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In recent work [1, 2], we introduced Picard-Lefschetz theory as a tool for defining the

Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This

formulation avoids several pitfalls occurring in the Euclidean approach. Our method pro-

vides, in particular, a more precise formulation of the Hartle-Hawking no boundary proposal,

as a sum over real Lorentzian four-geometries interpolating between an initial three-geometry

of zero size, i.e, a point, and a final three-geometry. With this definition, we calculated the

no boundary amplitude for a closed universe with a cosmological constant, assuming cos-

mological symmetry for the background and including linear perturbations. We found the

opposite semiclassical exponent to that obtained by Hartle and Hawking for the creation of

a de Sitter spacetime “from nothing”. Furthermore, we found the linearized perturbations

to be governed by an inverse Gaussian distribution, meaning they are unsuppressed and

out of control. Recently, Diaz Dorronsoro et al. [3] followed our methods but attempted to

rescue the no boundary proposal by integrating the lapse over a different, intrinsically com-

plex contour. Here, we show that, in addition to the desired Hartle-Hawking saddle point

contribution, their contour yields extra, non-perturbative corrections which again render the

perturbations unsuppressed. We prove there is no choice of complex contour for the lapse

which avoids this problem. We extend our discussion to include backreaction in the leading

semiclassical approximation, fully nonlinearly for the lowest tensor harmonic and to second

order for all higher modes. Implications for quantum de Sitter spacetime and for cosmic

inflation are briefly discussed.
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I. INTRODUCTION

The no boundary proposal of Hartle and Hawking represents an attempt to explain the quantum

origin of spacetime and provide an initial condition for cosmic inflation [4, 5]. All it apparently

requires is:

(i) domination of the energy density by a positive cosmological constant or gently sloping scalar

field potential, just as is assumed for inflation,

(ii) a closed (positively curved, compact) universe, and

(iii) that the quantum mechanical amplitude for a given three-geometry Σ be given by the

Feynman path integral over all compact four-geometries bounded only by Σ.

The latter geometrical picture, in particular, offers to realize a hope dating back to the very

beginnings of modern cosmology [6–9], that the unification of quantum mechanics and general

relativity might resolve the big bang singularity and explain the beginning of the universe. The no

boundary proposal has furthermore been influential well beyond cosmology, particularly in areas

of mathematical physics including holography as well as conformal and topological field theory,

where it has been used to motivate and define interesting quantum states.

However, since its beginnings, the proposal has suffered from the lack of a precise mathematical

formulation. In two recent papers, we attempted to rectify this shortcoming [1, 2]. Our starting

point is the Lorentzian path integral for quantum gravity, treated as a low energy, effective field
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theory within a semiclassical expansion. We argued that in the presence of a positive cosmological

constant, the Lorentzian path integral propagator to evolve from a geometry of zero initial size to

a given final three-geometry provides a mathematically meaningful definition of the no boundary

amplitude. This is precisely the point of view adopted by Vilenkin in his early papers, although

he never performed any path integral calculations. Instead, he imposed “outgoing” boundary con-

ditions on solutions of the Wheeler-DeWitt equation, a prescription which is, however, incomplete

when perturbations are considered. Our Lorentzian path integral formulation in contrast allows us

to simultaneously handle both the background and perturbations with no ambiguities.

By employing Picard-Lefschetz theory (apparently for the first time, in this context) we are

able to uniquely express the Lorentzian path integral as a sum of absolutely convergent steepest

descent path integrals. In our first papers, we provided evidence that this approach, based on

transparent physical and well-defined mathematical principles, resolves many of the problems which

have plagued semiclassical quantum gravity and quantum cosmology for decades. Surprisingly, in

this new Lorentzian path integral formulation, Hartle and Hawking’s no boundary proposal [4, 5]

and Vilenkin’s tunneling proposal [9, 10] are equivalent [1, 2].

A. No boundary de Sitter: Picard-Lefschetz theory

We chose to focus on the simplest example of a quantum cosmology, namely the no boundary or

“tunneling from nothing” version of quantum de Sitter spacetime in the closed slicing, performing

a semiclassical quantization of both the background and the perturbations. On the positive side,

we found unique, well-defined results, free of the diseases such as the “conformal factor” problem,

which plague the Euclidean approach. However, we also found unexpectedly negative results

concerning the semiclassical Hartle-Hawking state for quantum fields and fluctuations.

We claim that the Lorentzian path integral amplitude for a closed universe with a positive

cosmological constant Λ to emerge “from nothing” into a period of de Sitter expansion, acquiring

a frozen, dimensionless tensor perturbation φ1 on the final three-geometry, is given by

∫
DgeiS[g]/~ ∝ e−

12π2

~Λ
+ 3

2~Λ
l(l+1)(l+2)φ2

1 , (1)

with S[g] being the usual Einstein-Hilbert-Λ action taken in units where 8πG = 1. The path

integral is taken over all compact four geometries bounded only by the final three-geometry. Here,

we omit the functional determinant and a phase representing the late time classical evolution since
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we wish to focus on the semiclassical weighting factor, given by the real part of the semiclassical

exponent. To avoid notational clutter, we also include just one tensor mode, with principal quantum

number l and amplitude φ1 on the final three-geometry, assuming that the physical wavelength of

that mode is larger than the de Sitter radius at the final time, so that the mode has dynamically

“frozen out”. To quadratic order in the perturbations, any number of modes may be included by

simply replacing l(l+ 1)(l+ 2)φ2
1 with

∑
lmn l(l+ 1)(l+ 2)φ2

1,lmn, where φ1,lmn are the coefficients

in the expansion of the final tensor perturbation in real, orthonormalized spherical harmonics on

the three-sphere, with quantum numbers l,m, n (see, e.g., [11]).

The sign of the exponent in (1) is the opposite of that usually associated with the Hartle-Hawking

no boundary proposal. Hartle and Hawking obtained their result by considering the Euclidean

action for quantum gravity, obtained by performing the usual Wick rotation on quantum fields

(including tensor modes) and finding a saddle point representing a Euclidean four-sphere. This

procedure recovers the usual Euclidean vacuum for quantum fields at short distances.

Unfortunately, as we showed in [1], the Euclidean path integral for the relevant cosmological

background is, in the case at hand, a meaningless divergent integral. We avoided that problem by

not Wick rotating: instead, we evaluate the Lorentzian path integral directly. Our main tool is

Picard-Lefschetz theory, a powerful and rigorous means of converting an oscillatory, conditionally

convergent multidimensional integral into a sum of absolutely convergent, steepest descent integrals.

In this case, we find perfectly unambiguous results for both the background and the perturbations.

However, because the background scale factor has a kinetic term of the opposite sign to that

of the perturbations (and other quantum fields), when we integrate out the background, this in

effect imposes a Wick rotation of the opposite sign to the usual one, yielding an inverse Gaussian

distribution for quantum fields and implying that the perturbations are out of control. On this

basis, we claimed that the no boundary proposal (or its “tunneling” equivalent) cannot in any way

describe the emergence of a realistic cosmology.

Let us now discuss the two terms in the exponent of (1), since there is an interesting story

behind each of them. The first term comes from integrating out the cosmological background.

It is convenient to rewrite the usual FLRW cosmological line element −dt2N̄2(t) + a(t)2dΩ2
3 as

−dt2N2/q(t) + q(t)dΩ2
3, with q(t) = a(t)2 and dΩ2

3 the standard metric on the unit three-sphere.

Fixing a gauge in which the background lapse N is a constant, the path integral over q(t), being

Gaussian, may be performed without difficulty. One is left with an ordinary, one-dimensional

integral over N , given in equation (13) below, with the exponent given in terms of the appropriate

classical action (10).
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Figure 1 exhibits the structure of the real part of the exponent (the Morse function) in the

complex N -plane. The orange points indicate Nσ, the saddle points of the Morse function, which

are also (by the Cauchy-Riemann equations) stationary points of the exponent, which is a holo-

morphic function of N . Since the effective action is real for real N , these saddles come in complex

conjugate pairs. At these saddle points the four-geometry is a completely regular solution of the

complexified Einstein equations. Hartle and Hawking took the two lower saddles, labelled 3 and 4.

However, when we define the contour C to be that appropriate to the causal Lorentzian propaga-

tor, or its complex conjugate, Picard-Lefschetz theory identifies the two conjugate saddles, 1 and

2 respectively, as the relevant ones. The classical action for the upper two saddles is the complex

conjugate of that of the lower two saddles, Scl(N
∗
σ) = S∗cl(Nσ). Hence their semiclassical weighting

factor |eiScl/~| = ei(Scl−S
∗
cl)/(2~) is the inverse of the weighting for the two lower ones.
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Figure 1: The Morse function for the background is plotted in the complex N -plane, for a closed, homoge-
neous and isotropic Λ-dominated cosmology. The solid orange line is the defining integration contour C, and
the dashed orange line is the corresponding deformed contour, passing along Lefschetz thimbles. As N tends
to infinity in the complex N -plane, the real part of the exponent in the integrand (the Morse function) tends
to +∞ in the red regions or −∞ in the green regions. It is constant along the blue contours. Upper panel:
the real Lorentzian contour 0+ < N <∞ used for the causal Lorentzian propagator. Lower left panel: the
contour for N running from −∞ to +∞ below the origin, as proposed by Diaz Dorronsoro et al. [3]. Lower
right panel: the real part of the causal propagator, equivalent to a continuous contour for N running from
−∞ to +∞ above the origin.
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Once the saddle points are identified, Picard-Lefschetz theory allows us to transform condition-

ally convergent integrals into absolutely convergent integrals as follows. Each saddle point σ is

generically the intersection of two contours – one of steepest descent, labelled Jσ, and one of steep-

est ascent, labelled Kσ. The real part of the exponent (the Morse function) decreases monotonically

on the former and increases monotonically on the latter. The steepest descent and steepest ascent

contours are shown in black. The solid orange lines in the Figure show three possible choices we

shall consider for the contour C over which the integral over N may be taken. In all cases, we take

C to run from one singularity where the Morse function diverges to −∞ to another. It is a general

result of Picard-Lefschetz theory that in order for a saddle point to be relevant to an integral over

C, the steepest ascent contour from that saddle must intersect C (see, e.g. Ref. [1]). This being the

case, provided the exponent is holomorphic in the relevant region of N one can deform C into the

complex N -plane so that it passes over Jσ, with Cauchy’s theorem ensuring that the value of the

integral is preserved. One must also be careful to check that any additional arcs introduced near

the two limits of the integral (in our case, near N = 0 and N =∞) give a vanishing contribution.

The upper panel in the Figure shows the defining contour for the causal Lorentzian propagator,

0+ < N < ∞. One can deform this contour by “sliding it down” the steepest ascent contour K1

onto the steepest descent contour J1, known as a “Lefschetz thimble” (the dashed orange line).

In this way one obtains an equal, absolutely convergent integral over N . Since a saddle point is

relevant if and only if its steepest ascent contour intersects the original integration contour, and

since the classical action is real-valued on the real line (so the Morse function is zero there), it

follows that the real part of the semiclassical exponent at any relevant saddle must always be

negative. As we argued in [2], this argument is already sufficient to rule out the Hartle-Hawking

result.

How, then, did Hartle and Hawking reach the opposite conclusion? They took the saddle points

in the lower-half N -plane to be the relevant ones, on the basis that one should reproduce the usual

Wick rotation for quantum fields, but they never explicitly performed the path integral over the

lapse. First, consider integrating NE = iN over the infinite real range −∞ < NE < ∞. Any real

Euclidean action obtained from a real Lorentzian action is necessarily odd in NE . Furthermore, if

its equations of motion are time-reversal invariant, they are even in NE . Hence, in the absence of

any singular behavior, integrating out the dynamical variables always leaves one with an effective

Euclidean action for NE which is odd in NE . If it diverges to −∞ as NE → +∞, then it diverges to

+∞ as NE → −∞, and vice versa. So the semiclassical path integral over all NE always diverges.

Therefore, in any meaningful semiclassical Euclidean path integral, one simply cannot integrate
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NE over all real values. Note that this means that a semiclassical Euclidean path integral cannot

be used to obtain a solution of the homogeneous Wheeler-DeWitt equation, or a ”wave function

of the universe,” as Hartle and Hawking hoped. There are three available options: i) integrate

NE over a half-range, should that integral converge; ii) leave the lapse real and Lorentzian, or iii)

deform the lapse integral onto some other complex contour. We consider all three options in this

paper, and show none is viable.

Exploring the first option, if one integrates NE over positive values, the integral diverges at

the origin (in the red region below it, shown in Fig. 1). This divergence is due to the essential

singularity at N = 0, which is nothing but the usual one for a quantum mechanical propagator in

the limit of short times. For the Einstein action, with the condition that the initial three-geometry

has zero size, at small N the propagator behaves as e−i3π
2q2

1/(2~N), where q1 is the value of the

scale factor squared on the final three-geometry. The minus sign is unusual and due to the negative

kinetic term for the scale factor. Conversely, if one integrates NE over negative values, it diverges

at −∞ in the uppermost red region in the Figure. Hence, there is no Euclidean contour for the

lapse which gives a meaningful result. Hence, in our work we reverted to option ii) and integrated

over real 0+ < N < +∞. As we shall explain, integrating over all real N yields the real part of

our answer, so one obtains (1) once again.

B. Hartle-Hawking rescued?

In their recent paper, Diaz Dorronsoro et al. attempted to recover the predictions of the original

Euclidean formulation of the no boundary proposal path integral by following our Lorentzian-

Picard-Lefschetz approach. They claim to identify a new contour for the lapse, shown as the solid

orange contour in the lower left panel of Figure 1, which recovers both the original Hartle-Hawking

weighting for the background and a Gaussian distribution for the fluctuations. Their contour runs

from N = −∞ to N = +∞, passing below the essential singularity at N = 0. It is immediately

apparent that their contour cannot be deformed onto the real N -axis, to make the spacetime

four-metric real and Lorentzian, because the integrand diverges as one approaches the origin from

below. Hence their contour cannot be legitimately termed Lorentzian.

Diaz Dorronsoro et al. emphasize that the path integral along their contour is real, despite the

contour being complex. This is indeed the case because the Lorentzian action is odd in N and their

contour is even under N → −N∗. Second, they stress that it solves the homogeneous Wheeler-

DeWitt equation, whereas our causal Lorentzian propagator does not. Combining these points in
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a rhetorical flourish, they emphasize that their construction provides a “real” wavefunction. In

section II of this paper, we discuss the basic physical principles underlying the causal Lorentzian

propagator in quantum gravity, explaining why it is complex, like the Feynman propagator for a

relativistic particle or a string, and why, when the Hamiltonian is applied, it yields −i times a

delta function, rather than zero. Should we wish to, we may trivially obtain a “real” wavefunction

(in both senses) from our causal Lorentzian propagator merely by taking its real part. This is

equivalent to using the orange contour illustrated in the lower right panel of Figure 1. Since the

integrand becomes exponentially small as the origin is approached from the upper half N -plane,

one may equivalently describe the contour in terms of two disconnected pieces, −∞ < N < 0−

and 0+ < N < ∞, or over a single complex contour running from −∞ to ∞ passing above the

origin. The contour proposed by Diaz Dorronsoro et al. has no “real” advantage over the causal,

Lorentzian propagator (or its real part) in these terms. As we discuss in Section II, solutions of

the homogenous Wheeler-DeWitt equation are arbitrary without further information about the

quantum state. In contrast, the causal “no boundary” propagator as we have described it is in

principle unique.

