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Via Irnerio 46, I-40126 Bologna, Italy

bDipartimento di Scienze Fisiche, Informatiche e Matematiche,
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Abstract

We have recently studied a simplified version of the path integral for a particle on a sphere,

and more generally on maximally symmetric spaces, and proved that Riemann normal coor-

dinates allow the use of a quadratic kinetic term in the particle action. The emerging linear

sigma model contains a scalar effective potential that reproduces the effects of the curvature.

We present here further details on the construction, and extend its perturbative evaluation to

orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions

d = 14 and d = 16.

Keywords: Sigma Models, Anomalies in Field and String Theories, Path Integrals

1 Introduction

Path integrals for point particles find useful applications in worldline treatments of quantum

field theories. In particular, path integrals for particles on curved spaces allow to study gravi-

tationally interacting field theories. In this paper, after reviewing the simplified path integral

for a nonrelativistic particle on a sphere that has been introduced recently in [1], by presenting

further details on its construction, we extend its perturbative calculation to orders high enough

to be able to read off the type-A trace anomalies of a conformal scalar field in dimensions d = 14

and d = 16.

The standard action of a nonrelativistic particle has the form of a nonlinear sigma model in

one dimension. The nonlinearities present in the kinetic term make the definition of the path

integral rather subtle, carrying the necessity of specifying a regularization scheme together with

1

ar
X

iv
:1

70
8.

03
55

7v
2 

 [
he

p-
th

] 
 1

9 
O

ct
 2

01
7

fiorenzo.bastianelli@bo.infn.it
olindo.corradini@unimore.it


the fixing of corresponding finite counterterms. The latter are needed for specifying a well-

defined quantum theory, see [2–5] for the known regularization schemes. The development of

those regularization schemes was prompted by the desire of extending the quantum mechanical

method of computing chiral anomalies [6–8] to trace anomalies [9,10]. A comprehensive account

may be found in the book [11].

A simplified version of the path integral for the case of maximally symmetric spaces, like

spheres, has been discussed and proved recently in [1]. It builds on an old proposal [12] of

constructing the path integral by making use of Riemann normal coordinates. These special

coordinates are supposed to make consistent the replacement of the nonlinear sigma model by

a linear one. At the same time the inclusion of a suitable effective scalar potential is shown

to reproduce the effects of the curvature. That this is indeed possible was proved in [1] for

the case of maximally symmetric spaces, leaving the more difficult question of its validity on

arbitrary geometries unsettled. In the present paper we review the construction on maximally

symmetric spaces, and present a detailed perturbative evaluation of the path integral, which

in particular allows us to identify the trace anomalies of a conformal scalar field in dimensions

d = 14 and d = 16. The maximally symmetric background gives information on the so-called

type-A trace anomaly [13], which is proportional to the Euler density of the curved background.

Other methods for identifying the type-A trace anomalies in higher dimensions are probably

more efficient, see for example [14–17], but the path integral construction is certainly more

flexible, allowing in principle for the calculation of other observables, as exemplified by the

various applications of the worldline formalism (see [18] for a review in flat space, and [19–28]

for extensions to curved spaces). In any case, we also apply these alternative methods to check

our final anomaly coefficients.

We start our paper with Section 2 where, by using Riemann normal coordinates on maximally

symmetric spaces, we prove that the Schrödinger equation (the heat equation in our euclidean

convention) for the transition amplitude can be simplified, so to have a corresponding simplified

version of the path integral that generates its solutions. In Section 3 we set up the perturbative

expansion of the simplified path integral, and proceed to evaluate the transition amplitude at

coinciding points, as needed for identifying one-loop effective actions in scalar QFT through

worldlines. In particular, we calculate all the terms that are needed to identify the trace

anomalies for space-time dimensions d ≤ 16. These anomalies are extracted in Section 4, and

recomputed in Section 5 with the alternative methods mentioned earlier to show the consistencies

of these different approaches. Eventually, we present our conclusions and outlook in Section 6.

2 Transition amplitude and path integral on spheres

The classical dynamics of a nonrelativistic particle of unit mass in a curved d-dimensional space

is described by the lagrangian

L(x, ẋ) =
1

2
gij(x)ẋiẋj , (2.1)

where gij(x) is the metric in an arbitrary coordinate system and ẋi = dxi

dt . The corresponding

hamiltonian reads

H(x, p) =
1

2
gij(x)pipj , (2.2)

where pi are the momenta conjugated to xi. Upon canonical quantization the classical hamil-

tonian identifies a quantum hamiltonian operator

Ĥξ(x̂, p̂) =
1

2
g−

1
4 (x̂)p̂ig

1
2 (x̂)gij(x̂)p̂jg

− 1
4 (x̂) +

ξ

2
R(x̂) , (2.3)

2



where the ordering ambiguities between the x̂i and p̂i operators have been partially fixed by

requiring background general coordinate invariance (here g(x) ≡ det gij(x)). The remaining am-

biguities are parametrized by the free coupling constant ξ that multiplies the scalar curvature

R. Interesting values of this coupling are ξ = 0 that defines the minimal coupling, ξ = d−2
4(d−1)

for the conformally invariant coupling in d dimensions, and ξ = 1
4 that allows for a supersym-

metrization of the model (it appears in the square of the Dirac operator). For simplicity, we

will set ξ = 0 in the following discussion, inserting the nonminimal coupling through a scalar

potential, when needed.

