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1 Introduction

The construction and understanding of string compactifications beyond the supergravity

approximation are important open problems that deserve investigation. For one reason,

non-geometric string vacua exist and are in principle on the same footing as the more

widely explored geometric vacua that can be interpreted in terms of supergravity reduc-

tions on some internal spaces. Moreover, it is conceivable that they could have appealing

phenomenological features. In fact, in the article that originally contemplated the class of

non-geometric vacua that we will consider, one motivation was to search for compactifica-

tions with a reduced number of massless moduli in the low-energy theory [1].

In [1] the key idea was to build vacua as fibrations by letting the moduli of type II

strings compactified on T 2 vary over a base. A further essential ingredient was to allow for
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monodromies in the duality group when going around points on the base where the moduli

become singular. Since among these monodromies there are transformations that invert

the torus volume, the compactifications are intrinsically non-geometric. The scheme of

fibrations of T 2 moduli was later extended to heterotic strings where duality with F-theory

can be used to extract properties of the resulting non-geometric vacua [2]. Taking the base

to be complex one-dimensional leads to six-dimensional non-geometric heterotic vacua that

have received attention more recently [3–7].

In this paper, we will further examine six-dimensional N = (1, 0) non-geometric het-

erotic vacua described locally as T 2 fibrations over a base B parametrized by t ∈ C. As in

recent works, we focus on configurations in which the heterotic gauge background is chosen

to have SU(2) structure so that the gauge group is broken to E7×E8 or Spin(28)×SU(2)/Z2,

depending on whether one starts with the E8 ×E8 or the Spin(32)/Z2 heterotic string. In

this situation the heterotic moduli comprise one complex Wilson line together with the

complex structure and the complexified Kähler modulus of T 2. The T-duality group act-

ing on the space spanned by these three moduli is O(2, 3,Z) [8]. Restricting this group

to SO+(2, 3,Z), the subgroup of order four which can be identified with Sp(4,Z), gives

an isomorphism between the heterotic moduli space and the moduli space of genus-two

curves [3, 4]. Hence, the non-geometric heterotic vacua can be defined equivalently as

fibrations of a genus-two Riemann surface over the base B. In general, a non-trivial holo-

morphic fibration will degenerate at certain points on B and encircling them will induce an

Sp(4,Z) T-duality transformation on the moduli, thereby signalling the presence of defects,

dubbed T-fects in [9], such as NS5s or more exotic 5-branes. Now, the possible degenera-

tions of genus-two fibers over the t-plane have been classified by Ogg, and Namikawa and

Ueno [10, 11]. Our objective is to continue the study, initiated in [5], of the six-dimensional

theories living on the T-fects corresponding to degenerations in the Namikawa-Ueno list.

This program is carried out by dualizing the configuration to F-theory, where the T-fects

can be characterized geometrically.

The fundamental heterotic/F-theory duality relates the heterotic string compactified

on T 2 and F-theory compactified on an elliptically fibered K3 surface [12–14]. At the

moduli level, the explicit map when there are no Wilson lines, i.e. the gauge group on the

heterotic side is unbroken, was found in [2, 15]. In the case at hand, when there is one

Wilson line breaking the gauge group to E7 × E8 or Spin(28) × SU(2)/Z2, the map from

the heterotic moduli to the dual K3 moduli was established lately in [3, 4, 16, 17]. This

map can be expressed in terms of Siegel modular forms of the genus-two curve encoding

the heterotic moduli. Thus, in F-theory the non-geometric heterotic vacua described as

genus-two fibrations over a base correspond to specific K3 fibrations over the same base.

Moreover, to preserve supersymmetry the total space of the F-theory fibration must be a

Calabi-Yau — a threefold in the case that the base of the K3-fibration is complex one-

dimensional. Since in F-theory there is a well-defined geometric formalism to analyze

degenerations of the fiber along the base, the heterotic/F-theory duality enables us to infer

properties of the T-fects of non-geometric heterotic vacua.

The T-fects connected to the genus-two degenerations in the Namikawa-Ueno list [11]

were surveyed in [5] in the context of the E8 × E8 heterotic string. The purpose of the
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present work is to extend the analysis to the Spin(32)/Z2 heterotic string. One motivation

is to check for the existence of dualities among defects observed in [5]. The ultimate

goal is to discover the main features of the theories living on the T-fects. The study of

such theories in the Spin(32)/Z2 heterotic string actually started with the seminal treatise

of Witten [18] who showed that a heterotic 5-brane, or equivalently a small instanton,

supports a six-dimensional (1,0) supersymmetric gauge theory with group Sp(1) and 16

hypermultiplets in the fundamental representation. Already exploiting tools of F-theory,

the theories arising from Spin(32)/Z2 small instantons sitting at ADE singularities in K3

were later analyzed in great detail in [19–21]. These generic theories were also derived from

the dual perspectives of type I D5-branes [22, 23], and type IIA configurations of D6, D8

and NS5-branes [24, 25]. In the Spin(32)/Z2 heterotic string, F-theory methods were also

used early on in [26]. Various aspects of non-geometric vacua of the Spin(32)/Z2 heterotic

string have been considered more recently in [2, 3, 6, 7].

In the following, we will present the results of a systematic study of Spin(32)/Z2

heterotic T-fects associated to the genus-two degenerations in the Namikawa-Ueno clas-

sification [11]. As in the E8 × E8 case addressed in [5], we will apply the duality map

to every genus-two degeneration in the Namikawa-Ueno list in order to obtain the dual

F-theory background. Since this background turns out to have a elliptic fibration with

a non-minimal singularity, we will attempt to turn the singularity into a minimal one by

performing a series of blow-ups in the base of the fibration. When the resolution can be

accomplished we will determine the emerging smooth geometry. Introducing blow-ups is

equivalent to giving generic vevs to scalars in tensor multiplets of the 6d N = (1, 0) theory

on the defect, i.e. we move onto the tensor branch of the theory. Thus, knowing the smooth

geometry allows to deduce the gauge groups and matter content characterizing the IR limit,

valid in the tensor branch, of the theory living on the defect. Analogous techniques have

actually been employed in the recent classification of SCFTs [27–31] and little string theo-

ries (LSTs) [32]. Actually, the theories that we obtain fall into known configurations whose

UV completions are conjectured to be LSTs [32, 33]. The theories indeed have a mass scale

and enjoy T-duality upon circle compactification, both typical properties of LSTs [34].

Let us finally give an overview of the rest of the article. The six-dimensional non-

geometric heterotic vacua of interest are described in more detail in section 2. There

we recall the basics of heterotic compactifications on T 2 and review the formulation of

heterotic/F-theory duality in terms of a map between genus-two (sextic) curves and ellip-

tically fibered K3 surfaces. In addition, we explain how the map connects degenerations of

sextics over a complex one-dimensional base, classified by Namikawa and Ueno, with de-

generations of K3 fibered Calabi-Yau threefolds. In section 3 we first sketch the procedure

to resolve singularities and then apply the method to local heterotic degenerations which

have a geometric description in some duality frame. We also discuss truly non-geometric

singularities that exhibit a kind of duality with geometric defects. In section 4 we catalog

all possible local heterotic degenerations admitting F-theory duals that can be resolved into

smooth Calabi-Yau threefolds. We conclude with further observations about the results.

Appendix A contains the resolutions of several models corresponding to small instantons

on ADE singularities.
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2 Non-geometric heterotic vacua and F-theory

This section is devoted to outlining the construction of the six-dimensional non-geometric

heterotic vacua studied in this paper. We will first explain the structure of the vacua and

then discuss how to exploit F-theory/heterotic duality to analyze their properties.

2.1 Heterotic vacua in 8 and 6 dimensions

The starting point is the compactification of the heterotic string on a torus T 2. The

emerging eight-dimensional theory contains moduli fields encoding the geometric and gauge

bundle data. The geometric moduli consist of the complexified Kähler modulus, ρ =∫
T 2 B +ω ∧ ω̄, with B the Kalb-Ramond two-form and ω the holomorphic one-form of the

torus which follows from the metric on T 2, and the complex structure modulus given by

τ =
∫
b ω/

∫
a ω, where a and b are the two generators of the non-trivial one-cycles of the

torus. Furthermore, from the gauge bundle data we have 16 complex Wilson line moduli

from the Cartan generators of the non-Abelian gauge group of the heterotic string, i.e.

βI =
∫
aA

I + i
∫
bA

I , I = 1, . . . , 16. In the following, we restrict ourselves to background

gauge bundles which only have SU(2) structure, so it will break E8×E8 down to E8×E7,

or Spin(32)/Z2 to Spin(28) × SU(2)/Z2. With this choice there is only a single complex

modulus, called β in the following, whose real and imaginary parts are given by the Wilson

line of the SU(2) Cartan around the one-cycles of the T 2 as defined above. It is well known

that the three complex parameters ρ, τ and β live on the heterotic moduli space [8]

Mhet = O(2; R)×O(3; R)\O(2, 3; R)/O(2, 3; Z) , (2.1)

where O(2; R)×O(3; R)\O(2, 3; R) is the local moduli space of the T 2 compactification and

O(2, 3; Z) the duality group which identifies physically equivalent theories.

Having the eight-dimensional moduli from the torus compactification we construct,

in the next step, six-dimensional vacua by letting the moduli fields vary along two real,

or one complex, dimension. Since we allow in this construction for identifications of the

moduli under the duality around paths of non-trivial homotopy, it is very cumbersome

to work directly with the moduli fields. To circumvent this difficulty we use, like in F-

theory, a geometric object which has (almost) the same moduli space as the fields we want

to describe. The variation of the fields becomes then a fibration of the object along the

complex one-dimensional base. In our case, the geometrification is done via a genus-two

curve such that we end up with a genus-two fibration.