Nevertheless, let us further investigate their proposed wavefunction. It is not hard to see that

the Hartle-Hawking saddles 3 and 4 are indeed relevant to Diaz Dorronsoro et al.’s proposed

contour, as they claim. All we need to do is follow the steepest ascent contours, K3 and K4

from the saddle points towards the essential singularity at N = 0. Since they intersect the small

orange semicircle below the origin (where the integrand is diverging), Picard-Lefschetz theory tells

us they are relevant. The real part of the semiclassical exponent is indeed allowed to be positive,

precisely because their defining contour is not Lorentzian. However, if we follow the steepest ascent

contours K1 and K2 from the upper two Lorentzian-Picard-Lefschetz saddles, we see that these also

intersect their contour and thus all four saddles are relevant to their contour. As a consequence,

their wavefunction includes contributions of the form of (1), bringing along with them unsuppressed

perturbations.

The idea of using more general contours for the lapse goes back many years. Halliwell and

Louko, in particular, investigated steepest descent contours in de Sitter minisuperspace models,

producing contour diagrams very similar to ours [12]. Halliwell and Hartle further developed the

idea, realizing also that certain saddle point solutions would lead to unacceptable quantum field

theory distributions [13]. In fact, they used this very argument against the tunneling proposal.

(For a related discussion, from the Wheeler-DeWitt point of view, see also [14]). They seemingly

did not, however, appreciate our point here, which is that any contour for N , running from one
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singularity of the Morse function to another and yielding a convergent integral, inevitably includes

contributions from the unacceptable saddle points. In Section VI of this paper, we shall prove by

simple enumeration that no contour for N avoids the problem of unsuppressed fluctuations.

C. Perturbation conundrum

The observant reader will have noticed a logical conundrum raised by the above arguments. If

Picard-Lefschetz theory tells us that the real part of the semiclassical exponent is always negative,

how do we explain the dependence of (1) on the perturbation amplitude? Clearly, by increasing

φ1, one can make the real part of the exponent arbitrarily positive. Of course, linear perturbation

theory breaks down at large φ1, so one might hope that nonlinearities somehow prevent the second

term from ever overcoming the first. This, we shall show in Section V, is not the correct explanation.

Instead, something more subtle and interesting is going on. The point is that general relativity

is not a regular theory. In particular, time evolution generically allows for the development of

singularities. Around these singularities, the perturbations develop unusual, non-analytic behavior.

We shall show that this introduces branch cuts into the effective action for the lapse N and breaks

the analyticity assumptions underlying the use of Picard-Lefschetz theory. For the de Sitter model

with perturbations, the singularities do not occur on the Picard-Lefschetz thimble for the higher-

dimensional theory. Hence they do not introduce any ambiguity into our results. Ratherm they

occur on the original, defining contour for the Lorentzian path integral, if one integrates out the

background and the perturbations, at real, off-shell values for the lapse N , i.e., for real, Lorentzian

off-shell and singular four-geometries. For the perturbations (and only for the perturbations!), this

breakdown of analyticity allows the effective exponent for N to gain a positive real part as one

approaches the real N -axis from above.

Before delving into further detail, let us outline the basic steps in our approach. We fix a

convenient gauge, in which the lapse N is a constant in time and the perturbations are taken to be

transverse-traceless to eliminate unphysical degrees of freedom. Then we perform the Lorentzian

path integral for Einstein-Λ gravity in three steps. First, we integrate out the radius squared q(t)

of the spherical background universe. As we have mentioned, this is a Gaussian path integral

presenting no difficulties. Next, we integrate out the perturbations, treated to quadratic order in

general relativistic linear perturbation theory. Finally, we integrate over the lapse N .

Picard-Lefschetz theory plays an important role in ensuring these calculations make sense. Let

us start by assuming that we can represent all variables appearing in the path integral as finite sums
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over Fourier modes in the cosmological time t and, furthermore, that the answer is independent of

any UV cutoff appearing in this sum. In this way, the path integrals become ordinary integrals,

albeit in high dimension. Picard-Lefschetz theory (and Cauchy’s theorem) may now be rigorously

used to deform the original, highly oscillatory integral into an equivalent, absolutely convergent

integral over a many-dimensional Picard-Lefschetz thimble. Once this has been done, Fubini’s

theorem (see, e.g., [15]) assures us we may evaluate the high-dimensional integral iteratively as a

series of one dimensional integrals, and that the final result will be independent of the order in which

those integrals are performed. If, on the contrary, we do not distort all contours to the Picard-

Lefschetz thimble before integrating out some variables, we can easily generate singularities on the

original, real contour for the remaining variables. An example is provided in Appendix A, showing

how such singularities are generated and, equally, how they are avoided in the higher-dimensional

Picard-Lefschetz procedure.

We followed this Picard-Lefschetz procedure in calculating the causal, Lorentzian propagator in

the approximation where we neglected backreaction of the perturbations on the background. It led

unambiguously to the result (1). How, then, did it generate a positive real, semiclassical exponent

where Picard-Lefschetz flow arguments would appear to forbid one? The explanation lies in the

fact that, for a range of real but off-shell values of N , the background metric develops singularities

which lead to non analytic behavior of the perturbations. The consequence is that integrating out

the perturbations generates a pair of finite branch cuts on the real N -axis. These give a positive

real part to the semiclassical exponent on the upper side of the real N -axis, including the points

where the steepest ascent contours from saddles 1 and 3 meet the real axis and therefore allowing

for those saddle points to contribute positively to the semiclassical exponent.

D. Resolution: real strong singularities

It is important to emphasize that the singularities we are discussing only occur at real values

of N and do not occur on the Picard-Lefschetz thimble J1 relevant to the causal Lorentzian

propagator. Therefore, they introduce no ambiguity in our result (1). However, they do occur

on the defining contour for the Lorentzian path integral, after the perturbations are integrated

out. In that sense, they are similar to the singularities in the prefactor described in Appendix A,

which again occur after a partial integration is performed. However, and this is a key point, in any

finite-dimensional Gaussian integral of the form
∫
d~xei(~x

TO~x+~uT ~x)/~, where the matrix O is real,

symmetric and nonsingular and the vector ~u is real, any number of partial integrations will not alter
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the imaginary nature of the exponent. Each such integration may be performed as a saddle point

integral, and the integrated out variable always assumes a real value at its unique saddle point

value. Hence, after any number of partial integrals, the real part of the remaining semiclassical

exponent is always equal to zero. Furthermore, if the matrix elements of O are merophorphic in

some variable – in our case, the lapse N – the exponent will remain meromorphic in that variable.

One can never generate branch cuts in the exponent by performing partial integrations.

Figure 2: The classical background geometries appearing in the no boundary path integral. Left: The
regular, complex saddle point geometry. Middle: A real Lorentzian off-shell background geometry appearing
at N2

− ≤ N2 ≤ N2
? , possessing one strong singularity. Right: The real Lorentzian geometry appearing at

N2 > N2
? , possessing two strong singularities.

In our case, something different and inherently infinite dimensional takes place. At off-shell, real

values of the lapse N , the background develops strong singularities. By this we mean that once we

integrate out the background variable q, for a range of real N the quadratic operator appearing in

the action of the perturbations becomes singular. The left panel of Figure 2 illustrates the complex

but regular geometry which appears as a full saddle point of the path integral. However, at real

N (and only at real N) the background geometries – stationary in q but off-shell in N – may

exhibit either one strong singularity, if |N | exceeds a critical value N− or two strong singularities,

if it exceeds an even larger value N?. These cases are illustrated in the middle and right panels of

Figure 2, respectively.

To discuss what happens near the singularity at t = 0, consider momentarily setting the cos-

mological constant Λ to zero. Then the solution to the second order equation of motion for q is

simply q = q1t, where 0 ≤ t ≤ 1 and q1 denotes the final value. The background line element is

−dt2N2/(q1t) + (q1t)dΩ2
3, and the background action is given in (8) below. For a tensor pertur-

bation mode φ, with principal quantum number l on the 3-sphere, it is convenient to rewrite the

action (given in general form in (19) below) and the associated equation of motion in terms of the
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canonically normalized variable χ(t) ≡ q(t)φ(t) as follows:

S(2) =

∫ 1

0
dt

1

2N

(
χ̇(t)2 +

γ2 − 1

4 t2
χ(t)2

)
− 1

2N

[
q̇

q
χ2

]1

0

, −χ̈(t) +
γ2 − 1

4 t2
χ = 0, (2)

where (for Λ = 0) γ =
√

1− 4l(l + 2)N2/q2
1. Notice the perturbation action and equation of motion

are both meromorphic in N . However, the two solutions to the equation of motion, χ± = t
1
2

(1±γ),

are not, because γ has a branch cut in N . First consider real N satisfying N2 < q2
1/(4l(l + 2),

so γ is real and smaller than one. While both solutions for χ vanish at t = 0, only χ+ has finite

action. Therefore, we take this to be the relevant saddle point solution. Normalizing it to obtain

φ = φ1 at t = 1, the classical action for the perturbation is (γ − 1)q2
1φ

2
1/(4N). We now consider

analytically continuing in N to other values in the complex N -plane. Evidently, the action has

branch points at N± = ±q1/(2
√
l(l + 2)). It is convenient to draw the branch cuts to run to ±∞

respectively. As we increase N along the real axis, we must either pass above or below the branch

cut. Passing above, the real part of γ remains positive but the imaginary part becomes negative.

Thus, the real part of the semiclassical exponent, iScl(N)/~ is positive on the real N -axis, above

the branch cut. Conversely, it is negative below the branch cut. Examining the perturbation

solutions for imaginary values of γ one sees they undergo an infinite number of oscillations as t

tends to zero. This means they cannot be approximated with any finite sum of Fourier modes in t,

and there is no contradiction with the argument given in the opening paragraph of this subsection.

Notice also that the non-analyticity in the partially integrated exponent arises precisely at values

of N on the branch cuts, where the perturbation action fails to select a particular perturbation

mode. It is plausible that this is precisely the edge of the wedge of convergence associated with the

higher-dimensional Picard-Lefschetz contour, at the limit where the original path integral ceases

to be absolutely convergent and hence cannot be performed iteratively.

The above simplified case exemplifies the mechanism operating in our path integral for de Sitter.

In the full situation, with Λ > 0, in the vicinity of t = 0 the perturbations are still described by (2)

but the power γ appearing in the asymptotic behavior of modes near t = 0 has a more intricate

structure in N , given in equation (25) below. It possesses four square root branch points instead

of two, at values N = ±N± with N+ > N− > 0, with two finite branch cuts connecting them

on the real N -axis (red lines in Figure 3). Furthermore, γ develops simple poles at ±N?, where

N? ≡
√
N+N−, requiring separate analysis (see Appendix D). In Appendix B we prove that in the

full problem, just as in our simplified case, the real part of γ is positive for all complex N away

from the branch cuts. This means that the mode χ− has infinite action and must be excluded.
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Figure 3: The branch cuts (in red) on the real N -axis, for −N+ < N < −N− and N− < N < N+, form
impenetrable barriers for Picard-Lefschetz theory. The classical scale factor squared q crosses zero for a
second time (as in the right panel of Fig. 2) on the blue lines. The Hartle-Hawking and Lorentzian-Picard-
Lefschetz saddles are indicated HH and L-PL respectively. The gray lines are the lines of steepest ascent
and descent emanating from the four saddle points, with the arrows indicating directions of descent.

Furthermore, as pictured in Figure 2, for realN satisfying |N | > N?, a second Lorentzian singularity

forms, at a value t = ts, where 0 < ts < 1. The behavior of the perturbations near this second

singularity is similar to that near t = 0, but this time it turns out that that χ+ has divergent

action, and hence it must be eliminated. Thus, no perturbation mode has finite action for real N

with |N | > N+. This finding shall be important in our analysis of how to deform Diaz Dorronsoro

et al.’s proposed contour into one over which the N -integral becomes absolutely convergent.

The subtle, and inherently infinite-dimensional phenomenon just described turns out to explain

why it is possible to obtain a positive real term in the semiclassical exponent for the fluctuations,

and still remain consistent with Picard-Lefschetz flow away from the branch cuts on the real

N -axis, where the effective action for N is still analytic. For example, in our treatment of the

background, the original steepest ascent contour from saddle 1 intersects the real N -axis at precisely

N?, the value at which the geometry becomes doubly singular, as indicated in Figure 2. As we

have described, integrating out the perturbations generates a positive real part of the exponent

proportional to φ2
1 on the upper side of the branch cut. Therefore, although our saddle point

contribution (1) grows exponentially with increasing φ2
1, so does the real part of iScl(N)/~ on

the upper side of the N -axis, where the steepest ascent contour from our saddle meets it. There

is therefore no inconsistency with Picard-Lefschetz flow: even as we increase φ1, saddle point 1
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remains relevant to the Lorentzian causal propagator.

In Appendix C, we analyse the no boundary path integral for Λ = 0 in detail, showing that, in

that case, both the Euclidean and the Lorentzian contours make sense as defining contours for N .

In the former case, one must take N to run from just above the origin to +i∞. In the latter, it

runs over 0+ < N < ∞. The result of this analysis, however, is that the introduction of gravity

inverts the Euclidean vacuum distribution of the quantum fields, because the background “chooses

the wrong Wick rotation,” as was explained in Ref. [2]. This result holds equally for the Euclidean

or Lorentzian definitions of the no boundary path integral.

The situation is more subtle with the contour proposed by Diaz Dorronsoro et al, because in this

case the background Picard-Lefschetz thimble descending from a Hartle-Hawking saddle intersects

the branch cut at N?. Strictly speaking, Picard-Lefschetz flow fails at this point when we integrate

out the perturbations since the effective action for N is no longer analytic in N . However, Cauchy’s

theorem still holds. By distorting the background steepest descent contour in N to run around the

branch cut, and continue along the original contour in the upper half complex N -plane, before we

even integrate out the perturbations, we can maintain the absolute convergence of the integral, as

well as the validity of Cauchy’s theorem. At first sight, it appears that there might be two ways

to circumnavigate the cut in Figure 3, namely on the side nearest to the origin or farthest from

it. But here, the second singularity in the background geometry imposes an additional constraint.

As mentioned above, since no perturbation mode has finite action for real N satisfying |N | > N+,

we cannot go around the branch cut on that side of it. So, as it turns out, when perturbations are

included there is only one way to go round the branch cut – on the side nearest the origin. This is

the unique choice for distorting the Picard-Lefschetz thimbles associated with the Hartle-Hawking

saddles, and it is illustrated in Figure 6 below.