We are interested in studying the evolution operator in euclidean time β (the heat kernel)

K̂(β) = e−βĤ0 , (2.4)

that satisfies the equation

−∂K̂(β)

∂β
= Ĥ0K̂(β) (2.5)

K̂(0) = 1 . (2.6)

It is convenient to use position eigenstates

x̂i|x〉 = xi|x〉 , (2.7)

normalized as

〈x|x′〉 =
δ(d)(x− x′)√

g(x)
, (2.8)

so that the resolution of the identity is written as

1 =

∫
ddx
√
g(x) |x〉〈x| . (2.9)

Using them, one recognizes that the wave functions ψ(x) = 〈x|ψ〉, corresponding to vectors

|ψ〉 of the Hilbert space, are scalars under arbitrary change of coordinates. In particular the

matrix element of the evolution operator between these position eigenstates gives a transition

amplitude

K(x, x′;β) = 〈x|e−βĤ0 |x′〉 , (2.10)

that behaves as a biscalar under arbitrary change of coordinates, i.e. a scalar at both points x

and x′. It satisfies the heat equation (we use units with ~ = 1)

− ∂

∂β
K(x, x′;β) = −1

2
∇2
xK(x, x′;β) (2.11)

K(x, x′; 0) =
δ(d)(x− x′)√

g(x)
, (2.12)

where ∇2
x is the scalar laplacian ∇2 = 1√

g∂i
√
ggij∂j acting on the x coordinates. This equation

corresponds precisely to the matrix elements of the operatorial equation (2.5) between position

eigenstates. Its solution may be given a well-defined path integral representation in terms a

nonlinear sigma model action [11].
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In order to simplify the heat equation and the corresponding path integral, we choose to

work with Riemann normal coordinates, that are reviewed in Appendix A. We first transform

the transition amplitude into a bidensity by defining

K(x, x′, β) = g
1
4 (x)K(x, x′, β)g

1
4 (x′) , (2.13)

so that equation (2.11) takes the form

− ∂

∂β
K(x, x′;β) = −1

2
g

1
4 (x)∇2

x

(
g−

1
4 (x)K(x, x′;β)

)
(2.14)

K(x, x′; 0) = δ(d)(x− x′) . (2.15)

One may evaluate the differential operator appearing on the right hand side of eq. (2.14) to

obtain the identity

− 1

2
g

1
4∇2 g−

1
4 = −1

2
∂ig

ij∂j + Veff , (2.16)

where in the first addendum derivatives act through, while the effective scalar potential is given

by

Veff = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4 , (2.17)

where all derivatives stop after acting on the last function. The heat equation (2.14) now reads

more explicitly as

− ∂

∂β
K(x, x′;β) =

(
− 1

2
∂ig

ij(x)∂j + Veff (x)
)
K(x, x′;β) . (2.18)

At this stage we are ready to use the properties of Riemann normal coordinates, centered at

the point x′, to show that this heat equation simplifies further to

− ∂

∂β
K(x, x′;β) =

(
− 1

2
δij∂i∂j + Veff (x)

)
K(x, x′;β) , (2.19)

as on maximally symmetric space, in Riemann normal coordinates, one may replace the metric

gij(x) appearing in the term ∂ig
ij(x)∂j by the constant metric δij . Note that the heat kernel

equation (2.19) contains now an hamiltonian operator

H = −1

2
δij∂i∂j + Veff (x) (2.20)

which is interpreted as that of a particle on a flat space (in cartesian coordinates) interacting

with an effective scalar potential Veff of quantum origin (it would be proportional to ~2 in

arbitrary units).

For the replacement of gij(x) with δij to be valid, one must show that(
∂ig

ij(x)∂j − δij∂i∂j
)
K(x, x′;β) = 0 . (2.21)

To see this, we recall that x′ = 0 is the chosen origin of the Riemann normal coordinates, and

using the inverse metric given in (A.9) we find that the equation that we must verify takes the

form (
h(x)P ij(x)∂i∂j + ∂i

(
h(x)P ij(x)

)
∂j

)
K(x, 0;β) = 0 , (2.22)
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where the projector P ij(x) and the function h(x) are given by

P ij(x) = δij −
xixj
x2

(2.23)

h(x) = − f(x)

1 + f(x)
=

2(Mx)2

1− cos(2Mx)
− 1 , (2.24)

as discussed in Appendix A. The function h(x) is a function of only x2 = δijx
ixj , since it is even

in x ≡
√
δijxixj . This is a consequence of the maximal symmetry of the sphere. The explicit

evaluation of the derivatives appearing in (2.22) produces (recalling the orthogonality condition

P ijxj = 0)

h(x)P ij(x)∂i∂jK(x, 0;β) = 2h(x)δijP
ij(x)

∂

∂x2
K(x, 0;β)

= 2(d− 1)h(x)
∂

∂x2
K(x, 0;β) , (2.25)

and

∂i
(
h(x)P ij(x)

)
∂jK(x, 0;β) = −2(d− 1)h(x)

∂

∂x2
K(x, 0;β) . (2.26)

The two terms cancel each other, so that we have indeed verified eq. (2.22) and the correctness

of the heat kernel equation (2.19) for our problem.