Since the description of the heterotic moduli space in terms of genus-two curves will

be crucial in the following, we briefly review it. To every point of the moduli space char-

acterized by ρ, τ and β, there is an associated genus-two curve Σ whose period matrix Ω

belongs to H2 defined by

H2 =

{
Ω =

(
τ β

β ρ

)∣∣∣ det Im(Ω) > 0, Im(ρ) > 0

}
. (2.2)

The four independent one-cycles of Σ can be chosen to span a canonical homology basis,

ai and bj with i, j = 1, 2, such that intersection form is symplectic. The elements of
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the period matrix are Ωij =
∫
bi
ωj , where the ωi are holomorphic one-forms of Σ with

normalization
∫
ai
ωj = δij . The moduli space is obtained by taking the quotient of H2 by

the Sp(4,Z) action

Ω→ (AΩ +B)(CΩ +D)−1 with

(
A B

C D

)
∈ Sp(4,Z) . (2.3)

The action of Sp(4,Z) is induced by changes of the homology basis that preserve the

intersection form. In [35] it was shown that Sp(4,Z) is isomorphic to SO+(2, 3,Z) which

is an index four subgroup of the full Narain duality group O(2, 3,Z).1

The geometrification of the heterotic moduli in terms of a genus-two curve suggests, as

mentioned already, to build lower-dimensional vacua by considering genus-two fibrations.

The idea is simply to let the moduli vary adiabatically along a base B. Since we consider

six-dimensional vacua, B has to be complex one-dimensional, locally parametrized by a

coordinate t ∈ C. For the moduli to fulfill the (BPS) equations of motion the fibration must

be holomorphic in t. Hence, a non-trivial fibration Σ(t) has to degenerate at co-dimension

one loci on the base. Encircling such a degeneration point, the genus-two fiber returns to

itself but Ω(Σ(t)) undergoes an Sp(4,Z) monodromy transformation. Thus, upon transport

around a non-contractible loop, the heterotic moduli return to their values only up to a

duality transformation. Since Sp(4,Z) includes transformations such as ρ → −1/ρ, which

exchanges large and small volume, non-geometric vacua are part of these compactifications.

A generic genus-two degeneration will induce a monodromy involving all three moduli ρ, τ

and β. The localized physical objects that lie at the center of the genus-two degenerations

are dubbed T-fects, which is short for T-duality defects [9]. In the case of the E8 × E8

heterotic string, the six-dimensional theories that live on T-fects were studied in [5]. In

this paper we extend the analysis to the Spin(32)/Z2 heterotic string.

Although genus-two fibrations have monodromies only in Sp(4,Z) ⊂ O(2, 3,Z), they

have the great advantage that their degenerations are classified. This was done more than

forty years ago by Ogg [10] and Namikawa and Ueno [11], who gave a classification of

all possible holomorphic degenerations of genus-two fibers over a complex one-dimensional

base. In particular, Namikawa and Ueno (NU) provide explicit local equations of the

possible degenerations together with the corresponding monodromies. The NU list supplies

a large number of T-fects. However, we do not know how to study them directly in terms

of the heterotic string. Therefore, we use the duality with F-theory and analyze them in

that setting, as we discuss next.

2.2 F-theory and vacua with varying moduli

Since the inception of F-theory [12], it has been known that both heterotic strings com-

pactified on T 2 and F-theory compactified on an elliptically fibered K3 surface are dual to

each other [13, 14]. This duality is best understood in the large volume/stable degeneration

1Note that this also induces a four-to-one map between the moduli space of the genus-two curve

H2/Sp(4,Z) and the true heterotic moduli space Mhet. Hence the moduli spaces are only almost iden-

tical as mentioned above.
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limit [13, 36]. In this limit ρ→ i∞ on the heterotic side, whereas on the F-theory side the

K3 degenerates into two dP9 surfaces which intersect each other along a T 2. The heterotic

modulus τ is the complex structure of the F-theory T 2 at the intersection, while the Wil-

son lines are encoded in the intersection points (spectral cover data [37]) of the respective

nine exceptional curves of the two dP9’s with the T 2. Such a precise identification with all

Wilson line moduli turned on exists so far only in this special limit. On the other hand, the

duality map is known along the whole moduli space when there is none [2, 15] or only one

non-vanishing Wilson line [3, 4, 16, 17]. In this article we focus on the latter case where

the Wilson line breaks E8 ×E8 down to E8 ×E7, or Spin(32)/Z2 to Spin(28)× SU(2)/Z2.

For the duality with the E8 × E8 heterotic string the hypersurface describing the

elliptically fibered F-theory K3 takes the form

y2 = x3 + (a u4v4 + c u3v5)x z4 + (b u6v6 + d u5v7 + u7v5) z6 , (2.4)

where x, y, z and u, v are the homogeneous coordinates of the fiber ambient variety P2,3,1

and the base P1, respectively. This K3 has a II∗ singularity at v = 0 and a III∗ at u = 0

which correspond to E8 and E7 gauge groups, respectively.

For the Spin(32)/Z2 heterotic compactification the dual K3 is described by [2, 19, 20]

y2 = x3 +Qx2z2 + ε xz4 , (2.5)

where Q and ε depend on the base coordinates according to

Q = v(u3 + a uv2 + b v3) ,

ε = v7(c u+ d v) .
(2.6)

The fibrations (2.5) and (2.4) are birationally equivalent to each other as shown for instance

in [2, 3], and for an earlier account of this in terms of toric geometry see [26]. In the latter

reference it is described how the two different fibrations are realized as two different two-

dimensional reflexive sections of the same polytope. In figure 1 we indicated, for our case,

the two different sections of the K3 which give (2.4) and (2.5), respectively. Although a

given fan of the polytope allows at most for one fibration, they are connected via birational

flops. The double fibration structure is expected from the known T-duality of the two

heterotic strings upon circle compactification [21, 32].

To analyze the K3 in (2.5) we bring it to Weierstraß form. In the patch z = 1 we obtain

y2 = x3 +
1

3

(
3ε−Q2

)
x+

Q

27

(
2Q2 − 9ε

)
. (2.7)

The singularities of this fibration are located at the vanishing locus of the discriminant

∆ = −ε2(Q2 − 4ε) ,

= −v16(cu+ dv)2
(
u6 + 2au4v2 + 2bu3v3 + a2u2v4 + (2ab− 4c)uv5 + (b2 − 4d)v6

)
.

(2.8)

We observe that the fiber has Kodaira singularities of type I∗10 (SO(28)) at v = 0, and

of type I2 (SU(2)) at cu + dv = 0, for generic coefficients. The gauge group is actually

Spin(28)× SU(2)/Z2. When c ≡ 0 the group enhances to Spin(32)/Z2.
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(a) Reflexive section dividing polytope into E7-

and E8-top.

(b) Reflexive section dividing polytope into

SO(28)- and trivial-top.

Figure 1. The two different reflexive sections through the (dual) polytope defined via equation (2.4)

and (2.5), respectively. The red dots indicate toric divisors which correspond to the resolution

divisors of the E7, E8, and SO(28) gauge groups. Divisors which intersect each other lie next to

each other along the red edges. Note the appearance of the extended Dynkin diagram structure.

Furthermore, the SU(2) of Spin(28) × SU(2)/Z2 on the right hand side is given by the divisor

corresponding to the green interior point on the edge of the reflexive section.

Heterotic/F-theory duality requires the existence of a map relating the heterotic mod-

uli (2.2) to the coefficients a, b, c and d of the dual K3 surfaces (2.4) and (2.5). The duality

map has been established recently [3, 16, 17]. It can be written as

a = − 1

48
ψ4(Ω) , b = − 1

864
ψ6(Ω) , c = −4χ10(Ω) , d = χ12(Ω) , (2.9)

where ψ4, ψ6, χ10, and χ12 are genus-two Siegel modular forms [38] of weight indicated by

the subscript. Modularity is meant with respect to the Sp(4,Z) transformation (2.3).

From the previous discussion we conclude that there is a well-defined relation between

the moduli space of the heterotic string compactified on T 2 with one complex Wilson line,

the moduli spaces of genus-two curves and elliptically fibered K3 surfaces with E7 ×E8 or

Spin(28)×SU(2)/Z2 singularities. Thus, non-geometric heterotic vacua encoded in terms of

genus-two fibrations over a base can be realized, in F-theory, as K3 fibrations over the same

base. The advantage of this correspondence is that in F-theory there is a proper procedure

– 7 –
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to analyze degenerations of the fiber along the base. In this way, heterotic/F-theory duality

can be applied to explore the physics of T-fects associated to genus-two degenerations.

We are mostly interested in six-dimensional non-geometric heterotic vacua given by

genus-two fibrations over a base with local coordinate t. In particular, we want to consider

the genus-two degenerations compiled by Namikawa and Ueno (NU) [11]. In the NU

classification the genus-two singularities are described in terms of fibrations of hyperelliptic

curves represented by sextics of the form

y2 = c6(t)x
6 + c5(t)x

5 + . . .+ c1(t)x+ c0 , (2.10)

where the ci(t) are functions (or sections) of t. Furthermore, the hyperelliptic curve fibra-

tions of [11] are in a canonical form with the singularity located at t = 0. Determining the

K3 coefficients a, b, c, d, as functions of t is facilitated by having the genus-two fibrations

in the form of (2.10). To begin we compute the modular forms of the genus-two curve from

the Igusa-Clebsch invariants2 I2, I4, I6, I10 [39]

I2(ci) =
χ12(Ω)

χ10(Ω)
, I4(ci) = 2−4 · 3−2ψ4(Ω) ,

I6(ci) = 2−6 · 3−4ψ6(Ω) + 2−4 · 3−3ψ4(Ω)χ12(Ω)

χ10(Ω)
, I10(ci) = 2−1 · 3−5χ10(Ω) .

