). As we will explain, this theory admits either O(N) or USp(2N)

7I(x) also has the integral representation I(x) = −
∫ x

0
dy log tan y and satisfies I(π/2− x) = I(x).

– 6 –
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as an internal symmetry. We begin with aspects which are common between the two

cases and then specify the internal symmetries. Four dimensional Vasiliev theory is real-

ized by introducing the spinorial oscillators8 (Y, Z) = (y, ȳ, z, z̄) with the associative but

non-commutative ⋆-product defined as

⋆ ≡ exp

[
iCαβ(

←
∂ yα +

←
∂ zα)(

→
∂ yβ −

→
∂ zβ ) + iCα̇β̇(

←
∂ ȳα̇ +

←
∂ z̄α̇)(

→
∂
ȳβ̇

−
→
∂
z̄β̇
)

]
, (2.1)

where Cαβ = −iǫαβ and Cα̇β̇ = −iǫα̇β̇. The indices α, β = 1, 2 and α̇, β̇ = 1, 2 serve

as indices of two-component spinors. According to this definition, we have the following

identities

yα ⋆ yβ = yαyβ + iCαβ , zα ⋆ zβ = zαzβ − iCαβ ,

[yα, f ]⋆ = 2iCαβ∂yβf , [zα, f ]⋆ = −2iCαβ∂zβf ,

{yα, f}⋆ = 2yαf − 2iCαβ∂zβf , {zα, f}⋆ = 2zαf + 2iCαβ∂yβf ,

(2.2)

where f is arbitrary function of (x, Y, Z).

In the N = 5 Vasiliev theory, we take fields to be 8N × 8N matrices, which are tensor

products of 8×8 and N×N parts. Roughly speaking, the 8×8 part is needed to introduce

fermions and the size of this part depends on the type of SUSY while the N × N part

M describes internal symmetry and properties of M depend on the internal symmetry

under consideration. We describe the 8×8 part in terms of the six Grassmannian variables

(ξ1, . . . , ξ5, η) which commute with (Y, Z) and satisfy the Clifford algebra9

{ξi, ξj} = δij , (η)2 = 1 , {η, ξi} = 0 . (2.3)

Viewing (ξi, η) as the SO(6) gamma matrices, we can realize the 8 × 8 part as a sum of

products of (ξi, η).

The Vasiliev system is described by so-called master fields, which consist of the con-

nection 1-form A in (x, Z) space and the 0-form Φ given by

A = A(x, y, ȳ, z, z̄, ξi, η) = Ωµdx
µ + Sαdz

α + Sα̇dz̄
α̇ , Φ = Φ(x, y, ȳ, z, z̄, ξi, η) . (2.4)

They obey the spin-statistics condition

ππ̄πξπη(A,Φ) = (A,Φ) , (2.5)

where π’s are the homomorphisms of the ⋆-product defined by

π(y, ȳ, z, z̄) = (−y, ȳ,−z, z̄), π̄(y, ȳ, z, z̄) = (y,−ȳ, z,−z̄), πξ(ξ
i) = −ξi, πη(η) = −η.

(2.6)

The master fields contain both dynamical and auxiliary degrees of freedom. The physical

degrees of freedom are contained in the Z independent part of Ωµ and Φ while Sα and Sα̇

8See appendix A for some details.
9Strictly speaking, the products here are ⋆ product but we drop the ⋆ product symbol regarding (ξi, η)

for simplicity.
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have only auxiliary degrees of freedom. When the fields carry non-trivial representations of

the internal symmetry, the Z independent parts of Ωµ and Φ have the general expansions

Ωµ|Z=0 =
∑

p,q≥0
k=0,...,5

1

k!

(
Ωµ,i1···ik(p, q)ξ

i1···ik +Ω′
µ,i1···ik

(p, q)ξi1···ikη
)
⊗M ,

Φ|Z=0 =
∑

p,q≥0
k=0,...,5

1

k!

(
Φi1···ik(p, q)ξ

i1···ik +Φ′
i1···ik

(p, q)ξi1···ikη
)
⊗M ,

(2.7)

where ξi1···ik = ξi1 · · · ξik and

P(p, q) =
1

p!q!
Pα1···αpα̇1···α̇qy

α1 · · · yαp ȳα̇1 · · · ȳα̇q . (2.8)

The spin s gauge fields are described by the p+ q = 2s−2 components of Ωµ|Z=0, in which

the p = q and |p− q| = 1 components give rise to the (generalized) vierbein and gravitini

respectively, while the |p − q| > 1 components correspond to the spin connections. The

matter fields with spin s ≤ 1
2 arise as components of Φ|Z=0 with p+ q ≤ 1. The remaining

components in Φ|Z=0 are auxiliary and related to the Weyl tensors of the physical fields

and their derivatives via equations of motion.

2.1.1 O(N) internal symmetry

Let us specify our internal symmetry to O(N). First we takeM to be the N×N real matrix

associated with the internal symmetry O(N), which can be decomposed into symmetric

and antisymmetric parts. Next we define the τ map as

τ(y, ȳ, z, z̄) = (iy, iȳ,−iz,−iz̄) , τ(ξi) = iξi , τ(η) = −iη , (2.9)

and

τ(M) = MT . (2.10)

The conditions (2.9) will be imposed also for the case with USp(2N) internal symmetry

while the condition for M will differ from (2.10). Then we require the master fields to

satisfy the reality condition

A† = −A , Φ† = π(Φ)Γ , (2.11)

and the τ -condition

τ(A) = −A , τ(Φ) = π̄(Φ) , (2.12)

where Γ = iξ1 · · · ξ5η and Γ2 = 1. The † acts on (Y, Z, ξi, η) and M according to10

yα† = ȳα̇ , zα† = −z̄α̇ , ξi† = ξi , η† = η , (ξiξj)† = ξjξi , (ξiη)† = ηξi , M† = (MT )∗.

(2.13)

The τ - and reality conditions affect the spectrum of physical degrees of freedom. We

now analyze their consequences on Ωµ|Z=0. First let us consider symmetric part of M,

10We follow the notation of [17], which is different from the one in [1]: yα†|there = ȳα̇|there, ȳ
α̇†|there =

−yα|there.
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which corresponds to two index symmetric representation of O(N). Noting that acting τ

on Ωµ,i1··· ,ikξ
i1···ik gives the extra factor ip+q+k, as a consequence, the τ -condition requires11

Ωµ|Z=0 =
∞∑

n=0

{ ∑

p+q=4n

(
1

2!
Ωµ,ij(p, q)ξ

ij +
1

3!
Ω′
µ,ijk(p, q)ξ

ijkη

)

+
∑

p+q=4n+1

(
Ωµ,i(p, q)ξ

i +
1

5!
Ωµ,i1···i5(p, q)ξ

i1···i5 +
1

2!
Ω′
µ,ij(p, q)ξ

ijη

)

+
∑

p+q=4n+2

(
Ωµ(p, q) +

1

4!
Ωµ,i1···i4(p, q)ξ

i1···i4 +Ω′
µ,i(p, q)ξ

iη +
1

5!
Ω′
µ,i1···i5(p, q)ξ

i1···i5η

)

+
∑

p+q=4n+3

(
1

3!
Ωµ,ijk(p, q)ξ

ijk +Ω′
µ(p, q)η +

1

4!
Ω′
µ,i1···i4(p, q)ξ

i1···i4η

)}
. (2.14)

The reality condition further requires

Ω†
µ,i1···ik

(p, q) = (−1)
k(k−1)

2
+1Ωµ,i1···ik(q, p) , Ω′†

µ,i1···ik
(p, q) = (−1)

k(k+1)
2

+1Ω′
µ,i1···ik

(q, p) .

(2.15)

The analysis for Φ is similar and the result for p ≥ q is

Φ|Z=0=





Φ(p,q)+ 1
4!Φi1···i4(p,q)ξ

i1···i4+Φ′
i(p,q)ξ

iη+ 1
5!Φ

′
i1···i5

(p,q)ξi1···i5η p−q=0 mod 4
1
3!Φijk(p,q)ξ

ijk+Φ′(p,q)η+ 1
4!Φ

′
i1···i4

(p,q)ξi1···i4η p−q=1 mod 4
1
2!Φij(p,q)ξ

ij+ 1
3!Φ

′
ijk(p,q)ξ

ijkη p−q=2 mod 4

Φi(p,q)ξ
i+ 1

5!Φi1···i5(p,q)ξ
i1···i5+ 1

2!Φ
′
ij(p,q)ξ

ijη p−q=3 mod 4

(2.16)

where due to the reality condition,12

Φ†(p, p) =
i

5!
(−1)p+1εijklmΦ′

ijklm(p, p) , Φ†
ijkl(p, p) = i(−1)p+1 εijklmΦ′m(p, p) . (2.17)

The p < q components of Φ|Z=0 are related to the p > q ones via the reality condition (2.12).

The SO(5) indices are raised and lowered by δij . We summarize the final result in table 1.

Note that in SUSY Vasiliev theory with internal symmetry, fields in the usual SUGRA

multiplet are extended to matrices, and only the singlet components under the internal

symmetry, namely the trace part, are related to the operators inside the dual CFT stress

tensor multiplet via holography. The Konishi multiplet and other higher spin multiplets

exhibit the standard long multiplet pattern with the spin range being 5
2 .

Next we consider anti-symmetric part of M corresponding to two index anti-symmetric

representation of O(N). Then imposing τ -condition leads to

Ωµ|Z=0 =
∞∑

n=0

{ ∑

p+q=4n+1

(
1

3!
Ωµ,ijk(p, q)ξ

ijk +Ω′
µ(p, q)η +

1

4!
Ω′
µ,i1···i4(p, q)ξ

i1···i4η

)

+
∑

p+q=4n+2

(
1

2!
Ωµ,ij(p, q)ξ

ij +
1

3!
Ω′
µ,ijk(m,n)ξijkη

)
(2.18)

11From now on we do not explicitly write the matrix M for succinctness.
12As an example, for spin-1/2 fields, Φ†

α̇,ijk = − i
2!
εijklmΦ′ lm

α̇ , Φ′†
α̇ = i

5!
εijklmΦ ijklm

α̇ , Φ′†
α̇,ijkl = iεijklmΦm

α̇ .
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ℓ\s 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 · · ·

0 5+5 1+10 10+10 5+10 1+5 1

1 1+1 5 1 5+1 10+5 10+10 5+10 1+5 1

2 1 5+1 10+5 10+10 5+10 1+5 · · ·

3 1 5+1 · · ·
...

Table 1. The spectrum of physical fields carrying symmetric M in the N = 5 Vasiliev theory with

the O(N) internal symmetry in the language of SO(5) representations. For s ≥ 1 fields, the level ℓ

is related to s by s = 2ℓ+2− k/2+ r/2 where k is the number of ξs and r is the number of η. The

values of ℓ are assigned to spin-0, 1/2 fields such that fields belonging to the same supermultiplet

are labeled by the same ℓ. The underlines denote the fields in the N = 5 SUGRA multiplet. This

table also provides the spectrum of physical fields associated with antisymmetric JM in the case

with USp(2N) internal symmetry.

+
∑

p+q=4n+3

(
Ωµ,i(p, q)ξ

i +
1

5!
Ωµ,i1···i5(p, q)ξ

i1···i5 +
1

2!
Ω′
µ,ij(p, q)ξ

ijη

)

+
∑

p+q=4n

(
Ωµ(p, q) +

1

4!
Ωµ,i1···i4(p, q)ξ

i1···i4 +Ω′
µ,i(p, q)ξ

iη +
1

5!
Ω′
µ,i1···i5(p, q)ξ

i1···i5η

)}
,

and the reality conditions requires

Ω†
µ,i1···ik

(p, q) = (−1)
k(k−1)

2 Ωµ,i1···ik(q, p) , Ω′†
µ,i1···ik

(p, q) = (−1)
k(k+1)

2 Ω′
µ,i1···ik(q, p) .

(2.19)

Similarly, Φ|Z=0 for p ≥ q possesses the expansion

Φ|Z=0=





1
2!Φij(p,q)ξ

ij+ 1
3!Φ

′
ijk(p,q)ξ

ijkη p−q=0 mod 4

Φi(p,q)ξ
i+ 1

5!Φi1···i5(p,q)ξ
i1···i5+ 1

2!Φ
′
ij(p,q)ξ

ijη p−q=1 mod 4

Φ(p,q)+ 1
4!Φi1···i4(p,q)ξ

i1·i4+Φ′
i(p,q)ξ

iη+ 1
5!Φ

′
i1···i5

(p,q)ξi1···i5η p−q=2 mod 4
1
3!Φijk(p,q)ξ

ijk+Φ′(p,q)η+ 1
4!Φ

′
i1···i4

(p,q)ξi1···i4η p−q=3 mod 4

(2.20)

where the reality condition constrains13

Φ†
ij(p, p) =

i

3!
(−1)p εijklmΦ′klm(p, p) . (2.21)

The p < q components of Φ|Z=0 are related to the p > q ones through the reality condi-

tion (2.12). The final result is summarized in table 2. Especially we have the gravitino

multiplet, which is underlined in table 2. The gravitino multiplet for N = 2 is special

because the two-index anti-symmetric representation of O(N) is singlet. Together with the

13For example, for spin-1/2 fields, Φ†
α̇,i = − i

4!
εijklmΦ′ jklm

α̇ , Φ†
α̇,ijklm = iεijklmΦ′

α̇, Φ
′†
α̇,ij = − i

3!
εijklmΦ klm

α̇ .
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ℓ\s 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 · · ·

0 10+10 5+10 1+5 1

1 1 5+1 10+5 10+10 5+10 1+5 1

2 1 5+1 10+5 10+10 5+10 1+5 1

3 1 5+1 10+5 10+10 · · ·
...

Table 2. The spectrum of physical fields carrying antisymmetric M in the case with O(N) internal

symmetry. For s ≥ 1 fields, the level ℓ is related to s by s = 2ℓ+1−k/2+ r/2 . The values of ℓ are

assigned to spin-0, 1/2 fields such that fields belonging to the same supermultiplet are labeled by the

same ℓ. We have underlined the fields belonging to the gravitino multiplet. This table also provides

the spectrum of physical fields with symmetric JM in the case with USp(2N) internal symmetry.

O(2)-singlet N = 5 SUGRA multiplet, it comprises the N = 6 SUGRA multiplet singlet

under the internal symmetry. This indicates that the supersymmetry of the O(2) case is

enhanced from N = 5 to N = 6. For N 6= 2, the existence of the gravitino multiplet

does not imply the SUSY enhancement since SUSY generators should be singlet under the

internal symmetry and the gravitino multiplet does not contain any singlet parts. We will

come back to this point in section 4.5.

In summary, for bosonic fields carrying symmetric M, the even spins are always in the

1+1+5+5 representations of SO(5), and the odd spins are in the 10+10 representations.

For bosonic fields carrying antisymmetric M, the situation is reversed. The even spins are

always in the 10+ 10 representations of SO(5), while the odd spins are in the 1+ 1+ 5+5

representations. The fermions are always in the 1 + 5 + 10 representations of SO(5),

regardless of their representations under O(N).

2.1.2 USp(2N) internal symmetry

Next we consider the N = 5 HS theory with USp(2N) internal symmetry. Construction

for this case is similar to the O(N) case except two points. First we take the internal

symmetry part M of the master fields to be 2N × 2N hermitian matrices. Second we take

τ -condition for M as

τ(M) = (JMJ T )T , (2.22)

where J is the USp(2N) invariant tensor explicitly given by

J =

(
0 1N×N

−1N×N 0

)
. (2.23)

Now let us figure out the spectrum of physical fields constrained by the τ -condition.

For this purpose, it is convenient to decompose M according to the symmetry property of

JM as in the O(N) case.
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• If (JM)T = (JM), then τ(M) = −M. The full τ -condition hence implies that

Ωµ|Z=0 and Φ|Z=0 takes the same forms as (2.18) and (2.20). Hence the spectrum

for this case is the same as those for the O(N) case with MT = −M given in table 2.