The fact that we obtain a unique result even for (what we regard as) an unphysical choice of

the defining contour for the lapse and in a situation which is inherently infinite-dimensional is a

sign in favor of the mathematical validity of our approach. Nevertheless, one should emphasize

that Lorentzian Einstein gravity becomes singular at these off-shell values |N | ≥ N?, with the

background geometry developing a second singularity as illustrated in Figure 2. Furthermore, the

infinite oscillations developed in the interval |N | > N− might also lead one to doubt the validity

of the Einstein action as a correct low energy effective theory, this far off-shell. While the analytic

continuation we perform to avoid the branch cuts is, we believe, an entirely natural definition of

the off-shell, low energy theory, we cannot rule out the possibility that new degrees of freedom

enter and significantly alter the result. Were this true, however, it would presumably invalidate
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the no boundary proposal.

If we distort the Picard-Lefschetz background thimbles as described above, the real part of the

exponent iScl(N)/~ becomes more and more positive on the upper side of the branch cuts and,

by symmetry, more and more negative on the lower side (see Fig. 5). Thus, even as we increase

the perturbation amplitude φ1 and the height of the Hartle-Hawking saddle point falls, its steepest

descent contour J4 still runs down to hit the branch cut. The integral around the branch cut

yields an additional contribution to the path integral which, again, gives an inverse Gaussian in

the perturbations, e+ 3
2~Λ

l(l+1)(l+2)φ2
1 but this time without the e−

12π2

~Λ suppression factor associated

with the Lorentzian-Picard-Lefschetz saddle (1).

The conclusion of this analysis is quite striking. Namely, if one wishes to include the Hartle-

Hawking saddles in the Lorentzian path integral, then Cauchy’s theorem and the choices we

are forced to make to obtain an absolutely convergent integral imply there are additional non-

perturbative contributions giving unsuppressed fluctuations. In Section VI we prove that no con-

tour in N can avoid such contributions. As we discuss in the conclusions, this has potentially

profound implications for quantum de Sitter spacetime and for inflation.

As a final remark, note that throughout this section we have only treated the perturbations to

quadratic order in the action. This is at best a partial representation of the complete theory, and

one might wonder whether higher order effects might significantly alter the analyticity properties

of the effective action for the lapse near singularities such as those we encountered on the real N -

axis. Fortunately, at the semiclassical level we are working at, it is not difficult to study nonlinear

backreaction using numerical methods. We do so in Section V, with the conclusion that the basic

picture we have obtained using general relativistic linear perturbation theory remains unchanged.

E. Wider implications

We believe that our results have implications well beyond the no boundary proposal. For

instance, the fact that the no boundary amplitude is out of control has a bearing on the question

of topology change. Smooth, topology changing transitions can be thought of as combinations of

no boundary amplitudes – see the left panel in Fig. 4. Our analysis suggests that such transitions

must be disallowed. This does not mean that topology change cannot occur, but it indicates

that any topology changing transition would have to proceed via a singular, more quantum

transition. That such a transition might be feasible is supported by earlier studies indicating

that a singular, radiation-dominated bounce appears to be possible, and appears not to suffer
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Figure 4: Our results imply that a smooth, Λ-mediated topology changing transition is ill-defined. Thus
topology change should not be thought of as illustrated in the left panel (where the physical regions of
spacetime are blue, space is horizontal and time vertical). Rather, topology change most likely requires
passage through a singularity, where massless degrees of freedom play a crucial role in enabling the transition
and extensions of the semi-classical methods employed in the present paper are needed.

from unsuppressed fluctuations [16]. This finding actually resonates, to some extent, with the

description of singularity resolution in string theory, where it is typically found that new, massless

degrees of freedom appear which are crucial in regularizing topology change. Likewise, it is in

accordance with what we know from observations about the standard big bang cosmology, that

the early universe was dominated by radiation. Even if one is interested in inflationary scenarios,

our findings suggest that a “beginning” with only inflationary potential energy is not allowed. An

earlier phase such as a radiation-dominated phase may have been required prior to inflation.

This paper is structured as follows. In Section II, we briefly review the broad physical and math-

ematical principles of Lorentzian path integral quantum cosmology. We emphasize that the basic

definition of the theory involves an integration over a real, nonzero lapse functions N , although

it is mathematically convenient to deform that integration contour to an equivalent complex one

using Cauchy’s theorem, in order to improve the integral’s convergence. In Section III, we review

the path integral for the background de Sitter cosmology, comparing the contour for the Lorentzian

propagator with that proposed by Diaz Dorronsoro et al.. We show that the latter contour cannot

be deformed to the real N -axis. In Section IV, we include perturbations, treated in linear pertur-

bation theory. In Section IV, we include nonlinear backreaction, to all orders for the lowest tensor

mode and up to second order for higher modes, showing that it has little effect on our conclusions.

In Section V we prove by simple enumeration a new theorem, that no possible choice of the in-

tegration contour for the lapse – whether physically motivated or not – rescues the no boundary
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proposal from the problem of unsuppressed perturbations. Finally, we summarize our main find-

ings and briefly comment on implications for quantum de Sitter spacetime and for inflation. In

Appendix A, we illustrate some features of higher-dimensional Picard-Lefschetz theory in a simple

two-dimensional oscillatory integral. In Appendix B, we prove that the quantity γ governing the

perturbations near background singularities of the types discussed above, obeys Re[γ] > 0 for all

complex N except on the special intervals noted. In Appendix C, we discuss the no boundary path

integral for Λ = 0, showing that both the Euclidean and the Lorentzian contours make sense as

defining contours for N . However, unsuppressed perturbations are obtained in both cases. Finally,

in Appendix D, we examine the point N = N?, showing the precise behavior of the modes and the

classical action at that special value.

II. BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES

The novelty of our work is to combine, for the first time, two theoretical strands each over

three decades old. The first is the work of C. Teitelboim (now C. Bunster) in formally developing

a Feynman path integral for quantum gravity [17–19] based on ideas tracing back to Bryce De-

Witt, John Wheeler and Richard Feynman. The second is an area of pure mathematics known as

Picard-Lefschetz theory, aimed at the evaluation of oscillatory integrals, in any finite number of di-

mensions, via contour deformation exploiting Cauchy’s theorem and saddle point/steepest descent

approximations. Although there was an upsurge of interest in semiclassical quantum gravity effects

in the early 1980’s, with the computation of scalar and tensor quantum fluctuations in inflation

as well as Hartle and Hawking and Vilenkin’s proposals for the beginning of the universe, it is

surprising to us that Teitelboim’s foundational work seems to have attracted only casual reference.

It is likewise remarkable that Picard-Lefschetz theory, as a rigorous and highly appropriate math-

ematical tool, seems to have been altogether overlooked. (For a brief review, with applications to

Chern-Simons theory, see [20]. For recent and more general applications to quantum field theory,

see [21, 22])

Teitelboim’s goal was to develop the theory of quantum geometrodynamics, a program initiated

by Wheeler, DeWitt and others. The basic quantity of interest in this program is the quantum

mechanical propagator: the amplitude for obtaining a final three-geometry Σ1 from a given initial,

three-geometry Σ0, represented by a Hamiltonian path integral over all possible intervening four-

geometries. As we explained in Refs. [1, 2], the no boundary proposal is most naturally formulated

in this framework as the amplitude for obtaining Σ1 when Σ0 is taken to have zero size. When
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framed in these terms, we showed that the no boundary proposal becomes equivalent to Vilenkin’s

“tunneling” proposal [9, 10], and that the relevant Lorentzian no boundary propagator, for general

relativity with a positive cosmological constant, is a relatively well-defined mathematical object,

whereas the Euclidean propagator is not.

A. Why Lorentzian?

It is worth spelling out why we base our approach on the Lorentzian rather than the Euclidean

path integral. Obviously, to do so is more conservative: we take the real-time classical theory as

fundamental and try to ensure our quantum theory recovers it’s successes in the relevant physical

regimes. In fact, the motivation for performing a Wick rotation in gravity appears to have been

a misguided belief that Lorentzian path integrals are too oscillatory to be well defined. Hartle

and Hawking state in the second paragraph of their paper “The oscillatory integral in (the usual

nonrelativistic path integral propagator) is not well defined but can be made so by rotating the time to

imaginary values” [5]. This statement is incorrect: the integrals appearing in real time (Lorentzian)

path integrals are typically conditionally, although not absolutely, convergent. If suitable saddle

points exist, as they do very generally, then the path integral can be made absolutely convergent

by deforming the integration contour to run along the appropriate steepest descent contour. This

is precisely what Picard-Lefschetz theory accomplishes.

In general relativity, rotating the time coordinate to imaginary values is problematic in several

ways. The kinetic term for the conformal factor has the wrong sign - the well-known “conformal

factor problem”, making the Euclidean action unbounded below. Gibbons, Hawking and Perry

proposed to remove that divergence by rotating the conformal factor to imaginary values [23].

Unfortunately, this rotation does not respect the boundary conditions in geometrodynamics, which

involve the initial and final three-geometry. Instead, in the examples which follow, we will first

perform the path integral over the scale factor and perturbations, leaving us with an ordinary

integral over the lapse N which we perform using steepest descent methods. When we consider the

saddle point solution for the spacetime metric, it is complex and includes a “Euclidean” region.

But any complex deformations of the contours are, in our method, chosen by the theory and not the

theorist. It is worth mentioning that some of our arguments regarding the improved behavior of the

Lorentzian, as opposed to the Euclidean, path integral were anticipated by earlier discussions, for

example by Giddings [24, 25] and particularly by Sorkin [26], although with less general methods.
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B. Wavefunction or propagator?

In contrast, Hartle and Hawking took the Euclidean path integral to be fundamental. This

seems to be the basis for their belief that the wavefunction has to be real. Second, they gave a

formal argument that the Euclidean path integral satisfies the homogeneous Wheeler-DeWitt equa-

tion, and in follow-up papers, e.g., [27] claimed that the Euclidean path integral provides boundary

conditions for the wavefunction on the boundary of superspace. Diaz Dorronsoro et al. [3] empha-

size that their proposed wavefunction is both real and solves the homogeneous Wheeler-DeWitt

equation, and they implicitly criticize our Lorentzian propagator because it is not real, and yields

−i times a delta functional on the right hand side of the Wheeler-DeWitt equation. However, in

Ref. [1], we explicitly demonstrated that for Einstein gravity with a positive cosmological constant,

the Euclidean path integral is divergent. Our arguments above show it cannot provide boundary

values for solutions of the Wheeler-DeWitt equation, as was hoped. Therefore there seems little

motivation for insisting that the wavefunction should be real. In fact, as we shall discuss momen-

tarily, a real wavefunction presents problems with recovering local quantum field theory unitarity.

In contrast, the Lorentzian formulation provides a natural and mathematically meaningful way to

formulate the no boundary amplitude, as the path integral propagator for obtaining a given final

three-geometry starting from an initial three-geometry of zero size, a viewpoint emphasized by

Vilenkin [10]. In Ref. [1] we showed that the Lorentzian no boundary propagator is well defined,

and furthermore that the dominant saddle point contribution for the background is a regular com-

plex four-geometry with the final three-geometry as its only boundary, exactly the semiclassical

picture Vilenkin, and Hartle and Hawking, had anticipated.

If, on the contrary, the no boundary proposal is reduced to choosing some particular solution

of the Wheeler-DeWitt equation, all geometrical justification or uniqueness disappears. As a

simple example of this ambiguity, our Lorentzian propagator trivially provides a real (in both

senses) solution of the homogeneous Wheeler-DeWitt equation, just by taking its real part. Diaz

Dorronsoro et al.’s wavefunction, based on a complex contour for the lapse, with an appropriate

symmetry, provides another. By taking linear combinations of the two, one obtains an infinite

number of “real” wavefunctions with no obvious means to choose between them.
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C. Causality or gauge invariance?

Before proceeding any further, it may be helpful to undertake a short excursion in order to

explain why the Lorentzian path integral propagator necessarily does not satisfy the homogeneous

Wheeler-DeWitt equation, and why this in no sense undermines its utility as a fundamental ampli-

tude in the theory. This was actually understood a long time ago in a beautiful series of papers by

C. Teitelboim, emphasizing the tension between gauge invariance and causality. We particularly

recommend the brief summary article, Ref. [18].

Schematically, the Lorentzian path integral over all four-geometries bounded by an initial three-

geometry Σ0 and a final three-geometry Σ1, is given by

〈1|0〉 =

∫
DN

∫
DN i

∫ Σ1

Σ0

Dh(3)
ij Dπ

(3)ije
i
~S[h

(3)
ij ;π(3)ij ;N ] (3)

where the Lorentzian four-geometry is studied in a 3 + 1 split with N being the lapse function,

N i the shift, h
(3)
ij the 3-metric, π(3)ij is its conjugate momentum, and S =

∫ 1
0 dt

∫
dx3[π(3)ij ḣ

(3)
ij −

N iHi − NH] the action for general relativity expressed in first order Hamiltonian form. The

path integral is taken over all four-geometry bounded by Σ0 and Σ1. Here for simplicity we have

neglected the ghosts and BVF formalism needed to ensure general covariance, which were worked

out by Teitelboim, Henneaux and others, and generalized to supergravity, in the 1980’s [28].

Although the expression (3) for the propagator is still formal, the ranges of integration for all

but one of the variables to be path-integrated over are fairly clear. At each t and at every spatial

point one integrates over all possible real three-metrics and momenta. Likewise one integrates over

all real values of the shift in order to enforce the Einstein three-momentum constraint (the Gti

Einstein equation) at every spacetime point.

The integration over the lapse N is more subtle. As Teitelboim argued, it is generally possible to

choose a gauge in which N depends only on the spatial coordinates. The value of N at some point

then controls the total proper time between the initial and final three-geometries, and the path

integral measure over N becomes an infinite number of ordinary integrals. The question arises

whether one should integrate over all real values of N or only over positive values. Classically,

N and −N represent the same spacetime geometry, suggesting that it would be overcounting to

include both. Teitelboim argued that integrating N only over one of these choices – positive values,

for example – is to be preferred, since it allows one to introduce a primitive notion of causality into

the theory, independently of the existence of any classical spacetime. His remarks echo Feynman’s
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earlier discussion, in his first papers on quantum electrodynamics, where he obtained his famous

propagator as the quantized amplitude for a relativistic particle, rather than from any consideration

of quantum fields (see Appendix A of Ref. [29]). Because Feynman employed the same, primitive,

“world-line” notion of causality, his propagator is still referred to as the “causal” propagator.

In quantum geometrodynamics, it is the causality constraint of integrating only over positive

N which enables one to globally distinguish an “in” from an “out” state, and to meaningfully

define quantum mechanical transition amplitudes. It also prevents one from considering histories

(four-geometries) where the final three-geometry crosses the initial three-geometry creating a region

where the two reverse roles. However, there is a tension between diffeomorphism invariance and

the primitive causality constraint. Through the Lie derivative (and the corresponding Poisson

bracket algebra), timelike diffeomorphisms may be used to push the initial three-surface backward

or forward. If the final three-surface is held fixed (as it is, in the propagator), as the initial three-

surface approaches it one must exclude diffeomorphisms which would push the initial three-surface

ahead of the final one. That is, diffeomorphism invariance becomes retricted to half of the usual

space of diffeomorphisms. As Teitelboim puts it [18], the causality constraint N > 0 “disrupts

the group structure of the four-dimensional diffeomorphisms”. Hence, one should not be surprised

that the causal propagator is not annihilated by the Hamiltonian and, in this sense, is no longer

completely invariant under the generator of time-like diffeomorphisms.