(2.11)

Combining these relations with (2.9) then gives

a = −3I1, b = 2(I2I4 − 3I6), c = −2335I10, d = −2 35I2I10 , (2.12)

for the complex structure coefficients of the K3. Since the Igusa-Clebsch invariants are

polynomials of the ci(t)’s so will be the coefficients of the dual K3. Hence, in the end we

obtain for every genus-two singularity in the NU list a K3 fibration over the same t-plane

with the K3 fiber degenerating at t = 0 as well. Let us remark here that understanding

the map from the F-theory to the heterotic setup is much more involved. Some progress

in this direction has been achieved recently in [7].

In the next section we will look at the F-theory singularities that arise from the map

and attempt to resolve them. It turns out that whether a resolution is possible or not

depends on the vanishing order of the coefficients a, b, c and d, denoted µ(a), µ(b), µ(c)

and µ(d), at t = 0. Notice that in all cases we have µ(c) ≤ µ(d).

To conclude this section let us briefly consider the fibration of the (by itself elliptically

fibered) F-dual K3 over a compact base, concretely over a P1. In the case of the Spin(32)/Z2

heterotic string, cf. (2.7), imposing that the total space is a Calabi-Yau threefold implies

that the latter can be understood as an elliptic fibration over the Hirzebruch surface F4.
3

Moreover, a, b, c, and d must be polynomials of degree 8, 12, 20 and 24, respectively, in the

homogeneous coordinates of the base. Now, it is known that this F-theory compactification

is precisely dual to the Spin(32)/Z2 heterotic string compactified on K3 with group broken

to Spin(28)× SU(2)/Z2 and 20 half-hypermultiplets in the (28,2) representation [13, 14].

2See appendix C of [5] for the explicit form of the Igusa-Clebsch invariants in terms of the coefficients

of the sextic.
3Starting with (2.4) in the E8 × E8 heterotic string leads to an elliptic fibration over F12 [3].
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3 Resolution of singularities: formalism and examples

After establishing the duality map between heterotic and F-theory vacua the next task is

to tackle the resolution of singularities. To this end we first review a general formalism

based on toric techniques [5] in this section. Afterwards we apply the method to a class

of NU models whose degenerations correspond to small instantons on ADE singularities.

Comparing with the known resolutions in these cases [21, 23] allows to verify the validity

of our approach. We then consider examples in which there is no initial interpretation of

the singularities.

3.1 Formalism

We work systematically with a Weierstraß model all along. This means that an elliptic

fibration is always represented by a hypersurface equation of the form

y2 = x3 + f(ξi)x z
4 + g(ξi) z

6 (3.1)

where x, y, z are again the homogeneous coordinates of P2,3,1 and f and g are sections of

some line bundles over the base B 3 ξi, i = 1, 2. The crucial requirement in F-theory is

that the elliptic fibration has to be Calabi-Yau. This condition constrains the line bundles

of f and g to be K−4B and K−6B , respectively, with KB the canonical bundle of the base.

The elliptic fiber becomes singular when the discriminant ∆ = 4f3+27g2 vanishes. We will

refer to a model as resolved if the elliptic curve has only minimal singularities (or Kodaira

type singularities) [40–42] along the base, i.e. there are no non-minimal points along the

discriminant locus where f vanishes to order four or higher and simultaneously g to order

six or higher.

In the F-theory framework the six-dimensional vacua of interest are obtained by taking

a K3 fibration over a base parametrized by t ∈ C. Thus, at the start we have a hypersurface

equation such as (2.4) or (2.7), with f and g depending on (u, v, t). Recall that the

dependence on t is dictated by the particular NU model under study.

To sketch the resolution procedure let us first examine the F-theory dual of the E8×E8

heterotic string, which is simpler yet captures the essentials. Since the coefficient in front

of the u7 v5 term in g in (2.4) is constant, there is no non-minimal singularity along v = 0.

Therefore, we only have to look in the (u, t) patch for such points and in the beginning it

turns out that there is just one non-minimal singularity at u = t = 0. To get rid of this non-

minimal point we follow [21] and blow-up the base at this point. However, as we will explain

momentarily, we proceed in a rather toric manner by introducing the maximal amount of 4

blow-ups at the non-minimal point at once, and not blow-up after blow-up. Subsequently,

we search for non-minimal points along the newly introduced exceptional curves and, if

necessary, apply the toric blow-up method also to these points. The procedure stops when

we do not find any new non-minimal points anymore.

4Crepant in the sense that the proper transform of the hypersurface equation (2.4), or (2.7), after the

base blow-up is still Calabi-Yau. We do not claim that the canonical class of the base does not change

which is obviously wrong.
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We next turn to the dual F-theory K3 of the Spin(32)/Z2 heterotic string. In the

defining equation (2.7) the coefficients of u9v3 in g and u6v2 in f are both constant so that

non-minimal points along v = 0 are absent. Thus, again it suffices to work in the (u, t)

patch. A hallmark of this string is that in all NU models there is a singularity along t = 0.

Moreover, the vanishing degrees of (f, g,∆) and the monodromy cover along this curve

indicate a singular fiber of type I2k supporting an algebra sp(k), where k is identical to the

vanishing order of c at t = 0. Additionally, in most models there is an enhancement to a

non-minimal singularity at the point u = t = 0 which in some exceptional cases is shifted

to u = u0, t = 0. To resolve these non-minimal points we proceed as above, i.e. in cycles

of introducing base blow-ups and checking for additional non-minimal points.

To be more concrete, let us now briefly review the torically inspired blow-up procedure

of [5]. In the first step, we choose local affine coordinates ξi on B such that the non-minimal

singularity lies at ξ1 = ξ2 = 0. Then, we expand the sections f and g in these coordinates,

f =
∑
i

fi ξ
m1

i
1 ξ

m2
i

2 , g =
∑
i

gi ξ
l1i
1 ξ

l2i
2 , (3.2)

and collect the minimal exponents mi and li, i.e. the vertices of the Newton polytopes

of f and g which can be connected to the origin without passing through the respective

polytopes. Next we search for all toric blow-up [43] directions nj which are crepant. For the

elliptic fibration to remain Calabi-Yau, the blow-up n must involve the fiber coordinates x

and y too, i.e.

ξ1, ξ2, x, y 7→ en1 ξ′1, e
n2 ξ′2, e

2(n1+n2−1) x′, e3(n1+n2−1) y′ . (3.3)

Hence, the canonical class of the ambient variety after the blow-up is given by E times the

last column in the weight table

ξ1 ξ2 x y e
∑

E n1 n2 2(n1 + n2 − 1) 3(n1 + n2 − 1) −1 6(n1 + n2 − 1)
, (3.4)

where −E is the divisor class of the exceptional divisor e = 0 and we have dropped primes

to simplify notation. Imposing that the resolution of the Weierstraß equation has to be

crepant implies that e6(n1+n2−1) must factor off the hypersurface equation (3.1) when its

proper transform is taken after applying (3.3). This amounts then to the constraints(
m1
i − 4

)
n1 +

(
m2
i − 4

)
n2 =: m̃i · n ≥ −4 and

(
l1i − 6

)
n1 +

(
l2i − 6

)
n2 =: l̃i · n ≥ −6

(3.5)

which must be fulfilled for all m̃i and l̃i. If the constraints (3.5) are fulfilled for the minimal

exponents then all the remaining mi’s and li’s fulfill them trivially.

The set {nj} of toric blow-ups that need to be introduced consists of the solutions

to the inequalities (3.5) which have coprime entries. Knowing the {nj} it is straightfor-

ward to compute the vanishing orders of (f, g,∆), denoted µ(f), µ(g) and µ(∆), along

the corresponding exceptional divisors. This data determines the fiber type at the degen-

eration [40–42]. For the reader’s convenience, we reproduced the Kodaira classification
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µ(f) µ(g) µ(∆) type singularity gauge algebra monodromy

≥ 0 ≥ 0 0 I0 — —

(
1 0

0 1

)

0 0 1 I1 — —

(
1 1

0 1

)

0 0 n In An−1 su(n) or sp([n/2])

(
1 n

0 1

)

≥ 1 1 2 II cusp —

(
1 1

−1 0

)

1 ≥ 2 3 III A1 su(2)

(
0 1

−1 0

)

≥ 2 2 4 IV A2 su(3) or sp(1)

(
0 1

−1 −1

)

≥ 2 ≥ 3 6 I∗0 D4 so(8) or so(7) or g2

(
−1 0

0 −1

)

2 3 n+ 6 I∗n D4+n so(2n+8) or so(2n+7)

(
−1 −n
0 −1

)

≥ 3 4 8 IV∗ E6 e6 or f4

(
−1 −1

1 0

)

3 ≥ 5 9 III∗ E7 e7

(
0 −1

1 0

)

≥ 4 5 10 II∗ E8 e8

(
0 −1

1 1

)

Table 1. Kodaira classification of degenerate elliptic fibers.

in table 1. The gauge algebra supported on each divisor is uniquely identified analyzing

the monodromy covers [44].

After this toric resolution step we still have to check whether there are no non-minimal

points along the exceptional curves just introduced. If there are any of them, we must

repeat the resolution procedure, which we just described, at these points. The process of

resolving and checking stops when all non-Kodaira type singularities have been removed.

As realized in [5], there might be cases when the resolution cannot be accomplished.

This occurs when there is an infinite number of solutions to (3.5). Moreover, it can be

shown that the set of blow-ups is finite if and only if µ(a) < 4 or µ(b) < 6 or µ(c) < 10 or

µ(d) < 12.
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t

u

v

e1

e1

u′ e2

e1

u′′ e3e4

e4

u′′′ e5e6

e7

e8

e8

u′′′′ e9

e8

u′′′′′ e10

Figure 2. Schematic drawing of the toric resolutions of the II9−6 singularity, cf. section 4.4. The

resolution starts on the left hand side with the base blow-up of u = t = 0. After this blow-up

there are two non-minimal points in the u-e1-patch which are indicated by the two crosses. Both

singularities lie along e1 = 0 but u non-vanishing. Therefore, we have to do a coordinate redefinition

such that the singularities lie at e1 = u′ = 0 and e1 = u′′ = 0, respectively, to apply again our toric

machinery. These cycles of toric resolution and searching for non-minimal points continue in the

obvious way until all non-minimal singularities are removed.