• If (JM)T = −(JM), then τ(M) = M. The τ -condition makes Ωµ|Z=0 and Φ|Z=0

the same forms (2.14) and (2.16) respectively. Therefore the spectrum for this case

is those for the O(N) case with MT = M summarized in table 1.

In summary, for bosonic fields carrying symmetric JM, the even spins are always in the

10+10 representations of SO(5), and the odd spins are in the 1+1+5+5 representations.

For bosonic fields carrying antisymmetric JM, the even spins are in the 1 + 1+ 5+ 5 rep-

resentations of SO(5), while the odd spins are in the 10+10 representations. The fermions

are always in the 1 + 5 + 10 representations of SO(5), regardless of their representations

under USp(2N). The consequence of the reality condition here is slightly different from

the O(N) case. The reality condition imposed on the master fields acts on the internal

symmetry matrix as hermitian conjugation. Thus the reality conditions induced on the

component fields are solely determined by the number of (Y, Z, ξ, η) and can be easily ob-

tained from those in the O(N) case by adding an extra sign to the ones associated with

antisymmetric M.

2.2 Analysis of equations of motion and supersymmetry transformations

In this subsection, we first linearize Vasiliev equations around the AdS4 vacuum preserving

N = 5 SUSY. We show that fields comprising the N = 5 SUGRA multiplet indeed satisfy

the linearized equations of motion of the N = 5 SO(5) gauged SUGRA around AdS4. We

then study the linearized HS gauge transformations and show that the HS gauge transfor-

mations generated by the Killing spinors of AdS4 relate the fields in the N = 5 SUGRA

multiplet in the same way as the linearized SUSY transformation of the N = 5 SO(5)

gauged SUGRA around AdS4.

2.2.1 AdS4 vacuum

The Vasiliev’s equations of motion for the master fields are14

dA+A ⋆ A =
i

4
(V̂ dz2 + ˆ̄V dz̄2) , dΦ+A ⋆ Φ− Φ ⋆ π(A) = 0 , (2.24)

where d = ∂µdx
µ + ∂zαdz

α + ∂z̄α̇dz̄
α̇, xµ = (xi, r). V̂ and ˆ̄V are functions of the master

0-form Φ. By field redefinition one can reduce V̂ and ˆ̄V to the following form

V̂ = eiθΦ ⋆ κΓ , ˆ̄V = e−iθΦ ⋆ κ̄ , (2.25)

where κ and κ̄ are the Kleinians operators defined as

κ = eiy
αzα , κ̄ = eiȳ

α̇z̄α̇ , κ† = κ̄ . (2.26)

14At linearized level, the internal symmetry and R-symmetry play no essential roles and therefore we

suppress their indices when analyzing the linearized Vasiliev’s equations.
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The parameter θ in (2.25) is called parity violating phase, which breaks the parity of the

Vasiliev theory except for θ = 0, π/2. Two models with θ and θ + π/2 are related to each

other by the field redefinition A → ξiAξi, Φ → iξiΦξi for any i [1]. Each component of the

first equation in (2.24) is

dxΩ+Ω⋆Ω = 0 , dzS+S⋆S =
i

4
(eiθΦ⋆κΓdz2+e−iθΦ⋆κ̄dz̄2) , dzΩ+dxS+Ω⋆S+S⋆Ω = 0 ,

(2.27)

where dz = ∂zαdz
α + ∂z̄α̇dz̄

α̇, dz2 = dzαdzα and dz̄2 = dz̄α̇z̄α̇. The equation of motion of

the 0-form read

dxΦ+ Ω ⋆ Φ− Φ ⋆ π(Ω) = 0 , dzΦ+ S ⋆ Φ− Φ ⋆ π(S) = 0 . (2.28)

In the Poincaré coordinates

ds2 =
ηijdx

idxj + dr2

r2
, (2.29)

the AdS4 background has the following vierbein and spin connection15

e =
1

4ir
σαβ̇
µ yαȳβ̇dx

µ , ω =
1

8ir
(σαβ

ir yαyβ + σ̄α̇β̇
ir ȳα̇ȳβ̇)dx

i , (2.30)

which correspond to the exact solution to Vasiliev equations

A(0) = e+ ω , Φ(0) = 0 , (2.31)

where e and ω carry the unit matrix of the internal symmetry.

2.2.2 Linearization

Let us linearize the equation of motion around the AdS4 vacuum (2.31). The linearized

equations around the AdS4 background then take the forms

dxΩ
(1) + {ω + e,Ω(1)}⋆ = 0 ,

dzS
(1) =

i

4
(eiθΦ(1) ⋆ κΓdz2 + e−iθΦ(1) ⋆ κ̄dz̄2) ,

dzΩ
(1) + dxS

(1) + {ω + e, S(1)}⋆ = 0 ,

(2.32)

and

dxΦ
(1) + [ω,Φ(1)]⋆ + {e,Φ(1)}⋆ = 0 , dzΦ

(1) = 0 . (2.33)

For simplicity, from now on we omit the superscript and simply use Ω, S and Φ to denote

the first order master fields. The second equation in (2.33) indicates that Φ is independent

of z. Next, from the second equation in (2.32) S can be solved in terms of Φ:

S =
i

2
zαdzαe

iθ

∫ 1

0
tdt[Φ ⋆ eiy

αzα ]
∣∣∣
z→tz

Γ +
i

2
z̄α̇dz̄α̇e

−iθ

∫ 1

0
tdt[Φ ⋆ eiȳ

α̇zα̇ ]
∣∣∣
z→tz

. (2.34)

where we have chosen the gauge S|Z=0 = 0 and applied the identity (A.4). It is useful to

split Ω into the z-dependent and independent parts

Ω = W (x, Y, ξi, η) +W ′(x, Y, Z, ξi, η) , (2.35)

15The flat and curved indices on σ are related by eαβ̇ = 1
4i
eaµσ

αβ̇
a dxµ = 1

4ir
σαβ̇
a δaµdx

µ = 1
4ir

σαβ̇
µ dxµ.
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with W ′|Z=0 = 0. W ′ can be determined from the third equation in (2.32)

W ′ = zα
∫ 1

0
dt(D0Sα)

∣∣∣
z→tz

+ z̄α̇
∫ 1

0
dt(D0Sα̇)

∣∣∣
z̄→tz̄

, (2.36)

where D0Sα = dxSα + [ω + e, Sα]⋆. Plugging (2.34) into (2.36), some explicit calculations

give

W ′ = ieiθzα
∫ 1

0
dt(1− t)(2iωαβtz

β + eαβ̇C
β̇γ̇∂ȳγ̇ )

(
Φ(x,−tz, ȳ)eity

αzα
)
Γ

+ ie−iθz̄α̇
∫ 1

0
dt(1− t)(2iωα̇β̇tz̄

β̇ + eβα̇C
βγ∂yγ )

(
Φ(x, y,−tz̄)eitȳ

α̇z̄α̇
)
.

(2.37)

Finally, using the results above, the first equation in (2.32) and (2.33) can be recast as

D0W = ieiθeαβ̇∧eαγ̇∂ȳβ̇∂ȳγ̇Φ(x, 0, ȳ)Γ+ie−iθeβα̇∧eγα̇∂yβ∂yγΦ(x, y, 0) , D̃0Φ = 0 , (2.38)

where we have defined

D0 := ∇− 2ieαα̇[yα∂ȳα̇ + ȳα̇∂yα ] , D̃0 := ∇+ 2eαα̇[yαȳα̇ − ∂yα∂ȳα̇ ] ,

∇ = dx − 2iωαβ(yα∂yβ + yβ∂yα)− 2iωα̇β̇(ȳα̇∂ȳβ̇ + ȳβ̇∂ȳα̇) .
(2.39)

2.2.3 Relation to N = 5 SO(5) gauged supergravity

In the following, we shall show that the fields comprising the N = 5 SUGRA multiplet

indeed satisfy the standard equations of motion when linearized around AdS4, and therefore

carry the correct degrees of freedom. In SUSY Vasiliev theory with internal symmetry,

fields inside SUGRA multiplet are matrix valued and only the single components under

the internal symmetry are closely related to operators inside the dual CFT stress tensor

multiplet. From (2.38) we derive the linearized equations of motion for fields in the N = 5

SUGRA multiplet, which are summarized as follows

• spin-0

The complex scalars Φijkl are the Y -independent components of Φ and satisfy

∇µΦ
ijkl − 2eαα̇µ Φijkl

αα̇ = 0 , ∇µΦ
ijkl
αα̇ + 2eµαα̇Φ

ijkl − 2eββ̇µ Φijkl

αβ,α̇β̇
= 0 . (2.40)

Taking another covariant derivative of the first equation and solving for ∇Φαα̇ from

the second equation, we arrive at the Klein-Gordon equation

∇2Φijkl + 2Φijkl = 0 , (2.41)

where we have used eαα̇µ eµββ̇ = ǫαβǫα̇β̇ and ǫαβǫα̇β̇Φαβ,α̇β̇ = 0.

• spin-12
There are two Weyl fermions Φ′

α and Φijk
α . From (2.38) their equations are

∇µΦ
′
α − 2eββ̇µ Φ′

αβ,β̇
= 0 , ∇µΦ

ijk
α − 2eββ̇µ Φijk

αβ,β̇
= 0 . (2.42)

Multiplying them by eµγ̇
α, the second terms of both equations above vanish and we

obtain the free Dirac equations

σµ
γ̇
α∇µΦ

′
α = 0 , σµ

γ̇
α∇µΦ

ijk
α = 0 . (2.43)
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• spin-1

The spin-1 gauge fields denoted as Bij
µ are the Y -independent components of W and

obey

Φij
αβ = 2ieiθ(dBij)αβ , σµ

λδ̇∇µΦ
ij
αβ − iΦij

αβλ,δ̇
= 0 , (2.44)

Multiplying the second equation by ǫλβ and utilizing the first equation, we obtain

the Maxwell equations and the linearized Bianchi identity

∇µ(dBij)µν = 0 , σµνρ∇ρ(dB
ij)µν = 0 . (2.45)

• spin-32
The gravitini W i

α are in the 5 representation of SO(5) and according to (2.38) they

obey

∇W i
α + 2ieα

β̇W i
β̇
= −ie−iθeβα̇ ∧ eγα̇Φ

i
αβγ . (2.46)

Multiplying both sides of the equation above by σµνρ
δ̇
α, the r.h.s. vanishes and we

obtain the linearized Rarita-Schwinger equation around AdS4

σµνρ
δ̇
α(∇νW

i
ρ α + 2ieνα

β̇W i
ρ β̇

) = 0 . (2.47)

• spin-2

The graviton is described by the vierbein Wαα̇ and spin connections Wαβ , Wα̇β̇ via a

set of first order equations contained in (2.38)

∇Wαα̇ + 2ieα
β̇Wα̇β̇ + 2ieβα̇Wαβ = 0 , (2.48)

∇Wαβ + 4ieα
α̇Wβα̇ = ie−iθeγγ̇ ∧ eλγ̇Φαβγλ . (2.49)

Multiplying the second equation by σµν
α
β leads to

σµν
α
β∇µWν βγ + 4iσµν

α
βeµβ

α̇Wν γα̇ = 0 . (2.50)

This equation together with (2.48) amounts to the usual linearized Einstein equation

with a negative cosmological constant.

The fields above form a supermultiplet of OSp(5|4) which is a subalgebra of the

husp(4; 4|4) HS algebra when the background is fixed to AdS4. Therefore the linearized

SUSY transformation relating different spins in the N = 5 SUGRA multiplet can be read

off from the HS gauge transformation around AdS4. The HS gauge transformation of the

master 1-form is given as

δA = dǫ+ [A, ǫ]⋆ , (2.51)

where d = ∂µdx
µ + ∂zαdz

α + ∂z̄α̇dz̄
α̇ and the gauge parameter ǫ is in general a function of

(x, y, ȳ) and ξi. The parameters generating SUSY transformations are the components of

ǫ linear in y and ȳ which we denote as Λαy
α + Λ̄α̇ȳ

α̇. Λ and Λ̄ are chosen such that the

AdS4 solution is invariant under the gauge transformation

dx(Λαy
α + Λ̄α̇ȳ

α̇) + [e+ ω,Λαy
α + Λ̄α̇ȳ

α̇]⋆ = 0 . (2.52)
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In fact Λα and Λα̇ correspond to the Killing spinors of AdS4. For the N = 5 case, they are

linear in ξi,

Λα = Λi
αξ

i , Λ̄α̇ = Λ̄i
α̇ξ

i , (2.53)

where Λi
α and Λ̄i

α̇ are fermionic. Around the AdS4 vacuum, the master 1-form transforms

according to

δ(Ω(0) +Ω) = δΩ = [Ω,Λαy
α + Λ̄α̇ȳ

α̇]⋆ , δS = [S,Λαy
α + Λ̄α̇ȳ

α̇]⋆ . (2.54)

We focus on the first transformation, which is physical while the second one is auxiliary.

Since Ω = W (x, y, ȳ) +W ′(x, y, ȳ, z, z̄), we have

δW = [W,Λαy
α + Λ̄α̇ȳ

α̇]⋆ + [W ′,Λαy
α + Λ̄α̇ȳ

α̇]⋆

∣∣∣
Z=0

. (2.55)

The solution of W ′ is given in (2.37). It is of the form W ′ = zαHα+ z̄α̇H̄α̇, where H and H̄

are functions of (Y, Z). Because of the properties (2.2) of the ∗-product, the second term

on the r.h.s. of (2.55) may contribute when W ′, Λ and Λ̄ depend on internal anticommuting

parameters. For the master 0-form we have the twisted HS gauge transformation

δΦ = [Φ,Λαy
α]⋆ − {Φ, Λ̄α̇ȳ

α̇}⋆ . (2.56)

Substituting the component expansion ofW and Φ to (2.55) and (2.56), we then read off the

linearized SUSY transformations of the fields inside the N = 5 SUGRA multiplet as follows

spin-2 : δWµαα̇=2W i
µαΛ̄

i
α̇−2W̄ i

µα̇Λ
i
α ,

spin-
3

2
: δW i

µα=2iΛ̄i,α̇Wµαα̇+2iWµαβΛ
i,β+Bij

µ Λj
α−2ieβα̇µ F ij

βαΛ̄
j
α̇ ,

spin-1 : δBij
µ =−4iW [i,α

µ Λj]
α−e−iθeαα̇µ Φijk

α Λ̄k
α̇+h.c.,

spin-
1

2
: δΦijk

α =2ΦijklΛl
α−2iΦijkl

αα̇ Λ̄l,α̇−12eiθF
[ij
αβΛ

k],β , δΦ′
α=−2Φ′mΛm

α +2iΦ′m
αα̇Λ̄

m,α̇ ,

spin-0 : δΦijkl=8iΦ[ijk
α Λl],α−2ǫijklmΦ′

αΛ
m,α , (2.57)

where F ij
αβ is the anti-self-dual part of the field strength of Bij

µ and Φ′m
αα̇ is the gradient of

the scalar Φ′m. After proper rescaling and expressing them in terms of the vector basis,

the transformation above can be recast into the familiar form

δeµ
a = ǭiγaψµi + h.c.

δψi
µ =

1

2
ω(L)ab
µ γabǫ

i − 2gBi
µjǫ

j +
1

2
F−
ρσ

ijγρσγµǫj + gδijγµǫj ,

δBµ
ij = −

(
e−iθ ǭkγµχ

ijk + 2ǭiψµ
j
)
+ h.c. ,

δχijk = −∂µφ
ijklγµǫl +

3

2
γµνeiθF−

µν
[ijǫk] + gφijklǫl ,

δχ = −∂µφ
lγµǫl + gφlǫl , φi = − 1

24
ǫijklmφjklm

δφijkl = −8

(
ǭ[iχjkl] +

1

24
εijklm ǭmχ

)
. (2.58)
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Supersymmetry Internal s = 0, 1, 2, . . . s = 1
2
, 3
2
, . . .

N = 6 U(N) × ⊕ × ’ ⊕ ×
[IJ]⊕ ×

′[IJ]
×

I⊕ ×
′I⊕ ×

[IJK]

Table 3. The spectra of the N = 6 Vasiliev theories with the U(N) internal symmetry. The indices

I, J,K label the fundamental representation of SO(6)R. The Young tableaux with the cross denote

the adjoint representation of U(N).