To summarize, we are led to consider the euclidean Schrödinger equation

− ∂

∂β
K(x, x′β) =

(
− 1

2
δij∂i∂j + Veff (x)

)
K(x, x′;β) , (2.27)

valid in Riemann normal coordinates centered at x′, to describe the quantum motion of a particle

on a sphere. This equation can now be solved by a standard path integral

K(x, x′;β) =

∫ x(β)=x

x(0)=x′
Dx e−S[x] , (2.28)

where the action is that of a linear sigma model augmented by an effective potential

S[x] =

∫ β

0
dt

(
1

2
δij ẋ

iẋj + Veff (x)

)
. (2.29)

The required effective potential is

Veff (x) = −1

2
g−

1
4∂i
√
ggij∂jg

− 1
4 (2.30)

and can be computed in terms of the function f(x) given in (A.4) and (A.8) as

Veff (x) =
(d− 1)

8

[
(d− 5)

4

(
f ′(x)

1 + f(x)

)2

+
1

1 + f(x)

(
(d− 1)

x
f ′(x) + f ′′(x)

)]
(2.31)

or, more explicitly, as

Veff (x) =
d(1− d)

12
M2 +

(d− 1)(d− 3)

48

(
5(Mx)2 − 3 +

(
(Mx)2 + 3

)
cos(2Mx)

)
x2 sin2(Mx)

. (2.32)

The point x = 0 is the origin of the Riemann normal coordinates (say the north pole), and we

see that the effective potential becomes singular when x = π/M , i.e. at the south pole. We plot

the radial behavior of this potential in Figure 1. Note that the potential is basically flat around

x = 0, but diverges at x = π/M that corresponds to the south pole of the sphere, and which is

a coordinate singularity of the patch considered (the so-called normal neighborhood).
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Figure 1: Graphical representation of the effective potential for d = 4 and M = 1 (sphere of unit

radius).

3 Perturbative expansion

The path integral expression for the transition amplitude on a sphere in terms of the linear sigma

model (2.29) is much simpler than the corresponding one with the nonlinear sigma model with

lagrangian (2.1). In particular, its perturbative evaluation is straightforward as no perturbative

vertices are produced from the kinetic term and from the path integral measure, which is trans-

lational invariant. The only vertices are those without derivatives arising from the expansion of

Veff . They produce Feynman graphs that do not need any regularization.

Let us now describe the perturbative expansion of the transition amplitude (2.28) by con-

sidering coinciding initial and final points, x′ = x, which give the diagonal part of the heat

kernel K(x, x;β). This is enough to identify one-loop effective actions and anomalies in QFT

using worldlines. We must use Riemann normal coordinates centered at x′ = x, and in such

coordinates the diagonal heat kernel evaluated at the origin is denoted by K(0, 0;β).

To start with we rescale the time to τ = t
β to write the action in the form

S[x] =

∫ 1

0
dτ

(
1

2β
δij ẋ

iẋj + βVeff (x)

)
, (3.1)

which shows that, in an expansion for short times β, the leading behavior is due to the ki-

netic term, while the effective potential Veff gives perturbative corrections. The perturbative

expansion of the path integral is obtained by setting

S[x] = Sfree[x] + Sint[x] , (3.2)

with

Sfree[x] =
1

β

∫ 1

0
dτ

1

2
δij ẋ

iẋj (3.3)

Sint[x] = β

∫ 1

0
dτ Veff (x) , (3.4)

so that the transition amplitude at coinciding points x = x′ = 0 in Riemann normal coordinates

6



may be written as

K(0, 0;β) =
〈e−Sint〉
(2πβ)

d
2

, (3.5)

where 〈...〉 denotes a normalized correlation function with the free path integral weight. The

normalization is just the one of a free particle and corresponds to the exact path integral

performed with Sfree.

The free propagator for the dynamical variables xi(τ), vanishing both at τ = 0 and τ = 1

(Dirichlet boundary conditions with initial and final point fixed at the origin of the Riemann

coordinates), is obtained by inverting the differential operator of the kinetic term in (3.3) and

reads

〈xi(τ)xj(σ)〉 = −βδij [ ∂2τ ]−1(τ,σ) = −βδij∆(τ, σ) , (3.6)

where the Green function ∆(τ, σ) with vanishing Dirichlet boundary conditions is given by

∆(τ, σ) = (τ − 1)σ θ(τ − σ) + (σ − 1)τ θ(σ − τ)