To obtain the self-intersection numbers ai of the (blow-up) divisors in the base, it is

too näıve to take the respective toric resolution and calculate ai from

ni+1 + ni−1 = ai n
i (3.6)

where the ni’s are the lattice vectors corresponding to blow-up divisors. The reason for

this is that when we do the cycles of toric resolutions and checking for non-minimal points

we change the self-intersection number of the (toric) divisors on which we still find non-

minimal points after the toric resolution, because we have to blow-up these points in the

next cycle. The self-intersection of the divisor changes by −1 for each non-minimal point

which lies on that divisor and we have to blow-up. Note that this is not only true for the

blow-up divisors but also for the rational curve at t = 0. Although it has self-intersection

number 0 in the beginning, its self-intersection number becomes −1 after resolving the

non-minimal point at t = u = 0,5 cf. figure 2.

3.2 Geometric models: small instantons on ADE singularities

In this section we discuss resolutions of Spin(32)/Z2 models which on the genus-two side

have a NU degeneration [In−p−0], [In − I∗p] and [K − In], with K = II∗, III∗, IV∗ [11]. Here

we use the notation [K1 −K2 − 0] ≡ [K1 −K2]. These models are expected to correspond

5Since the divisor u = 0 is non-compact, we cannot define a self-intersection number and, therefore, no

change in it.
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sing. NU type local model µ(a) µ(b) µ(c) µ(d)

Ap−1 [In−p−0] y2=
(
tn + x2

) (
tp + (x− α)2

)
(x− 1) 0 0 n+ p n+ p

Dp+4 [In − I∗p] y2=
(
tn + (x− 1)2

) (
tp+2 + x2

)
(x+ t) 2 3 6 + n+ p 6 + n+ p

E6 [IV∗ − In] y2=
(
t4 + x3

) (
tn + (x− 1)2

)
4 + n 4 8 + n 8 + n

E7 [III∗ − In] y2=x
(
t3 + x2

) (
tn + (x− 1)2

)
3 6 + n 9 + n 9 + n

E8 [II∗ − In] y2=
(
t5 + x3

) (
tn + (x− 1)2

)
5 + n 5 10 + n 10 + n

Table 2. Genus-two models for ADE singularities.

to heterotic compactifications with small instantons sitting at ADE singularities based on

the monodromy action on the moduli and the Bianchi identity dH ∼ (TrF 2 −TrR2). For

example, in the [II∗ − In] model the monodromy is

τ → − 1

1 + τ
, ρ→ ρ+ n− β2

1 + τ
, β → β

1 + τ
. (3.7)

When the Wilson line value β is turned off, ρ → ρ + n, whereas the monodromy in τ is

precisely that of a Kodaira type II∗ fiber of the τ fibration. Indeed, shortly we will see that

the model describes k = 10 + n instantons on an E8 singularity.

As explained in section 2.2, the starting point is the genus-two model given in the NU

classification. The next step is to compute the Igusa-Clebsch invariants that determine

the a, b, c and d coefficients entering in the dual K3 on the F-theory side. In table 2 we

collect the defining equations of the ADE NU models together with the vanishing degrees

at t = 0 of the coefficients a, b, c and d. From the latter we can infer the behavior of the

functions Q and ε, cf. (2.6), which control the loci of singularities and small instantons on

the heterotic side [19–21]. In particular, it follows that there are k small instantons on top

of the K-type singularity, where

k = µ(c) (3.8)

is precisely the vanishing degree of ε at t = 0.

On the F-theory side there are non-minimal points which we seek to resolve following

the procedure described in section 3.1. In general the resolution consists of a series of

base blow-ups. Each divisor can be characterized by an integer equal to minus its self-

intersection number, and by the gauge algebra factor it supports. This algebra is derived

from the vanishing orders of (f, g,∆) along the blow-up divisors, cf. table 1, and the study

of the monodromy covers following the formalism of [44]. In order to determine the matter

content it is also important to give the intersection pattern of the blow-ups. All this

information can be efficiently found using the toric geometry techniques reviewed in the

preceding section.

In the end, to each model admitting a resolution we can associate a full local gauge

algebra, denoted G, and a number of blow-ups, denoted nT . In turn nT counts the massless

tensor multiplets [21]. In all models the full algebra and the total number of blow-ups

agree with the results obtained originally in [21]. We complete these results by providing
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the complete pattern of the curves supporting the algebras. In fact, each pattern fits

the predictions based on the analysis of the theory of small SO(32) instantons on C2/ΓG
singularities, where ΓG is the discrete subgroup of SU(2) associated to the ADE group

G [23]. More precisely, for a singularity of type G the structure of the resolution is dictated

by the extended Dynkin diagram of G. At the nodes of the diagram, labelled by ν =

0, 1, · · · , rankG, there are algebras of type sp(vν), so(vν), or su(vν), according to whether

the representation of ΓG associated to the respective node is real, pseudoreal, or complex.

A node with the conjugate of a complex representation does not give a new algebra factor.

For example, for an Ap−1 singularity with p odd, the resolution has one sp and (p − 1)/2

su factors because there is only one real, together with (p− 1)/2 complex nodes plus their

conjugates. The values of the vν depend on data of the extended diagram. We refer to [23]

for details. In particular, it follows that the extended node of the diagram, which is always

real, gives an algebra sp(k), where k is the number of instantons on the singularity. This

is just the factor due to the singularity at t = 0 in the ADE NU degenerations.

The matter content can also be determined from the resolution output and it agrees

with the predictions in [23] as well. Concretely, each sp(vν), so(vν), su(vν), sitting at a

curve of self-intersection −1, −4, −2, respectively, has altogether 2vν+8, vν−8, 2vν funda-

mentals. A su(vν) at a curve of self-intersection −1 has vν + 8 fundamentals plus an extra

hypermultiplet in the antisymmetric representation. Also in other cases, it can be shown

that the matter necessary for anomaly cancellation is present. For instance, if we take the

so(7) at a curve of self-intersection −2, the analysis of the monodromy cover indicates that

there is one hypermultiplet in the fundamental and four in the spinor representation.

There is also matter due to intersections of the global Spin(28)×SU(2)/Z2 with the lo-

cal base blow-ups and the rational curve at t = 0 as we now explain. The discriminant (2.8)

shows that the fiber I∗10 (so(28)) is at v = 0 whereas the I2 (su(2)) occurs at the vanishing

of (cu+ dv). Recall further that from the term (cu+ dv)2 there factors off the I2k (sp(k))

at t = 0, with k = µ(c). At lowest order in t we can write c = tµ(c)c̃ and d = tµ(d)d̃, where

c̃ and d̃ are some non-zero constants. In the case that µ(d) = µ(c), as in the examples in

table 2, the locus of the I2 fiber intersects the I2k singularity at t = 0, v = −c̃/d̃, in the

patch u = 1. This is in contrast to the case µ(d) > µ(c), then the intersection locus will

be at u = t = 0 where we have to introduce the base blow-ups. As it turns out, the inter-

section pattern of the I2-locus with the blow-up divisor is model-dependent. The upshot

is that in either case the so(28) only intersects the sp(k) and there is matter 1
2(28,2k2k2k) at

this point. Concerning the su(2) locus, for µ(d) = µ(c) it intersects sp(k) and there is an

additional (2,2k2k2k), whereas for µ(d) > µ(c) it will intersect one of the divisors introduced

by the resolution of the non-minimal singularity at u = t = 0. The two situations are

depicted in figure 3. In all examples, including matter from all intersections, the sp(k) has

altogether 2k + 8 hypermultiplets in the fundamental representation.

We will display the results using a notation such that each blow-up divisor introduced

in the resolution is identified by the algebra it supports written above an integer which

is equal to minus its self-intersection number. In the Spin(32)/Z2 heterotic, below the

universal sp(k), supported along the curve t = 0 with self-intersection −1, we will write

1∗, adding the asterisk to indicate that t = 0 is not a blow-up divisor. Besides, adjacent
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a) µ(d) = µ(c)

t = 0

I2k

v = 0
I∗10

v = − c̃
d̃

I2 . . .

b) µ(d) > µ(c)

t = 0

I2k

v = 0
I∗10

I2

. . .

Figure 3. Schematic representation of blow-ups and intersections of characteristic divisors.

divisors intersect and when necessary this is made clear by drawing an explicit link. Thus, a

generic point on the tensor branch of the 6d N = (1, 0) theory corresponding to a resolvable

degeneration will be captured by a tree-like diagram with nT + 1 nodes.

Anomaly cancellation gives significant information about the resulting 6d N = (1, 0)

theories. In all models it happens that the matter content is such that the irreducible

gauge quartic anomaly cancels for each gauge factor. Moreover, the remaining pure gauge

contribution to the anomaly polynomial takes the form6

Igauge = −1

8
ηαβ trF 2

α trF 2
β . (3.9)

Here Fα is the field strength of the gauge factor at the αth node, with α = 0, 1, . . . , nT ,

where α = 0 refers to sp(k), and the so-called adjacency matrix ηαβ is equal to minus the

self-intersection matrix. If there is no algebra at the node we set Fα = 0. The adjacency

matrix can be read off from the diagrams representing the theories, for an example see

e.g. (3.15). Concretely, the diagonal elements of ηαβ are the integers under the nodes in

the diagram while the off-diagonal elements are −1 or 0 depending on whether the nodes

are linked or not. In all models one can check that ηαβ is positive semi-definite, with only

one zero eigenvalue. In consequence, Igauge can be cancelled by the Green-Schwarz-Sagnotti

mechanism [46, 47] involving just nT tensor multiplets [23]. The null eigenvalue further

implies that a linear combination of gauge couplings is independent of the scalars in the

tensor multiplets and therefore it defines a mass parameter.