When θ = 0, this transformation reproduces those of the linearized N = 5 SUGRA around

AdS4.

3 N = 5 Vasiliev theory from N = 6 Vasiliev theory

In this section we discuss that the N = 5 HS theory constructed in the last section can

be understood as certain projections of the N = 6 HS theory. Then using this result, we

obtain supersymmetric boundary conditions for the N = 5 HS theory.

3.1 Projections of the N = 6 Vasiliev theory

Before we discuss the projection, we quickly review the formulation of the N = 6 Vasiliev

theory. TheN = 6 Vasiliev theory is based on the hu(4; 4|4) HS algebra [37], which contains

u(4)⊕u(4) as the maximal compact subalgebra. The master fields in the N = 6 HS theory

are also tensor products of 8× 8 matrices described by the Clifford algebra and the N ×N

matrices M associated with the internal symmetry. In contrast to the N = 5 case, we take

the internal symmetry part M to be N × N hermitian matrices and do not impose the

τ -condition, while we take formally the same reality and spin-statistics conditions:

A† = −A , Φ† = π(Φ)Γ , ππ̄πξ(A,Φ) = (A,Φ), (3.1)

which determine the allowed internal symmetry to be U(N) [17, 37]. The above condi-

tions determine the spectrum of the N = 6 Vasiliev theory with U(N) internal symmetry

summarized in table 3. In particular, all the fields carry the adjoint representation of the

internal symmetry U(N).

Now we consistently truncate the N = 6 Vasiliev theory to the N = 5 theory following

the approach16 of [37]. Generally, in order to truncate SUSY Vasiliev theory consistently,

one needs an automorphism ρ defined on the original theory as

ρ(P ) = −iπ(P )σ(P ) , (3.2)

where P is any component of the master fields, π(P ) is 0 (1) if P is bosonic (fermionic)

and σ is an anti-automorphism defined on P as

σ
(
P (y, ȳ)

)
¯
α¯
β
= S¯

β
¯
γP (iy, iȳ)

¯
γ¯
δ(S−1)

¯
δ
¯
α , (3.3)

16Conventions in this subsection closely follow those in [37].
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where
¯
α,

¯
β,

¯
γ denote the combined indices for the R-symmetry and internal symmetry. The

matrix S¯
α
¯
β projects the original R-symmetry and internal symmetry to their subgroups

preserving S¯
α
¯
β . For the N = 6 HS theory P has the following structure

P
¯
α¯
β =

(
Bα

β
Fα

β′

Fα′
β
Bα′

β′

)
⊗MN×N , (3.4)

where the diagonal blocks B are bosons while the off-diagonal blocks F are fermions. The

SU(4) indices α, β, α′, β′ run from 1 to 4 andMN×N denotes theN×N matrix transforming

under the adjoint representation of the internal symmetry U(N). Using the SO(6) gamma

matrix, the SU(4) basis can be converted to the SO(6) basis spanned by ξi (see appendix B

for details).

To obtain the N = 5 Vasiliev theory, we impose the following condition on the N = 6

HS fields

ρ(A|Z=0) = A|Z=0 , ρ(Φ|Z=0) = −π̄(Φ|Z=0) , (3.5)

where π̄(y, ȳ) = (y,−ȳ) and

S =

(
J4×4 0

0 J4×4

)
⊗ gN×N . (3.6)

Here J4×4 is the invariant matrix of USp(4) group, and will reduce the R-symmetry group

from SU(4) to USp(4) ≃ SO(5). gN×N is the metric defined on the representation space of

U(N) internal symmetry group. According to [37], the only non-trivial gN×N is either the

symmetric δN×N or the anti-symmetric JN×N (when N is even) and this choice determines

whether the internal symmetry is O(N) or USp(N) as we will see soon. The Z-dependent

components related to the Z-independent components via equations of motion are subject

to similar projections.

3.1.1 O(N) internal symmetry

Let us first choose gN×N to be δN×N . This projects the internal symmetry to O(N). We

focus on the consequence of the projection on the master 1-form. For bosonic fields, the

projection condition implies17

−im+nJβγδbcBγ, c
δ, d(m,n)Jαδδda = Bα, a

β, b(m,n),

−im+nJβ′γ′
δbcBγ′, c

δ′, d(m,n)Jα′δ′δda = Bα′, a
β′, b(m,n),

(3.7)

where α, β, . . . , α′, β′, . . . denote the vector indices of USp(4) and a, b, . . . stand for the

vector indices of O(N). The projection condition on bosons requires

im+n
B
αβ, ab(m,n) = B

βα, ba(m,n), im+n
B
α′β′, ab(m,n) = B

β′α′, ba(m,n), (3.8)

17We have suppressed the spinor indices of the master field since the projection trivially acts on the

indices. For example, if we denote the spinor indices by α1, α2, . . . and α̇1, α̇2, . . ., then the first condition

in (3.7) is

−im+nJβγδbcBγ, c
δ, d

α1,...,αm,α̇1,...,α̇n
Jαδδda = Bα, a

β, b
α1,...,αm,α̇1,...,α̇n

.

The spinor indices in other equations of this section can be recovered similarly.
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where we have used Jαβ and δab to raise and lower the vector indices of USp(4) and O(N)

respectively. When m+n = 0, 4, 8, · · · corresponding to odd spins, we have two cases with

• both (α, β) and (a, b) being symmetric. This corresponds to the adjoint representation

of USp(4) and the symmetric representation of O(N) group. The number of fields is

then (
10+ 10′

)
USp(4)

×
[
1

2
N(N + 1)

]

O(N)

;

• both (α, β) and (a, b) being also antisymmetric. This corresponds to the antisym-

metric representation of USp(4) and the adjoint representation of O(M). Then the

number of fields is

(
1+ 1′ + 5+ 5′

)
USp(4)

×
[
1

2
N(N − 1)

]

O(N)

.

When m+ n = 2, 6, 10, · · · or even spins, we have two cases with

• (α, β) being symmetric and (a, b) being antisymmetric. This corresponds to the

adjoint representations of both USp(4) and O(N), which leads us to the number of

fields (
10+ 10′

)
USp(4)

×
[
1

2
N(N − 1)

]

O(N)

;

• (α, β) being antisymmetric and (a, b) being symmetric. This gives the antisymmet-

ric representation of USp(4) and the symmetric representation of O(N). Then the

number of fields is

(
1+ 1′ + 5+ 5′

)
USp(4)

×
[
1

2
N(N + 1)

]

O(N)

.

The projection conditions for fermions are

−im+n+1Jβ′γ′
δbcFγ′, c

δ, d(m,n)Jαδδda = Fα, a
β′, b(m,n),

−im+n+1JβγδbcFγ, c
δ′, d(m,n)Jα′δ′δda = Fα′, a

β, b(m,n),
(3.9)

which relate the two sets of complex fermions. Therefore, for each half-integer spin, the

number of fields is given by 16 × N2. The 4 × 4 SU(4) matrix decomposes under USp(4)

to 1 + 5 + 10 representations. Putting bosons and fermions together, we see that the

spectrum matches with that of the N = 5 HS theory with O(N) internal symmetry given

by tables 1 and 2 in section 2. We can also similar analysis for the master 0-form and the

results match with the spectrum given in section 2.

3.1.2 USp(2N) internal symmetry

If we choose g2N×2N = J2N×2N , then the internal symmetry is reduced to USp(2N).

Similar to the previous case, the conditions on bosons now read

−im+nJβγJ bc
Bγ, c

δ, d(m,n)JαδJad = Bα, a
β, b(m,n),

−im+nJβ′γ′J bc
Bγ′, c

δ′, d(m,n)Jα′δ′Jad = Bα′, a
β′, b(m,n).

(3.10)
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After raising and lowering the indices by Jαβ and J ab, we find

− im+n
B
αβ, ab(m,n) = B

βα, ba(m,n), −im+n
B
α′β′, ab(m,n) = B

β′α′, ba(m,n). (3.11)

When m+ n = 0, 4, 8, · · · , or odd spins, we have the two cases with

• (α, β) being symmetric and (a, b) being antisymmetric. This corresponds to the

adjoint representation of USp(4) and the (reducible) antisymmetric representation of

USp(2N). The number of fields is then

(
10+ 10′

)
USp(4)

× [N(2N − 1)]USp(2N) ;

• (α, β) being antisymmetric while (a, b) being symmetric. This corresponds to the an-

tisymmetric representation of USp(4) and adjoint representation of USp(2N). Hence

we have the number of fields

(
1+ 1′ + 5+ 5′

)
USp(4)

× [N(2N + 1)]USp(2N) .

For m+ n = 2, 6, 10, · · · or even spins, we have the two cases with

• (α, β) and (a, b) being symmetric. This corresponds to the adjoint representations

both in USp(4) and USp(2N), which give the number of fields as

(
10+ 10′

)
USp(4)

× [N(2N + 1)]USp(2N) ;

• (α, β) and (a, b) being antisymmetric. This gives the antisymmetric representation of

USp(4) and the (reducible) antisymmetric representation of USp(2N). The number

of fields is then

(
1+ 1′ + 5+ 5′

)
USp(4)

× [N(2N − 1)]USp(2N) .

For fermions, the projection conditions read

−im+n+1Jβ′γ′J bc
Fγ′, c

δ, d(m,n)JαδJad = Fα, a
β′, b(m,n),

−im+n+1JβγJ bc
Fγ, c

δ′, d(m,n)Jα′δ′Jad = Fα′, a
β, b(m,n).

(3.12)

Again this condition simply relates the two sets of complex fermions. The number of

fermions for each half-integer spin is then 16× (2N)2. The 4× 4 SU(4) matrix decomposes

under USp(4) to 1 + 5 + 10 representations. Putting bosons and fermions together, we

see that the spectrum matches with that of the N = 5 HS theory with USp(2N) internal

symmetry summarized in tables 2 and 1 in section 2. Similar analysis can be done for the

master 0-form Φ and the results match with the spectrum given in section 2.
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3.2 Supersymmetric boundary conditions

In the previous subsection, we have shown that the N = 5 Vasiliev theory can be obtained

from the consistent truncations of the N = 6 theory. Therefore the SUSY boundary con-

ditions of the N = 5 models inherit those of the N = 6 models. The pure AdS4 vacuum in

the N = 6 Vasiliev theory preserves the full N = 6 SUSY. The linear boundary conditions

imposed on the fluctuations of fields around this vacuum have been analyzed in [1], in which

the R-symmetry neutral spin-1 gauge field inside the SUGRA obeys the mixed boundary

condition with the mixing angle related to the θ-parameter.18 This can be easily seen from

the linearized SUSY transformations for the N = 6 SUGRA multiplet given below

δeµ
a = ǭIγaψµI + h.c.

δψI
µ =

1

2
ω(L)ab
µ γabǫ

r − 2gAIJ
µ ǫJ +

1

2
√
2
F−
ρσ

IJγρσγµǫJ + gδIJeµ
aγaǫJ ,

δAµ
IJ = −

(
e−iθ ǭKγµχ

IJK + 2
√
2ǭIψµ

J
)
+ h.c. ,

δAµ = −2e−iθ ǭIγµχ
I + h.c. ,

δχIJK = −∂µφ
IJKLγµǫL +

3

2
eiθγµνF−

µν
[IJǫK] + gφIJKLǫL ,

δχI = −∂µφ
IJγµǫJ +

1

2
eiθγµνF−

µνǫ
I + gφIJǫJ ,

δφIJKL = 2
√
2

(
ǭ[IχJKL] +

1

4
εIJKLMN ǭMχN

)
, (3.13)

where I, J . . . = 1, . . . , 6 are the SO(6) indices, fermions carrying upper and lower SO(6)

indices have the opposite chiralities with respect to γ5 and

F−
µν =

1

2
(Fµν + i ∗ Fµν) , φIJ =

1

24
εIJKLMNφKLMN , φKLMN = (φKLMN )∗. (3.14)

In terms of the new variables

φ̃IJKL ≡ e−iθφIJKL , F̃−
µν ≡ e2iθF−

µν , χ̃IJK ≡ e−iθχIJK , χ̃I ≡ eiθχI , (3.15)

the SUSY transformations above can be recast to the standard form independent of the

θ-parameter.19 Therefore, the Fefferman-Graham expansion leads to the mixed boundary

conditions for the original fields. In particular, the bulk spin-1 gauge field satisfies

Re[e2iθF−
ij ]

∣∣∣
r=0

= 0 , (3.16)

which is equivalent to

sin 2θ Fri

∣∣∣
r=0

=
1

2
cos 2θ εijkF

jk
∣∣∣
r=0

. (3.17)

18Similar phenomenon was discovered in the ω-deformed N = 6 supergravity [38]. There due to nonlinear

effects, the mixing angle takes discreet values.
19Using the linearized equation of motion for χI , one can show that the super-covariant field strength

Fµν = Fµν + · · · satisfies δF̃−
µν = 4ǭIγµ∂ν χ̃

I .
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Fields of spin s > 1 must satisfy the Dirichlet boundary conditions in order to avoid the

propagating HS gauge fields in the dual boundary theory. There is another R-symmetry

neutral spin-1 gauge field belonging to a spin-4 supermultiplet. It appears in the transfor-

mation of gravitini and therefore does not admit any mixed boundary condition. Decom-

posing the N = 6 SUGRA multiplet under OSp(5|4) leads to an N = 5 SUGRA multiplet

and an N = 5 gravitino multiplet, consisting of the fields

(eµ
a, ψI

µ, A
IJ
µ , χIJK , χ6, φI6)⊕ (ψ6

µ, A
I6
µ , Aµ, χ

IJ6, χI , φIJ) , I = 1, . . . , 5 . (3.18)

Therefore, in the N = 5 Vasiliev theory, the spin-1 gauge fields satisfying mixed boundary

conditions belongs to the gravitino multiplet. According to table 2, there are N
2 (N − 1)

such spin-1 gauge fields when the internal symmetry is O(N), while there are N(2N + 1)

of them for the USp(2N) internal symmetry.

4 ABJ quadrality

In this section we propose the AdS/CFT correspondence between the N = 5 Vasiliev

theoryon AdS4 and the N = 5 ABJ theory. Combining this with the standard AdS/CFT

correspondence, we arrive at ABJ quadratlity. We provide a precise holographic dictionary

and various evidence for this correspondence. We finally give a prediction of the leading

free enrgy from the ABJ theory to the bulk side.

4.1 ABJ theory and its string/M-theory dual

Here we review some properties of the ABJ theory and the standard AdS/CFT correspon-

dence between the ABJ theory and string/M-theory.

4.1.1 N = 6 case

The N = 6 ABJ theory [15, 16] is the 3d N = 6 superconformal CS matter theory with the

gauge group U(N1)k ×U(N2)−k coupled to two bi-fundamental hyper multiplets. If we de-

compose the bi-fundamental hypers into pairs of 3d N = 2 bi-fundamental chiral multiplets

A1,2 and anti-bi-fundamental chirals B1,2, the superpotential of this theory is given by

W ∝ Tr (A1B1A2B2 −A1B2A2B1) . (4.1)

The N = 6 ABJ theory is expected to describe the low energy dynamics of N coincident

M2-branes probing C4/Zk, together with M coincident fractional M2-branes localized at

the singularity. The M-theory background associated with the M2-brane configuration is

ds211 =
R2

4
ds2AdS4

+R2ds2S7/Zk
,

1

2π

∫

S3/Zk⊂S7/Zk

C3 =
M

k
− 1

2
, (4.2)

where20 in the unit of the Planck length ℓp the radius R is given by R/ℓp = (32π2kN)
1
6 .