One can see this very well in lower-dimensional examples of quantum geometrodynamics, such

as the quantized relativistic particle, or the quantized free relativistic string. In these cases, as is

well known (see e.g. [30]), integrating over positive N is precisely what is required to construct

the Feynman propagator, used in perturbative calculations of unitary scattering amplitudes (or,

for the string, for defining vacuum states). In these examples, the propagator is formally given by

〈1|0〉 =

∫ ∞
0+

dN〈1|e−iNH/~|0〉 = −i~ 〈1|H−1|0〉 (4)

where H is the Hamiltonian: H = p2 + m2 for a free particle or H = L0 − 1 for a free open

string. In the Picard-Lefschetz approach, we do not actually need to include the usual iε to ensure

convergence of the integration over N [31]. Note that we define the integral over N to run only over

positive real values. This is because in the examples of interest, the integrand possesses singular

behavior at small N , so that the integral over N is only defined as its lower, real limit is taken to

zero. This singular behavior is no accident. It is generated in passing from the Hamiltonian to the

Lagrangian formalism: at N = 0 the momenta cannot be expressed in terms of the velocities. In
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our work, we shall take the Hamiltonian formulation, in which all fields including N are real, to be

the fundamental definition of the theory. The restriction to N > 0 (or N < 0) is then necessary

for a well-defined passage to the Lagrangian formulation.

It follows from (4) that the propagator is not annihilated by the Hamiltonian constraint, even

though the latter is required to vanish on all physical states. Indeed, it follows from (4) that H〈1|0〉

equals −i~ times a matrix element of the identity operator. For the free relativistic particle in d

spacetime dimensions, in the coordinate representation one obtains

Hx1〈x1|x0〉 = (−~2�x1 +m2)〈x1|x0〉 = −i~δd(x1 − x0), (5)

the usual equation satisfied by the Feynman propagator ∆F (x1 − x0) ≡ 〈x1|x0〉.

Within four-dimensional quantum geometrodynamics, one expects something similar: the

Hamiltonian applied to the causal propagator yields a delta functional which is zero unless the

initial and final three-geometries (the analogs of the initial and final spacetime coordinates of the

relativistic particle) are identical. Exactly solvable minisuperspace examples are worked out in

detail in [16, 31]. For the no boundary Lorentzian propagator, the delta functional occurring on

the right hand side of the Wheeler-DeWitt equation is nonzero only when the final three-geometry

degenerates to a point.

D. Recovering unitarity

Teitelboim ends his short paper [18] as follows: “Therefore, it appears that in both gravity and

supergravity one is faced with the alternative of preserving either gauge invariance or causality. It

is the opinion of this author that one should preserve causality. In the case of positron theory, this

turns out to be the correct choice ultimately because only by using the Feynman propagator does

one obtain a unitary amplitude.(...) Whether or not a similar situation will arise for the quantized

gravitational field remains to be seen.” [18]. We believe the same issue indeed arises, as follows. It

is presumably a fundamental constraint on any theory of quantum cosmology that for scales and

times much shorter than the Hubble length and time, and much longer than the Planck length and

time, we should recover local quantum field theory, along with unitarity of scattering amplitudes

in the quantum field theory sense. Consider the Lorentzian path integral propagator between two

large three-universes, the final one slightly larger than the initial one, with a local quantum field

such as a gravitational wave in a stationary state such as the vacuum, or some fixed number of
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freely propagating quanta. The path integral will have a classical saddle point solution at positive

real N representing an expanding universe with the corresponding quantum field state. Because

of the symmetry of the classical theory under N → −N there will inevitably also be a saddle

point representing a contracting universe. If we integrate both positive and negative values of N ,

we cannot avoid picking up both saddle points. We thus obtain a superposition of amplitudes

for the same quantum field state, within an expanding universe and its time reverse respectively.

The inferred Schrödinger wavefunctional for the quantum field will combine field wavefunctionals

in which the stationary state is evolved both forward and backward in the “time” as represented

by the size of the universe. Such evolution is not unitary. Therefore, integrating over both signs

of N seems to be inconsistent, at a basic level, with recovering perturbative quantum field theory

unitarity in a description of local processes.

One may say this even more strongly as follows. A real wavefunction, as advocated by Hartle

and Hawking and Diaz Dorronsoro et al. has no chance of directly recovering unitarity which, at a

fundamental level, rests upon quantum mechanical amplitudes being complex. This is particularly

obvious for stationary states: the norm of e−iEt/~ is preserved but the norm of cos(Et/~) is not.

In the quantum cosmology literature, this problem is sometimes side-stepped by regarding the

expanding and contracting parts of the Hartle-Hawking wavefunction as describing two “decoherent

histories,” which should be studied separately. In effect, to describe an expanding universe, one

throws half of the Hartle-Hawking wavefunction away. This seems, at best, uneconomical: if one

integrates only over positive N in the first place, and takes the causal propagator to the basic

amplitude in the theory, there is no such redundancy and no projection is required.

III. THE BACKGROUND

In order to be self-contained we briefly summarize the calculation of the path integral for the

background. More details, and references to older literature, are provided in our earlier paper [1].

A. The propagator for a de Sitter cosmology

For a homogeneous, isotropic background four-geometry, the gauge fixed Feynman propagator

for the scale factor of the universe a reduces to

G[a1; a0] =

∫ ∞
0+

dN

∫ a(1)=a1

a(0)=a0

Da eiS[a;N ]/~ , (6)
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where S is the Einstein-Hilbert-Λ action. Throughout this paper, our focus will be on carefully

calculating semiclassical exponents, i.e., contributions to the propagator proportional to eiScl/~ with

Scl some classical action. We shall ignore terms in the exponent of higher order in ~ associated, for

example, with operator ordering ambiguities in the quantum Hamiltonian on superspace (see the

discussion above equation (18) in Ref. [1]). Nor shall we keep track of Jacobian factors associated

with redefinitions of variables in the path integral measure. We shall proceed by transforming the

action S into a convenient form and then simply adopting the canonical phase space measure for

these variables. A more careful treatment would include Jacobian and ordering corrections as well

as Fadeev-Popov factors associated with the constraints and gauge fixing conditions.

As outlined in the introduction, we consider a positively curved Friedman-Lemâıtre-Robertson-

Walker (FLRW) universe containing only a positive cosmological constant. It is convenient to write

the background metric as follows:

ds2 = −N̄2dt2 + a2dΩ2
3 ≡ −

N2

q
dt2 + qdΩ2

3 , (7)

where the first expression is the usual FLRW metric, with dΩ2
3 the metric on the unit 3-sphere.

The second expression is a convenient rewriting, with q = a2 representing the size modulus for the

three-geometry and N = aN̄ the redefined lapse. This form has the advantage that the Einstein-

Hilbert-Λ action (with Λ the cosmological constant) is quadratic in q [32],

S(0) = 2π2

∫ 1

0

[
− 3

4N
q̇2 +N(3− Λq)

]
dt . (8)

It is convenient to pick a gauge in which N is constant. Since the path integral over q is now

Gaussian, it may be performed exactly, with the exponent being given by the classical action. The

equation of motion, q̈ = 2Λ
3 N

2, is solved by

q̄(t) =
Λ

3
N2t2 +

(
−Λ

3
N2 + q1

)
t , (9)

with the boundary conditions q0 = 0 and q1 = a2
1, The corresponding classical action,

S̄(0)[q1; 0;N ] = 2π2

[
N3 Λ2

36
+N

(
3− Λ

2
q1

)
− 3q2

1

4N

]
, (10)
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results in the propagator 1

G[q1; 0] =

√
3πi

2~

∫ ∞
0+

dN√
N
eiS̄

(0)[q1;0;N ]/~ , (11)

where the integration measure 1/
√
N arises from the Gaussian integral over q. As mentioned above,

our propagator satisfies

ĤG[q1; 0] = −i~δ(q1) , (12)

with Ĥ the Hamiltonian operator [1].

In order to discuss more general contours C for the integral over the lapse N , such as that

advocated in [3], we will write the propagator as follows:

GC [q1; 0] =

√
3πi

2~

∫
C

dN√
N
eiS̄

(0)[q1;0;N ]/~ . (13)

B. Picard-Lefschetz theory

The generalized propagator (13) is a highly oscillatory integral. We rely on Picard-Lefschetz

theory to evaluate it, in a semiclassical approximation – for more details see [1, 20]. One starts by

analytically continuing the classical action S̄(0) to the complex N -plane. The exponent is expressed

in terms of its real and imaginary parts h and H (which are dimensionless) as

eiS/~ = eh+iH , (14)

where h is known as the Morse function. The idea then is to deform the integration contour C

into the complex plane, while keeping its end points fixed, in order to turn the oscillating integral

into an absolutely convergent one which, moreover, can then be approximated as a saddle point

integral. This is achieved by deforming the integration contour onto a set of steepest descent paths

Jσ (also known as Lefschetz thimbles) associated to the saddle points of h (each labeled by σ).

1 In evaluating the path integral over q, we include all paths from q[0] = 0 to q[1] = q1, including those for which q
goes negative. Our methods rely on analyticity, hence we do not impose any barrier forcing q to remain positive.
Should the details of the theory near q = 0 strongly affect the relevant semiclassical saddle point solutions, it seems
to us this would necessarily imply sensitivity to the UV completion. In contrast, the saddle point solutions we
study here all take the form of locally regular (albeit complex) solutions of the classical Einstein-Λ equations, with
modest curvature everywhere. In this case, geometrical higher derivative corrections to the low energy Einstein-Λ
effective action are consistently small, at least on shell, and the results are therefore more likely to be reliable.
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In principle, one has to also prove that the “contours at infinity” created by this deformation are

negligible. This is usually not difficult (see [1] for examples). Along a steepest descent contour the

phase H is constant so that the integral is no longer oscillatory. Paths of steepest descent follow

the Morse function in a downwards flow until h diverges to minus infinity. Thus an integral over a

full thimble always runs between singularities of the Morse function, of this character. As long as h

diverges fast enough, which is typically a modest requirement, the integral along the corresponding

Lefschetz thimbles is absolutely convergent since

|GC [q1; 0] ≤
∑
σ

√
3π

2~

∫
Jσ

∣∣∣∣ dN√
N

∣∣∣∣ eh(N) . (15)

Not all saddle points and steepest descent paths contribute to the contour integral along any

particular contour C. A Lefschetz thimble Jσ is relevant if and only if the corresponding steepest

ascent contour Kσ through the same saddle point σ intersects C. The reason for this is quite

intuitive: the original integral is highly oscillatory and thus involves many cancellations. If it is

to be replaced by a non-oscillatory integral the integrand must be smaller in magnitude than it is

along the original contour. Hence, starting from the original contour we flow down to the Lefschetz

thimble. In Fig. 1 we illustrate the application of Picard-Lefschetz theory to the Lorentzian contour

C1 = (0+,∞) and two alternate contours, C−2 which runs from N = −∞ to N = +∞ just below

the essential singularity at N = 0 and C+
2 which runs from N = −∞ to N = +∞ just above the

essential singularity at N = 0.

An important subtlety in Picard-Lefschetz theory is what to do when a thimble centred on one

saddle point runs down to another saddle point. For example, thimble J4 – the steepest descent

contour from saddle point 4 – coincides with the steepest ascent contour from saddle point 1,

K1. The resolution of this dilemma is to add a small (complex) perturbation to the action which

removes the degeneracy – for example one can imagine giving Planck’s constant a small complex

phase. Such a perturbation breaks the degeneracy between J4 and K1 and causes J4 to just avoid

saddle point 1. The perturbation can be taken to zero and in this limit does not affect the result.

One sign of the phase causes J4 to narrowly miss saddle 1 and run off to infinity along the right

“side” of thimble J1. The other sign causes J4 to continue down the left “side” of thimble J1.

Either are perfectly valid definitions of the completion of thimble 4, and their application will yield

exactly the same results. For simplicity, in what follows we shall adopt the second definition for

J4, pictured in Figure 13 below, and similarly define the completion of J3 to run to the origin

along the right “side” of J2.
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1. The causal propagator: integrating over positive lapse

The integration domain C1 only intersects the line of steepest ascent from one of the four

saddle points: K1 corresponding to saddle point 1 (see the left panel of Fig. 1). Observe that C1

(orange line) can be deformed into the Lefshetz thimble J1 (orange dashed line) without passing

any singularity. Moreover, one can easily show that the additional arcs around the origin and at

complex infinity required to complete the deformed contour, have a vanishing contribution [1]. In

the saddle point approximation, the propagator is then given by

GC1 [q1; 0] = c1e
− 12π2

~Λ
−i4π2

√
Λ

3~2 (q1−3/Λ)3/2

, (16)

where the constant c1 includes the functional determinants and prefactors. In principle, for small

~ it can be expressed as a series in ~. The weighting e−
12π2

~Λ is the inverse of the famous Hartle-

Hawking result e
12π2

~Λ and agrees with Vilenkin’s tunneling proposal [9], as well as with arguments

by Sorkin [26]. Evaluation of the integration domain (−∞, 0) leads to the Lefschetz thimble J2

giving an equivalent (but complex conjugate) result.

2. Solutions of the homogeneous Wheeler-DeWitt equation

In an attempt to recover the Hartle-Hawking result, Diaz Dorronsoro et al. [3] have instead

proposed the integration domain C−2 . We have already explained why this contour cannot be

claimed to be Lorentzian. Nevertheless, let us continue to analyze it. From Figure 1 one sees that

C−2 is intersected by steepest ascent lines from all four saddles. From left to right, the contour

intersects K2,K3,K4, and K1. We thus conclude that all four saddles contribute to the path

integral. The corresponding deformed contour is indicated by the dashed orange line in the figure.

Thus the path integral can be rewritten as a sum over all four thimbles,

GC−2
[q1; 0] ≈ |c1| e

12π2

~Λ cos

(
4π2

~

√
Λ

3
(q1 − 3/Λ)3/2 + ϕ1

)
+|c2| e−

12π2

~Λ cos

(
4π2

~

√
Λ

3
(q1 − 3/Λ)3/2 + ϕ2

)
,

(17)

where c1 = |c1|eiϕ1 , c2 = |c2|eiϕ2 are coefficients to be expanded in powers of ~. GC2− [q1; 0] is real

because the contributions from J2,J3 are complex conjugates of those from J1,J4.

The lower saddle points, represented by the first term, dominate in the semiclassical expansion.

Thus Diaz Dorronsoro et al.’s contour recovers the Hartle-Hawking result at leading order in the

exponential factor e
12π2

~Λ . However, it also generates the second term in (17) which represents a non-
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perturbative (and exponentially small) correction. This is a minor correction for the background,

but it will become problematic when we consider the perturbations.