=
1

2
|τ − σ| − 1

2
(τ + σ) + τσ , (3.7)

where θ(x) is the Heaviside step function (the regulated value θ(0) = 1
2 is not needed in the

evaluation of the perturbative corrections). The two expressions are equivalent, and one may

use the preferred one. The Green function ∆(τ, σ) satisfies the defining equation

∂2τ∆(τ, σ) = δ(τ − σ) , (3.8)

and the boundary conditions

∆(0, σ) = ∆(τ, 0) = 0 . (3.9)

We are now ready to evaluate perturbative corrections. They are obtained by expanding

the effective potential Veff , and computing the perturbative terms with an application of the

Wick theorem (i.e. calculating gaussian averages). Taylor expanding the potential (2.32) about

x = 0 produces

Veff (x) = M2d(1− d)

12
+M2(d− 1)(d− 3)

(
(Mx)2

120
+

(Mx)4

756
+

(Mx)6

5400
+

+
(Mx)8

41580
+

691(Mx)10

232186500
+

(Mx)12

2806650
+

3617(Mx)14

86837751000
+O

(
x16
))

, (3.10)

and the interaction vertices arising from it may be written as

Sint = β

∫ 1

0
dτ Veff (x) =

∞∑
m=0

S2m , (3.11)

where S2m is the term containing the power (x2)m, with x2 = ~x 2 = xixi. Their structure is of

the form

S2m = βM2+2mk2m

∫ 1

0
dτ (x2)m , (3.12)

where the overall power of M2 has been factored out, while the remaining numerical coefficients

k2m can be read off from (3.10).

The first term

S0 = βM2d(1− d)

12
(3.13)

7



is just a constant, and can be immediately extracted out of (3.5) to give

K(0, 0;β) =
e−S0+···

(2πβ)
d
2

(3.14)

also written more explicitly in terms of the scalar curvature R as

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
βM2

12
d(d− 1) + · · ·

]
=

1

(2πβ)
d
2

exp

[
βR

12
+ · · ·

]
. (3.15)

Notice that this result is exact for the three-sphere S3, as for d = 3 the remaining part of the

effective potential vanishes. This answer was obtained long ago by Schulman [29], who used the

fact that S3 coincides with the group manifold of SU(2).

The next correction is the first nontrivial one, and arises form the vertex S2. Expanding the

interaction term in (3.5) as

〈e−Sint〉 = e−S0(1− 〈S2〉+ · · · ) (3.16)

shows that one must compute the correlation function 〈S2〉. It identifies a loop graph of the

form

where the coefficient of the quadratic vertex is found from (3.10), and the propagator is the one

given in (3.7). Its calculation proceeds as follows

−〈S2〉 = −βM4k2

∫ 1

0
dτ δij〈xi(τ)xj(τ)〉 = β2M4k2 d

∫ 1

0
dτ ∆(τ, τ)

= −β
2M4

720
d(d− 1)(d− 3) , (3.17)

as the coupling k2 obtained from (3.10) is k2 = (d−1)(d−3)
120 , while the integral of the two-point

correlation function at coinciding points (σ = τ) gives∫ 1

0
dτ ∆(τ, τ) =

∫ 1

0
dτ (τ2 − τ) = −1

6
. (3.18)

This result can be exponentiated to account for the disconnected contributions arising from

such graphs at higher orders. Thus, at this perturbative level, we find the transition amplitude

K(0, 0;β) =
e−S0

(2πβ)
d
2

e−〈S2〉+O(β3) , (3.19)

which takes the explicit form

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
βM2

12
d(d− 1)− β2M4

720
d(d− 1)(d− 3) + · · ·

]
=

1

(2πβ)
d
2

exp

[
βR

12
− (βR)2

6!

(d− 3)

d(d− 1)
+ · · ·

]
. (3.20)

8



In a similar way one may proceed to higher orders. It is clear that all perturbative corrections

appear as powers of βM2, or equivalently βR, as verified by power counting. In this section we

wish to reach order β8, so that we must compute

K(0, 0;β) =
e−S0

(2πβ)
d
2

exp

[
−〈S2〉 − 〈S4〉︸︷︷︸

O(β3)

−〈S6〉+
1

2
〈S2

2〉c︸ ︷︷ ︸
O(β4)

−〈S8〉+ 〈S4S2〉c︸ ︷︷ ︸
O(β5)

−〈S10〉+ 〈S6S2〉c +
1

2
〈S2

4〉c −
1

3!
〈S3

2〉c︸ ︷︷ ︸
O(β6)

−〈S12〉+ 〈S8S2〉c + 〈S6S4〉c −
1

2
〈S4S2

2〉c︸ ︷︷ ︸
O(β7)

−〈S14〉+ 〈S10S2〉c + 〈S8S4〉c +
1

2
〈S2

6〉c −
1

2
〈S2

4S2〉c −
1

2
〈S6S2

2〉c +
1

4!
〈S4

2〉c︸ ︷︷ ︸
O(β8)

+O(β9)

]
. (3.21)

The calculation up to O(β6) was sketched in [1]. Here we continue through order O(β7) and

O(β8). As indicated by the notation 〈...〉c, it is enough to compute connected correlation

functions only, as the disconnected pieces have been automatically included by exponentiation.