If we identify the M-theory circle with the orbifolding direction by Zk, then the M-theory

20The factor “1/2” has been corrected in [39].
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circle radius R11 is given by

R11

ℓp
=

R

kℓp
=

(
32π2N

k5

) 1
6

. (4.3)

As the M-theory circle shrinks for k ≫ N1/5 the M theory is well approximated by the

type IIA string on AdS4 × CP
3 with the B-field holonomy

1

2π

∫

CP
1⊂CP

3
B2 =

M

k
− 1

2
. (4.4)

The radius of CP3 in the unit of string length ℓs and the string coupling constant gs are

given by

R
CP

3

ℓs
=

(
32π2N

k

) 1
4

, g2s =

(
32π2N

k5

) 1
2

. (4.5)

Therefore the approximation by the type IIA SUGRA is accurate for N1/5 ≪ k ≪ N .

There are several tests of this correspondence at classical level (see e.g. [40]) and some

tests at one-loop level21 [41–44, 47, 48].

The “braneology” associated with figure 2 [Left] suggests some interesting properties

of the ABJ theory [16]. First, the brane configuration implies that SUSY is broken for

M > |k| [50–52] as it follows from so-called “s-rule” [49], which forbids multiple D3-branes

from ending on a NS5/D5-brane pair (now we have |k| such pairs). This statement is also

supported by some field theory computations on Witten index [50–52] and sphere partition

function [53, 54]. It was also argued in [16] that the theory with M > |k| should not be

unitary by carefully taking into account the CS level shift [55–57] at low-energy. Second,

the brane configuration also indicates the Seiberg-like duality between two ABJ theories

with the gauge groups

U(N +M)k ×U(N)−k ←→ U(N + k −M)−k ×U(N)k , (4.6)

following from the brane-creation effect [49], which means a D3-branes is created when an

NS5-brane and a D5-brane cross from each other. This duality has already been checked

for the sphere partition function [47, 48, 53, 54, 58, 59].

4.1.2 N = 5 case

The N = 5 ABJ theory is the 3d N = 5 superconformal CS theory with the gauge group

O(N1)2k × USp(2N2)−k coupled to one bi-fundamental hyper multiplet. The N = 5 ABJ

theory can be obtained by the following projection of the N = 6 ABJ theory with the

gauge group U(N1)2k ×U(2N2)−2k:

B1 = JAT
1 , B2 = JAT

2 , (4.7)

21Localization of the supergravity [45] reproduced full 1/N corrections of S3 partition function for M =

0 [41–43] up to renormalization of Newton constant and non-perturbative corrections of the 1/N expansion

(the results of [46] seem to suggest that bulk one-loop free energy contributed by the supergravity KK

modes alone are not sufficient to reproduce the O(N0) term in the CFT free energy).
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where J is the invariant tensor of USp(2N2). Then superpotential of the N = 5 theory in

3d N = 2 language is given by

W ∝ Tr
(
A1JAT

1 A2JAT
2 −A1JAT

2 A2JAT
1

)
. (4.8)

The N = 5 ABJ theory is expected to be low-energy effective theory of N M2-branes

probing C
4/D̂k with M fractional D3-branes. The M-theory background associated with

this setup is AdS4 ×S7/D̂k with the 3-form background
∫
C3 ∼ M

k . As in the N = 6 case,

for k ≫ N1/5, the M-theory circle shrinks and the M-theory is well approximated by type

IIA string on AdS4 × CP
3/Z2 with the B-field holonomy

∫
B2 ∼ M/k. There are some

checks of this correspondence at classical level [60, 61] and one-loop level [44, 62–67].

As in the N = 6 case, the brane physics associated with figure 2 [Right] implies some

nontrivial properties of the N = 5 ABJ theory. Firstly, the “s-rule” suggests that the

SUSY is broken if

M > |k|+ 1 for O(2N + 2M)2k ×USp(2N)−k,

M > |k| − 1 for USp(2N + 2M)k ×O(2N)−2k,

M > |k| for O(2N + 2M + 1)2k ×USp(2N)−k,

M > |k| for USp(2N + 2M)k ×O(2N + 1)−2k. (4.9)

This statement is also supported by computations of the sphere partition function on the

field theory side [65–67], which showed vanishing of the partition function in the parameter

regime above. The argument based on CS level shift also implies that the theory is non-

unitary in the parameter regime above. Secondly, compared to the N = 6 case, the brane

creation effect suggests that the N = 5 ABJ theory possesses richer Seiberg-like dualities:

O(2N + 2M)2k ×USp(2N)−k ←→ O(2N + 2(k −M + 1))−2k ×USp(2N)k ,

USp(2N + 2M)k ×O(2N)−2k ←→ USp(2N + 2(k −M − 1))−k ×O(2N)2k ,

O(2N + 2M + 1)2k ×USp(2N)−k ←→ O(2N + 2(k −M) + 1)−2k ×USp(2N)k ,

USp(2N + 2M)k ×O(2N + 1)−2k ←→ USp(2N + 2(k −M))−k ×O(2N + 1)2k . (4.10)

Some checks on these dualities for sphere partition function22 can be found in [66, 67].

4.2 Proposal for the AdS/CFT correspondence between ABJ theory and

SUSY Vasiliev theory

4.2.1 N = 6 case

First we review the N = 6 ABJ triality [1]. It is conjectured in [1, 14] that the U(N)k ×
U(N + M)−k ABJ theory is dual to parity violating N = 6 Vasiliev theory in AdS4.

Especially, in this conjecture, semi-classical approximation of the Vasiliev theory becomes

good in the following limit of the ABJ theory

M, |k| → ∞ with t ≡ M

|k| : finite and N : finite .

22Strictly speaking, the O(2N + 2M)2k × USp(2N)−k case with M = 0 and M = |k| + 1 has not been

checked due to a technical reason [66]. In appendix C, we give another argument to support these dualities.
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Indeed it has been shown that the spectrum of the bulk fields matches with that of the

single trace primary operators in the vector limit of the ABJ theory.

Correspondence between parameters in the two theories is as follows. As the N = 6

ABJ theory has the three parameters (k,M,N), the N = 6 Vasiliev theory also has the

three parameters (GN , θ,N), where GN is the Newton constant, θ is the parity-violating

phase and N is the rank of the U(N) internal symmetry. First the Newton constant GN

is roughly related to M by GN ∼ 1/M and analysis of stress tensor correlator on the CFT

side suggests the more precise relation [25]:

GN

L2
AdS

=
2t

M sinπt
. (4.11)

It was conjectured in [1] that the parity-violating phase θ is related to t by

θ =
πt

2
, (4.12)

which we will justify in section 4.7. The higher spin symmetry in this setup is broken by

1/M effects since divergences of higher spin currents are given by double trace operators [1,

68, 69].

In this scenario, the fundamental string in the dual string theory is expected to

be realized as a “flux tube” string or a “glueball”-like bound state in the Vasiliev the-

ory. While a single string state in the string theory corresponds to the CFT operator

∼ tr(ABAB · · ·ABAB) schematically, the field in the Vasiliev theory corresponds to the

CFT operator of the form ∼ AB. Thus as the ’t Hooft coupling in Vasiliev theory increases,

we expect the bound states to form the string excitations.

There is a subtlety in the comparison of the bulk and boundary free energies. This

is because the free energy of the ABJ theory in the limit (1.1) behaves as O(M2) due to

the U(N + M) vector multiplet while Vasiliev theory is dual to vector model in general,

whose leading free energy should behave linearly in M . Therefore the ABJ theory has

apparently more degrees of freedom than the Vasiliev theory and we have to subtract some

degrees of freedom appropriately for the comparison. This issue was addressed in [24],

which proposed the definition of the free energy for ABJ theory in the vector limit as

FN=6
vec = − log

∣∣ZU(N)k×U(N+M)−k

∣∣
∣∣ZU(M)−k

∣∣ , (4.13)

where ZU(M)−k
is the partition function for the N = 0 case and is the same as that of the

N = 3 SUSY pure CS theory with the gauge group U(M)−k. The quantity Fvec satisfies

the following three properties:

1. 1/M -expansion starts at O(M);

2. Invariance under Seiberg-like duality: M → |k| − M , k → −k because this acts on

the denominator
∣∣ZU(M)−k

∣∣ as the level-rank duality of the pure CS theory;

3. The O(logM) term matches the O(logGN ) term in the one-loop free energy of the

Vasiliev theory.
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Especially the second point excludes a possibility to divide by ZU(N+M)−k
rather than

ZU(M)−k
, which is a naive expectation from the story of CS theory coupled to fundamental

matters [14, 22]. Indeed it is known that the “mirror” representation of ZU(N)k×U(N+M)−k

factorizes into ZU(M)−k
and a N -dimensional integral [53, 54] which also supports the

division by ZU(M)−k
.

4.2.2 N = 5 case

Now we propose the ABJ quadrality. We have seen in section 2 that the N = 5 SUSY

Vasiliev theory admits the two choices of internal symmetries, O(N) and USp(2N). This

implies that there are two limits of the N = 5 ABJ theory which are dual to semi-classical

approximations of the two N = 5 Vasiliev theories.

We first propose that the O(N1)2k × USp(2N2)−k ABJ theory is dual to the semi-

classical N = 5 Vasiliev theory with O(N1) internal symmetry in the following limit23

N2 = |O(N1)|+M , M, |k| → ∞ with t ≡ M

|k| and N1 : finite ,

where |O(N1)| is the rank of O(N1), specifically, |O(2N)| = |O(2N + 1)| = N . The second

limit corresponding to the Vasiliev theory with USp(2N2) internal symmetry is

|O(N1)| = N2 +M , M, |k| → ∞ with t ≡ M

|k| and N2 : finite .

As we will discuss in section 4.7, for both cases, the Newton constant GN is related to

M by
GN

L2
AdS

=
t

M sinπt
,

and the parity-violating phase θ is related to t by

θ =
πt

2
.

As in the N = 6 case, we expect that the fundamental string in the dual string theory

is realized as a “flux tube” string or “glueball”-like bound state in the Vasiliev theory,

and strong coupling dynamics of the Vasiliev theory exhibits the bound states to form the

string excitations. Thus, as summarized in figure 3, our ABJ quadrality relates the four

apparently different theories: the N = 5 ABJ theory, string/M-theory and N = 5 Vasiliev

theories with O and USp internal symmetries.

Comparison of free energies encounters a similar issue to the N = 6 case. Namely the

free energy in the ABJ theory behaves as O(M2) rather than O(M), due to the vector mul-

tiplet associated with the “larger gauge group”. Therefore we have to subtract something

appropriately as in the N = 6 case [24]. In the end, we propose

F vec
N,M ≡ − log

|ZGN,M
|

|ZG0,M
| ,

23For general (k,M,N), more appropriate definitions of t are M−1/2
k

, M+1/2
k

, M
k

and M
k
, respectively.

These differences may be neglected in the higher spin limits according to the purpose of the study.
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where we used the shorthand notation GN,M to represent the gauge group24 of each case

in (4.10). Indeed we will see that this quantity behaves as O(M) in the higher spin limits

and contains a O(logM) term, which agrees with the O(logGN ) term in the one-loop free

energy of the N = 5 Vasiliev theory. Here invariance under the Seiberg-like duality (4.10)

is more complicated than in the N = 6 case since we now have four types of N = 5 ABJ

theory. For the two types with O(2N + 2M)2k × USp(2N)−k and O(2N + 2M + 1)2k ×
USp(2N)−k gauge groups, ZG0,M

is nothing but the partition function of N = 2 O(2M)2k
and O(2M + 1)2k pure CS theories, respectively, whose level-rank dualities are25

SO(N)2k ←→ SO(2|k|+ 2−N)−2k . (4.14)

The Seiberg-like dualities act on ZG0,M
exactly like this and hence the ratio is duality

invariant. Similarly for the O(2N)2k ×USp(2N + 2M)−k type, ZG0,M
is the one of N = 2

USp(2M)−k pure CS theory satisfying the level-rank duality

USp(2N)k ←→ USp(2|k| − 2N − 2)−k , (4.15)

which is the same action as the Seiberg-like duality. The most subtle case is the O(2N +

1)2k × USp(2N + 2M)−k case, where ZG0,M
is the partition function of the O(1)2k ×

USp(2M)−k theory. Although the O(1) sector does not have gauge degrees of freedom, it

gives an additional fundamental hyper multiplet of USp(2M)−k because of the “zero-root”

in O(1). However using localization results, one can show that the partition function ZG0,M

is the same26 as that of the N = 2 O(2M +1)2k pure CS theory and hence the Seiberg-like

duality acts on ZG0,M
as the level-rank duality (4.14) for the O(2M + 1)2k case. Thus the

ratio (1.6) is invariant under the Seiberg-like duality for all the cases. This implies that

the open string degrees of freedom underlying the vector limits of N = 5 ABJ theory are

given by figure 4 from the viewpoint of the brane construction.

4.3 Matching of spectrum

In this section we find agreement between the spectrum of the HS currents in the N = 5

ABJ theory in the vector limits and that of the HS fields in the N = 5 Vasiliev theory.

4.3.1 O(N) internal symmetry

We have proposed that the O(N1)2k×USp(2N2)−k ABJ theoery is dual to the semiclassical

N = 5 Vasiliev theory with the O(N1) internal symmetry in the limit (1.2). Then the

dynamical higher spin gauge fields in the bulk should be dual to gauge invariant single

trace operators in the sense of USp(2N2), which can be expressed in terms of the scalars

24Note that this definition includes also the N = 6case(4.13) if we parameterize GN,M =

U(N)k ×U(N +M)−k.
25These dualities are essentially level-rank dualities of pure bosonic CS theory. The main difference is

that the pure bosonic CS theory has CS level shift: keff = k+hGsign(k), where hG is dual coxeter number of

gauge group G and we have hO(N) = N − 2 and hUSp(2N) = N +1. If we take k → keff in (4.14) and (4.15),

then the duality is nothing but exchange of bare CS level and rank.
26This seems accidental for the round S3 partition function. For instance, this statement is not true for

squashed S3 partition function.
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and fermions in the ABJ theory: φα,ra and ψβ,sb, where r, s = 1, · · · , 2N2 label USp(2N2),

α, β = 1, · · · , 4 label the R-symmetry USp(4) ≃ SO(5) indices, and a, b = 1, · · · , N1 label

O(N1). The scalars and fermions are subject to the symplectic real condition

φ∗α,ra = JαβJ rsφβ,sbδ
ab, (ψc)α,ra = JαβJ rsδabψβ,sb , (4.16)

where J rs and Jαβ are USp(2N2) and USp(4) invariant tensors respectively, and ψc is the

charge conjugation of ψ. In the limit (1.2), the O(N1) is weakly gauged and the operators

dual to the bulk fields are bilinear in φα,ra and ψβ,rb, since it must be invariant under the

gauge group USp(2N2). For example, the operators dual to the bulk scalars are

φ[α,(a · φβ],b), ψ̄[α,(a · ψβ],b), φ(α,[a · φβ),b], ψ̄(α,[a · ψβ),b] , (4.17)

where we use the following notation for contraction of the USp(2N2) indices in this sub-

subsection:

φα,a · φβ,b ≡ φα,raJ rsφβ,sb. (4.18)

The symmetry properties of the indices are chosen such that the operators do not van-

ish identically.27 It is straightforward to see that the first two operators belong to the

representations
(
1+ 1+ 5+ 5

)
SO(5)

⊗
[
1

2
N1(N1 + 1)

]

O(N1)

, (4.19)

and the last two are in the representations

(
10+ 10

)
SO(5)

⊗
[
1

2
N1(N1 − 1)

]

O(N1)

. (4.20)

Likewise, other even spin single trace operators can be constructed. In odd spin cases, for

example, the operators for s = 1 take the form

φ[α,[a · ∂µφβ],b], ψ̄[α,[a · γµψβ],b], φ(α,(a · ∂µφβ),b), ψ̄(α,(a · γµψβ),b) . (4.21)

Other choices of the symmetry give rise to operators which are written as total derivatives

of other operators, meaning that they are descendants. One can see that the first two

operators lie in the representation

(
1+ 1+ 5+ 5

)
SO(5)

⊗
[
1

2
N1(N1 − 1)

]

O(N1)

, (4.22)

while the last two are of the representations

(
10+ 10

)
SO(5)

⊗
[
1

2
N1(N1 + 1)

]

O(N1)

. (4.23)

For other odd spin operators, the construction is the similar. The fermionic operators

are constructed from one φα,ra and one ψβ,sb. For instance, the spin-1/2 operators are

27Note that we have ψ̄χ=χ̄ψ, and ψ̄γµχ = −ψ̄γµχ in 3d.
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Supersymmetry Internal s = 0, 2, 4, . . . s = 1, 3, 5 . . . s = 1
2
, 3
2
, 5
2
. . .