As we mentioned in the Introduction, there is another way of getting a real solution of the

Wheeler-DeWitt equation, from a truly Lorentzian contour, by integrating over purely real −∞ <

N < 0− and 0+ < N < +∞. This combination, representing the real part of our Lorentzian

propagator, is equivalent to the continuous contour C+
2 which avoids the essential singularity at

N = 0 by passing above it (see the right panel in Fig. 1), because the small semicircle above the

origin gives a vanishing contribution in the limit as 0− and 0+ tend to 0. Note also that C+
2 only

intersects the steepest ascent contours K1 and K2, from saddle points 1 and 2. It follows that

the integral along C+
2 equals the sum of the Lefschetz thimbles J2 and J1, taken with appropriate

signs. Hence the path integral along C+
2 is twice the real part of the path integral along C1. In the

saddle point approximation, it is given by

GC+
2

[q1; 0] = 2Re[GC1 [q1; 0]] ≈ 2|c2|e−
12π2

~Λ cos

(
4π2

~

√
Λ

3
(q1 −

3

Λ
)3/2 + ϕ2

)
. (18)

As explained above, GC−2
[q1; 0] and GC+

2
[q1; 0] provide two independent, real solutions of the

Wheeler-DeWitt equation. One might have hoped that one could subtract GC+
2

[q1; 0] from

GC−2
[q1; 0] in order to remove the two upper saddle points entirely. Unfortunately, this does not

work, because the entire Lefschetz thimbles J1 and J2 contribute to GC+
2

[q1; 0], whereas only the

two outer “sides” of these thimbles contribute to GC−2
[q1; 0]. Furthermore, since the thimbles are

not perfectly symmetrical, their “outer” and “inner” sides are not identical. This means there is

no possible way to cancel the contributions of the upper two thimbles and hence to recover Hartle

and Hawking’s result.

IV. PERTURBATIONS

We now turn our attention to the perturbations, treated in general relativistic linear perturba-

tion theory. In [2] we showed that the no boundary causal propagator generates an inverse Gaussian

distribution for the perturbations, meaning large perturbations are favored. Here we shall review

and extend this treatment to the wavefunction and lapse contour proposed by Diaz Dorronsoro et

al., showing that it too includes unsuppressed perturbations. Furthermore, we identify a new and

larger source of unsuppressed perturbations coming from a branch cut which the Picard-Lefschetz

thimble through the Hartle-Hawking saddles encounters. These results strengthen and generalize
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our result, allowing us to prove that no possible redefinition of the lapse contour can rescue the no

boundary proposal.

The second order action for a linearized (tensor) perturbation φl with principal quantum number

l is given in terms of the background squared scale factor q(t) as

S(2)[q, φ;N ] =
1

2

∫ 1

0

[
q2 φ̇

2
l

N
−Nl(l + 2)φ2

l

]
dt

=
1

2

∫ 1

0

[
χ̇2
l

N
+N

(
q̈

q
− l(l + 2)

q2

)
χ2
l

]
dt− 1

2N

[
q̇

q
χ2
l

]1

0

, (19)

where we have re-expressed the dimensionless tensor metric perturbation φl in terms of the canon-

ically normalized field χl = q φl. Note that we have orthonormalized the modes on the unit sphere

(thus no prefactor of 2π2 appears in the action). As explained in the introduction, to avoid needless

complexity in the equations we only consider a single mode. It is straightforward to amend all the

formulae we derive by replacing l(l+ 1)(l+ 2)φ2
l with

∑
lmn l(l+ 1)(l+ 2)φ2

lmn where the φ1,lmn are

the expansion coefficients expressing in the final tensor perturbation in terms of orthonormal tensor

spherical harmonics on the three sphere, with quantum numbers l,m, n [11]. Since the treatment

of each harmonic proceeds identically we will not write out this sum – one may always think of

setting all Fourier coefficients, bar one, to zero on the final three-geometry. For ease of notation,

where there is no danger of confusion, we will also usually drop the subscript l. Note that the

perturbation of the lapse N is non-dynamical in the absence of matter and may be set to zero.

If we neglect the backreaction of the linear perturbations on the background, such as is rea-

sonable for small final amplitude φ1, then we can evaluate the path integral first for q and then

for φ, using the classical solution for the background q in the action (19) for φ. To integrate out

the perturbations, we again just find the classical solution and use this to evaluate the classical

action. The total semiclassical exponent is then given by S(0)[q1;N ] + S(2)[q1, φ1;N ]. We perform

the final ordinary integral over N using saddle point methods. We shall not calculate any func-

tional determinants in this paper, although this is perfectly possible. These should not alter any

conclusions about the Picard-Lefschetz flow, nor the final semiclassical exponent, in any regime

where the semiclassical expansion is valid.

The no boundary path integral on a contour C is then given, in this leading semiclassical

approximation, by

GC [q1, φ1; 0] ∝
∫
C

dN√
D(N, q1, ~)

eiS̄
(0)[q1;N ]/~+iS̄(2)[q1,φ1;N ]/~ , (20)
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where S̄(0)[q1;N ] is the classical action for the background solution q̄ satisfying the final boundary

condition q(1) = q1 and the initial, no boundary condition q(0) = 0 (see equation (10)). Likewise,

S̄(2)[q1, φ1;N ] is the classical action for the perturbation, in the background q̄, satisfying φ(1) = φ1

as well as a second condition we shall define shortly. The quantity D(N, q1, ~) is the functional

determinant which is in principle calculable in terms of the classical modes and as a series expan-

sion in ~ (for a recent review see, e.g., Ref. [33]). However, in this paper we shall focus on the

semiclassical exponent, and shall not consider the functional determinant any further.

A. Semiclassical path integral over the perturbations

In this section, we shall perform the path integral over the perturbations in the leading semiclas-

sical approximation. That is, we shall fix the perturbation amplitude on the final three-geometry,

φ1 and perform the path integral by the saddle point method, i.e., by solving the equations of

motion and computing the classical action. The boundary condition on the perturbations at t = 0

is delicate because the background geometry is sufficiently singular for a range of real values of the

lapse, that the perturbations obey a singular equation of motion. We shall find that, nevertheless,

for generic complex N , the criterion of finite classical action selects a unique perturbation mode.

At fixed N , the classical equation for χ following from (19) is

χ̈ =

(
¨̄q

q̄
− N2l(l + 2)

q̄2

)
χ . (21)

Near t = 0, this becomes

χ̈ ≈ − N2l(l + 2)

(q1 − ΛN2/3)2

χ

t2
≡ γ2 − 1

4

χ

t2
, (22)

from which we see χ ∼ t
1
2

(1±γ), as t→ 0. Notice that the equation of motion for χ is singular and

this results in some unusual properties of the perturbations, as we explain below.

For small real N , we take γ to be real and positive. Provided N is real and smaller in magnitude

than a particular value N−, then both solutions for χ are monotonic in t and both vanish at t = 0.

However, only one of them has finite action so it is natural to select that one as the saddle point

solution. For real N larger in magnitude than N− but smaller than another, larger value, N+, γ is

imaginary and the solutions oscillate an infinite number of times as they approach t = 0. In fact,

both solutions have a finite regularized action, so the finite action criterion becomes ambiguous for

N in this range. Increasing the magnitude of N beyond N+, while keeping N real, we see that γ
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becomes real once again. However, as we explain shortly, in this latter regime, there are no finite

action classical solutions.

The two critical values are given by

N− =
3

Λ

√
2l(l + 2) + q1Λ/3− 2

√
l(l + 2)(l(l + 2) + q1Λ/3) , (23)

N+ =
3

Λ

√
2l(l + 2) + q1Λ/3 + 2

√
l(l + 2)(l(l + 2) + q1Λ/3) , (24)

with geometric mean N? ≡
√
N+N− =

√
3q1/Λ. It follows that we can take

γ =

√
(N2
− −N2)(N2

+ −N2)

(N2
? −N2)

, (25)

defined to be real and positive for small real N and for other values of N by analytic continuation.

The branch cuts needed to define the square roots are conveniently placed along the real intervals

−N+ < N < −N− and N− < N < N+. In Appendix B, we prove that Re[γ] is positive for all

complex N away from these cuts. On the upper side of the cuts, γ is negative imaginary and on

the lower sides it is positive imaginary. Away from the cuts, as is evident from (19), the action

integral converges at t = 0 only for the mode behaving as t
1
2

(1+γ) as t→ 0. The complete solution

of (21) with this small t behavior is

χ(t) = q̄(t)
1
2

(
t

3q1 + (t− 1)N2Λ

) γ
2 (

(3q1 − ΛN2)(1 + γ) + 2ΛN2t
)
, (26)

and the corresponding, correctly normalized classical solution is

φ(t) = φ1
χ(t)

q̄(t)

q1

χ(1)
. (27)

This solution allows us to calculate the classical action from (19). With an integration by parts

and using the equations of motion, we find

S(2)[q1, φ1;N ] =

[
q̄2 φ̄

˙̄φ

2N

]1

0

=
l(l + 2)q1φ

2
1

4N(3l(l + 2) + q1Λ)

(
−3q1 −N2Λ + γ(N2

? −N2)
)
, (28)

which is real where γ is real, but gains a negative or positive imaginary part (meaning that the

semiclassical exponent iS/~ gains a positive or negative real part) as N approaches the real axis

from above or below the branch cuts. This behavior is illustrated in Figure 5.
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Figure 5: The Morse function h = Re(iS/~) around a branch cut, in units where ~ = 1 and for the
parameters Λ = 3, q1 = 101, l = 10, φ1 = 1. At the cut, the Morse function reaches its maximum at N? = 10
coming from the upper half plane, and its minimum also at N?, though approaching the cut from below.

There is one additional important consideration: for real N , the background solution for the

scale factor (9) is real and quadratic in t. For N > N? (or N < −N?) the background solution

starts at q = 0, then turns negative before crossing q = 0 a second time, at ts = 1 − 3q1
ΛN2 , to

eventually reach q1 at t = 1. Thus there is a second singularity in these real but off-shell-in-N

background geometries, as sketched in the right panel of Fig. 2. It is obvious from (26) that if χ

behaves as t
1
2

(1±γ) near t = 0, then it behaves as (ts − t)
1
2

(1∓γ) near t = ts. Thus, for real γ and

N > N? then if the action integral converges at t = 0, it diverges at t = ts, and vice versa. We

conclude that for N > N+ or N < −N+ no solution of the perturbation equations of motion has

finite action. Hence, in performing the integration over N in the last step (20) of our calculation,

however we deform the contour C, we cannot allow it to cross the real N -axis for real N beyond

the outer ends of the two branch cuts.

Finally, notice that at large |N | in the complex N -plane, the background action S̄(0) ∼ N3 –

dominates over the perturbation action S̄(2) ∼ N . The same holds in the small |N | limit, where

both the background and the perturbation diverge like 1/N (the background and the perturbation

action have opposite sign). As a consequence the asymptotic regions of convergence are preserved

when we add linearized tensor perturbations.
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B. Integrating over the lapse N

Having determined the classical action for the background (10) and for the perturbations (28),

we are now ready to evaluate the final integral over the lapse N , given in (20). We have already

explained the principles in the Introduction: here we shall give the details.

1. The saddle point contribution

In the first approximation, we ignore backreaction from the perturbations on the background

and simply evaluate the combined classical action ((10) plus (28)) at the relevant saddle points

for the background. For simplicity, in this section we shall only discuss the saddles in the right

half-plane: those in the left half-plane are simply related by symmetry. Assuming the radius of

the final three-universe is greater than the de Sitter radius
√

3/Λ, the two classical saddles for the

background are given by

N±s =
3

Λ

[√
Λ

3
q1 − 1± i

]
. (29)

At this saddle points, the parameter γ defined in Section IV A is precisely equal to l+1, meaning

that the tensor modes φl behave as tl/2 near the singularity, which means they are regular there.

In Appendix C we describe the relevant change of variables which exhibits this property.

The values of the classical action at the upper and lower saddle points respectively are

S̄(2)(N±s ) = ∓iφ
2
1q1

2

l(l + 2)

l + 1± i
√
q1Λ/3− 1

. (30)

There are two simplifying regimes. If the wavelength on the final three-geometry, ∼ √q1l
−1 is well

within the Hubble radius
√

3/Λ, we obtain

i
S̄(2)(N±s )

~
≈ ±φ

2
1q1

2~
l, l�

√
Λq1

3
, (31)

a result which is independent of Λ and which agrees with the result of Appendix C.

In the opposite limit, we obtain the result for the “frozen” modes in the expanding de Sitter

spacetime, which have passed out of the de Sitter Hubble radius and ceased to evolve. In this case,
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we obtain

i
S̄(2)(N±s )

~
≈ ± 3

2Λ
l(l + 1)(l + 2)φ2

1 − i
√

3q1

4Λ
l(l + 2)φ2

1,

√
Λq1

3
� l. (32)

For the lower, Hartle-Hawking saddle point, the real part of the exponent exhibits the familiar

scale-invariant inflationary power spectrum ∼ l−3 at large l, so that the real-space variance of the

tensor modes is logarithmically divergent. Unfortunately, as we explained in the Introduction, the

upper saddle is also relevant and it leads to an inverse Gaussian distribution meaning that the

tensor modes are out of control.

In view of this unsettling result, one should ask whether all the assumptions which went into

calculating it are really valid. In particular, can we really trust it for large φ1, where the contribu-

tion of the upper saddle point outweighs the corresponding lower one? The calculation assumed

linear perturbation theory, which requires that the perturbation amplitude is small throughout,

i.e., |φ(t)| � 1 for all t ∈ [0, 1]. However, there is a strong redshifting effect in a de Sitter back-

ground, and the amplitude of linearized tensor modes decreases inversely with the scale factor

while it is inside the Hubble radius. Thus a mode which has just frozen at some large value of

q1 with amplitude φ1 has a much greater amplitude ∼ φ1
√
q1 when it is followed back to the

“throat” of de Sitter spacetime. The condition that the mode has just frozen at q1 reads l ∼
√
q1Λ.

The condition that the perturbation contribution to the final semiclassical exponent outweighs the

background contribution is that l3φ2
1 exceeds unity (assuming l is large). For this to be true, the

initial amplitude φ1
√
q1 must exceed (lΛ)−

1
2 . This is possible, while maintaining the validity of

linear theory at all times, if the frozen mode number l exceeds Λ−1. That requires that the de

Sitter spacetime has undergone expansion by a factor Λ−
3
2 , i.e., that q1 exceeds this factor, which is

a rather modest condition. Our conclusion is that it is perfectly possible to have the perturbations

dominate in the semiclassical exponent, while remaining consistent with linear perturbation theory

throughout the evolution of the perturbation modes. This is confirmed by the numerical calcula-

tions we shall report in Section V. In fact, those calculations show that nonlinear effects further

enhance the discontinuity in the effective action across the real N -axis, created by integrating out

the perturbations .
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2. The branch cut contribution

Before turning to the detailed implications of the various contours of integration discussed in

section III, we study the branch cut. We will specialize to Re(N) > 0, but analogous considerations

apply for Re(N) < 0. As discussed above, the branch cut represents an impenetrable barrier to the

integral over the lapse, since traversing it would mean running into regions where the perturbations

are not well defined. Moreover, as shown in Fig. 3, some of the Lefschetz thimbles intersect the

branch cuts. This means that when evaluating the path integral, in some cases we are forced to

distort the contour of integration around the branch cut. We thus need to know the contribution of

the branch cut to the integral over the lapse. Note that because the perturbative action is infinite

on the real N -axis outside of the cut (i.e. for N > N+), we are forced to deform the contour to

pass on the inside of the cut.