We report the detailed calculations in Appendix B.

Adding all contributions, we summarize our final result for the heat kernel at coinciding

points

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
d(d− 1)

βM2

12
+ d(d− 1)(d− 3)

(
−(βM2)2

720

−(βM2)3

7!

2(d+ 2)

9

−(βM2)4

7!

(d2 + 20d+ 15)

360

+
(βM2)5

11!

8(d+ 2)(d2 − 12d− 9)

3

+
(βM2)6

13!

8(1623d4 − 716d3 − 65930d2 − 123572d− 60165)

315

+
(βM2)7

13!

16(d+ 2)(33d4 + 404d3 − 2510d2 − 6612d− 3915)

315

−(βM2)8

17!

8

45
(12405d6 − 810668d5 − 1953995d4 + 17853784d3 + 71217159d2

+92279700d+ 40157775) +O(β9)

)]
, (3.22)

which we present also in terms of the scalar curvature R (recall that R = M2d(d − 1) with

9



M = 1
a the inverse sphere radius)

K(0, 0;β) =
1

(2πβ)
d
2

exp

[
βR

12
− (βR)2

6!

(d− 3)

d(d− 1)
− (βR)3

9!

16(d− 3)(d+ 2)

d2(d− 1)2

−(βR)4

10!

2(d− 3)(d2 + 20d+ 15)

d3(d− 1)3

+
(βR)5

11!

8(d− 3)(d+ 2)(d2 − 12d− 9)

3d4(d− 1)4

+
(βR)6

13!

8(d− 3)(1623d4 − 716d3 − 65930d2 − 123572d− 60165)

315d5(d− 1)5

+
(βR)7

14!

32(d− 3)(d+ 2)(33d4 + 404d3 − 2510d2 − 6612d− 3915)

45d6(d− 1)6

−(βR)8

17!

8(d− 3)

45d7(d− 1)7

(
12405d6 − 810668d5 − 1953995d4 + 17853784d3

+71217159d2 + 92279700d+ 40157775
)

+O(β9)

]
. (3.23)

This exponential can be expanded keeping terms up to order O(β8) included, to read off the

heat kernel coefficients at coinciding points an(0, 0) for the integer n up to n = 8, defined by

K(0, 0;β) =
1

(2πβ)
d
2

∞∑
n=0

an(0, 0)βn . (3.24)

We will do this in the next section for conformal hamiltonians to extract the so-called type-A

trace anomalies.

4 The type-A trace anomalies

One may use the path integral calculation of the transition amplitude on a sphere to evaluate

the type-A trace anomalies of a conformal scalar field. We have performed this exercise in [1]

to test the correctness and usefulness of the linear sigma model approach. We are now ready

to extend those results to identify the trace anomalies in d = 14 and d = 16 dimensions. As

reviewed in [1], the trace anomaly of the conformal scalar field can be related to the transition

amplitude of a particle in a curved space by〈
Tµµ(x)

〉
QFT

= lim
β→0

Kξ(x, x;β) , (4.1)

where on the left hand side Tµµ(x) is the trace of the stress tensor of the conformal scalar in a

curved background, and the expectation value is performed in the corresponding quantum field

theory. The right hand side can instead be viewed as the anomalous contribution arising from

the QFT path integral measure regulated à la Fujikawa [30]. The regulator Hξ corresponds

to the kinetic term of the scalar quantum field theory, which is proportional to the conformal

laplacian. This is identified with the quantum hamiltonian Hξ of a particle in a curved space

Hξ =
1

2
(−∇2 + ξR) , ξ =

(d− 2)

4(d− 1)
, (4.2)

which must be used in evaluating the transition element Kξ(x, x;β) at coinciding points [9,10].

It is understood that the β → 0 limit in (4.1) picks up just the β-independent term, as divergent
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terms are removed by the QFT renormalization. This procedure selects the appropriate heat

kernel coefficient an(x, x) sitting in the expansion of Kξ(x, x;β), as in (3.24). To reproduce the

correct conformal hamiltonian (4.2) we must add a nonminimal coupling through an additional

constant potential

Vξ =
1

2
ξR , (4.3)

so that we must shift Veff → Veff +Vξ in (3.4). Its effect is to replace the leading term of (3.23)

by
1

(2πβ)
d
2

exp

[
βR

12
+ · · ·

]
→ 1

(2πβ)
d
2

exp

[
β

12
(1− 6ξ)R+ · · ·

]
(4.4)

to obtain the desired amplitude Kξ(x, x;β). Expanding Kξ(x, x;β) at the required order we

find the trace anomalies in d dimensions

〈
Tµµ(x)

〉
QFT

=
a d

2
(x, x)

(2π)
d
2

, (4.5)

which we list in Table 1, expressing the results also in terms of the sphere radius a = 1
M . Of

course, one may use Riemann normal coordinates centered at x, so that
√
g(x) = 1 and the

result in (3.23) is directly applicable.

d 〈T µ
µ〉 〈T µ

µ〉

2 R
24π

1
12πa2

4 − R2

34 560π2 − 1
240π2a4

6 R3

21 772 800π3
5

4 032π3a6

8 − 23R4

339 880 181 760π4 − 23
34 560π4a8

10 263R5

2 993 075 712 000 000π5
263

506 880π5a10

12 − 133 787R6

1 330 910 037 208 675 123 200π6 − 133 787
251 596 800π6a12

14 157 009R7

1 536 182 179 466 286 307 737 600π7
157 009

232 243 200π7a14

16 − 16 215 071R8

173 836 853 795 629 301 760 000 000 000π8 − 16 215 071
15 792 537 600π8a16

Table 1: Type-A trace anomalies of a conformal scalar field.