N = 5 O(N) ⊕ i ⊕
[ij]

⊕
i

⊕ [ij] ⊕ i⊕ [ij]

’⊕ ′i ⊕
′[ij] ′

⊕
′i

⊕ ′[ij] ⊕
i

⊕
[ij]

Table 4. The spectrum of the HS primary operators in the N = 5 ABJ theory in the limit (1.2).

The indices i, j label the fundamental representation of SO(5)R. The Young tableaux denotes the

representation of O(N).

ψα,a ·φβ,b. The product of two USp(4) fundamental representations yields 16 = 1+5+10

representations of USp(4) ≃ SO(5). The product of two O(N) indices gives rise to

[
1

2
N1(N1 + 1)

]

O(N1))

⊕
[
1

2
N1(N1 − 1)

]

O(N1)

, (4.24)

where the symmetric representation includes the trace part. A simple way to obtain to

obtain all the half-integer spin operators is to replace the scalar field φα,ra by a chiral

superfield in the integer spin operators. The gauge invariant HS operators in the N = 5

ABJ theory in the limit (1.2) are summarized in table 4. The spectrum coincides with that

of the N = 5 Vasiliev theory the O(N1) internal symmetry.

4.3.2 USp(2N) internal symmetry

Let us take the limit (1.3) corresponding to the semi-classical N = 5 Vasiliev theory with

the USp(2N2) internal symmetry. Since the USp(2N2) symmetry is weakly gauged in this

limit, construction of HS primary operators dual to the bulk HS gauge fields is analogous

to the previous case and they should be invariant under O(N1) gauge symmetry in the

present case. Hence we use the following notation for contraction of the O(N1) indices in

this subsubsection:

φα,r · φβ,s ≡ φα,raδ
abφβ,sb. (4.25)

When the ’t Hooft coupling is small, the primary operators dual to the bulk scalars are

φ[α,[r · φβ],s], ψ̄[α,[r · ψβ],s] , φ(α,(r · φβ),s), ψ̄(α,(r · ψβ),s) . (4.26)

Other even spin operators possess the same symmetry properties. It is straightforward to

see that the first two operators carry the representations

(
1+ 1+ 5+ 5

)
SO(5)

⊗ [N2(2N2 − 1)]USp(2N2) , (4.27)

and the last two are in the representations

(
10+ 10

)
SO(5)

⊗ [N2(2N2 + 1)]USp(2N2) . (4.28)
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Supersymmetry Internal s = 0, 2, 4, . . . s = 1, 3, 5 . . . s = 1
2
, 3
2
, 5
2
. . .

N = 5 USp(2N) ⊕
i

⊕ [ij] ⊕ i ⊕
[ij]

⊕ i⊕ [ij]

′

⊕
′i

⊕ ′[ij] ’ ⊕ ′i ⊕
′[ij]

⊕
i

⊕
[ij]

Table 5. The spectrum of HS primary operators in the N = 5 ABJ theory in the limit (1.3). The

Young tableaux denotes the representation of USp(2N).

For odd spin case, for example we have the spin-1 primary operators

φ[α,(r · ∂µφβ],s), ψ̄[α,(r · γµψβ],s) , φ(α,[r · ∂µφβ),s], ψ̄(α,[r · γµψβ),s] . (4.29)

It is straightforward to see that the first two operators carry the representations
(
1+ 1+ 5+ 5

)
SO(5)

⊗ [N2(2N2 + 1)]USp(2N2) , (4.30)

and the last two are in the representations
(
10+ 10

)
SO(5)

⊗ [N2(2N2 − 1)]USp(2N2) . (4.31)

Other spin odd operators have the same index structure. The fermionic operators are

constructed from one φα,ra and one ψβ,sb. For instance, the s = 1
2 operators are ψα,r ·

φβ,s. The product of two USp(4) fundamental representations yields 16 = 1 + 5 + 10

representations of USp(4) ≃ SO(5). The product two USp(2N2) indices gives rise to

[N2(2N2 + 1)]USp(2N2) ⊕ [N2(2N2 − 1)]USp(2N2) , (4.32)

where the antisymmetric representation includes the trace part.

4.4 Relating HS and CFT projections

The N = 6 ABJ theory with gauge group U(N1)2k × U(2N2)−2k have the two pairs of

fundamental chirals A1,2 and anti-bi-fundamental chirals B1,2, which carry the (N1, 2N2)

and (N1, 2N2) representations of the gauge groups respectively. Regarding A1,2 as N1×2N2

matrix and B1,2 as 2N2 × N1 matrix, the reduction from N = 6 to N = 5 is achieved by

imposing the projection condition B1 = JAT
1 , B2 = JAT

2 [31]. These conditions restricts

the gauge groups to be O(N1)× USp(2N2). A1,2 and B†
1,2 can be assembled into a vector

transforming as the fundamental representation of the SU(4) R-symmetry

C ≡ (A1,A2,B†
1,B†

2) = (A1,A2,−A∗
1J ,−A∗

2J ) , (4.33)

C obeys the symplectic reality condition Cα = JαβC∗βJ which amounts to (4.16) and re-

duces the R-symmetry from SU(4) to USp(4). Recall that J is the USp(4) invariant matrix

Jαβ =

(
0 12×2

−12×2 0

)
. (4.34)
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In terms of components, the complex matter fields can be represented as φα,ra and

ψβ,sb, where r, s run from 1 to 2N2 of U(2N2), α, β run from 1 to 4 of SU(4), and a, b run

from 1 to N1 of U(N1). The simplest chiral primary operators in the N = 6 ABJ theory

are the mass operators

φ̄α,raφβ,ra , ψ̄cα,raψβ,ra . (4.35)

In section 3, we have shown that the N = 5 Vasiliev theories can be obtained from the

N = 6 theory by imposing the automorphisms (3.2). Here we relate the projections on the

CFT side to that on the bulk side.

4.4.1 O(N) internal symmetry

In the limit (1.2), the U(N1) symmetry is weakly gauged and therefore one can liberates

the U(N1) indices in the mass operators (4.35)

Oαa
β b := φ̄α,a · φβ,b , O′αa

β b := ψ̄cα,a · ψβ,b , (4.36)

where we are using the notation (4.18) for the contraction in this subsubsection. When the

projection condition (4.7) is imposed, we have

Oαa
β b = Jαδδacφδ,c · Jβγδbdφ∗γ,d = JβδδbdJ

αγδacOδ d
γ c , (4.37)

and same for the fermion mass operator O′. This can be rewritten in a more compact form

O = (SOS−1)T , O′ = (SO′ S−1)T , Sαa, β b := Jαβδab , (4.38)

or equivalently

O(′)αβ,a b = −O(′)β α,b a , (4.39)

where the USp(2N2) and O(N1) indices are raised and lowered by Jrs and δab respectively.

Other even spin operators are constructed by inserting even number of derivatives between

φφ and ψψ with the similar USp(4) and O(N1) index structure. For operators of odd spins,

their analogs of (4.37) have an additional minus sign. For example, the spin-1 operators are

Oαa
µ β b := φ∗α,a · ∂µφβ,b , O′αa

µ β b := ψ̄cα,a · γµψβ,b , (4.40)

which satisfy

O(′)αa
µ β b = −JβδδbdJ

αγδacO(′)δ d
µ γ c , (4.41)

where for the bosonic spin-1 operator Oαβ,a b
µ , we have identified two operators differing by

a total derivative. Equivalently, this can be written as

O(′)
µ = −(SO(′)

µ S−1)T , or O(′)αβ,a b
µ = O(′)β α,b a

µ . (4.42)

This symmetry property holds also for other operators with odd spins. As for complex

spin-12 operators which are bilinear in bosons and fermions, we have

OF
αa

β b := ψcα,a · φβ,b , (4.43)
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which are related to its complex conjugate by

OF
αa

β b = Jαγψγ,a · Jβδφ̄δ,b = JαγJβδCŌF γ a
δ b . (4.44)

Therefore the number of spin-12 operators is reduced from 32M2 to 16M2.

All these conditions on the bilinear operators are equivalent to those on the Vasiliev

theory side given in (3.9) and (3.8). On the HS side the spin is characterized by the number

of Y -oscillators. The condition (y, ȳ) → (iy, iȳ) imposed by the anti-automorphisms then

distinguishes the symmetry properties of even and odd spin operators in the same way as

in (4.39) and (4.42). The number of fermionic operators are also constrained in the same

way as the fermionic HS fields.

4.4.2 USp(2N) internal symmetry

In the other limit (1.3), the U(2N2) symmetry is weakly gauged and one can liberates the

U(2N2) indices in the mass operators (4.35). The projection condition (4.7) then implies

O(2s) = (SO(2s) S−1)T , O(2s+1) = −(SO(2s+1) S−1)T , Sα r, β s := JαβJrs , (4.45)

which are equivalent to (3.10). The projection condition (4.7) also constrains the number

of fermionic operators in a way similar to (3.12).

4.5 SUSY enhancement

In section 2.1 we have seen that the N = 5 Vasiliev theory with the O(N1) internal

symmetry has enhanced N = 6 SUSY in the O(2) case since the two index anti-symmetric

representation of O(N1) becomes trivial and the gravitino multiplet combined with the

N = 5 SUGRA multiplet comprises the N = 6 SUGRA multiplet. Interestingly similar

phenomenon occurs also in the CFT side [31, 32]. It was shown that Gaiotto-Witten type

theory [70] with N = 5 SUSY has enhanced N = 6 SUSY if representations of matters

can be decomposed into a complex representation and its conjugate. Now the N = 5

ABJ theory with the gauge group O(2)2k×USp(2N2)−k belongs to this class and therefore

SUSY of the N = 5 ABJ theory is enhanced to N = 6 when the gauge subgroup O(N1)

is O(2). Thus the analysis in section 2.1 shows that the N = 5 Vasiliev theory with the

O(N) internal symmetry knows about the SUSY enhancement in the N = 5 ABJ theory.

This is a strong evidence for our proposal.

4.6 Correlation functions and free energy of ABJ theory in higher spin limit

Here we compute two-point functions of a U(1) flavor symmetry current and stress tensor,

and sphere free energy in the N = 5 ABJ theory. In 3d CFT on flat space, the two-point

function of U(1) flavor symmetry current jµ is constrained as

〈ji(x)jj(0)〉 =
τf

16π2

Pij

x2
+

iκf
2π

ǫijk∂kδ
(3)(x) . (4.46)

where Pij = δij∂
2 − ∂i∂j . Here we compute τf and κf associated with the U(1) flavor

symmetry which assigns charges +1 and −1 to the chiral multiplet A1 and A2 respectively
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in 3d N = 2 language. Two-point function of the canonically normalized stress tensor in

3d CFT on flat space [71] takes the form

〈Tij(x)Tkℓ(0)〉 =
cT
64

(PikPjℓ + PjkPiℓ − PijPkℓ)
1

16π2x2
(4.47)

+
iκT
192π

(ǫikm∂mPjℓ + ǫjkm∂mPiℓ + ǫiℓm∂mPjk + ǫjℓm∂mPik) δ
(3)(x),

where we normalize cT such that for each free real scalar or Majorana fermion, cT = 1.

One may expect that there is a simple relation between τf and cT in the ABJ theory since

extended SUSY field theories have non-Abelian R-symmetry which includes the U(1)R
symmetry and U(1) flavor symmetries. Indeed it is known [72] that τf in the N = 6 ABJ

theory has the relation

cT = 4τf . (4.48)

In appendix E we prove that this relation holds also in the N = 5 ABJ theory based on

the result of [72] and so-called large-N orbifold equivalence [73–75]. Therefore, cT can be

obtained once τf is known. τf and κf can be computed from the partition function on

S3 [76] deformed by real mass:28

τf = −8 Re
1

Z(0)

∂2Z(m)

∂m2

∣∣∣∣
m=0

, κf = 2π Im
1

Z(0)

∂2Z(m)

∂m2

∣∣∣∣
m=0

. (4.49)

The mass deformed partition function Z(m) can be exactly computed by SUSY localiza-

tion [101–103] and its explicit form is

Z(m) =
1

|W |

∫
dN1µ

(2π)N1

dN2ν

(2π)N2
e

ik
2π

(

∑N1
j=1 µ

2
j−

∑N2
b=1 ν

2
b

)

ZO
vec(µ)Z

USp
vec (ν)Zbi(µ, ν,m) , (4.50)

where

|W | = 2N2N2!|WO| , (4.51)

ZO
vec(µ) =





∏
i<j

[
2 sinh

µi−µj

2 · 2 sinh µi+µj

2

]2
for even N1[∏N1

j=1 4 sinh
2 µj

2

]∏
i<j

[
2 sinh

µi−µj

2 · 2 sinh µi+µj

2

]2
for odd N1

,

ZUSp
vec (ν) =

[ N2∏

b=1

4 sinh2 νb

]∏

a<b

[
2 sinh

νa − νb
2

· 2 sinh νa + νb
2

]2
,

Zbi(µ, ν,m) =





1
∏

i,b 2 cosh
µi−νb+m

2
·2 cosh

µi+νb+m

2
×(m→−m)

for even N1

1
∏N2

b=1 2 cosh
νb+m

2

∏

i,b 2 cosh
µi−νb+m

2
·2 cosh

µi+νb+m

2
×(m→−m)

for odd N1

.

|WO| is the rank of the Weyl group associated with gauge group O(N1), which is equal to

2N−1N ! (2NN !) for O(2N) (O(2N + 1)).

28The real mass can be introduced by taking 3d N = 2 background vector multiplet associated with the

flavor symmetry to be constant adjoint scalar with flat connection and trivial gaugino.
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4.6.1 O(N) internal symmetry

We first consider the limit N1 ≪ N2. In this case, the N = 5 ABJ theory is dual to the

bulk N = 5 HS theory with O(N1) internal symmetry. We rewrite the partition function as

Z(m) =
1

|WO|

∫
dN1µ

(2π)N1
e

ik
2π

∑N1
j=1 µ

2
j

∏

α∈rootO(N1)

(α · µ)
〈
eV (µ,ν)

〉
USp(2N2)−k

, (4.52)

where

V (µ, ν) =
∑

α∈rootO(N1)

log
2 sinh α·µ

2

α · µ − logZbi(µ, ν,m) , (4.53)

and 〈O〉USp(2N2)−k
denotes the unnormalized VEV over the USp(2N2) part

〈O〉USp(2N2)−k
=

1

2N2N2!

∫
dN2ν

(2π)N2
Oe

− 1
2gs

∑

aν
2
a
∏

a 6=b

[
2sinh

νa−νb
2

·2sinh νa+νb
2

]
N2∏

b=1

4sinh2νb ,

(4.54)

where

gs = −πi

k
. (4.55)

This is formally the same as the VEV of O in the USp(2N2)−k CS matrix model on S3

(without the level shift). When N1/k ≪ 1, the integration over µ is dominated by the

region µ ≃ 0 and we can approximate V (µ, ν) by small µ expansion

V (µ, ν) = − logZbi(µ = 0, ν,m) +O(µ2)

= −N1

N2∑

a=1

[
log

(
1 + eνa+m

)
+ log

(
1 + eνa−m

)
− νa

]
+O(µ2) . (4.56)

Because the integration measure over ν is an even function of ν, we find in the limit

N1/k ≪ 1, the mass deformed partition function is approximately given by

Z(m) ≃ ZO
Gauss

(
πi

k
,N1

)〈
exp

[
−N1

N2∑

a=1

log(1 + eνa+m)(1 + eνa−m)
]〉

USp(2N2)−k

, (4.57)

where29

ZO
Gauss(g,N) ≡ 1

|WO|

∫
dNx

(2π)N
e
− 1

2g

∑N
j=1 x

2
j

∏

α∈rootO(N)

(α · x) =
2rank(O(N))+1(2πg)dim(O(N))

vol(O(N))
.

