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Yolk sac macrophage progenitors traffic to the
embryo during defined stages of development
C. Stremmel 1,2, R. Schuchert1,2, F. Wagner1,2, R. Thaler1,2, T. Weinberger1,2, R. Pick2, E. Mass 3,4,

H.C. Ishikawa-Ankerhold1,2, A. Margraf2, S. Hutter5, R. Vagnozzi6, S. Klapproth7, J. Frampton8, S. Yona9,

C. Scheiermann2, J.D. Molkentin6,10, U. Jeschke 5, M. Moser7, M. Sperandio2, S. Massberg1,2,11,

F. Geissmann 3 & C. Schulz 1,2,11

Tissue macrophages in many adult organs originate from yolk sac (YS) progenitors, which

invade the developing embryo and persist by means of local self-renewal. However, the route

and characteristics of YS macrophage trafficking during embryogenesis are incompletely

understood. Here we show the early migration dynamics of YS-derived macrophage pro-

genitors in vivo using fate mapping and intravital microscopy. From embryonic day 8.5 (E8.5)

CX3CR1+ pre-macrophages are present in the mouse YS where they rapidly proliferate and

gain access to the bloodstream to migrate towards the embryo. Trafficking of pre-

macrophages and their progenitors from the YS to tissues peaks around E10.5, dramatically

decreases towards E12.5 and is no longer evident from E14.5 onwards. Thus, YS progenitors

use the vascular system during a restricted time window of embryogenesis to invade the

growing fetus. These findings close an important gap in our understanding of the develop-

ment of the innate immune system.
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Macrophages are important effectors of innate immunity.
They have a critical function in organ development,
maintenance of tissue homeostasis and host protection

during infection1. Furthermore, they have distinct functions in
chronic inflammatory diseases such as atherosclerosis, metabolic
disorders and cancer2–5.

Historically, macrophages were believed to originate exclu-
sively from bone marrow (BM)-derived monocytes after their
recruitment to tissues. However, first macrophage progenitors
develop in the YS, the first site of hematopoiesis in mammals6.
Fate mapping analyses and lineage tracing experiments have
indicated that tissue macrophages in many organs are of early
embryonic origin7–11. Macrophages have been proposed to
develop in the YS in two successive waves. First, primitive
macrophage progenitors appear around E7.25 in the YS and
predominantly infiltrate the brain after the onset of circula-
tion7,12–14. Second, multipotent erythro-myeloid progenitors
(EMP) develop from E8.25 onwards and are a major source of
tissue resident macrophages6,15,16. Substantially later, starting
from E10.5, hematopoietic stem cells (HSC) arise in the aorto-
gonado-mesonephros (AGM) region and migrate to the liver to
initiate fetal definitive hematopoiesis, which later shifts to the
BM17–19. In adult life, monocytes and other short-lived myeloid
cells are continuously replaced, whereas tissue macrophages can
self-renew and persist independently of definitive BM hemato-
poiesis for prolonged periods of time, potentially throughout
life8,16,20. However, even though macrophage trafficking during
early embryonic development is a prerequisite for establishing
this important component of the innate immune system, the
kinetics of this process have not been defined.

EMPs are characterized by expression of the receptor tyrosine
kinase KIT as well as the macrophage colony-stimulating factor 1
receptor (CSF1R). Subsequent differentiation into pre-
macrophages is indicated by expression of the fractalkine recep-
tor CX3CR1, whereas mature tissue resident macrophages addi-
tionally express F4/8012,21–23. Thus, these markers allow genetic
labeling and visualization of macrophage progenitors early during
embryonic development.

In this study, we present in vivo data of EMP and pre-
macrophage trafficking and proliferation in mouse YS and
embryo. We identify a restricted time frame in which these cells
travel from the YS to infiltrate the embryo via the bloodstream
before becoming phenotypically mature macrophages within their
tissue of residence.

Results
Intravital microscopy of YS macrophages. To visualize the early
development of macrophages in the mouse YS (Fig. 1a–f) and
their trafficking to the embryo (Figs. 1g–k and 2a–f) we estab-
lished an in vivo imaging strategy (Fig. 1b, c; Methods).