Let us focus on a mode that has just frozen, i.e., a mode for which l ∼
√
q1Λ, and which has

a large amplitude (but within the limits of perturbation theory) i.e. φ1 ∼ l−
1
2 . We work in the

limit of large final scale factor. Similar calculations can be performed for other wavenumbers and

amplitudes.

We approximate the integral with the integration contour going around the branch cut in a

clockwise direction. As we saw above, the Morse function is much higher above the cut than

below, hence it is sufficient to consider the integral running just above the branch cut on the real

N -axis, see also Fig. 5. The maximum of the Morse function occurs at N+
? , which is the location of

the saddle point of the perturbative action (28) evaluated on the upper side of the branch cut (note

that the Morse function of the background action is zero on the real N -axis). The total exponent

iS/~ and its first two derivatives evaluated at N+
? , keeping the leading real and imaginary terms

in the limit of large q1, are given by

i

~
S(N+

? ) = −i
√

4Λq3
1

3~2
+

3

2~Λ
(l(l + 2))3/2φ2

1 , (33)

i

~
S,N (N+

? ) = 3
i

~
, (34)

i

~
S,NN (N+

? ) = − i
~

√
Λ

12q1
l(l + 2)φ2

1 −
Λ

6~
(l(l + 2))1/2φ2

1 . (35)

At large scale factor, the phase in the last expression can be dropped. We can approximate the

integral running just above the cut from left to right as an integral over real x along the path
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N+
? + x,

e
i
~S(N+

? )

∫ 0

−∞
dxe−

Λ
12~ (l(l+2))1/2φ2

1x
2

=

√
3π~√

Λ(l(l + 2))1/4φ1

e
i
~S(N+

? )

∼
√

~
Λ
e
−i

√
4Λq31
3~2 + 3

2~Λ
(l(l+2))3/2φ2

1 . (36)

From the point N? the path of steepest descent runs straight up, and we may check that including

this contribution does not significantly affect the integral arising from the cut itself. For this case

we add an integration along a path N+
? + iy with positive real y, obtaining essentially the same

result as above,

e
i
~S(N+

? )

[∫ 0

−∞
dxe−

Λ
12~ (l(l+2))1/2φ2

1x
2

+ i

∫ +∞

0
dye−

3
~y

]
=

( √
3π~√

Λ(l(l + 2))1/4φ1

+
i~
3

)
e
i
~S(N+

? )

∼
√

~
Λ
e
−i

√
4Λq31
3~2 + 3

2~Λ
(l(l+2))3/2φ2

1 . (37)

Hence the integral around the branch cut yields unsuppressed fluctuations, with weighting

√
~
Λ
e+ 3

2~Λ
(l(l+2))3/2φ2

1 . (38)
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Figure 6: Picard-Lefschetz theory for a Λ-dominated universe with gravitational waves. The solid orange
and dashed orange lines are the original and deformed integration contours respectively, while the zigzag
lines denote the branch cuts. The lines denoted by Ji are lines of steepest descent and the lines denoted by
Ki are lines of steepest ascent. Left panel: the integration path for the Lorenztian propagator, deformed to
run above the cut. Right panel: the integration domain prescribed by Diaz Dorronsoro et al. [3] with the
original integration domain above the branch cuts. Note that the contour must be deformed to partially
encircle the branch cuts in order to reach the Lefschetz thimbles.
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3. Integrating N over positive values

For the no boundary proposal, defined in terms of the propagator, we integrate over positive

lapse C1 = (0+,∞). According to Picard-Lefschetz theory, we should distort the contour integral

over N to the relevant Picard-Lefschetz thimble J1 at the first stage of the calculation. We then

need the solution for the classical background and perturbations, given in previous sections. Using

the background action (10) and the perturbation action (32), we obtain

GC1 [q1, φ1; 0] ∝ eiR(q1,φ1)/~e−
12π2

~Λ
+ 3

2~Λ
l(l+1)(l+2)φ2

1 , (39)

with the phase given by the real part of the classical action

R(q1, φ1) = −4π2

√
Λ

3

(
q1 −

3

Λ

)3/2

−
√

3q1

4Λ
l(l + 2)φ2

1 . (40)

This is the result described in [2], where the background is suppressed as e−12π2/(~Λ), but the

fluctuations are unsuppressed, so they are out of control.

4. Integrating N from −∞ to +∞

The integration domain C+
2 , deformed to pass above the essential singularity at the origin N = 0,

gives twice the real part of the half line contour given (39) and (40) above. Its implications are

immediately obtained from Eq. (39) above. We do not need to discuss this contour further.

Diaz Dorronsoro et al. propose to use the integration domain C−2 , passing below the essential

singularity at the origin N = 0. As discussed above, asymptotically the contour must be deformed

to run above the real N -axis to yield a convergent path integral, hence we will adopt this definition

here. Picard-Lefschetz theory implies the relevance of all four saddle points, since the integration

contour is intersected by all lines of steepest ascent (see the right panel in Fig. 6). For the

background, the lower saddle points dominate over the upper saddle points leading to the Hartle-

Hawking result. Obtaining this result for the background appears to have been the main goal in

choosing this complex contour. When including the perturbation action S̄(2), we need to deform

the contour to avoid the branch cut on the side of the origin, as shown in the figure. Up to the
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first sub-leading order in the saddle point approximation, the path integral evaluates to

GC−2
[q1, φ1; 0] ≈2 Re

[
ei
R(q1,φ1)

~

(
C4e

12π2

~Λ
− 3

2~Λ
l(l+1)(l+2)φ2

1 + (Cb + C1e
− 12π2

~Λ )e+ 3
2~Λ

l(l+1)(l+2)φ2
1

)]
.

(41)

The functional determinants corresponding to the Hartle-Hawking and Picard-Lefschetz saddle

points are C4 and C1. The term Cb is the prefactor of the integral along the branch cut. The

overall phase is again given by the real part of the classical action (see equation (40)).

The lower saddle points alone would have given the standard Bunch-Davies vacuum state. How-

ever, the branch cut and the upper saddle points lead to non-perturbative corrections, suppressed

by one and two powers of the nonperturbative factor e−12π2/(~Λ) respectively. However, as both

the perturbation amplitude φ1 and the wavenumber l increase, as discussed below Eq. (32), these

corrections can dominate. The consequence is that the Bunch-Davies vacuum obtains corrections

which are nonperturbative in the semiclassical (~) expansion that are so large that the theory does

not admit a sensible vacuum any more. Put differently, the no-boundary proposal does not im-

ply the Bunch-Davies vacuum for perturbations, as was until recently believed. Rather, increased

fluctuations receive an ever larger weighting, leading to a breakdown of the model.

The instability can be related to the existence of the branch cuts on the real line in the per-

turbative action (19). In the absence of such a singularity, the Morse function on the real line is

strictly zero, and Picard-Lefschetz theory implies that any contour defined on the real line would

have to flow down to lower values to be expressible as a manifestly convergent integral. In this

case it would be impossible for the total weighting to become positive, and the fluctuations would

not be able to surpass the background. In fact this makes perfect sense: quantum effects are sup-

pressed compared to classical evolution, which would occur with probability 1 (i.e. weighting 0).

The branch cut changes this. The Morse function no longer tends to zero as one approaches the

real N -axis from above or below the cut – rather it has a discontinuity leading to the instability

discussed above. Another aspect of the problem is to notice that the resulting amplitude violates

the correspondence principle, i.e. classical physics is no longer recoverable in the limit ~→ 0. For

large fluctuations, the propagators (39), (41) do not satisfy this condition. Whichever point of

view one prefers, the conclusion in all cases is that the no boundary proposal becomes untenable

and that the idea of a smooth semi-classical beginning of the universe fails.
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V. BACKREACTION

The inverse Gaussian distribution of the tensor perturbations, described in the previous sec-

tion, arises already within the limits of validity of general relativistic linear perturbation theory,

signalling a clear problem with the no boundary proposal. However, one may wonder whether

backreaction of the gravitational waves might be significant in the regime where the upper saddle

points start to dominate over the lower saddle points (assuming the contour C−2 passing below

the origin). To settle this question we studied the backreaction numerically, in two representative

situations of interest: for the lowest modes, i.e., for the l = 2 modes, we have evaluated the full

Einstein equations numerically. For the higher l modes we have solved the linear equation of mo-

tion for φ and included its backreaction at second order in the equation of motion for the scale

factor q. As we will discuss below, these studies serve to reinforce the conclusions drawn in linear

perturbation theory.

A. The l = 2 mode

The l = 2 modes are particularly interesting as a possible non-linear completion of the metric

exists, in the form of the Bianchi IX line element

ds2
IX = −N2

p (t)dt2p +
∑
m

(
lm(t)

2

)2

σ2
m , (42)

whereNp is the physical lapse function and σ1 = sinψdθ−cosψ sin θdϕ, σ2 = cosψdθ+sinψ sin θdϕ,

and σ3 = −(dψ + cos θdϕ) are differential forms on the three sphere such that 0 ≤ ψ ≤ 4π,

0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. For ease of notation we will denote a derivative w.r.t. physical time tp

by an overdot in this section (and only in this section). Employing the original definition of Misner

[34], we can re-write the three scale factors as

l1(tp) = a(tp) exp

[
1

2

(
β+(tp) +

√
3β−(tp)

)]
, (43)

l2(tp) = a(tp) exp

[
1

2

(
β+(tp)−

√
3β−(tp)

)]
, (44)

l3(tp) = a(tp) exp [−β+(tp)] , (45)
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which makes it clear that a is the average scale factor while the βs quantify anisotropic perturba-

tions. In these coordinates the action becomes

S = 2π2

∫
dtpNpa

[
1

N2
p

(
−3ȧ2 + a2

(
1

2
φ̇2 +

3

4
β̇2

+ +
3

4
β̇2
−

))
−
(
a2V (φ) + U(β+, β−)

)]
, (46)

where the full non-linear potential is given by

U(β+, β−) = −2
(
e2β+ + e−β+−

√
3β− + e−β++

√
3β−
)

+
(
e−4β+ + e2β+−2

√
3β− + e2β++2

√
3β−
)

(47)

= −3 + 6β2
+ + 6β2

− + . . . (48)

Varying with respect to the lapse Np (and working in the gauge Ṅp = 0) we obtain the Friedman

constraint equation

3ȧ2 = a2

(
3

4
β̇2

+ +
3

4
β̇2
−

)
+N2

pU(β+, β−) , (49)

while the equations of motion for a, β+, β− are given by

ä

a
+

1

2

ȧ2

a2
+

3

8

(
β̇2

+ + β̇2
−

)
−
N2
p

6a2
U(β+, β−) = 0 , (50)

β̈± + 3
ȧ

a
β̇± +

2

3

N2
p

a2
U,β± = 0 . (51)

Expanding the last equation to linear order we obtain

β̈± + 3
ȧ

a
β̇± + 8

N2
p

a2
β± = 0 . (52)

A comparison with Eq. (21) confirms that the βs are non-linear versions of the l = 2 modes –

more specifically, they are non-linear versions of two l = 2 modes which are such that they preserve

the Bianchi IX symmetry [35]. To match with our earlier normalization conventions, one has to

re-scale

β± =
1√
3π
φ± , (53)

where φ± denote two separate l = 2 modes. The structure of the potential U shows that when

going beyond linear order, the equations of motion lead to direct couplings between these two l = 2

modes.
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Figure 7: These graphs show the weighting at the saddle points (left panel) and the imaginary part of the
saddle point locations (right panel) as a function of the l = 2 anisotropy mode amplitude φ1−, for Λ = 3. In
the plot of the action (left) the line starting at +12π2/Λ = +4π2 for φ1− = 0 corresponds to the saddle points
in the lower half N plane, while the line starting at −4π2 corresponds to the saddle points in the upper half
plane. In black (mostly hidden behind the red line) are the linear results without backreaction, in red the
results including backreaction but still in linear perturbation theory, and in blue the results stemming from
solving the fully backreacted Einstein equations. For values of φ1− below 1 the linear and non-linear results
agree to high precision, while one can see that at larger values of the anisotropy the non-linear corrections
enhance the instability of the fluctuations, and move the saddle points further towards the real N -axis. Note
that the weighting of the upper saddle points surpasses that of the lower ones when backreaction is still
entirely negligible. Moreover, the non-linear effects of the full Einstein equations imply that the (unstable)
upper saddle points come to dominate already for smaller amplitudes of the fluctuations.

In the present section we work in a gauge where Np = 1 and where one then has to determine

the value of the time coordinate of the final hypersurface on which the boundary conditions q0 =

0, q1 = a2
1, φ± = φ1± are satisfied. This is done using the shooting method discussed in [36]. In this

method, the (generally complex valued) second time derivatives of φ± at the no boundary point

a = 0 are adjusted using an optimization algorithm such that at a final time tf the desired real

values q1, φ1± are simultaneously reached. The total time interval
∫
Npdtp = tf can then also be

related to the lapse function N using the change of coordinates Npdtp = Nq−1/2dt,

N =

∫ 1

0
Ndt =

∫ tf

0
a(tp)dtp . (54)

Our results are shown in Fig. 7. For ease of comparison with linear perturbation theory, we

only show results for the case where a single l = 2 mode (here chosen to be φ1−) takes on a non-

trivial value on the final hypersurface. The left panel shows how the weighting of the saddle point

solution (for saddles in the upper half plane) increases as the perturbation amplitude is increased.

The opposite behavior is seen for the saddle points in the lower half plane. As is evident from

the figure, backreaction at second order in perturbation theory is utterly negligible. Even more

importantly, the effects of the instability are even stronger when non-linear terms are included,

and the dominance of the upper saddle point over the lower ones occurs already for smaller values
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of φ1− than in the linear theory. Also, as shown in the right panel, the saddle point moves faster

towards the real N -axis in the non-linear theory. These results consolidate our analytic results,

and indicate that the inclusion of non-linear backreaction only reinforces the instability that we

have identified.

B. Backreaction in φ of higher l modes

To quadratic order in the gravitational wave modes, the equations of motion corresponding to

the total action S = S(0) + S(2) are

0 = q̈ − 2N2

3
Λ +

φ̇2

3π2
q , (55)

0 = φ̈+ 2
q̇

q
φ̇+

N2

q2
l(l + 2)φ . (56)

The term φ̇2

3π2 q encodes the backreaction of the perturbations φ on the scale factor q, ignored in

the analytic calculations of the previous sections.
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Figure 8: The real and imaginary parts of the mode function φ(t) in the saddle point N1 with the boundary
conditions q0 = 0, φ0 = 0, q1 = 101, and φ1 = 3 for mode l = 10. The black dashed lines correspond to the
analytic result without backreaction. The red lines correspond to the numerical analysis with backreaction.
We observe that the backreaction for φ1 = 3, which violates the perturbation theory condition |φ(t)| > 1,
leads to a change in the mode functions of approximately 10%, with no qualitative change. For the boundary
condition 0 ≤ φ1 ≤ 0.8, which do satisfy the condition |φ(t)| < 1 for all t ∈ [0, 1], the correction due to
backreaction is completely negligible.