(4.58)

Now we are interested in the planar limit of the
〈
eV (µ,ν)

〉
USp(2N2)−k

part. Since the planar

limit of the USp(2N2)−k CS theory is the same as the one of O(2N2)−2k CS theory,30 we

29vol(O(N)) = 2NπN(N+1)/4
∏N

n=1 Γ(n/2)
(see e.g. [77]).

30Notice that 〈O〉USp(2N2)−k, unnormalized = ZUSp(2N2)−k
〈O〉USp(2N2)−k, normalized and in the planar limit,

〈O〉USp(2N2)−k, normalized, planar = 〈O〉O(2N2)−2k, normalized, planar.
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can rewrite Z(m) in the higher spin limit as

Z(m) ≃ ZO
Gauss

(
πi

k
,N1

)
ZUSp(2N2)−kCS

×
〈
exp

[
−N1

N2∑

a=1

log(1 + eνa+m)(1 + eνa−m)

]〉

O(2N2)−2k, planar

,

(4.59)

where 〈· · · 〉O(2N2)−2k, planar denotes the normalized VEV in the planar limit of O(2N2)−2k

CS matrix model. It can be computed by combining the result of appendix D with the

technique in [78]. Let us introduce

gO(X; t2) = − 1

N2

〈
N2∑

a=1

log (1−Xeνa)

〉

O(2N2)−2k, planar

, (4.60)

where

t2 = −πiN2

k
. (4.61)

Using (4.60), we find that in the planar limit

〈eV (µ,ν)〉USp(2N2)−k, normalized ≃ exp

[
N1N2

(
gO(−em; t2) + gO(−e−m; t2)

)]
. (4.62)

To compute gO(Y ; t2), we first use the relation between the single trace VEV in O(2N)−2k

CS and U(N)−k CS in the planar limit, which is shown in appendix D. This relation leads

us to

gO(X; t2) = gU (X; 2t2) , (4.63)

where

gU (X; 2t2) = − 1

N2

〈
∑

a

log (1−Xeνa)

〉

U(N2)−k, planar

. (4.64)

gU (X; t) was obtained in [78] for arbitrary X as

gU (X; t) =
1

t

[
π2

6
− 1

2

(
log h(X)

)2
+ log h(X)

(
log (1− e−th(X))− log (1− h(X))

)

−Li2(h(X)) + Li2(e
−th(X))− Li2(e

−t)

]
, (4.65)

where

h(X) =
1

2

[
1 +X +

√
(1 +X)2 − 4etX

]
. (4.66)

Using this, we get

∂2

∂m2
〈eV (µ,ν)〉USp(2N2), normalized

∣∣∣∣
m=0

= −N1M

πt
e

πit
2 sin

πt

2
e2N1MgU (−1;2t2) +O(1) , (4.67)
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whereN2 = |O(N1)|+M , and t = M/k. Notice that Z(0) in the higher spin limit is given by

Z(0) ≃ e2N1N2gU (−1;2t2)ZO
Gauss

(
πi

k
,N1

)
ZUSp(2N2)−kCS , (4.68)

we finally obtain

τf = −8Re

(
−N1M

πt
e

πit
2 sin

πt

2

)
=

4N1M sinπt

πt
, κf = −4|O(N1)|M

t
sin2

πt

2
. (4.69)

Then using cT = 4τf immediately leads us to

cT =
16N1M sinπt

πt
. (4.70)

As a consistency check, let us consider the t → 0 limit. Then, since the N = 5 ABJ

theory has 8N1N2 real scalars and 8N1N2 Majorana fermions, cT should be 16N1N2 =

16N1M + O(1), which is reproduced by our result. The result on κf in (4.69) is not ap-

parently invariant under Seiberg duality. However, we can make κf invariant under the

duality by shifting κf by the integer 2|O(N1)|k, which is the degree of freedom of adding

a local CS counterterm in the CFT Lagrangian [79]. After the shift, we find

κf |shifted =
2|O(N1)|M cosπt

t
. (4.71)

In appendix F we show that τf and κf |shifted are the same as the ones in two-point function

of O(N1) gauge current in the HS limit.

Utilizing (4.68), we can compute the free energy (1.6) in the limit N1 ≪ N2 as

F vec
N,M = − log

|Z(0)|
|ZUSp(2M)−k

CS |

∣∣∣
N1≪N2

(4.72)

= −2N1MRe
[
gU(−1; 2t2)

]
− log

∣∣∣ZO
Gauss

(
πi

k
,N1

) ∣∣∣− log
|ZUSp(2N2)−k

CS |
|ZUSp(2M)−k

CS |
+O(1) .

Using the result of appendix G on the third term above we obtain

F vec
N,M =

4NM

πt
I

(
πt

2

)
+

dim[O(N1)]

2
logM +O(1) , (4.73)

where N is the rank of the global symmetry group O(N1) in the higher spin limit and

I(x) = Im
[
Li2(i tanx)

]
− x log tanx .

4.6.2 USp(2N) internal symmetry

We now turn to the other limit N1 ≫ N2. In this case, the N = 5 ABJ theory is dual to

the bulk N = 5 HS theory with USp(2N2) internal symmetry. The mass deform partition

function can be rewritten as

Z(m) =
1

|WUSp|

∫
dN2ν

(2π)N2
e−

ik
2π

∑N2
a=1 ν

2
a

∏

α∈rootUSp(2N2)

(α · ν)
〈
eV (µ,ν)

〉
O(N1)2k

, (4.74)
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where

V (µ, ν) =
∑

α∈rootUSp(2N2)

log
2 sinh α·ν

2

α · ν − logZbi(µ, ν,m) , (4.75)

and 〈O〉O(N1)2k denotes the unnormalized VEV over the O(N1) part

〈O〉O(N1)2k =
1

|WO|

∫
dN1µ

(2π)N1
O e

− 1
2gs

∑

j µ
2
j

∏

α∈rootO(N1)

2 sinh
α · µ
2

, (4.76)

where

gs =
πi

k
. (4.77)

〈O〉O(N1)2k is formally the same as the VEV in the O(N1)2k CS matrix model on S3 . In

the higher spin limit N2/k ≪ 1, V (µ, ν) can be approximated by small ν expansion

V (µ, ν) = − logZbi(µ, ν = 0,m) +O(ν2) (4.78)

= −2N2

∑

j

[
log

(
1 + eµj+m

)
+ log

(
1 + eµj−m

)
− µj + log

(
2 cosh

m

2

)]
+O(ν2) .

Using the fact that the integration measure over µ is an even function of µ, we find

Z(m) ≃ ZUSp
Gauss

(
−πi

k , N2

)
(
2 cosh m

2

)2N2

〈
exp

[
−2N2

∑

j

log(1 + eµj+m)(1 + eµj−m)
]〉

O(N1)2k

, (4.79)

where31

ZUSp
Gauss(g,N) =

1

|WUSp|

∫
dNx

(2π)N
e
− 1

2g

∑N
j=1 x

2
j

∏

α∈rootUSp(2N)

(α · x) = 2N+1(2πg)
N(2N+1)

2

vol(USp(2N))
.

(4.80)

Now we need to compute the
〈
eV (µ,ν)

〉
O(N1)2k

in the planar limit. Let us rewrite Z(m) in

the higher spin limit as

Z(m) ≃
ZUSp
Gauss

(
−πi

k , N2

)
ZO(N1)2kCS(

2 cosh m
2

)2N2

×
〈
exp

[
−2N2

∑

j

log(1 + eµj+m)(1 + eµj−m)
]〉

O(N1)2k, normalized

.

(4.81)

Then we find in the planar limit

〈
eV (µ,ν)

〉
O(N1)2k,normalized

≃ 1
(
2coshm

2

)2N2
exp

[
2N2|O(N1)|

(
gO(−em;t1)+gO(−e−m;t1)

)
]
,

(4.82)

where

t1 =
πi|O(N1)|

k
. (4.83)

31vol(USp(2N)) = 2−2Nvol(O(2N + 1)).
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As in the previous case, we obtain

∂2

∂m2
〈eV (µ,ν)〉O(N1) normalized

∣∣∣∣
m=0

= −2N2M

πt
e−

πit
2 sin

πt

2
e4N2MgU (−1;2t1) +O(1) , (4.84)

where we have set |O(N1)| = N2 +M and t = M/k. Since Z(0) in the higher spin limit is

given by

Z(0) ≃ e4N2MgU (−1;2t1)ZUSp
Gauss

(
−πi

k
,N2

)
ZO(N1)2kCS , (4.85)

we finally obtain

τf = −8Re

(
−2N2M

πt
e−

πit
2 sin

πt

2

)
=

4N2M sinπt

πt
, κf =

4N2M

t
sin2

πt

2
. (4.86)

and

cT = 4τf =
32N2M sinπt

πt
. (4.87)

As a consistency check, let us consider the t → 0 limit. In this limit, cT should behave as

16N1N2 = 32N2M +O(1) and this is consistent with our result. As in the previous case,

we can make κf invariant under the duality by shifting κf by the integer −2N2k:

κf |shifted = −2N2M cosπt

t
. (4.88)

In appendix F we find that τf and κf |shifted are given by the same formula as those in

two-point function of USp(2N2) gauge current in the HS limit.

The free energy in the other higher spin limit N1 ≫ N2 is given as

F vec
N2,M = − log

|Z(0)|
|ZO(2N)2k

CS |

∣∣∣
N1≫N2

(4.89)

= −4N2MRe[gU(−1; 2t1)]− log
∣∣∣ZUSp(2N2)

Gauss

(
−πi

k

) ∣∣∣− log
|ZO(N1)2k

CS |
|ZO(2M)2k

CS |
+O(1) .

Using the results of appendix G, we obtain

F vec
N2,M =

4N2M

πt
I

(
πt

2

)
+

dim[USp(2N2)]

2
logM +O(1) . (4.90)

4.7 Holographic dictionary and prediction of on-shell action

In the previous subsection, we have computed cT , τf and κf associated with the R-currents

and the free energy (1.6) in the two different higher spin limits. The results are summarized

below

cT =
32NM sinπt

πt
, τf =

8NM sinπt

πt
, κf =

2NM cosπt

t
, M ≫ N ,

F vec
N,M =

4NM

πt
I

(
πt

2

)
+

min{dimO(N1), dimUSp(2N2)}
2

logM +O(1) , (4.91)

where N = min{|O(N1)|, N2} and M = |N2 − |O(N1)||. We can relate the Newton con-

stant on the bulk to the CFT parameters using the logic in [25] and cT computed in the
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previous subsection. First let us consider usual AdS/CFT correspondence between CFT

and Einstein gravity. If we consider the canonically nomarlized Einstein-Hilbert action,

then the stress tensor two-point function is generated by

S[g] =
1

16πGN

∫
d4x

√
gR

∣∣∣∣
quadratic term

. (4.92)

In this normalization the holographic computation shows [80]

GN

L2
AdS

∣∣∣∣
Einstein gravity

=
32

πcT
. (4.93)

Now we come back to the Vasiliev theory with internal symmetry whose fields are matrix

valued. Since the graviton coupling to the CFT stress tensor should be singlet under both

the bulk R-symmetry and internal symmetry, we have to take the singlet part and identify

the Newton constant with
GN

L2
AdS

=
32

πNcT
=

t

M sinπt
. (4.94)

Next we find the relation between the parity-violating phase θ and the parameters in

the ABJ theory. The mixed boundary condition (3.17) for the bulk USp(4) singlet spin-1

gauge field implies that a bulk CS term should be added to the boundary action

S[A] = − 1

4g2bulk

∫
d3xdz

√−gFµνF
µν +

ikbulk
4π

∫
d3xεijkAi∂jAk . (4.95)

The mixed boundary condition (3.17) then follows from the variational principle. We find

that

tan 2θ =
2π

g2bulkkbulk
. (4.96)

The action (4.95) also leads to the holographic two point function for the dual spin-1

current (in the Euclidean signature)

〈 Ji(x)Jj(y)〉
∣∣∣
holographic

=
1

2π2g2bulk
(δij∂

2 − ∂i∂j)
1

x2
+

ikbulk
2π

ǫijk∂kδ
(3)(x) . (4.97)

where the parity even term has been read off from [81]. Comparing the holographic result

with the CFT result, we obtain

1

g2bulkkbulk
=

τf
8κf

. (4.98)

As discussed in appendix F, the results on τf and κf take the same form as those for the

U(1) flavor symmetry in the previous subsection up to the integer shift of κf by the local

counter term. Using (4.91) we arrive at the relation between θ and t

θ =
πt

2
.

One can easily show that this is true also for the N = 6 ABJ theory using the results in

appendix F.
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We can compare the CFT free energy in (4.91) with the free energy of the Vasiliev

theory. First, utilizing the results derived in [33–35], one can check that the bulk free

energy at one-loop is free of UV divergence [33–35]. The coefficient of the logM term

also agrees with the expectation from [36], which states that each bulk spin-1 gauge fields

obeying the mixed boundary condition contribute to the one loop free energy of the Vasiliev

theory by −(1/2) logM . Thus the coefficient of the logM term should be (−1/2) times

the dimension of the weakly gauged symmetry group, which is O(N1) for N1 ≪ N2 and

USp(2N2) for N1 ≫ N2. Due to the lack of a bulk HS action, it is infeasible to compute

the bulk leading free energy and compare it to the CFT one. However, one can translate

the CFT leading free energy to its bulk counterpart by assuming our conjecture. Using the

identifications (1.4) and (1.5), we predict that the leading term in the free energy of the

N = 5 Vasiliev theory takes the form

F
(0)
HS =

8L2
AdSI(θ)

GNπ sin 2θ
. (4.99)

One should notice that F
(0)
HS diverges as O(log θ) in the limit θ → 0, which was also observed

in the N = 6 case [24]. At this moment, due to the lack of a well defined bulk action, we are

not able to confirm this by a direct evaluation on the bulk and postpone the interpretation

of this divergence to future work.

5 Conclusions and discussions

We have studied the physical consequences of adding the orientifolds to the N = 6 ABJ

triality [1, 14], which leads us to the ABJ quadrality. The ABJ quadrality is the AdS/CFT

correspondence among theN = 5 ABJ theory with the gauge groupO(N1)2k×USp(2N2)−k,

type IIA string in AdS4×CP
3/Z2 and twoN = 5 supersymmetric Vasiliev theories in AdS4.

It has turned out that the N = 5 case is more involved since there are two formulations

of N = 5 Vasiliev theory with either O or USp internal symmetry. Accordingly, we have

proposed that the two possible vector-like limits of the N = 5 O(N1) × USp(2N2) ABJ

theory defined by N2 ≫ N1 and N1 ≫ N2 correspond to the semi-classical N = 5 Vasiliev

theories with O(N1) and USp(2N2) internal symmetries respectively. We have also put

forward the precise holographic dictionary between the parameters on the both sides by

matching the correlation functions, where the Newton constant GN is related to M and t

by (1.4) and the parity violating phase θ is related to t via (1.5).

We have provided various evidence for the correspondence between the N = 5 ABJ

and Vasiliev theories. First, the full spectrum of the N = 5 Vasiliev theory has been shown

to match with that of the higher spin currents in the N = 5 ABJ theory. Second, we

have exhibited the equivalence of the “orientifold projections” on the HS and CFT sides

at the level of the spectrum. Third, we have observed the SUSY enhancement from N = 5

to N = 6 occurs on both sides when the weakly gauged symmetry is O(2). Finally, we

have proposed that the free energy of the N = 5 Vasiliev theory should be compared to

the combination (1.6) on the CFT side, which has the following properties i) The leading

term in the 1/M -expansion is linear in M ; ii) It respects the Seiberg-like duality (4.10); iii)
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The O(logM) term matches the O(logGN ) term in the one-loop free energy of the N = 5

Vasiliev theory. Based on the free energies defined for the vector limits of the N = 5 ABJ

theory, we predict the form of the leading free energies of the N = 5 Vasiliev theories in

AdS4 upon applying the holographic dictionary.