We first took advantage of Cx3cr1GFP/+ knock-in mice to
visualize pre-macrophages and macrophages21. Green fluorescent
protein (GFP)-labeling in Cx3cr1GFP/+ embryos corresponds to
the CX3CR1+ CD45+ c-KIT- (“A3-like”) population previously
characterized in vitro, while other hematopoietic lineages are not
labeled (Supplementary Fig. 1a–c)8,12. CX3CR1+ positive cells
were not detectable in the YS by epifluorescence microscopy at
E8.5; however, a rapidly expanding population of CX3CR1+ pre-
macrophages appeared shortly thereafter (Fig. 1d). Macrophage
numbers per area increased significantly in tissues during
embryogenesis. Maximum cell density was approximately 100
cells per microscopic field (400× 400 µm) in the YS and reached a
plateau by E12.5 with stable cell densities thereafter (Fig. 1d, e). In
parallel to the increase in cell numbers, CX3CR1+ pre-
macrophages underwent morphological changes from spherical

shape to mature cells with multiple dendrites (Fig. 1d) potentially
engaging in direct cell-to-cell contacts, as it is typically found in
adult tissues24. Moreover, pre-macrophages appeared partially
associated with vascular structures (Fig. 1f and Supplementary
Fig. 1d) and the first detection of CX3CR1+ pre-macrophages was
temporally correlated with the formation of a dense vascular
network (Fig. 1d, f and Supplementary Fig. 1d, e).

Trafficking of YS macrophage progenitors via the bloodstream.
To date two alternate routes have been postulated of how mac-
rophage progenitors enter the embryo, trans-tissue migration or
trans-vascular trafficking via the bloodstream7,13,22,25–27. To
address these two hypotheses, we directly imaged the trafficking
routes of YS macrophage progenitors during embryogenesis using
intravital microscopy. We observed CX3CR1+ pre-macrophages
entering the YS vasculature (Fig. 1g, Supplementary Movies 1, 2)
and traveling towards the embryo (Fig. 1h, i, Supplementary
Fig. 1g and Supplementary Movies 3–5). The majority of pre-
macrophages were trafficking in the YS bloodstream with an
average velocity of about 210 µm/s, while some CX3CR1+ cells
displayed slow surface translocation (rolling) at significantly
lower mean velocity of 25 µm/s (Fig. 1j, k and Supplementary
Fig. 1h). On occasion, pre-macrophages re-adhered transiently to
YS endothelial structures after their vascular infiltration (Sup-
plementary Movie 2). However, the biological meaning of these
transient interactions remains unknown.

Restricted time window of vasculature-mediated infiltration. In
vivo microscopy of the YS vasculature showed that CX3CR1+ cells
appeared in the bloodstream shortly after the formation of a vas-
cular network around E9 (Fig. 1i and Supplementary Fig. 1e)7,28.
Subsequently, we observed a rapid increase in intravascular pre-
macrophages trafficking to the embryo up to a maximum of about
30 cells/min at E10.5 in an average-sized vessel of about 60 µm in
diameter at this developmental stage (Fig. 1i and Supplementary
Fig. 1f, g). The highest number of pre-macrophages trafficking
through the bloodstream per minute was observed between E9.5
and E10.5. At E12.5 the number dropped by more than 90% and
no trafficking cells were observed at E14.5 (Fig. 1i, Supplementary
Movies 3–5).

Yolk sac macrophages in humans. The process of hematopoietic
development is conserved between mouse and humans29. In men,
the YS serves as the initial site of hematopoiesis and gives rise to
granulo-macrophage progenitors30,31. We collected fetal material
from week 9 of gestation to determine the phenotype of human YS
macrophages. YS macrophages were spherical as their mouse
counterparts, while mature macrophages in the placenta presented
the typical morphology of mature phagocytes with multiple den-
drites (Supplementary Fig. 2a, b). Besides the human macrophage
markers macrosialin (CD68) and epidermal growth factor module-
containing mucin-like receptor 2 (EMR2, CD312)32,33, macro-
phages of the human YS expressed CX3CR1 as in mice (Supple-
mentary Fig. 2a, b). Thus, we identified similarities between mouse
and human YS macrophages, opening the possibility of analogies
in their development. The surface expression of EMR2 is of
potential interest, since differential expression of EMR2 has been
linked to macrophage maturation33.

Trafficking concurs with vascular network formation. YS
CX3CR1+ pre-macrophages are located in close proximity to
vascular structures (Fig. 1f and Supplementary Fig. 1d), which is
consistent with histological reports34,35. In the embryo, the pri-
mary target for YS-derived pre-macrophages was the developing
brain, which is also characterized by the early establishment of a
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vascular network (Fig. 2a–f and Supplementary Movie 6)8,35.
Although some CX3CR1+ cells were found in close proximity to
the brain vasculature, they distributed throughout the head region
forming a dense cellular network (Fig. 2b, e and Supplementary
Movie 6). The infiltration of other tissues started thereafter
reaching comparable cell densities of about 80 CX3CR1+ cells/
microscopic field at E12.5 (Fig. 2b–d). Macrophage numbers in

YS and embryonic tissues remained stable from E12.5, supporting
the notion that infiltration of the embryo by tissue macrophage
progenitors was mostly completed at this time.