The existence of a mass scale suggests that the UV completion of the theories arising

from the resolutions are little string theories (LSTs) [34]. In fact, the theories that we

obtain have appeared in the recent classifications of LSTs [32, 33]. Moreover, dropping the

node corresponding to t = 0 in the diagrams, i.e. deleting the corresponding column and

row in ηαβ , gives the tensor branch of 6d SCFTs embedded in the LSTs [32]. In this case

the sp(k) remains as a flavor symmetry of the 6d SCFTs as observed originally in [23]. In

all cases we find that the residual nT ×nT adjacency matrix, denoted ηij , i, j = 1, . . . , nT ,

is positive definite, has determinant one, and further satisfies
nT∑
i=1

nT∑
j=1

(
η−1
)
ij

(
2− ηii

) (
2− ηjj

)
= nT . (3.10)

6We use the conventions of [45] for the anomaly polynomial and those of [44] for the traces involved.
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This property enters in the computation of the anomaly polynomial of the SCFTs applying

the methods developed in [45, 48].

An interesting feature of the theories emerging from the resolution of NU degenerations

is that they can be characterized by some quantities that match in the Spin(32)/Z2 and

the E8 ×E8 heterotic strings. For instance, for a concrete degeneration with resolution R,

the quantity

hR = rankG + nT , (3.11)

can be shown to be the same for both heterotic strings by virtue of duality upon further

compactification on a circle [21]. We have found that this indeed occurs, which actually

provides an useful check of the results. Moreover, for the particular case of the models in

table 2, corresponding to k = µ(c) small instantons on ADE singularities, it turns out that

for k above a minimum value the resolution satisfies

hR = gGk − dimG, (3.12)

where gG is the Coxeter number of the ADE group G, given by gG = p, 2p+ 6, 12, 18, 30,

for G = SU(p), SO(2p+ 8), E6, E7, E8, respectively. This fact was observed in [49].

To each resolution we can assign a second intrinsic quantity that takes the same value

for both heterotic strings. Knowing the local algebra G and the matter content it is easy

to compute the number of vector multiplets given by nV = dimG and the total number

of hypermultiplets nH . The number of tensor multiplets nT and the instanton number

k = µ(c) are also inherent properties of the theory derived from the concrete resolution.

With this data we define

rR = nH − nV + 29nT − 30k . (3.13)

An indication that rR depends only on the underlying NU degeneration, so it matches in

both heterotic strings, is the fact that in all models corresponding to small instantons on

ADE singularities rR = rankG, as pointed out in [50]. One way to derive the relation (3.13)

is to consider a global heterotic model constructed as a compactification on K3 with (24−k)

large SU(2) instantons breaking the gauge group to Spin(28)×SU(2)/Z2 or E7×E8 [51], plus

k small instantons on the ADE singularity giving the local G theory. Imposing cancellation

of the pure gravitational anomaly leads to (3.13).

It is worthwhile to compare the resolutions of the same NU model in both heterotic

strings, for instance to check the matching of the quantities hR and rR defined above. To

this end, we will give in the current section the resolutions in the E8 × E8 string too.

In the diagrams representing the resulting theories we will also include the t = 0 divisor

with label 1∗, but in the E8 × E8 string it does not support any gauge algebra. The

pure gauge anomaly in the resulting theories again takes the form (3.9). In all cases the

self-intersection matrix ηαβ is positive semi-definite with a single null eigenvalue. Hence,

also these theories potentially complete to LSTs in the UV. Similar claims have been

made in [32] for the theories associated to small instantons on ADE singularities that we

consider in this section. Notice that T-duality upon circle compactification, reflected in

the double fibration structure of the F-theory duals, requires that the resulting theories

in both heterotic strings be LSTs [32]. Again, dropping the t = 0 node gives the tensor
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branch description of 6d SCFTs embedded in the LSTs. This is the situation which was

implicitly assumed in [5].

Below we will present the resolutions of three examples of table 2 which are relevant

for the ensuing discussion. The remaining models can be found in appendix A.

3.2.1 [II∗ − In] model and E8 singularity

The number of small instantons on the E8 singularity is k = 10 + n. For n ≥ 1 the

resolution in the E8 × E8 heterotic string gives

sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2

1

|
e8 sp(1) g2 f4 g2 sp(1)

1 12 1 2 2 3 1 5 1 3 2 2

× e8 sp(1) g2 f4 g2 sp(1)

1 12 1 2 2 3 1 5 1 3 2 2

⊕(n−1)
(3.14)

×
e8 sp(1) g2 f4 g2 sp(1)

1 12 1 2 2 3 1 5 1 3 2 2 1∗

|
1

.

A systematic analysis reveals that at both the leftmost and rightmost divisors with singular

type II∗ fiber, supporting algebra e8, there is one additional non-minimal point which

requires an extra blow-up with I0 fiber and hence no algebra. In [5] these e8 divisors were

reported with self-intersection −11. However, it is understood that a single curve with

e8 algebra and self-intersection −11 comes with one small instanton [31]. The resolution

shown in (3.14) makes this explicit. Similarly, one can readily verify that rR = 8, since

the only matter are hypermultiplets transforming as 1
2(2,1) ⊕ 1

2(2,7) in each sp(1) ⊕ g2
cluster.

In the Spin(32)/Z2 heterotic string, for n ≥ 1, k ≥ 11, we obtain the resolutions

sp(3k-32)

1

|
sp(k) so(4k-16) sp(3k-24) so(8k-64) sp(5k-48) so(12k-112) sp(4k-40) so(4k-32)

1* 4 1 4 1 4 1 4

. (3.15)

Notice that the structure of the intersections mimics the extended Dynkin diagram of E8,

in agreement with the analysis of [23]. The algebra factor sp(k) arises from the singularity

at t = 0. The total number of base blow-ups is nT = 8 and the rank of the full algebra is

such that hR = 30k − 248, which is also the value obtained for the resolution in (3.14). It

is also straightforward to check that rR = 8 because the matter hypermultiplets comprise
1
2(fund, fund) for each pair of adjacent sp-so algebras. Besides, there are 16 additional

fundamentals of sp(k) arising from the intersection with the global Spin(28) × SU(2)/Z2,

as explained above.
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Let us now consider the case n = 0, k = 10, which will be important for latter purposes.

In the E8 × E8 string the resolution yields

1

|
sp(1) g2 f4 g2 sp(1) e8 sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2 1 12 1 2 2 3 1 5 1 3 2 2 1∗

|
1

.

(3.16)

Upon close inspection we find that there are two instantons on the e8 divisor which yield the

two-extra blow-ups with I0 fiber and no algebra indicated in (3.16). In the result presented

in [5] the two instantons are not shown explicitly but implicitly understood from the fact

that the self-intersection of the e8-curve is given by −10 [31]. Again, (3.16) should remind

us not to forget about the two instantons at e8 and, hence, we find 52 and 8 for hR and

rR, respectively. The same values of hR and rR are also obtained for the resolution in the

Spin(32)/Z2 heterotic string which reads

sp(10) so(24) sp(6) so(16) sp(2) so(7) so(8)

1* 4 1 4 1 3 1 4
. (3.17)

For the sp(2)⊕ so(7) piece the matter hypermultiplets belong to 1
2(fund, spinor).

3.2.2 [IV∗ − In] model and E6 singularity

Computing the moduli monodromy from the NU data for this model we obtain

τ → −1 + τ

τ
, ρ→ ρ+ n− β2

τ
, β → β

τ
. (3.18)

Clearly ρ→ ρ+ n when β = 0 and the monodromy in τ is that of a IV∗ type fiber. Thus,

the model is conjectured to describe k = 8 +n instantons on an E6 singularity. Indeed, the

resolutions in both heterotic strings produce the expected theories originally found in [21].

In the E8 × E8 string the resolution for n ≥ 1 gives

sp(1) g2 f4 su(3)

1 2 2 3 1 5 1 3 1

e6 su(3)

6 1 3 1

⊗(n−1)
f4 g2 sp(1)

5 1 3 2 2 1∗
.

(3.19)

It is easy to verify that hR = 12k − 78. Also rR = 6 because matter just consists of
1
2(2,1)⊕ 1

2(2,7) for each sp(1)⊕ g2. For n = 0 we instead find

sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 4 1 3 2 2 1∗
. (3.20)

The f4 with self-intersection −4 comes with a hypermultiplet in the fundamental so again

rR = 6.
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In the Spin(32)/Z2 we obtain the resolution

sp(k) so(4k-16) sp(3k-24) su(4k-32) su(2k-16)

1* 4 1 2 2
, (3.21)

which is valid for n ≥ 1, k ≥ 9. The pattern conforms to the extended Dynkin diagram of

E6 but dropping the two outer nodes with complex conjugate representations of the discrete

subgroup ΓG. Matter includes 1
2(fund, fund) for adjacent sp-so factors, but (fund, fund)

for neighboring sp-su and su-su. For sp(k) there are 16 extra fundamentals. It can be

checked that the values of hR and rR agree for both heterotic strings. For n = 0 the

resolution gives

sp(8) so(16)

1* 4 1 2 2
. (3.22)

There are four blow-ups but only one divisor supports a non-trivial algebra. In this case rR
is apparently 4 but the expected value 6 results from two extra neutral hypermultiplets, one

from each curve with self-intersection −2 and not attached to a non-Higgsable cluster [28].