5 Alternative methods and checks

In the present section we check our results on the type-A trace anomalies of a conformal scalar

by using alternative approaches based on the ζ-function regularization. One method was used
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in [14] and later re-elaborated in [15]. Following the prescription reported in those references,

one finds that the type-A trace anomaly on a d-sphere is given by

〈Tµµ〉 =
Γ
(
d+1
2

)
2π

d+1
2 ad

ζYd(0) , (5.1)

where ζYd(s) is the ζ-function associated to the (eigenvalues of the) kinetic operator Yd of the

conformally-coupled scalar field on the sphere

Yd = −∇2 +
(d− 2)

4(d− 1)
R (5.2)

often called “Yamabe operator” in the mathematical literature. Its analytic continuation at

s→ 0 is given by 1

ζYd(0) =
1

(d− 1)!

(d−2)/2∑
p=0

Cp(d)

p+ 1

{(
1− 2−(2p+1)

)
B2p+2 − 2−2p

(
1

2
p+

1

4

)}
, (5.3)

where B2p+2 are Bernoulli numbers. The set of numerical coefficients Cp(d) is the solution of

the linear system

(n+ d− 2)!

n!
=

(d−2)/2∑
p=0

Cp(d)

(
n+

d− 1

2

)2p

, n = 1, . . . ,
d

2
. (5.4)

For d = 14, 16 they read

Cp(d) 0 1 2 3 4 5 6 7

d = 14 108056025
4096

−64408383
512

21967231
256

−308737
16

28743
16

−143
2

1 ∗

d = 16 −18261468225
16384

21878089479
4096

−3841278805
1024

230673443
256

−6092515
64

77077
16

−455
4

1

Table 2: Solutions of the linear system (5.4), for d = 14, 16.

which, inserted into (5.3), yield

d 14 16

ζYd(0) 157009
122594472000 − 16215071

62523180720000

(5.5)

and using these values into the general expression (5.1) produces the type-A trace anomalies

that match our results of Table 1.

1The expression below coincides with eq. (2.29) of [14], thanks to the identity

(d−2)/2∑
p=0

Cp(d) 2−2p = 0, which is satisfied

by the values of Cp(d) of Table 2, as one may check.
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More recently, within the AdS/CFT paradigm, it was shown how to directly reproduce the

ζ-function for a class of conformal operators [16]—see also [17] for a direct proof that does not

use holography. For the quadratic operator Yd this amounts to compute the following integral

ζYd(0) =
2(−)d/2

d!

∫ 1

0
dν

d/2−1∏
l=0

(
l2 − ν2

)
, d > 2 , (5.6)

which can be easily checked to reproduce (5.5).

6 Conclusion and outlook

Mastering the computation of scattering amplitudes that involve gravitons is an outstanding

task that keeps drawing the attention of many theoretical physicists—recently, for example,

several interesting papers have dealt with the issue of soft graviton insertions in scattering

amplitudes, see for example [31–35] or the pedagogical review [36]. From the worldline formalism

viewpoint, the main difficulty in tackling the computation of graviton scattering amplitudes

resides in the presence of derivative interactions in the nonlinear sigma model, that represents

the first quantized particle in a generically curved space. In the present paper, following the

developments of ref. [1], we have investigated further the use of an effective linear sigma model

to study the one-loop effective action of a scalar field in a maximally-symmetric curved space,

and its type-A trace anomaly in particular. In the literature, other and certainly more efficient

methods to compute type-A trace anomalies of conformal QFT’s are known—often based on

the ζ-function approach to compute determinants. However, unlike those methods, the present

approach is much more flexible, allowing for example to compute the off-diagonal parts of the

heat kernel and, in general, to give a worldline representation of the QFT observable that one

wishes to study, see for example the recent use of a worldline representation to relate different

quantities made in [37].

To extend further the use of the linear sigma model approach, it would be interesting to

prove its validity on arbitrary geometries, a possibility already envisaged in [12], but whose

implementation might be obstructed by backgrounds with less symmetries than the maximal

one.