We use a numerical shooting method to solve the equations of motion (55) and (56) with “no

boundary” boundary conditions q(0) = φ(0) = 0, q(1) = q1, and φ(1) = φ1 for a given spherical

wavenumber l and lapse N. We start with the analytic solution (9) of the scale factor ignoring

backreaction. We then solve (56) numerically for an arbitrary φ(1), and normalize the solution to

enforce φ(1) = φ1. The resulting approximate solution for φ is used in the equation of motion (55)
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for q(t), likewise solved as a one dimensional shooting problem. The procedure is then iterated

until both solutions converge. Fig. 8 compares the results with and without backreaction included,

for a saddle point solution with φ1 = 3, for which the perturbation contribution to the Morse

function at the saddle outweighs that for the unperturbed background.
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-40
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Figure 9: The Morse function evaluated at the saddle points h(Ns) as a function of the boundary condition
φ1 for which |φ(t)| ≤ 1 for all t. The lines starting from h = −4π2 and h = 4π2 correspond to the upper
and the lower saddle points. The blue to purple lines correspond to l = 2, 3, . . . , 10. The colored lines are
the numerical simulations with backreaction. The dotted lines are the analytic results without backreaction.
We observe that the backreaction of the perturbation φ on the scale factor q is very small for the boundary
condition 0 ≤ φ1 ≤ 0.8. Consequently, the analytic calculations which neglect backreaction are accurate
when the upper saddle point starts to dominate over the lower saddle point for l ≥ 5.

For more modest values of the final perturbation, 0 ≤ φ1 ≤ 1, we find that the backreaction is

small and does not significantly affect the location of the saddle points of the Morse function in the

complex N -plane. The saddle points move the most for the high l modes. For l = 10, q1 = 101 and

φ1 = 1, for example, the saddle points are located at Ns = ±10.0232± 0.97904i, compared to the

background saddle points Ns = ±10 ± i. In agreement with our analytic arguments, the value of

the Morse function at the saddle points does, however, change significantly as φ1 is increased (see

Fig. 9). The lines starting from h = −4π2 and h = +4π2 correspond respectively to the upper and

the lower saddle points. For the modes l = 2, 3 and l = 4 the lower saddle point always dominates

over the upper saddle point in the regime of validity of linear perturbation theory. This coincides

with the analysis of the l = 2 mode using full Einstein equations, discussed above, which showed

that the upper saddle only dominates at values of φ1 greater than ∼ 1.5). For l ≥ 5, the upper

saddle points dominate over the lower saddle points within the regime of validity of linear theory.
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As explained in section IV, it is possible for the upper saddles to dominate (and even to acquire

a positive real exponent) due to the existence of branch cuts on the real line in the effective action

for N , given in (19) and (28). Fig. 10 shows that including the effects of backreaction does not

remove this branch cut. As we approach the point N? from above and below the real N -axis, one

can see the jump in the Morse function at N? is maintained.

-1.0 -0.5 0.5 1.0
y

-50

50

h(N*+ⅈy)

Figure 10: The Morse function h evaluated at N = N? + iy with the boundary conditions Λ = 3, q1 =
101, φ1 = 0.5 for the mode l = 10. The dashed line is the analytic result without backreaction. The red line
is the numerical calculation including backreaction. We plot the backreaction calculation for the points for
which |φ(t)| < 1 (i.e. for which linear theory is reliable) and the backreaction on the q variable is small,

i.e., φ̇2q
3π2 <

∣∣∣ 2N2Λ
3

∣∣∣ for all t. Note that the backreaction is extremely small near the saddle point for these

boundary conditions. The jump at y = 0 illustrates the branch cut. The backreaction becomes significant
when N approaches the real axis. However, the backreaction does not appear to remove the branch cut.

In general, we find that the effects of nonlinear backreaction are significant only near the real N -

axis. This is perhaps not surprising, since we know the theory is quite singular there: for example it

is well known that the Bianchi IX model studied in the previous section exhibits chaotic behavior for

real metrics as the singularity q = 0 is approached. However, we find that nonlinear backreaction

is insignificant along the Lefschetz thimble J1 associated with the upper saddle point, i.e. the

thimble relevant to the strictly Lorentzian path integral. The upper panel of Fig. 11 illustrates the

first quadrant of the complex N plane. In the white region, defined by Re[γ] > 1, the finite action

condition forces the mode function to vanish on the initial boundary, i.e. φ0 = 0. In this region

the shooting method described above may be used. In contrast, in the shaded region, defined

by Re[γ] ≤ 1, the finite action condition selects a mode function φ which diverges on the initial
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boundary and a different method should be used.
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Figure 11: The Morse function along the thimble for the boundary conditions Λ = 3, q1 = 101, φ1 = 1 for the
mode l = 10. For these boundary conditions the action of the background and perturbations are comparable
in the saddle points. Upper panel: first quadrant of the complex N -plane with the lines of steepest ascent
and descent of the upper saddle point. The shaded/white regions, defined by Re[γ] less/greater than 1
respectively, denote the regions in which the finite action condition selects a mode which diverges/vanishes
on the initial boundary. The points on the thimble J1 indicate the values of the lapse N at which we have
evaluated the importance of backreaction in the lower panels. Lower panels: the Morse functions for the
background and perturbation actions S̄(0) and S̄(2). The blue lines denote the analytic Morse function while
the black dots denote the numerical results including backreaction. Note that nonlinear backreaction is
completely negligible along the thimble.

Note that the part of the Lefschetz thimble shown in the Figure lies entirely in the white region.

In order to study the significance of backreaction, we selected 32 regularly spaced points along the

thimble. In the lower two panels we plot the Morse functions given by the analytic calculations

and the numerical calculations including backreaction, respectively, for each of the background

and fluctuation actions. We observe that backreaction is negligible along the Lorentzian Lefschetz

thimble J1. Thus, deforming the contour from real fields to the Lefschetz thimble appears to render

the path integral significantly more calculationally tractable.
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C. Backreaction in χ
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Figure 12: The Morse function for the perturbations is plotted along a line N = x + i y in the complex
N -plane, crossing the real N -axis y = 0 in the vertical direction. The parameters and boundary values
are Λ = 3, q0 = 0, q1 = 101, l = 10, χ0 = 0, and χ1 = 1. The black dashed line is the analytic result of
perturbation theory without backreaction. The red line is the numerical result including backreaction up to
second order in the perturbations.

In the previous sections we studied the significance of backreaction in terms of the mode function

φ. As can be seen in the upper panel of Fig. 11, the shooting method for φ only works for part of

the complex N plane. Near the real line, in particular, the shooting method for φ breaks down.

In order to study the effects of backreaction near the real N -axis to the left of the branch cut we

change coordinates to χ = qφ as was discussed in section IV. To quadratic order in the gravitational

wave modes, the equations of motion corresponding to the action S = S(0) + S(2) are

0 = q̈ − 2N2

3
Λ +

q

2π2

(
χ̇

q
− q̇

q2
χ

)2

(57)

0 =χ̈−
(
q̈

q
− N2l(l + 2)

q2

)
χ (58)

By solving these equations with the shooting method described in the previous section we can

study the effects of backreaction in the shaded regions of the upper panel of Fig. 11 since the finite

action condition implies χ0 = 0 (see Fig. 12). Observe that for Re[N ] = 1, 3 the Morse function

does not appear to be discontinous across the real N -axis (i.e. it suffers no branch cut) and

backreaction remains negligible. When crossing the real line further to the right, for Re[N ] = 5, 7,
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we do find a branch cut and likewise notice significant backreaction. These results indicate that

the presence or absence of a branch cut in the effective action for N , on the real N -axis, appears at

least qualitatively consistent with indications from perturbation theory. This finding is significant

for the discussion of the next section.

VI. NO CONTOUR WORKS

In Section II we reviewed the physical principles for integrating over positive lapse (C1) when

defining the Lorentzian propagator. In contrast, Diaz Dorronsoro et al. [3] proposed a different,

intrinsically complex contour C−2 running below the origin over −∞ < N <∞, with the motivation

of obtaining a real wavefunction satisfying the Wheeler-DeWitt equation. (For an earlier discussion

of various lapse contours for the background, see, e.g., Ref. [12]). We have already shown that with

either choice, one cannot avoid contributions from saddles 1 and 2 (shown in Fig. 13), both of

which yield an unsuppressed, inverse Gaussian distribution for the perturbations. The goal of this

section is to extend this analysis and show that no integration contour avoids this problem.

Before passing to the proof of this general result, let us also mention the new complication we

have detailed in this paper. When the condition of finite action is imposed upon the perturbation

modes, a large part of the real N -axis must be excluded from the definition of any possible contour,

due to the presence of branch cuts and the non-existence of finite action perturbation modes at

large |N |.

A. Time reparametrization invariance

Let us consider a generalized path integral, where the lapse N is integrated over some complex

contour C in the complex N -plane. Time reparametrization invariance severely limits the points

at which C may start and end. Defining 〈1|0〉C ≡
∫
C dN〈1|e

−iHN/~|0〉, as a natural generalization

of (3), it follows that HΨ =
∫
C i~(d/dN)〈1|e−iHN/~|0〉, i.e. one obtains surface terms at the start

and end of C. If one insists that the Hamiltonian annihilates the amplitude, it follows that all

surface terms must vanish: that is, C must start and end at a point where the Morse function h(N)

tends to minus infinity (we assume the h(N) dependence dominates over the prefactor). There is

a subtlety at the point N = 0 because, as discussed above Eq. (5), the integrand 〈1|e−iHN/~|0〉

is singular in the small N limit, with the prefactor and the exponent diverging in just such a

way that the combined surface term generates a delta function. This is a universal property of
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quantum propagators, ensuring that they are Green’s functions. As we reviewed in Section II,

for geometrodynamics this introduces a primitive notion of causality. Nevertheless, it remains

true that the only acceptable contours for C are those which start and end at points where the

Morse function tends to minus infinity. Furthermore, if the integral over N is to converge, C must

approach these singular points along paths which can be deformed into paths of steepest descent.

Near N = 0, the background action (10) diverges as −A/N with A positive. It follows that C must

approach the origin along a path which can be deformed to run into the origin along the positive

imaginary axis, since that is the unique curve of steepest descent which ends at N = 0. In contrast,

when we consider the singular point at N =∞, the classical action is proportional to AN3, with A

positive. So the point at infinity may be approached in three inequivalent ways: the exponent iN3

yields steepest descent paths along N = |N |eiθ with θ = π/6, 5π/6 or 3π/2. (As we shall discuss

later, in general there is a branch cut emanating from the origin. In this case we must distinguish

the angle 3π/2 from −π/2, relative to the positive N -axis.)

B. Picard-Lefschetz theory

Let us begin by ignoring the branch cuts on the real N -axis. Then it is a basic result of Picard-

Lefschetz theory that any contour C running between singular points of the Morse function and

yielding a finite integral may be deformed, using Cauchy’s theorem, into a sum of Picard-Lefschetz

“thimbles”. In order to remove any degeneracies between thimbles (see Section II of Ref. [1]), we

introduce a small deformation so that thimble 3 is completed by passing just below the steepest

descent curve connecting saddle point 2 to the origin, and similarly for thimble 4 and thimble 1.

These thimbles are illustrated in Fig. 13. Any contour C connecting singularities of the Morse

function, as explained above, may now be deformed into a sum of thimbles, taken with appropriate

signs. Notice that, with this definition of the thimbles, in the limit that the deformation is taken

to zero, thimble 4 and thimble 1 share that part of thimble 1 which connects saddle point 1 to the

origin. And the thimble 3 shares a similar part of thimble 2. In this way every thimble includes a

contribution from saddle point 1 or 2, both of which yield unsuppressed perturbations. This is the

first part of the proof.

For example, our Lorentzian propagator is given by thimble 1. Its real part is given by the sum

of thimble 1 and thimble 2, both taken ‘left to right,’ and its imaginary part is proportional to

the difference. The contour of Diaz Dorronsoro et al. is deformable to thimbles 1,2,3 and 4 taken

with signs such that the steepest descent contours connecting saddle points 1 and 2 to the origin
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Figure 13: The Picard-Lefschetz thimbles (solid dark lines, labelled J1 − J4) for our problem, in the com-
plex N -plane. Any convergent integral starting and ending at a singularity of the Morse function can be
represented as a sum of these thimbles. Also shown are the branch cuts (jagged grey lines) which the no
boundary perturbations introduce on the real N -axis.

are cancelled. But the steepest descent contours connecting saddle points 1 and 2 to infinity are

included. Other contours include thimbles 3 or 4, either taken alone or combined into a contour

which ‘runs around’ the origin, starting from negative imaginary values. Likewise we can combine

thimble 3 and thimble 2, taken with a sign such that the steepest descent contour connecting saddle

point 2 to the origin is cancelled. And so on.

Now let us include the two branch cuts on the real N -axis. Clearly, their introduction affects

thimbles 3 and 4. Any contour which gives contributions from saddles 3 or 4 – the Hartle-Hawking

saddles – as, for example, that of Diaz Dorronsoro et al., necessarily involves contributions from

either or both branch cuts, which also give unsuppressed perturbations.

Finally, we note in passing that in general the singularity at N = 0 may also be the terminus

of a branch cut extending to infinity. In pure de Sitter, the path integral over the background

yields a square root of N and the perturbations, as noted above, yield a functional determinant.

So one can consider a nontrivial contour for the integral over N coming in from infinite negative

imaginary values and completely encircling this branch cut. It will be deformable to a combination

of thimbles 1,2, 3 and 4. Again, it necessarily acquires contributions from both saddles 1 and 2,

and the branch cuts. This completes our proof that no choice of contour for N avoids the problem

of unsuppressed perturbations.
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VII. DISCUSSION

The introduction of a new, more precise formulation of semi-classical quantum gravity should,

we believe, have wide implications.

Among the questions which now appear accessible is whether or not there is a quantum version

of de Sitter spacetime. In Refs. [37, 38], Polyakov has expressed doubts, claiming in particular that

there is strong interplay between IR and UV effects leading to various divergences. While there are

considerable differences between our approaches, his words certainly resonate with our findings.

Namely, our predicted distribution of the tensor modes diverges, a problem which worsens in the

UV, as a result of a nonlinear (and completely nonlocal) interplay between these modes and the

quantized background, i.e., the IR. Because the background has the “wrong sign” kinetic term,

convergence of the Feynman path integral over backgrounds in effect chooses the “wrong sign” Wick

rotation for the perturbations, giving them an inverse Gaussian distribution and implying they are

completely out of control. The general theorem we proved in Ref. [2] identified the fundamental

topological nature of this problem.

Our work indicates that a “no boundary” formulation of quantum de Sitter spacetime does not

exist. However, the question remains whether there is any other viable formulation. In particular,

one might try to define it by considering the Lorentzian propagator between two real classical

three-geometries, both large and roughly spherical, so that there would be two possible intervening

classical four-geometries, one a “bounce” including the throat of de Sitter and the other not includ-

ing the throat. In the former case, one may have to worry about strong nonlinear backreaction,

in that the quantum mechanical perturbations present in the contracting phase of global de Sitter

spacetime blueshift as the size of the three-sphere shrinks, potentially causing a “big crunch” at

the throat and terminating the semiclassical description. The methods reported in this paper,

especially concerning semiclassical backreaction, seem ideal for approaching these questions. In

particular, we are very interested in understanding implications for the future quantum evolution

of our universe, which now appears to be entering a potentially eternal de Sitter phase. Is it pos-

sible to describe such a phase semiclassically? Is such a phase ultimately stable against quantum

mechanical perturbations? Finally, given that our universe emerged from the big bang filled with

radiation and matter, how does the presence of these other forms of energy affect the quantum

mechanical behaviour of the background and the perturbations? The work of Refs. [16, 31] on

a radiation-dominated “perfect bounce” indicated no problems with unsuppressed perturbations,

such as those identified here. We are therefore keen to explore further the possible advantages of
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such a scenario.