3.2.3 [In − I∗0] model and D4 singularity

In the NU model [In − I∗p] the moduli monodromy is

τ → τ + p , ρ→ ρ+ n , β → −β . (3.23)

The monodromy in τ is that of a I∗p type fiber. Given the monodromy in ρ this model

is then expected to describe k = n + p + 6 small instantons on a Dp+4 singularity. The

resolutions for generic p are discussed in appendix A. Below we consider p = 0.

For n ≥ 1, resolving the NU model in the E8 × E8 string leads to

sp(1) g2
1 2 2 3 1

so(8)

4 1

⊕(n−1)
g2 sp(1)

3 2 2 1∗
. (3.24)

For the quantity hR we find 6k − 28, in agreement with (3.12), and rR = 4. When we set

n = 0, the resolution turns out to be

sp(1) g2 sp(1)

1 2 2 2 2 2 1∗
. (3.25)

Thus hR = 10. The matter content is 1
2(2,1,1) ⊕ 1

2(2,7,1) ⊕ 2(1,7,1) ⊕ 1
2(1,7,2) ⊕

1
2(1,1,2), so rR = 4 as it should.

Resolving the singularities coming from the Spin(32)/Z2 heterotic setting, we derive

n = 0

sp(6) so(7)

1* 1

,

n = 1

sp(7) so(12)

1* 1

,

n ≥ 2

sp(k-8)

1

|
sp(k) so(4k-16) sp(k-8)

1* 4 1

|
1

sp(k-8)

. (3.26)
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The number of blow-ups is one for n = 0, 1, and four for n ≥ 2. Thus, the values of hR
match for all n in both heterotic strings. One can also check that rR = 4 for all n.

3.3 Non-geometric models and dualities

In the previous section we have seen that the explicit formulation of heterotic/F-theory

duality in terms of the map between genus-two and K3 fibrations confirms the results

expected from the moduli monodromies in models corresponding to small instantons on

ADE singularities. We now turn to heterotic models with monodromies which are non-

geometric in all T-duality frames. This is the most interesting situation, since there is no

intuition about the nature of such degenerations and it is not even obvious whether they

are allowed.

A simple example of a non-geometric degeneration is the Namikawa-Ueno [III − III]

singularity which has monodromy

τ → ρ

β2 − ρτ
, ρ→ τ

β2 − ρτ
, β → − β

β2 − ρτ
. (3.27)

When β = 0 we obtain a “double elliptic” fibration with monodromy τ → −1/τ , ρ→ −1/ρ

when encircling the heterotic degeneration. To study the model, we start with the equation

of its defining hyperelliptic curve which is given by

y2 = x(x− 1)(x2 + t)
[
(x− 1)2 + t

]
. (3.28)

Applying the resolution procedure we obtain the same six-dimensional theory derived in

the [I0 − I∗0] model, cf. (3.26), which is the theory of six small instantons on a D4 singularity.

In the E8×E8 string the same phenomenon occurs, namely the resulting theory is identical

to (3.25) [5].

In the context of the E8×E8 heterotic string it was actually discovered that in several

non-geometric models of type 2 in the NU list the dual CY admits a smooth resolution and,

moreover, the emerging low-energy physics is described by the theory of small instantons

on ADE singularities [5]. As an explanation it was argued that two NU models with the

same resolution, such as [III− III] and [I0 − I∗0], can be related by certain duality moves.

Thus, the resolution of such dual models in the Spin(32)/Z2 string is also expected to give

theories equal to each other. One motivation behind this paper was precisely to address

this issue.

In the Spin(32)/Z2 heterotic string we find that dual models indeed appear as an-

ticipated in [5]. A necessary condition is that the sum of the vanishing orders of the

discriminant for their two Kodaira components, or equivalently the vanishing order µ(c), is

the same. In table 3 we display all the models satisfying this condition and admitting dual

smooth Calabi-Yau resolutions. For all the models in table 3 we explicitly performed the

F-theory resolution. The results for models with small instantons on ADE singularities,

cf. table 2, are presented in section 3.2 and in appendix A. The [I0 − IV] and [IV−I1] models

correspond to k = 4 and k = 5 instantons on an A2 singularity, cf. (A.2). We have verified

that for all the degenerations in a row the same theory arises in both heterotic strings.
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µ(c) dual models

4 [I0 − IV] , [II− II]

5 [IV − I1] , [II− III]

6 [I0 − I∗0] , [III− III] , [IV − II]

7 [I∗0 − I1] , [IV − III]

8 [I0 − IV∗] , [I∗0 − II]

9 [I0 − III∗] , [I∗0 − III]

10 [I0 − II∗] , [I∗0 − IV]

11 [II− III∗] , [IV∗ − III]

Table 3. Dual models: the NU degenerations in the same row give rise to the same LSTs after

resolution of the dual F-theory model.

In the E8 × E8 setup the [II− IV∗] model was included among the dual models at

µ(c) = 10 [5]. However, we now find that the resolution of this model in the E8×E8 string

is actually given by

2

|
1

|
sp(1) g2 f4 g2 sp(1) e8 sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2 1 12 1 2 2 3 1 5 1 3 2 2 1∗

. (3.29)

In comparison with the resolution of [I0 − II∗] in (3.16) there is a difference in the e8 divisor.

This time the two instantons lie on top of each other and, therefore, the required two-extra

blow-ups, with I0 fiber and no algebra, have a different intersection structure. Besides,

there is an extra neutral hypermultiplet from the −2 curve without a gauge algebra and

not attached to a non-Higgsable cluster [28]. The two theories could be connected by RG

flow as it occurs in analogous configurations [29, 52].

In the Spin(32)/Z2 string the resolutions of [II − IV∗] and [I0 − II∗] do not coincide

either. The former reads

sp(10) so(24) sp(6) so(16) sp(2) so(7) so(9)

1* 4 1 4 1 3 1 4
. (3.30)

We observe that it differs from the resolution of [I0 − II∗] in (3.17) in the last algebra factor.

Now, the so(9) has a hypermultiplet in the fundamental which can break the symmetry to

so(8) so that the resolutions could match. To test whether the theories are really connected

on a Higgs branch is an open question left for future investigations. It is interesting to note

that the [II− IV∗] and [I0 − II∗] theories are distinguished by the values of the intrinsic

quantity rR, they are 9 and 8, respectively.

A second puzzling case is the [IV − IV] model which was listed among the duals at

µ(c) = 8 in [5]. Again we now find that the resolutions do not agree. In the Spin(32)/Z2
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the resolved theory is

sp(8) so(16) su(2)

1* 4 1 2 2
, (3.31)

which could match the resolution of [I0 − IV∗] in (3.22) after the su(2) is higgsed away. In

the E8 × E8 heterotic string the resolution of [IV − IV] gives

1

|
sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2 1∗

, (3.32)

which differs from the resolution of [I0 − IV∗] in (3.20) by having an additional blow-up

attached to the f4 divisor which then has self-intersection −5 and no charged matter. The

nature of a possible connection between the two theories is less clear. It could be that

when the additional tensor multiplet disappears, its degrees of freedom go into a 26 of f4
plus three extra neutral hypermultiplets. Again we notice that the [IV − IV] and [I0 − IV∗]

theories have different values of rR, cf. (3.13), namely 9 and 6, respectively.

4 The Spin(32)/Z2 catalog of T-fects

In this section, we summarize our findings about the Namikawa-Ueno models for which we

could construct the dual CY resolution. In both heterotic strings the resolvable models

satisfy the criterion established in [5]. A dual F-theory model with the coefficients a, b, c,

d, as in equation (2.5), has a resolution if and only if µ(a) < 4 or µ(b) < 6 or µ(c) < 10

or µ(d) < 12 where µ is the vanishing order at t = 0. Altogether there are 49 resolvable

models out of the 120 entries in the NU classification.7 They are collected in the tables 4, 5

and 6, where NU models [K1 − K2 − 0] are denoted [K1 − K2]. The resulting theories in

the E8×E8 string were reported in [5]. Here we complete the study of T-fects by working

out the resolutions in the Spin(32)/Z2 heterotic string.

To present the results, we will consider separately the five different types in the NU

classification. Besides the local equation of the genus-two degeneration given by a sextic

over t ∈ C, NU also provide the Sp(4,Z) monodromy around the singularity at t = 0. A

model is called elliptic or parabolic if the monodromy is of finite or infinite order. Each

degeneration is further characterized by the type of singular fiber or equivalently by the

modulus point, which is a fixed point of the monodromy and belongs to the compactification

of H2/Sp(4,Z) [11]. For instance, in the elliptic type 2 models the modulus point has the

Wilson line β identically zero and the singular fiber consists of two elliptic curves meeting

at one point.

As in the examples discussed in the previous section, in each case the analysis begins

with the local equation from which we determine the dual F-theory background. We

then apply the resolution procedure described in section 3.1. For every model admitting

a resolution we compute the self-intersection numbers of the nT blow-up divisors and

7The complete list of NU degenerations is reproduced in appendix D of [5].
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class NU model µ(a) µ(b) µ(c) µ(d)

Elliptic

type 1

[I0−0−0] 0 0 0 0

[V] 2 3 5 6

[VII] 2 3 5 6

[VIII− 1] ∞ ∞ 4 ∞
[IX− 1] ∞ ∞ 8 ∞

Parabolic

type 4

[In−p−0] 0 0 n+ p n+ p

[In − I∗p] 2 3 6 + n+ p 6 + n+ p

[IIn−p] 2 3 5 + n+ p 6 + n+ p

Parabolic

type 5

[In−p−q] 0 0 n+ p+ q n+ p+ q

[IIn−p] p = 2k + l, l = 0, 1 2 3 5 + l + 2k + n 6 + l + 2k + n

Table 4. Elliptic type 1, parabolic type 4 and parabolic type 5 resolvable models.

derive the gauge algebra supported at each of them. Taking into account the sp(k) factor

supported at t = 0, the resulting theory is encoded in a tree-like diagram with nT + 1

nodes. The matter content can also be derived and shown to be compatible with anomaly

cancellation. The pure gauge anomaly takes the form (3.9). In all models ηαβ is positive

semi-definite with one null eigenvalue. We have also verified agreement in both heterotic

strings of the quantities hR and rR defined in (3.11) and (3.13).