Considering only spaces with maximal symmetries, a still useful extension would be the

introduction of worldline fermions, so to be able to consider N = 1 and N = 2 supersymmetric

generalizations, as needed in the worldline description of spin 1/2 and spin 1 particles. An

extension to arbitrary N would also allow to study higher spinning particles on maximally

symmetric spaces [38, 39]. In the nonlinear sigma model approach the regularizations and

counterterms for the supersymmetric version of the path integral of a particle in a curved space

have been most extensively analyzed at arbitrary N in [40]. A linear sigma model approach

would carry many simplifications and would certainly be welcome. In the case of spin 1/2,

one might wish to study from a worldline perspective the issue of the trace anomaly of a Weyl

fermion, where an apparent clash between the results of [41,42] and [43] has emerged. However,

to address that point with worldline methods requires mastering the use of a generic background,

as the conflicting result sits in the coefficient of a type-B trace anomaly.

13



A Geometry of maximally symmetric spaces and Rie-

mann normal coordinates

Maximally symmetric spaces are those that have a maximal number of isometries, namely

d(d+ 1)/2 for a d-dimensional space. Their curvature tensors can be expressed in terms of the

metric as

Rijmn = M2(gimgjn − gingjm) (A.1)

Rij = Rmi
m
j = M2(d− 1)gij (A.2)

R = Ri
i = M2(d− 1)d , (A.3)

where M2 is a constant which identifies the sectional curvature of the manifold. This constant

is positive on a sphere of radius a, where M2 = 1/a2, it vanishes for a flat space, and it is

negative for a real hyperbolic space. This exhausts the list of maximally symmetric spaces. For

simplicity in the main text we have considered spheres, but here we treat briefly real hyperbolic

spaces as well.

In the main text we use Riemann normal coordinates (for details see [44, 45], and [46–48]

for their application to nonlinear sigma models; the most accurate and explicit expansion of the

metric around the origin that we are aware of may be found in [49]). On spheres the sectional

curvature is positive, and we can take M = 1
a > 0. It is then easy to evaluate recursively all

terms in the expansion of the metric [50]

gij(x) = δij +

∞∑
l=1

clM
2l(−1)l(x2)lPij = δij + f(x)Pij , (A.4)

where xi denote now the Riemann normal coordinates centered around a point (the origin), Pij
indicates a projector given by

Pij = δij − x̂ix̂j , x̂i =
xi

x
, x =

√
~x 2 , (A.5)

and cl are coefficients that obey the recursion relation

cl =
2

(l + 1)(2l + 1)
cl−1 , c0 = 1 , (A.6)

and are found to be given by

cl = 2
4l

(2l + 2)!
. (A.7)

The series can be summed up to give

f(x) =
1− 2(Mx)2 − cos(2Mx)

2(Mx)2
, (A.8)

which was also reproduced in [50] (there is a misprint in Eq. (11) of [50], where a factor (x2)2

in the denominator should be replaced by x2). The present manuscript has the correct answer.

Note that the function f(x) does not have poles and it is even in x, so that it depends only

on x2 = ~x 2 = δijx
ixj . Note also that, because of the projector Pij one has the equality x2 =
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gij(x)xixj . It is now immediate to compute the inverse metric gij(x) and metric determinant

g(x) as

gij(x) = δij + h(x)P ij (A.9)

g(x) = (1 + f(x))d−1 , (A.10)

where

h(x) = − f(x)

1 + f(x)
. (A.11)

We recall again that on the right hand side of these formulae indices are raised and lowered

with the flat metric δij .

For completeness, we discuss the case of real hyperbolic spaces as well. Now the sectional

curvature is negative, M2 < 0. It can be obtained form the previous case by the analytic

continuation M → i|M |, with the imaginary unit i giving rise to the negative sign of the

sectional curvature, and |M | =
√
−M2. Performing this analytic continuation in (A.4) we find

that in the sum the minus signs from (−1)l get canceled

gij(x) = δij +
∞∑
l=1

cl|M |2l(x2)lPij = δij + f(x)Pij , (A.12)

and the sum now converges to the function

f(x) =
−1− 2(|M |x)2 + cosh(2|M |x)

2(|M |x)2
. (A.13)

Finally, the function f(x) vanishes in the flat space case, where Riemann normal coordinates

are just the standard cartesian coordinates. It may also be obtained as a smooth limit of the

curved cases, as f(x)→ 0 for M → 0.

B Perturbative calculations

We describe here the perturbative calculations needed to identify the corrections of order β7

and β8 to the transition amplitude (3.21). Lower orders have been computed in [1].

At order β7 we need to evaluate

− 〈S12〉+ 〈S8S2〉c + 〈S6S4〉c −
1

2
〈S2

2S4〉c (B.1)

where 〈...〉c indicates connected correlation functions. In reporting our intermediate results we

set M = 1 (sphere of unit radius), use the abbreviation ∆(τ1, τ2) ≡ ∆12 for the propagator,

and indicate the contributions from topologically distinct Wick contractions that give rise to

different powers of the dimension d, so to help for a verification of our intermediate results.