Second, our work may well have implications for cosmological inflation. In the usual descrip-

tions, one treats the background classically, and quantizes only the perturbations. However, as

is well known, it is not possible to consistently couple classical degrees of freedom with quantum

degrees of freedom, so this usual description can at best be only an approximation. Second, the

usual treatment of inflation assumes the quantum mechanical perturbations start out in their local

adiabatic vacuum – the so-called Bunch-Davies state. Here too, this is at best an approximation

since it applies only to short wavelength modes. There is the additional problem that such modes

are generically sub-Planckian deep in the inflationary era, so without a clear treatment of quantum

gravitational phenomena, they cannot be precisely specified.

The promise of the no boundary proposal was to present a “completion” of the inflationary

scenario, along with the hope that all these questions could be resolved within a low-energy,

effective description of Einstein gravity coupled to quantum fields. We believe that our work has

now excluded that option. Therefore, it raises fundamental questions for inflation: How is the

theory to be completed? How does inflation avoid non-perturbative corrections to the Bunch-

Davies vacuum, of the type we have shown to exist for the contour proposed by Diaz Dorronsoro

et al. in their attempt to rescue Hartle and Hawking’s proposal?

Although the main outcome of this work has so far been negative, we find it very exciting that

we can at last formulate semi-classical quantum cosmology in a precise enough way to identify

clear problems. In our view, the bigger the problem, the more instructive the clue it provides. It

is particularly surprising to find that quantum effects on the universe on large scales can be so

significant and can so drastically influence the description of phenomena on the smallest scales, as

we found. One cannot help but hope that herein lies a clue to understanding the dark energy and

resolving the biggest “fine tuning” puzzle in physics. Quantum field theory tells us that the dark

energy is dominated by the UV vacuum energy, yet it is also what ultimately sets the IR cutoff

by limiting our causal horizon and thus the largest scale anyone shall ever see. Again, our work

provides a clue as to how the UV and the IR are connected in quantum gravity, in a way we have

yet to fully unravel.

Finally, we mentioned in the opening of this paper that the no boundary concept has been

very fruitful in mathematical physics, in contexts such as holography, as well as conformal and

topological field theory. We believe our more precise formulation should also be useful in these

contexts.
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Appendix A: Illustration of higher dimensional Picard-Lefschetz theory

In this appendix, we use a simple two-dimensional, conditionally convergent, oscillatory integral

to illustrate some features of Picard-Lefschetz theory. The integral may be computed iteratively in

two ways: by integrating first over one variable and then the other, or vice versa. In the former case,

as we shall see, we obtain a one dimensional conditionally convergent integral with a nonsingular

integrand. In the latter case, the first integration yields an integrand which is singular on the

original contour for the second variable. In order to give the integral meaning we must exclude the

singular point or, equivalently, deform the original contour to avoid the singularity. An alternative

to making sense of the original integral is to use higher dimensional Picard-Lefschetz theory and

Cauchy’s theorem to distort the two original integration contours so that the two-dimensional

integral becomes absolutely convergent before either integral is performed. As discussed in Section

II, this ensures that the result of the integral is independent of the order in which the two integrals

are then taken. More than this, as we shall see, distorting the contours to a two-dimensional

steepest descent surface ensures that no one dimensional integral generates a singularity which

might then complicate subsequent integrals.

We consider the integral

I =

∫ ∞
−∞

dN

∫ ∞
−∞

dz ei(N−1)z2+iN2
, (59)

where both N and z are taken over all real values. To begin with, we compute I by integrating

first over N . This is a simple Gaussian integral which yields

I = eiπ/4
√
π

∫ ∞
−∞

dz e−i(z
2+ 1

4
z4) =

1

2
ei(

1
2
−π

8
)π

3
2H

(2)

− 1
4

(
1

2

)
, (60)
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the last being a standard result. Alternatively, we may compute I by integrating first over z. But

there is an immediate problem: the z integral, taken along the real z-axis, fails to converge at

N = 1. So we can exclude the point at N = 1, which is of zero measure, to obtain

I = eiπ/4
√
π

∫ ∞
1

dN√
N − 1

eiN
2

+ e−iπ/4
√
π

∫ 1

−∞

dN√
1−N

eiN
2
. (61)

Equivalently, we may define the integral over a continuous contour for N following the real axis

from −∞ to ∞ but avoiding N = 1 on an infinitesimal semicircle passing above it (only if we pass

above is the z integral in (59) convergent). In the limit that the semicircle radius is taken to zero,

we also obtain (61). One can readily check that (61) agrees with (60).

While both derivations are correct, the second one is complicated by the occurrence of the

singularity, requiring a contour for N which is either discontinuous or moves off the real axis. A

similar phenomenon occurs in our more complicated path integral examples where the integration

over the perturbations generates singularities in the resulting effective action for the lapse N which

likewise occur on the original, defining integration contour. In that case, the singularities are more

severe, occurring in the exponent of the integrand, as explained in the Introduction. In both cases,

however, if we wish to calculate the integral along the original N contour having performed partial

integrations, care is needed to determine exactly how the contour should avoid the singularities.

Let us now see how Picard-Lefschetz theory enables one to deform the integration contour to

steepest descent contours before either integral is performed, in order to avoid such problems. As we

shall see in this example, this avoids singularities of the type just discussed being generated, leaving

one with a completely unproblematical absolutely convergent integral which can be calculated

iteratively, in any convenient order. Examining (59), we see that we can make the integral over

N convergent by rotating the N contour, setting N = ei
π
4

√
2n = (1 + i)n, with n real (the factor

of
√

2 is merely to simplify the algebra). Note that this contour for N never passes through the

point N = 1. Turning now to the z integral, we set z = x + iy and find the steepest descent

contour y(x) passing through the saddle point at z = 0. As explained, e.g., in Section II of Ref. [1],

the imaginary part of the exponent is constant along this contour. This immediately yields the

equation (n− 1)(x2− y2)− 2nxy = 0. One of the two solutions gives the steepest descent contour,

in which the real part of the exponent (the Morse function h) is monotonically decreasing away

from the saddle (the other solution, which we ignore, gives the steepest ascent contour). Setting
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n = ν + 1
2 , the steepest descent contour is

y =
1 + 2ν −

√
2 + 8ν2

1− 2ν
x (62)

and the Morse function on this contour is

h = −2(1 + 4ν2)

√
2 + 8ν2 − 1− 2ν

(1− 2ν)2
x2 − 2

(
ν +

1

2

)2

. (63)

Notice that the slope of the contour in the complex z-plane changes from a negative to a positive

value as ν (or n) runs from −∞ to ∞, so that the coefficient of x2 is always negative, whatever

the (real) value of ν.

Having found the steepest descent contour in the complex z-plane, we may now integrate over

z, along the steepest descent contour (62), without generating any singularity in ν:

I =
√

2ei
π
4

∫ ∞
−∞

dx

(
1 + i

dy

dx

)∫ ∞
−∞

dνe
−2[(1+4ν2)

√
2+8ν2−1−2ν

(1−2ν)2
x2+(ν+ 1

2
)2]

=
√
πei

π
4

∫ ∞
−∞

dν

(
1 + i

1 + 2ν −
√

2 + 8ν2

1− 2ν

)
|1− 2ν|

√
1 + 4ν2

√√
2 + 8ν2 − 1− 2ν

e−2(ν+ 1
2)

2

. (64)

While this expression is hardly elegant, it is completely nonsingular along the integration contour

for ν. It is easy to integrate numerically, for example, and yields a value identical to that of (60).

The key point illustrated by this example is that when we use higher-dimensional Picard-

Lefschetz theory to convert the original integral, which is only conditionally convergent, into one

which is absolutely convergent, partial integrals do not typically generate any singularities. How-

ever, if we instead leave N fixed while performing the z integral, we obtain singularities on the real

N -axis. Care is then needed to determine how the N integration contour should be taken around

them.

Appendix B: Proof that Re[γ] > 0 almost everywhere in the cut N-plane

A crucial role in our analysis is played by the constant γ describing the behavior of the pertur-

bation modes near t = 0. Near t = 0, we have φ ∼ t
γ−1

2 and the Lagrangian density L(t) ∼ tγ−1.

So, if the real part of γ is positive, the singularity at t = 0 is integrable. We shall now prove that

Re[γ] > 0 almost everywhere in the complex N -plane, the exception being the closed real intervals

N− ≤ N ≤ N+ and −N+ ≤ N ≤ −N−, where N− and N+ are positive constants, defined in (24).
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In Section IV, we show that

γ =

√
N2
− −N2

N2
? −N2

√
N2

+ −N2

N2
? −N2

≡
√
Z− − Z
Z? − Z

√
Z+ − Z
Z? − Z

, (65)

where N− < N? < N+, and we define Z = N2. Consider the first factor. It is the square root of

a Möbius map, namely a one-to-one mapping of the complex Z-plane onto the complex Y -plane,

where Y = (Z− − Z)/(Z? − Z). This map takes the real interval Z− < Z < Z? onto the negative

real Y -axis, the upper half Z-plane to the lower half Y -plane and vice versa. Setting S =
√
Y takes

the entire Z-plane to the right half of the S-plane, i.e., Re[S] ≥ 0, with the upper half Z-plane

being mapped to the lower right quadrant of the S-plane, and the lower half Z-plane to the upper

right quadrant of the Z-plane. Except for the closed interval Z− ≤ Z ≤ Z?, which is mapped to

the imaginary S-axis, every point in the complex Z-plane is mapped to a point with Re[S] > 0,

with the sign of Im[S] being opposite to the sign of Im[Z]. Now consider the second factor, written

as the complex number T . Similar arguments show that, except for the real interval Z? ≤ Z ≤ Z+,

every point in the complex Z-plane is mapped to Re[T ] > 0, with the sign of Im[T ] being the same

as the sign of Im[Z]. Therefore Re[ST ] = Re[S] Re[T ]− Im[S] Im[T ] > 0 except on Z− ≤ Z ≤ Z+,

where ST is pure imaginary. This proves our claim.

Appendix C: No boundary amplitude for perturbed S3 with Λ = 0

In subsection D of the Introduction, we discussed a very simple example of a “no boundary”

gravitational path integral. Namely, we set Λ = 0 in the action (8) governing the background and

impose a final three-geometry consisting of a sphere of radius squared q1. The background solution

is q = q1t, and the classical background action is 2π2(−3q2
1/(4N) + 3N). This has two saddle

points, at N = N±s = ±iq1/2. This means that the saddle points are actually on the imaginary

axis. For either saddle, the line element is q1(dt2/(4t) + tdΩ2
3) = q1(dr2 + r2dΩ2

3), where r ≡
√
t,

i.e., just that for a flat Euclidean ball of radius R ≡ √q1.

Thus the saddle in the upper (lower) half plane has semiclassical exponent −6π2R2/~ (or

+6π2R2/~) respectively, where R is the radius of the ball in reduced Planck units. By study-

ing the flow, one can easily see that the upper saddle is on a Picard-Lefschetz thimble connecting

the origin N = 0 (approached from above) to N = +i∞. Therefore this saddle point is relevant to

the Euclidean path integral for quantum gravity, in the absence of a cosmological constant. The

reason the Euclidean path integral is meaningful is that if Λ = 0, the positive imaginary N -axis
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is in fact a direction of steepest descent. Note, however, that since the action is odd in N one

can only take N to run over the positive imaginary axis, not the entire imaginary axis. The same

saddle is also relevant to the Lorentzian path integral, with a defining contour 0+ < N <∞, which

also makes sense. The steepest ascent flow from the saddle is easily shown to be a circle: setting

N = x + iy, the flow is y2 = 1
4q

2
1 − x2. So the steepest ascent contour meets the real N -axis at

N = q1/2, where the background classical action is real.

Returning to our example of n subsection D of the Introduction, we analyzed the perturbation

equations of motion. From the discussion below equation (2), it follows that the scaling exponent

governing the perturbation γ = l+1, so that the tensor modes are proportional to tl/2 = rl. This is

exactly the right scaling with r to make them analytic at r = 0. (If a tensor quantity has l indices

and is expressible in terms of a tensor product of l Cartesian coordinates, it must necessarily scale

as rl.) The perturbation exponent is easily calculated from equation (2).

Putting everything together, we find the causal propagator to create a perturbed three-sphere

of radius R in reduced Planck units “from nothing,” when Λ = 0, is

GΛ=0[q1, φ1; 0] ∼ e(−6π2+lφ2
1/2)R2/~, (66)

up to prefactors. As discussed in the Introduction, performing the semiclassical path integral over

the perturbations generates a branch cut on the real N -axis, over q1/(2
√
l(l + 2) < N < ∞ (and

similarly for negative N). On the upper side of this branch cut, γ = −i
√

4l(l + 2)N2/q2
1 − 1 and the

real part of the semiclassical exponent (the Morse function) is positive: one finds Re[iS(2)(N)/~] =

1
2(q1φ

2
1/~)

√
l(l + 2)− 4 at N = q1/2, where the steepest ascent contour from the background saddle

meets the N -axis. This is greater than the Morse function from perturbations at the saddle, for all

φ1 and l. As in the de Sitter example, we see that when we integrate over the perturbations the

net semiclassical exponent can become positive, at least when backreaction is ignored. Based on

the results of Section V, we do not expect the inclusion of nonlinear backreaction to change this

conclusion.

The fact that this calculation, like that for de Sitter, yields an unacceptable inverse Gaussian

distribution for the perturbations implies, we believe, that one should not consider “no boundary”

amplitudes of this type, even for Λ = 0.
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Appendix D: Behavior of solutions and classical action as N → N?

At N? =
√

3q1/Λ the classical background solution (9) takes the simple form q̄(t) = q1t
2. The

equation of motion of the canonically normalised perturbation χ ≡ q̄(t)φ, equation (21), has two

solutions

χ?± = t
(
t∓ iN?

√
l(l + 2)/q1

)
e±iN?

√
l(l+2)/(q1t). (67)

The choice of mode is fixed by the finite action condition and depends on how we approach the

point N?. When approached from above, the finite action solution is φ(t) = φ1χ?+(t)/(t2χ?+(1)).

The corresponding classical action is

S̄(2)(N?) =
q̄2φ̄ ˙̄φ

2N

∣∣∣∣1
t=0

= − iN?

i+
√
l(l + 2)N?/q1

l(l + 2)

2
φ2

1 . (68)

When approached from below, the perturbation and action are given by the complex conjugate

expressions. In both cases, the action agrees with S̄(2)[q1;φ1;N ], given in equation (28),

evaluated just above or below N = N? in the complex N -plane, taking into account the analytic

properties of γ(N) explained in Appendix B.
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