So far our results on the HS side rely on the linear analysis of Vasiliev equations and

HS gauge transformation rules. In order to extract three and higher point correlation

functions of 3d higher spin currents from 4d Vasiliev equations, one must go beyond the

linear level and derive the higher order corrections to the linearized equations of motion.

As observed in [21, 82], there are subtleties in deriving HS interaction vertices from the

Vasiliev equations. The standard way of solving the Vasiliev equations order by order in the

weak field expansion leads to apparent non-localities in certain cubic vertices. Especially

in the parity violating case, the bulk computation following the procedure of [21] cannot

reproduce the three-point correlation functions in which the three spins do not satisfy the

triangle inequality.32 It is illustrated in the recent papers [59] that the apparent non-

locality in the cubic vertices can be circumvented and there exists a well defined procedure

which gives rise to manifestly local quadratic corrections to the free equations of motion

for generic θ. It was recently shown in [87] that if restricting [85, 86] to bosonic A-

model, then the result of [85, 86] agree with the previous result [88] obtained by means

of reconstructing HS vertices from CFT correlators. It is interesting to generalize the

analysis in [85, 86] to the case with extended SUSY and internal symmetry so that one

can compare the three-point correlators computed from the N = 5 Vasiliev theories with

those computed in the N = 5 ABJ theory. It is known [89] that SUSY Ward identities

provide a simple relation between the three- and two-point correlators of the currents

within the stress tensor multiplet. Therefore, for instance, matching 〈TTT 〉2/〈TT 〉3 on

both sides provides an independent check of the identification between the HS and CFT

parameters. However, one should bear in mind that in AdS4, the ∆ = 1 Fefferman-Graham

coefficients of the scalars and the magnetic components of the spin-1 gauge fields can survive

at the AdS boundary and give finite contributions to the boundary action which may affect

three and higher point functions. The choice of boundary terms for these fields should be

consistent with their boundary conditions. As far as we are aware, fully HS invariant

boundary actions have not been constructed and it is illuminating to construct them in

future investigation. The cubic corrections to the free equations of motion seem to contain

genuine non-localities [90, 91]. However, these non-localities may still be compatible with

holography and a proper interpretation of them is currently under investigation.

We have shown that the N = 5 Vasiliev theories with O and USp internal symmetries

descends from the projections (3.5) of the N = 6 Vasiliev theory, which we identify with

the orientifold projections in the Vasiliev theory. It is interesting to identify counterparts

of orientifold projections in other “stringy” HS AdS/CFT correpondences [92–94]. One of

important open problems is to link Vasiliev theory to string theory more directly. Although

we expect that the fundamental string in the string theory is realized by the “flux tube

32Except for the 〈0s1s2〉 case where although the three spins do not obey the triangle inequality, the cor-

responding HS cubic vertices are local since they are governed by the HS algebra. Computation of all corre-

lators of type 〈s1s20〉 was recently completed in [83]. The 0−s−s vertex was also obtained in [84] last June.
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solution” in the Vasiliev theory as in [1], for the time being, it seems difficult to check this

because it is not known how to quantize Vasiliev theory. One of the approaches from string

theory is to analyze equations of motion of the dual string field theory in the “tensionless”

limit and compare to Vasiliev equations. Finally it is known that some supersymmetric

quantities in the ABJ theory are described by topological string [47, 48, 65, 95–98] (see

also [99] from a slightly different perspective). This fact may give some insights on the

relation between string theory and Vasiliev theory.
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A Bulk basics

Spinor convention. In 4d Minkowski space with isometry SO(3, 1) ≃ SL(2,C), we use

(σµ)α
β̇ = (1, σi)α

β̇ , (σ̄µ)α̇
β = (−1, σi)α̇

β , µ = 0, 1, 2, 3 , (A.1)

where σi are the usual Pauli matrices. We also refer to the fourth component of σµ as σr.

Spinor indices are raised or lowered by ǫ = iσ2. We also define

(σµν)α
β =

1

2
(σµσ̄ν − σν σ̄µ)α

β , (σ̄µν)α̇
β̇ =

1

2
(σ̄µσν − σ̄νσµ)α̇

β̇ , (A.2)

with the properties σµ

αβ̇
= σ̄µ

β̇α
, σµν

αβ = σµν
βα and σ̄µν

α̇β̇
= σ̄µν

β̇α̇
.

Consistencies of τ - and reality conditions with Vasiliev equations. We first show

that the reality conditions and the τ -projection conditions are imposed in a consistent way

(A†)† = A , (Φ†)† = Γκ̄ ⋆ κ ⋆ Φ ⋆ κ ⋆ κ̄Γ = ππ̄πξπη(Φ) = Φ ,

τ2(A) = ππ̄πξπη(A) = A , τ2(Φ) = ππ̄πξπη(Φ) = π̄2(Φ) = Φ ,
(A.3)

where we have used the properties of the Kleinians

κ ⋆ f(y, ȳ, z, z̄) = f(z, ȳ, y, z̄)κ , κ̄ ⋆ f(y, ȳ, z, z̄) = f(y, z̄, z, ȳ)κ̄ ,

f(y, ȳ, z, z̄) ⋆ κ = f(−z, ȳ,−y, z̄)κ , f(y, ȳ, z, z̄) ⋆ κ̄ = f(y,−z̄, z,−ȳ)κ̄ . (A.4)

By field redefinitions that are consistent with field equations, one can put V̂ and ˆ̄V in a

simple form

V̂ = eiθΦ ⋆ κΓ , ˆ̄V = e−iθΦ ⋆ κ̄ . (A.5)
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We now show that the field equations are invariant under reality and τ -conditions

(dxA+A⋆A)†=−(dxA+A⋆A)=− i

4
[dz̄2(V̂ †)+dz2( ˆ̄V †)] (A.6)

=− i

4
[dz̄2(e−iθΓκ̄⋆κ⋆Φ⋆κΓ)+dz2(eiθκ⋆κ⋆Φ⋆κΓ)]=− i

4
[dz̄2( ˆ̄V )+dz2(V̂ )],

τ(dxA+A⋆A)=−(dxA+A⋆A)=
i

4
[−dz2(τ(V̂ ))−dz̄2(τ( ˆ̄V ))] (A.7)

=− i

4
[dz2(eiθΓκ⋆κ̄⋆Φ⋆κ̄)+dz̄2(e−iθκ̄⋆κ̄⋆Φ⋆κ̄)]=− i

4
[dz2(V̂ )+dz̄2( ˆ̄V )],

where we used ππ̄πξπηA = Γκ̄ ⋆ κ ⋆A ⋆ κ ⋆ κ̄Γ = A. Since the Vasiliev’s equation of motion

for the master 0-form can be derived from the equation of motion of the 1-form by using

Bianchi identity, the equation of motion for the 0-form is also be invariant under reality

condition and τ -condition.

B Relation between SO(5) and USp(4) indices

In addition to the representations of the internal symmetry, each HS field carries in the

N = 5 Vasiliev theory also the indices of the fundamental representation of SO(5) ≃ USp(4)

R-symmetry group. In section 2, we have worked in the SO(5) notation while in section 3 we

have used the USp(4) notation for the convenience in the reduction from N = 6 to N = 5.

In this appendix we explain a connection between these two notations. The connection is

provided by the SO(5) gamma matrices obeying the following symmetry properties

CT = −C , C†C = 1 , (γiC)T = −γiC , (γijC)T = γijC ,

(γijkC)T = γijkC , (γijklC)T = −γijklC , (γijklmC)T = −γijklmC . (B.1)

Here C matrix is the analog of the charge conjugation matrix defined in even dimensions.

Now we are ready to show the equivalence between the τ -condition introduced in section 2

and the automorphism projection introduced in section 3. First of all, by comparing (2.9)

and (2.22) with (3.3), it is straightforward to see that the both projection conditions act in

the same way on the internal symmetry of the HS fields. Moreover, in both cases the spino-

rial oscillators undergo the same transformation Y → iY , which in turn distinguishes the

symmetry properties of HS fields with different spins. Finally one can identify the C matrix

with the USp(4) invariant matrix J , and gamma matrices γi with ξi. The symmetry proper-

ties of the two USp(4) indices, e.g. (3.8) and (3.11), as required by the automorphism condi-

tion, are then translated into the requirements on the SO(5) representations through (B.1).

C Seiberg-like dualities in ABJ theory

In this appendix we provide another argument to support the Seiberg-like dualities (4.10)

for the N = 5 ABJ theory. It is known [58] that the Seiberg-like duality for S3 partition

function in the N = 6 ABJ theory can be understood from Giveon-Kutasov duality [104],

which is another Seiberg-like duality for U(N)k SQCD coupled to fundamental hyper mul-

tiplets. Here we argue that the dualities (4.10) for the N = 5 ABJ theory can be also

understood as Giveon-Kutasov type dualities with the gauge group O(N)2k or USp(2N)k.
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U(N + M)k × U(N)
−k type. First we review the argument [58] for the N = 6 case.

Let us freeze the path integral over the U(N)−k vector multiplet. Then the theory becomes

the U(N+M)k SQCD with 2N fundamental hyper multiplets and the background U(N)−k

vector multiplet. Conversely thinking, the N = 6 ABJ theory can be derived by gauging

U(N)−k in the U(N + M)k SQCD. For S3 partition function, this gauging procedure is

technically equivalent to integrating over real mass associated with the U(N)−k symmetry

in the localization formula. For this type of SQCD, there is a duality called Giveon Kutasov

duality [104], which states that the equivalence between the gauge groups

U(Nc)k ↔ U(Nf −Nc + |k|)−k, (C.1)

where Nf is the number of the fundamental hyper multiples. Since Nc = N + M and

Nf = 2N in our SQCD, this duality transforms as33

M → |k| −M, k → −k, (C.2)

which is the same action as the Seiberg-like duality in the N = 6 ABJ theory. Thus if

Giveon-Kutasov duality is correct, then the Seiberg-like duality in the N = 6 ABJ theory

is also correct. Fortunately there is already a proof of Given-Kutasov duality for the S3

partition function [59] and this leads us to the Seiberg-like duality in theN = 6 ABJ theory.

O(N1)2k × USp(2N)
−k type. Let us take rank[O(N1)] = N + M and freeze the

USp(2N)−k vector multiplet similarly. Then the theory becomes O(N1)2k SQCD with

4N fundamental chiral multiplets and the background USp(2N)−k vector multiplet. This

type of SQCD has the conjectural duality [105]:

O(Nc)2k ↔ O(Nf −Nc + 2|k|+ 2)−2k, (C.3)

where Nf is the number of the fundamental chiral multipltets. For our SQCD with Nc =

2N + 2M and Nf = 4N , this duality transforms as

M → |k| −M + 1, k → −k, (C.4)

which is the same as the Seiberg-like duality in the O(2N + 2M)2k × USp(2N)−k ABJ

theory. Next, for our SQCD with Nc = 2N + 2M + 1 and Nf = 4N , the Giveon-Kutasov-

like duality acts as

M → |k| −M, k → −k, (C.5)

which is the same action as the Seiberg-like duality in the O(2N +2M +1)2k×USp(2N)−k

ABJ theory.

33More precisely, there are induced Chern-Simons terms of flavor symmetry, which make the other gauge

group U(N)−k to U(N)k.
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USp(2N + 2M)k × O(N1)−2k type. Let us freeze the O(N1)−2k vector multiplet.

Then the theory becomes USp(2N + 2M)k SQCD with N1 pairs of fundamental chiral

multiplet and the background O(N1)−2k vector multiplet. There is a conjectural duality

for the USp-type SQCD [105]:

USp(2Nc)k ↔ USp(2(Nf −Nc − 1 + |k|))−k (C.6)

where Nf is the number of the pairs of the fundamental chiral multipltets. For our SQCD

with Nc = N +M and Nf = 2N , this transforms as

M → |k| −M − 1, k → −k, (C.7)

which is the same as the Seiberg-like duality in the USp(2N + 2M)k × O(2N)−2k ABJ

theory. When N1 = 2N + 1, the Giveon-Kutasov-like duality transforms as

M → |k| −M, k → −k, (C.8)

which is the same action as the Seiberg-like duality in the USp(2N +2M)k×O(2N +1)−2k

ABJ theory.

D O(2N)
−2k CS v.s. U(N)

−k CS theories

In this appendix we derive a simple relation between eigenvalue densities in the U(N) and

O(2N) Chern-Simons matrix models in the planar limit. The S3 partition function in the

U(N)−k CS theory is [100–103]

ZU(N)−k
=

1

N !

∫
dNν

(2π)N
e−SU (ν) , (D.1)

where34 gUs = −2πi/k and

SU (ν) =
1

2gUs

N∑

a=1

ν2a −
∑

1≤a<b≤N

log

(
2 sinh

νa − νb
2

)2

. (D.2)

In the planar limit N → ∞, tU = gUs N = fixed, the matrix integral is dominated by a

saddle point determined by

1

gUs
νa − 2

∑

b 6=a

coth
νa − νb

2
= 0 . (D.3)

Introducing the eigenvalue density

ρU (ν; tU ) =
1

N

N∑

a=1

δ(ν − νa), (D.4)

34The minus sign is just convention for convenience in the main text.
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the saddle point equation becomes

1

tU
ν − 2P

∫
dxρU (x; tU ) coth

ν − x

2
= 0 . (D.5)

Under the standard one cut ansatz ρU (ν; tU ) has been explicitly found (see e.g. [40]) and

satisfies

ρU (ν; tU ) = ρU (−ν; tU ) . (D.6)

This means that ρU (ν; tU ) also satisfies

1

tU
ν − 2P

∫
dxρU (x; tU ) coth

ν + x

2
= 0 . (D.7)

Combining the two saddle point equations, we also find the equivalent saddle point equation

2

tU
ν − 2P

∫
dxρU (x; tU ) coth

ν − x

2
− 2P

∫
dxρU (x; tU ) coth

ν + x

2
= 0 . (D.8)

The action for the O(2N)2k CS matrix model is

SO(ν)=
1

2gOs

N∑

a=1

ν2a−
∑

1≤a<b≤N

[
log

(
2sinh

νa−νb
2

)2

+log

(
2sinh

νa+νb
2

)2
]
, gOs =−πi/k,

(D.9)

which leads to the saddle point equation

1

gOs
νa − 2

∑

b 6=a

coth
νa − νb

2
− 2

∑

b 6=a

coth
νa + νb

2
= 0 . (D.10)

Introducing the eigenvalue density ρO(ν; tO), the saddle point equation takes the form

1

tO
ν − 2P

∫
dxρO(x; tO) coth

ν − x

2
− 2P

∫
dxρO(x; tO) coth

ν + x

2
= 0 . (D.11)

Comparing this with the (D.8), we find that the saddle point equation is solved by the

following eigenvalue density

ρO(ν; tO) = ρU (ν; tU = 2tO) . (D.12)

Thus we can use the solution of the U(N) CS matrix model for the O(2N) CS matrix model.

This can be understood as a particular example of the so-called orbifold equivalence for

field theories in the planar limit [73–75].

E Proof of cT = 4τf in the N = 5 ABJ theory

In this appendix we show the relation cT = 4τf holds in the N = 5 ABJ theory. We

first review the derivation of this relation in the N = 6 ABJ theory [72]. It is known [72]

that cT in a 3d N = 2 CFT with a classical SUGRA dual is related to the sphere energy

FS3 = − logZS3 by

cT |SUGRA =
64

π2
FS3

∣∣∣∣
SUGRA

. (E.1)
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A1 A2 B1 B2

U(1)1 +1 +1 −1 −1

U(1)2 +1 −1 +1 −1

U(1)3 +1 −1 −1 +1

Table 6. Assignments of U(1)3 flavor charges in the N = 6 ABJ theory in 3d N = 2 language.

τf also has a simple relation to FS3 in the N = 6 ABJ theory in the classical SUGRA

limit. Let us consider three U(1) flavor symmetries in the N = 6 ABJ theory explained

in table 6 and analyze the coefficient τa in the two-point function of U(1)a flavor current

(a = 1, 2, 3). We can compute τa in terms of the S3 free energy F (m) deformed by the real

mass35 ma associated with U(1)a [76]:

τa = 8 Re
∂2F (m)

∂m2
a

∣∣∣∣
ma=0

. (E.2)

One can actually show τ1 = τ2 = τ3 [72] and we simply denote τa by τf below. An explicit

calculation shows that τf in the SUGRA limit of the N = 6 ABJ theory is given by [72]

τf |SUGRA =
16

π2
FN=6
S3

∣∣∣∣
SUGRA

. (E.3)

Comparing this with (E.1), one immediately finds cT = 4τf .