The different contributions are as follows

− 〈S12〉 = −β7k12
(
d6 + 30d5 + 340d4 + 1800d3 + 4384d2 + 3840d

)
︸ ︷︷ ︸

d(d+2)(d+4)(d+6)(d+8)(d+10)

∫ 1

0
dτ1 ∆6

11︸ ︷︷ ︸
1

12012

(B.2)

〈S8S2〉c = −β7k8k2
(

8d4 + 96d3 + 352d2 + 384d
)

︸ ︷︷ ︸
8d(d+2)(d+4)(d+6)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆2

12∆
3
11︸ ︷︷ ︸

− 1
8316

(B.3)

15



〈S6S4〉c = −β7k6k4


(

12d4 + 96d3 + 240d2 + 192d
)

︸ ︷︷ ︸
12d(d+2)2(d+4)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆2

11∆
2
12∆22︸ ︷︷ ︸

− 2
17325

+
(

24d3 + 144d2 + 192d
)

︸ ︷︷ ︸
24d(d+2)(d+4)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆11∆

4
12︸ ︷︷ ︸

− 1
13860

 (B.4)

− 1

2
〈S2

2S4〉c = −β7k22k4 4d(d+ 2)

2

∫∫∫
∆12∆13∆23∆33︸ ︷︷ ︸

13
56700

+

∫∫∫
∆2

13∆
2
23︸ ︷︷ ︸

1
5670

 . (B.5)

At order β8 we need instead

− 〈S14〉+ 〈S10S2〉c + 〈S8S4〉c +
1

2
〈S2

6〉c −
1

2
〈S2

4S2〉c −
1

2
〈S6S2

2〉c +
1

4!
〈S4

2〉c (B.6)

and the different contributions are now as follows

−〈S14〉 = β8k14

(
d7 + 42d6 + 700d5 + 5880d4 + 25984d3 + 56448d2 + 46080d

)
︸ ︷︷ ︸

d(d+2)(d+4)(d+6)(d+8)(d+10)(d+12)

∫ 1

0
dτ1 ∆7

11︸ ︷︷ ︸
− 1

51480

(B.7)

〈S10S2〉c = β8k10k2

(
10d5 + 200d4 + 1400d3 + 4000d2 + 3840d

)
︸ ︷︷ ︸

10d(d+2)(d+4)(d+6)(d+8)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆4

11∆
2
12︸ ︷︷ ︸

1
36036

(B.8)

〈S8S4〉c = β8k8k4


(

16d5 + 224d4 + 1088d3 + 2176d2 + 1536d
)

︸ ︷︷ ︸
16d(d+2)2(d+4)(d+6)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆3

11∆
2
12∆22︸ ︷︷ ︸

19
720720

+
(

48d4 + 576d3 + 2112d2 + 2304d
)

︸ ︷︷ ︸
48d(d+2)(d+4)(d+6)

∫ 1

0
dτ1

∫ 1

0
dτ2 ∆2

11∆
4
12︸ ︷︷ ︸

1
60060

 (B.9)
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1

2
〈S2

6〉c =
1

2
β8k26


(

18d3(d+ 2)2 + 144d2(d+ 2)2 + 288d(d+ 2)2
)

︸ ︷︷ ︸
18d(d+2)2(d+4)2

∫∫
∆2

12∆
2
11∆

2
22︸ ︷︷ ︸

491
18918900

+
(

72d3(d+ 2) + 576d2(d+ 2) + 1152d(d+ 2)
)

︸ ︷︷ ︸
72d(d+2)(d+4)2

∫∫
∆4

12∆11∆22︸ ︷︷ ︸
25

1513512

+
(

48d3 + 288d2 + 384d
)

︸ ︷︷ ︸
48d(d+2)(d+4)

∫∫
∆6

12︸ ︷︷ ︸
1

84084

 (B.10)

−1

2
〈S2

4S2〉c =
1

2
β8k24k2

32d(d+ 2)2


∫∫∫

∆2
12∆

2
23∆33︸ ︷︷ ︸

− 2
51975

+

∫∫∫
∆12∆13∆23∆22∆33︸ ︷︷ ︸
− 83

1663200



+ 64d(d+ 2)

∫∫∫
∆12∆13∆

3
23︸ ︷︷ ︸

− 1
34650

 (B.11)

−1

2
〈S6S2

2〉c =
1

2
β8k6k

2
2 24d(d+ 2)(d+ 4)


∫∫∫

∆2
11∆12∆13∆23︸ ︷︷ ︸
− 8

155925

+

∫∫∫
∆11∆

2
12∆

2
13︸ ︷︷ ︸

− 1
24948


(B.12)

1

4!
〈S4

2〉c =
1

4!
β8k42 48d

∫∫∫∫
∆12∆23∆34∆41︸ ︷︷ ︸

1
9450

. (B.13)

We may now insert the values of the coupling constants

k2 = (d− 1)(d− 3)
1

120

k4 = (d− 1)(d− 3)
1

756

k6 = (d− 1)(d− 3)
1

5400

k8 = (d− 1)(d− 3)
1

41580
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k10 = (d− 1)(d− 3)
691

232186500

k12 = (d− 1)(d− 3)
1

2806650

k14 = (d− 1)(d− 3)
3617

86837751000
(B.14)

found from (3.10), reintroduce the correct power of M , and add all terms to find the final

answer reported in (3.22) or equivalently in (3.23).
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