In the models with µ(d) > µ(c) matter includes hypermultiplets arising from intersec-

tions with the global Spin(28)× SU(2)/Z2 as we explained before. In each case the precise

blow-up divisor that intersects the I2 curve can be determined from the toric data of the

resolution. The results can be confirmed by anomaly cancellation. Below we will give some

representative examples.

4.1 Elliptic type 1

The elliptic type 1 NU degenerations are distinguished by a monodromy action that mixes

the three moduli. Even though the corresponding heterotic models lack a geometric in-

terpretation, the dual F-theory resolutions are analogous to those discussed in section 3.2.

In table 4 we show the models whose F-theory duals admit a smooth CY resolution. The

non-trivial nonequivalent resolutions are displayed below. Models [V] and [VII] have the

same resolution.

[V] model

sp(5) so(7)

1* 1
. (4.1)

[VIII − 1] model

sp(4) su(2)

1* 1
. (4.2)
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NU model µ(a) µ(b) µ(c) µ(d) NU model µ(a) µ(b) µ(c) µ(d)

[I0 − I0] 0 0 0 0 [II− IV] 3 3 6 6

[I0 − II] 1 1 2 2 [I∗0 − II] 3 4 8 8

[I0 − III] 1 2 3 3 [II− IV∗] 5 5 10 10

[I0 − IV] 2 2 4 4 [II− III∗] 4 7 11 11

[I0 − I∗0] 2 3 6 6 [III− III] 2 4 6 6

[I0 − IV∗] 4 4 8 8 [IV − III] 3 4 7 7

[I0 − III∗] 3 6 9 9 [I∗0 − III] 3 5 9 9

[I0 − II∗] 5 5 10 10 [IV∗ − III] 5 6 11 11

[II− II] 2 2 4 4 [IV − IV] 4 4 8 8

[II− III] 2 3 5 5 [I∗0 − IV] 4 5 10 10

Table 5. Elliptic type 2 resolvable models.

[IX − 1] model

sp(8) so(20) sp(4) so(12) su(2) so(7)

1* 4 1 4 1 2 3
. (4.3)

4.2 Elliptic type 2

The 20 models that can be resolved are listed in table 5. The resolutions of models of

type [I0 −K2], corresponding to configurations of k = µ(c) pointlike instantons on the K2

singularity, are reviewed in section 3.2 and appendix A. Other models are non-geometric

because their monodromy involves a non-trivial action on the torus volume. However, as

discussed in section 3.3, many of these models have the same resolutions as the geometric

ones. An intriguing model in this class is [II − III∗], dual to [IV∗ − III], whose resolution

involves the exceptional algebra e7 as shown below.

[II − III∗] model

sp11 so28 sp9 so24 sp7 so20 sp5 so16 sp3 so12 sp1 so7 su2 e7
1* 4 1 4 1 4 1 4 1 4 1 3 2 1 8

. (4.4)

4.3 Parabolic type 3

Table 6 contains the 19 parabolic type 3 degenerations whose dual F-theory CY can be

resolved. They admit a resolution for all n. The models of type [In−K2] or [K1− In] again

describe k = µ(c) pointlike instantons on the Ki singularity and their resolution is shown

in section 3.2 or appendix A. The resolution for [IIn−0] and other non-trivial examples will

be given below. In this class we also discover dual models. Specifically, starting with the

fifth row in table 6, the models in the same row have the same resolution.
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NU model µ(a) µ(b) µ(c) µ(d) NU model µ(a) µ(b) µ(c) µ(d)

[In−0−0] 0 0 n n [II− In] 1 + n 1 2 + n 2 + n

[III− In] 1 2 + n 3 + n 3 + n [III− IIn] 1 2 + n 3 + n 4 + n

[IV − In] 2 + n 2 4 + n 4 + n [IV − IIn] 2 + n 2 4 + n 5 + n

[IIn−0] 2 3 5 + n 6 + n

[In − I∗0] 2 3 6 + n 6 + n [I0 − I∗n] 2 3 6 + n 6 + n

[IV∗ − In] 4 + n 4 8 + n 8 + n [II− I∗n] 3 4 8 + n 8 + n

[III∗ − In] 3 6 + n 9 + n 9 + n [III− I∗n] 3 5 9 + n 9 + n

[II∗ − In] 5 + n 5 10 + n 10 + n [IV − I∗n] 4 5 10 + n 10 + n

[IV∗ − IIn] 3 + n 4 7 + n 9 + n [II− II∗n] 3 + n 4 7 + n 9 + 3n

[III∗ − IIn] 3 5 + n 8 + n 11 + n [III− II∗n] 3 5 + n 8 + n 10 + 2n

Table 6. Parabolic type 3 resolvable models.

[IIn−0] model

n = 1

sp(6) so(12)

1* 2 1

,

n ≥ 2

sp(n-2)

1

|
sp(n+5) so(4n+8) sp(n-1)

1* 4 1

|
1

sp(n-2)

. (4.5)

[IV∗ − IIn] model, n ≥ 1

sp(n+7) so(4n+16) sp(3n+1) su(4n+2) su(2n+2)

1* 4 1 2 2
. (4.6)

[III − II∗n] model, n ≥ 1

sp(2n-1)

1

|
sp(n+8) so(4n+20) sp(3n+4) so(8n+12) sp(3n+1) so(4n+8) sp(n-1)

1* 4 1 4 1 4 1

. (4.7)

[III − IIn] model

sp(n+3) sp(n)

1* 1
. (4.8)

– 25 –



J
H
E
P
1
1
(
2
0
1
7
)
0
6
4

[IV − IIn] model

sp(n+4) su(2n+2)

1* 1
. (4.9)

4.4 Parabolic type 4

Only the three models shown in table 4 admit a dual smooth resolution. The explicit resolu-

tions of [In−p−0] and [In−I∗p] are given in appendix A. The [IIn−p] resolution is shown below.

In this case, it is instructive to look at the intersections with the global SU(2). The toric

analysis shows that the I2 curve intersects the divisor supporting sp(m-1). Thus, there are

two extra fundamentals of sp(m-1). Taking into account the matter from the intersection

with so(4m+8) gives the (2m+ 6) fundamentals needed for anomaly cancellation.

[IIn−p] model, m = n + p, ` = 6 + n − p

p even, n ≥ p+2, nT = p+ 4

sp(m-1) sp(`-8)

| |
1 1

sp(m+5) so(4m+8) sp(2m-4) so(4m-8) sp(2m-12) · · · so(4`) sp(2`-8) so(4`-16) sp(`-8)

1* 4 1 4 1 · · · 4 1 4 1

.

(4.10)

p odd, n ≥ p, nT = p+ 3

sp(m-1)

|
1

sp(m+5) so(4m+8) sp(2m-4) so(4m-8) sp(2m-12) · · · so(4`-8) sp(2`-12) su(2`-12)

1* 4 1 4 1 · · · 4 1 2

.

(4.11)

4.5 Parabolic type 5

From the 6 NU degenerations of type 5 only the two in table 4 have a dual F-theory CY that

can be resolved. We find that the configuration derived from [In−p−q] has some analogies

with the theory of small instantons on A-type singularities, described by the model [In−p−0]

considered in appendix A. Despite sharing the name the parabolic type 5 and type 4 [IIn−p]

models are not the same and their resolutions are different.

[In−p−q] model

We assume for simplicity that n > p > q. The result is actually completely symmetric under

permutations of (n, p, q). It is convenient to introduce the auxiliary quantities m = p+ q,

k = n+m, and ` = k−2m. The number of blow-ups is nT = [m/2]. Concerning the gauge

algebra, next to sp(k), starting with su(2k-6), there is a chain of q su factors, in which the

rank descends in units of six. When m is odd and p > q + 1 there follows a second chain

of su factors with rank descending by eight. When m is even and p > q + 2 there is also
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such a second su chain with rank jumping in units of eight, plus an sp(` + q) algebra at

the end. These patterns are represented below.

m even, nT = m/2

sp(k) su(2k-6) su(2k-12) · · · su(2k-6q) su(2k-6q-8) su(2k-6q-16) · · · su(2`+2q+8) sp(`+q)

1* 2 2 · · · 2 2 2 · · · 2 1

.

(4.12)

m odd, nT = (m− 1)/2

sp(k) su(2k-6) su(2k-12) · · · su(2k-6q) su(2k-6q-8) su(2k-6q-16) · · · su(2`+2q+4)

1* 2 2 · · · 2 2 2 · · · 1

.

(4.13)

[IIn−p] model, m = n + p, ` = n − [p/2]

Also for this model it is instructive to study the intersections with the global SU(2). We

find that the I2 curve intersects the divisor supporting sp(`-1) for p even, and su(2`) for p

odd. In both cases there are two additional fundamentals which are required to precisely

cancel the anomaly.

p even, n ≥ p+1, nT = p+ 4

sp(m-2) sp(`-2)

| |
1 1

sp(m+5) so(4m+8) sp(2m-3) so(4m-4) sp(2m-9) · · · so(4`+20) sp(2`+3) so(4`+8) sp(`-1)

1* 4 1 4 1 · · · 4 1 4 1

.

(4.14)

p odd, n ≥ p, nT = p+ 3

sp(m-2)

|
1

sp(m+5) so(4m+8) sp(2m-3) so(4m-4) sp(2m-9) · · · so(4`+12) sp(2`-1) su(2`)

1* 4 1 4 1 · · · 4 1 2

. (4.15)

5 Final comments

In this article we have further studied six-dimensional N = (1, 0) non-geometric heterotic

vacua described locally as T 2 fibrations over a complex one-dimensional base. More pre-

cisely, the moduli of the heterotic string compactified on T 2 are allowed to vary over the

base and to transform under monodromies in the duality group around points on the base.