Let us now turn to the N = 5 case. For this case, the relation (E.1) between cT and FS3

still holds in the SUGRA limit but we do not know at this moment whether (E.3) is also cor-

rect since there exist no explicit calculations to check (E.3) in literature. Here instead of us-

ing (E.1) and (E.3) directly, we adopt the idea of large-N orbifold equivalence or orientifold

equivalence [73–75] which states that when theory B is obtained from theory A via a pro-

jection by the group Γ, then in the planar limit the free energies of these two theory satisfy

FB|planar =
FA

|Γ|

∣∣∣∣
planar

, (E.4)

where |Γ| is the order of Γ. To use the orientifold equivalence, we regard the N = 5

O(N1)2k × USp(2N2)−k ABJ theory as the quotient of the N = 6 U(N1)2k × U(2N2)−2k

theory by the projection (4.7). First we consider the relation between cT ’s in the N = 5

and N = 6 ABJ theories. It is known [106] that cT in 3d N = 2 superconformal field

theory is related to the squashed sphere free energy FS3
b
by

cT =
32

π2
Re

∂2FS3
b

∂b2

∣∣∣
b=1

, (E.5)

35In [72], this analysis is done by means of trial U(1)R charges but technically this is equivalent to using

real masses.
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where b is the squashing parameter and b = 1 corresponds to the round sphere. Combining

this with the orientifold equivalence leads us to36

c
O(N1)2k×USp(2N2)−k

T

∣∣∣
planar

=
1

2
c
U(N1)2k×U(2N2)−2k

T

∣∣∣∣
planar

. (E.6)

Next let us proceed to τf . Since the orientifold projection breaks the U(1)1 and U(1)3
symmetries, we consider τf associated with the U(1)2 symmetry, which assigns charge +1

to one chiral multiplet and charge −1 to the other chiral multiplet. Then using (E.2) and

the orientifold equivalence, we find

τ
O(N1)2k×USp(2N2)−k

f

∣∣∣
planar

=
1

2
τ
U(N1)2k×U(2N2)−2k

f

∣∣∣∣
planar

. (E.7)

Combining this with (E.6) and cT = 4τf for the N = 6 case, we easily see that cT = 4τf
still holds in the N = 5 ABJ theory.

F Gauge current correlation functions

In order to determine the relation between the bulk parity violating phase θ and parameters

in the ABJ theory, we need the coefficients in the two-point functions of the currents associ-

ated with the “smaller” gauge group. In this appendix, we shall compute these coefficients

in the higher spin limits. We emphasize that this has not been done even for theN = 6 case.

U(N1) gauge current in the U(N1)k × U(N2)−k theory. The N = 6 ABJ theory

can be viewed as gauging the U(N1) flavor symmetry with the CS gauge field at level

k in the U(N2)−k SQCD with 2N1 fundamental hyper multiplets. More precisely, if we

parametrize the 2N1 hypers by (Qj , Q
′
j) (j = 1, · · · , N1), then the gauged flavor symmetry

is U(N1) rotation of Qj and Q′
j simultaneously. In the higher spin limit, the U(N1) gauge

interaction is very weak and we can approximate the two point function of the U(N1) gauge

current in the ABJ theory by the one of the U(N1) flavor current in the SQCD, which can

be computed by localization.

To compute the coefficients in the two point function of the U(N1) flavor current, we

need the S3 partition function of the SQCD deformed by the real mass associated with the

U(N1) flavor symmetry. We can easily write down the partition function before gauging

just by freezing the integrals over the U(N1) vector multiplet in the ABJ theory:

ZU(N2)−kSQCD =
e

ik
4π

∑N1
j=1 µ

2
j

N2!

∫
dN2ν

(2π)N2
e−

ik
4π

∑N2
a=1 ν

2
a

∏
a 6=b 2 sinh

νa−νb
2

∏N1
j=1

∏N2
a=1

(
2 cosh

µj−νa
2

)2 , (F.1)

where µj is the real mass associated with the U(N1) flavor symmetry and the numerator

in the first factor is the CS term of the background U(N1) vector multiplet with the level

36One can also check this explicitly by using (E.1) and the result of [60] on the free energy of the N = 5

ABJ theory in the classical SUGRA limit.
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k. For our purpose, it is sufficient to know only one component of U(N1) and hence we

take µj = m:

ZU(N2)−kSQCD(m) =
e

iN1k
4π

m2

N2!

∫
dN2ν

(2π)N2
e−

ik
4π

∑N2
a=1 ν

2
a

∏
a 6=b 2 sinh

νa−νb
2∏

a

(
2 cosh m−νa

2

)2N1
, (F.2)

where m is understood as the real mass associated with the diagonal part of U(N1) sym-

metry. We can calculate the coefficients τf and κf by [76]

τf = −8 Re
1

ZU(N2)−kSQCD(0)

∂2ZU(N2)−kSQCD(m)

∂m2

∣∣∣∣∣
m=0

,

κf = 2πIm
1

ZU(N2)−kSQCD(0)

∂2ZU(N2)−kSQCD(m)

∂m2

∣∣∣∣∣
m=0

. (F.3)

Similar to the procedure adopted in section 4.6, we can rewrite the mass deformed

partition function in the planar limit as

ZU(N2)−kSQCD(m) = e
iN1k
4π

m2
ZU(N2)−kCS exp

[
2N1N2gU (−e−m; t2)

]
. (F.4)

Now recall that the mass deformed partition function of ABJ theory in the HS limit is [25]

ZN=6ABJ(m) = ZU
Gauss

(
2πi

k
,N1

)
ZU(N2)−kCS exp

[
N1N2

(
gU (−em; t2) + gU (−e−m; t2)

)]
.

(F.5)

Comparing the above two equations, we find

1

ZU(N2)−kSQCD(0)

∂2ZU(N2)−kSQCD(m)

∂m2

∣∣∣∣∣
m=0

=
ikN1

2π
+

1

ZN=6ABJ(0)

∂2ZN=6ABJ(m)

∂m2

∣∣∣∣
m=0

.

(F.6)

Hence, using the result of [25], we obtain

τf =
4NM sinπt

πt
, κf =

NM cosπt

t
. (F.7)

τf is the same as the one of U(1) flavor symmetries obtained in [25] while κf is diffent only

by the integer kN1.

O(N1) gauge current in the O(N1)2k × USp(2N2)−k theory. We can compute

the gauge current two point function as in the N = 6 case. We regard the ABJ theory

as gauging the O(N1) flavor symmetry with CS level 2k of USp(2N2)−k SQCD with N1

fundamental hyper multiplets. Then the partition function before gauging is

ZUSp(2N2)−kSQCD =
e

ik
2π

∑|O(N1)|
j=1 µ2

j

2N2N2!

∫
dN2ν

(2π)N2
e−

ik
2π

∑N2
b=1 ν

2
bZUSp

vec (ν)Zbi(µ, ν, 0) , (F.8)

where the functions in the integrand are defined in (4.51) and µj plays a role as the real

mass associated with the O(N1) flavor symmetry and the first exponential factor is the
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background O(N1) CS term with the level 2k. When µj = m, we can rewrite the mass

deformed partition function in the planar limit as

ZUSp(2N2)−kSQCD(m) (F.9)

= e
ik|O(N1)|

2π
m2

ZUSp(2N2)−kCS ×
{

e2|O(N1)|N2(gO(−em)+gO(−e−m)) for even N1,

e2|O(N1)|N2(gO(−em)+gO(−e−m))+2N2gO(−1;t2) for odd N1.

Recalling (4.57) and (4.67), we find

1

ZUSp(2N2)−kSQCD(0)

∂2ZUSp(2N2)−kSQCD(m)

∂m2

∣∣∣∣∣
m=0

=
ik|O(N1)|

π
+

1

ZN=5ABJ(0)

∂2ZN=5ABJ(m)

∂m2

∣∣∣∣
m=0,N1→2|O(N1)|

.

(F.10)

Thus we obtain

τf =
8|O(N1)|M sin (πt)

πt
, κf =

2|O(N1)|M cosπt

t
. (F.11)

τf is the same as the one of the U(1) flavor symmetry (4.69) while κf is the same as the

shifted one (4.71).

USp(2N2) gauge current in the O(N1)2k ×USp(2N2)−k theory. In this case, the

theory before gauging USp(2N2) is O(N1)2k SQCD with N2 fundamental hyper multiplets

and the back ground CS term of USp(2N2)−k, whose partition function is

ZO(N1)2kSQCD =
e−

ik
2π

∑N2
a=1 ν

2
a

|WO|

∫
dN1µ

(2π)N1
e

ik
2π

∑

j µ
2
jZO

vec(ν)Zbi(µ, ν, 0) , (F.12)

where νa is now understood as the real mass associated with USp(2N2) and the exponential

prefactor is the background USp(2N2) CS term of the level −k. If we take νa = m, the

mass deformed partition function in the planar limit becomes

ZO(N1)2kSQCD(m) = e−
ikN2
2π

m2
ZO(N1)2kCSe

2|O(N1)|N2(gO(−em)+gO(−e−m))

×





1 for even N1 ,
1

(2 cosh m
2 )

2N2
for odd N1 .

(F.13)

Recalling (4.79) and (4.84), we find

1

ZO(N1)2kSQCD(0)

∂2ZO(N1)2kSQCD(m)

∂m2

∣∣∣∣∣
m=0

=
ikN2

π
+

1

ZN=5ABJ(0)

∂2ZN=5ABJ(m)

∂m2

∣∣∣∣
m=0

,

(F.14)

which immediately gives rise to

τf (t) =
8N2M sin (πt)

πt
, κf = −2N2M cosπt

t
. (F.15)

τf is the same as the one of the U(1) flavor symmetry (4.86) while κf is the same as the

shifted one (4.88).

– 50 –



J
H
E
P
1
1
(
2
0
1
7
)
1
9
0

G The ratio of the pure CS partition functions

In section 4.6, we have utilized the ratio of the S3 partition functions of the pure CS theory

in the large M -expansion. In this appendix, we present more details of computing the ratio.

The pure CS partition function with gauge group G is

ZG
CS(g) =

1

|W |

∫
d|G|x

(2π)|G|
e
− 1

2g
trx2 ∏

α 6=0

2 sinh
α · x
2

= (detC)
1
2
i−(

∑

α>0 1)−
|G|
2

k
|G|
2

e
2πi
k

ρ2
∏

α>0

2 sin
πα · ρ
k

,

(G.1)

where C is Cartan matrix and ρ is Weyl vector ρ = 1
2

∑
α>0 α.

U(N) type. When G = U(N), we have

∣∣∣ZU(N)
CS (g)

∣∣∣ = 1

kN/2

∏

1≤ℓ<m≤N

2 sin
π(m− ℓ)

k
=

1

kN/2

N∏

ℓ=1

(
2 sin

πℓ

k

)N−ℓ

. (G.2)

Now we would like to expand log |ZU(N+M)k
CS |/|ZU(M)k

CS | up to O(logM). This can be done

by using the technique in [107]. We first rewrite the pure CS free energy as

log |ZU(M)k
CS | = −M

2
log k +

M−1∑

j=1

(M − j) log

(
2 sin

πj

k

)
. (G.3)

To expand this, we use the formula

sin (πz) = πz
∞∏

m=1

(
1− z2

m2

)
,

N−1∑

j=1

(N − j) log j = logG2(N + 1) , (G.4)

where G2(z) is the Barnes G-function. Then the free energy becomes

log |ZU(M)k
CS | = −M

2
log k +

M

2
(M − 1) log

2π

k
+ logG2(M + 1)

+
M−1∑

j=1

(M − j)
∞∑

m=1

log

(
1− j2

m2k2

)
.

(G.5)

The last term is often referred to as perturbative piece:

logZP (M)k =
M−1∑

j=1

(M−j)
∞∑

m=1

log

(
1− j2

m2k2

)
=

∞∑

m=1

ζ(2m)

m

1

k2m

M−1∑

j=1

(M−j)j2m , (G.6)

which has the expansion [107]

logZP (M)k =
∞∑

g=0

∞∑

h=2

FP
g,h

(
2π

k

)2g−2+h

Mh . (G.7)
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Here we need only the g = 0 part, whose coefficients are

FP
0, h≤3 = 0 , FP

0, h≥4 = − |Bh−2|
(h− 2)h!

. (G.8)

Using the above formula, we find

log
|ZU(N+M)k

CS |
|ZU(M)k

CS |
= −NM +NM log (2πt) +

N

M

∞∑

h=4

hFP
0,h

(
2π

k

)−2+h

Mh +O(1) , (G.9)

where we have used

logG2(N + 1) =
N2

2
logN − 1

12
logN − 3

4
N2 +O(1) . (G.10)

Performing the sum over h explicitly, we finally obtain

log
|ZU(N+M)k

CS |
|ZU(M)k

CS |
= NM

(
log t+

ζ(1,0)(−1, 1− t)− ζ(1,0)(−1, 1 + t)

t

)
+O(1) . (G.11)

O(2N) type. For the O(2N) gauge group, we have

∣∣∣ZO(2N)2k
CS

∣∣∣ = 2

(2k)N/2

∏

1≤ℓ<m≤N

2 sin
π(m− ℓ)

2k
· 2 sin π(m+ ℓ)

2k

=
23/4

k1/2
|ZU(N)2k

CS |
|ZU(N+1)2k

CS |

[
|ZU(N)k

CS | · |ZU(2N+1)2k
CS |

|ZU(N+1)k
CS |

]1/2

. (G.12)

Using the result for the U(N) case, we find

log
|ZO(2N+2M)2k

CS |
|ZO(2M)2k

CS |
=

1

2
log

|ZU(2N+2M+1)2k
CS |
|ZU(2M+1)2k

CS |
+O(1) (G.13)

= 2NM

(
log t+

ζ(1,0)(−1, 1− t)− ζ(1,0)(−1, 1 + t)

t

)
+O(1) .

O(2N + 1) type. For the O(2N + 1) gauge group, the CS partition function is

∣∣∣ZO(2N+1)2k
CS

∣∣∣ =
√
2

(2k)N/2

∏

1≤ℓ<m≤N

2 sin
π(m− ℓ)

2k
· 2 sin π(m+ ℓ)

2k

N∏

ℓ=1

2 sin
πℓ

2k

= k1/2
∣∣∣ZO(2N)2k

CS

∣∣∣
|ZU(N+1)2k

CS |
|ZU(N)2k

CS |
. (G.14)

Then the result for the U(N) case leads us to

log
|ZO(2N+2M+1)2k

CS |
|ZO(2M+1)2k

CS |
= log

|ZO(2N+2M)2k
CS |
|ZO(2M)2k

CS |
+O(1) (G.15)

= 2NM

(
log t+

ζ(1,0)(−1, 1− t)− ζ(1,0)(−1, 1 + t)

t

)
+O(1) .
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USp(2N) type. The CS partition function for this case is given by

∣∣∣ZUSp(2N)k
CS

∣∣∣ =
√
2

(2k)N/2

∏

1≤ℓ<m≤N

2 sin
π(m− ℓ)

2k
· 2 sin π(m+ ℓ)

2k

N∏

ℓ=1

2 sin
πℓ

k

=
k1/2√

2

∣∣∣ZO(2N)2k
CS

∣∣∣
|ZU(N+1)k

CS |
|ZU(N)k

CS |
. (G.16)

Thus using the above results, we obtain

log
|ZUSp(2N+2M)k

CS |
|ZUSp(2M)k

CS |
= log

|ZO(2N+2M)2k
CS |
|ZO(2M)2k

CS |
+O(1) (G.17)

= 2NM

(
log t+

ζ(1,0)(−1, 1− t)− ζ(1,0)(−1, 1 + t)

t

)
+O(1) .
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