We have considered configurations with the gauge group broken by a background with

SU(2) structure in which case the moduli are a single complex Wilson line modulus plus

the complex structure and the complexified Kähler modulus of T 2. The heterotic dual-

ity group is then O(2, 3,Z) and there is a map between the heterotic moduli space and

the moduli space of genus-two curves. Thus, the non-geometric heterotic vacua can be

defined equivalently as fibrations of a genus-two Riemann surface over the base. Even

though genus-two fibrations have monodromies only in Sp(4,Z) ⊂ O(2, 3,Z), they are
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specially tractable because their degenerations over a complex one-dimensional base have

been classified by Namikawa and Ueno (NU) who also provided the corresponding moduli

monodromies [11]. The Sp(4,Z) duality transformation around a degeneration signals the

presence of defects. In the case of the E8×E8 heterotic string, the six-dimensional theories

living on the defects associated to the degenerations in the NU list were examined in [5].

In this work we focused on the Spin(32)/Z2 heterotic string.

Our approach relies on the heterotic/F-theory duality which relates the heterotic string

compactified on T 2 and F-theory compactified on an elliptically fibered K3 surface. In our

setup, with one Wilson line breaking the gauge group to Spin(28)× SU(2)/Z2, the explicit

map from the heterotic to the dual K3 moduli can be written in terms of Siegel modular

forms of the genus-two curve encoding the heterotic moduli [3, 16, 17]. Therefore, in F-

theory, the non-geometric heterotic vacua described as genus-two fibrations over a base are

realized as specific K3 fibrations over the same base. We also know that when the base is

complex one-dimensional the total space of the F-theory fibration must be a Calabi-Yau

threefold to preserve supersymmetry. Therefore, the strategy is to use the well-defined

geometric formalism of F-theory to analyze the degenerations of the fiber along the base.

This way, we have been able to determine the six-dimensional N = (1, 0) theories living

on defects associated to genus-two degenerations in the NU classification.

The NU degenerations are given in terms of fibrations of hyperelliptic curves defined

by sextics with a singularity at a canonical point on the base. For every such sextic we

obtained the dual F-theory K3 which necessarily degenerates at the same point. We then

attempted to resolve the singularity in the F-theory picture by applying the toric inspired

procedure explained in section 3. From the 120 types in the NU classification we found that

only 49 lead to F-theory duals admitting a resolution by nT base blow-ups with nT finite.

Introducing base blow-ups amounts to moving onto the tensor branch of the 6d

N = (1, 0) theory living on the defect by turning on vevs of scalars in nT tensor mul-

tiplets. For the resolvable models, we obtained the theory emerging in the IR at a generic

point on the tensor branch. Besides the number of tensor multiplets, the theory is charac-

terized by matter hypermultiplets and vector multiplets of a gauge algebra composed by

factors supported at the blow-up divisors. In the Spin(32)/Z2 heterotic string there always

appears a gauge factor that is not supported at a blow-up divisor, namely an sp(k), where

k depends on the particular NU singularity. Moreover, we find that there is charged matter

due to intersections of divisors supporting gauge algebras with the locus of the unbroken

Spin(28)× SU(2)/Z2.

In the end, the theory resulting from a resolution is captured by a quiver diagram

with nT + 1 nodes which encodes the full gauge algebra and matter content. In particular,

the adjacency matrix that determines the pure gauge anomaly can be read off from the

diagram. In all resolvable models this matrix proves to be positive semi-definite with one

null eigenvalue. This implies in particular that the pure gauge anomaly can be cancelled

by the Green-Schwarz-Sagnotti mechanism involving precisely nT tensor multiplets. From

the existence of one null eigenvalue it also follows that a linear combination of gauge

couplings is independent of the scalars in the tensor multiplets and therefore it defines

a mass scale. In turn, the presence of such a scale indicates that the UV completion of
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the theories are little string theories (LSTs) [34]. The resulting theories actually fall into

recent classifications of LSTs [32, 33]. Furthermore, deleting the node corresponding to

sp(k), which becomes a flavor symmetry, gives the tensor branch realization of 6d SCFTs

embedded in the LSTs [32].

The resolvable NU degenerations are the same in the Spin(32)/Z2 and the E8 × E8

heterotic strings, as expected since the two are related by T-duality upon circle compacti-

fication. The T-duality manifests itself in a double fibration structure of the dual F-theory

K3, which has been claimed to be a necessary condition to realize LSTs in F-theory con-

structions [32]. To probe the T-duality we compared the LSTs emerging from the NU

resolvable degenerations in both heterotic strings. In all 49 cases we found that there are

two intrinsic quantities that match.

In the class of NU degenerations in which the moduli monodromies imply that the as-

sociated defects correspond to small instantons on ADE singularities, we obtained theories

that completely reproduce known results [21, 23]. In many other NU degenerations with

non-geometric monodromies, we deduced novel theories that provide concrete examples of

LSTs and embedded SCFTs. They can serve as testing grounds to study properties of

LSTs and SCFTs along the lines of recent investigations [52–60].

Also in the Spin(32)/Z2 heterotic string, we find that in several cases a resolvable

NU degeneration with non-geometric moduli monodromies gives rise to the same theory

obtained from another NU degeneration describing small instantons on a particular ADE

singularity. This occurs when the monodromies of the two NU models are related by a

chain of duality moves, as observed previously in the E8×E8 heterotic string [5]. However,

in both strings we have detected a couple of examples in which two resolvable degenerations

lead to different theories despite being related by duality moves. Nonetheless, it is plausible

that the two theories are connected by RG flow. It would be interesting to address this

problem in more detail in the future.
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A Other ADE singularities

In this appendix, we complete the discussion of the NU models describing small instantons

on ADE singularities, cf. table 2. We limit ourselves to the Spin(32)/Z2 heterotic string

and mostly provide the resolutions when the number k of small instantons is large enough

for the given patterns to be valid. In all models the full algebra and the total number of
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blow-ups coincide with the results in table 4 of [21]. Moreover, as already explained, for

a singularity of type G the structure of the resolution basically follows from the extended

Dynkin diagram of G [23].

The results in the E8 × E8 case can be consulted in [5]. It can be verified that the

quantities hR and rR, cf. (3.11) and (3.13), do match in both heterotic strings.

A.1 [In−p−0] model and Ap−1 singularities

The number of instantons sitting on the singularity is k = n+p. We present the resolutions

when n ≥ nmin so that k is above the minimum number needed for the given result to be

valid. For p even, nmin = p, whereas for p odd, nmin = p − 2. The number of blow-ups is

nT = [p/2]. The auxiliary quantity ` = k − 2p is used to simplify the displays. As shown

below, for p ≥ 3, starting with su(2k-8) the resolution includes a chain of su algebras

supported at curves of self-intersection −2, with rank decreasing in units of eight until a

final value. For the last blow-up the self-intersection number is −1 and the curve supports

a sp(2`) or a su(2`+4) depending on whether p is even or odd. In the latter case, there is an

additional hypermultiplet in the antisymmetric representation of su(2`+4) as required by

anomaly cancellation [23]. Besides, there are hypermultiplets in (fund, fund) for adjacent

algebras. Notice that in all cases hR = kp− (p2 − 1).

p = 2

sp(k) sp(k-4)

1* 1

. (A.1)

p = 3

sp(k) su(2k-8)

1* 1

. (A.2)

p even

sp(k) su(2k-8) su(2k-16) · · · su(2`+8) sp(`)

1* 2 2 · · · 2 1

. (A.3)

p odd

sp(k) su(2k-8) su(2k-16) · · · su(2`+12) su(2`+4)

1* 2 2 · · · 2 1

. (A.4)

A.2 [In − I∗p] model and Dp+4 singularities

The number of instantons at the singularity is k = 6 + n + p. We restrict to n ≥ nmin

so that k is large enough for the given result to be valid. This minimum value, as well as

the number of blow-ups, depends on whether p is even or odd. For p even, nmin = p + 2,

nT = p + 4, whereas for p odd, nmin = p and nT = p + 3. For simplicity we again

introduce ` = k − 2p. The structure of the resolutions is self-explanatory. In all cases
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hR = k(2p+ 6)− (p+ 4)(2p+ 7).

p even

sp(k-8) sp(`-8)

1 1

| |
sp(k) so(4k-16) sp(2k-16) so(4k-32) sp(2k-24) · · · so(4`) sp(2`-8) so(4`-16) sp(`-8)

1* 4 1 4 1 · · · 4 1 4 1

.

(A.5)

p odd

sp(k-8)

1

|
sp(k) so(4k-16) sp(2k-16) so(4k-32) sp(2k-24) · · · so(4`-8) sp(2`-12) su(2`-12)

1* 4 1 4 1 · · · 4 1 2

. (A.6)

A.3 [III∗ − In] model and E7 singularity

The number of small instantons is k = 9 + n. The resolution for n > 3 has the structure

of the e7 extended Dynkin diagram as expected [23]. In this case hR = 18k − 133. The

non-generic patterns for n ≤ 2 are also shown below.

n = 0

sp(9) so(20) sp(3) so(7) su(2)

1* 4 1 2 2

. (A.7)

n = 1

1

|
sp(10) so(24) sp(6) so(16) sp(2) so(7)

1* 4 1 4 1 3

. (A.8)

n = 2

sp(2)

1

|
sp(11) so(28) sp(9) so(24) sp(5) so(12)

1* 4 1 4 1 3

. (A.9)

n ≥ 3

sp(2k-20)

1

|
sp(k) so(4k-16) sp(3k-24) so(8k-64) sp(3k-28) so(4k-32) sp(k-12)

1* 4 1 4 1 4 1

. (A.10)
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