Trafficking is restricted to spherical-shaped macrophages. Next
we addressed whether alterations in cell morphology

0

10

20

30

40

50

b

Embryo with
surrounding yolk sac

Heated stage

Epifluorescence
microscope
with camera

c

d e

f

j
I

a

Wild type

Timed mating

E5.5 10.5 15.5
Birth

Yolk sac

Fetal hematopoiesis

8.5

Yolk sac (E16.5)

Y
ol

k 
sa

c

E8.5 E9.5 E10.5 E12.5

Y
ol

k 
sa

c 
(E

10
.5

)

8s0s 16s 32s24s

R
ol

lin
g 

(E
10

.5
)

E
nt

ry
 (

E
10

.5
)

0s

k

g

i

15s

Y
ol

k 
sa

c 
(E

10
.5

)

0

50

100

150

200 ***

0

100

200

300

400

500

5s

x

h

Cx3cr1
GFP/GFP

Cx3cr1 GFP/+

CX3CR1 CD31

C
X

3C
R

1+
 c

el
ls

/ m
in

ut
e

C
el

l v
el

oc
ity

 in
 µ

m
/s

Non
-a

dh
er

ing

Roll
ing

C
X

3C
R

1+
 c

el
ls

/
m

ic
ro

sc
op

ic
 fi

el
d 

(y
ol

k 
sa

c)

E8.
5

E9.
5

E10
.5

E11
.5

E12
.5

E16
.5

E8.
5

E10
.5

E12
.5

E14
.5

E16
.5

E18
.5

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02492-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:75 |DOI: 10.1038/s41467-017-02492-2 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


accompanying macrophage maturation were associated with
macrophage trafficking. Pre-macrophages in the bloodstream
displayed a spherical shape (Supplementary Movies 1–6). In
contrast, dendrite-shaped YS macrophages did not enter the
circulation or traveled through blood. The findings established
with epifluorescence imaging were confirmed by high resolution
spinning disc confocal microscopy in Cx3cr1Cre:Rosa26mT/mG

embryos (Fig. 3a, b and Supplementary Movie 7). Thus, altera-
tions in cell morphology correlate with restricted trafficking
potential of YS macrophages. In line with this, large numbers of
matured macrophages with dendrites remained in YS tissue after
E12.5 (Fig. 1d, e, i). Interestingly, respective macrophages with
mature morphology extended their dendrites into the YS tissue
and also into the vessel lumen (Fig. 3c–f and Supplementary
Movie 8).

YS macrophage trafficking is independent of MYB and
CX3CR1. Trafficking of pre-macrophages from the YS to the
embryo took place mostly between E9.5 and E10.5, significantly
decreased towards E12.5 and was not observed after E14.5
(Fig. 1i). This raised the possibility that pre-macrophage traf-
ficking was restricted by the onset of fetal definitive hematopoi-
esis. HSCs arise in the AGM region from E10.5 and are found in
the fetal liver by E12, where they produce hematopoietic cells36.
We therefore revisited macrophage development in mice lacking
fetal definitive hematopoiesis due to genetic absence of the
transcription factor MYB (Fig. 4a, b). From E9.5 through E16.5
CX3CR1+ cell numbers and densities in YS and embryonic tissues
were not altered in the absence of HSCs and their progeny
(Fig. 3c, d and Supplementary Fig. 3a–c)8,22. Using intravital
microscopy, we found that numbers and timing of pre-
macrophage trafficking from the YS to the embryo in Myb
knockout mice (Myb−/−:Cx3cr1GFP/+) were comparable to wild
type (Myb+/+:Cx3cr1GFP/+) littermates (Fig. 4e and Supplemen-
tary Movies 9, 10). Thus, onset of fetal definitive hematopoiesis
did not influence, or even restrict, pre-macrophage trafficking
from the YS. These data also showed that most CX3CR1+ cells
identified in tissues after the onset of fetal hematopoiesis were
derived from YS hematopoiesis but not from MYB-dependent
hematopoietic progenitors. This is noteworthy, because CX3CR1
is potentially expressed on various mature blood cells including
fetal liver and BM monocytes37, which could have biased our
analysis at later stages of embryonic development (i.e. from
E12.5). Further, our findings support the notion that YS-derived
tissue macrophages are independent of the transcription factor
MYB, which is consistent with previous reports8.

The chemokine receptor CX3CR1 mediates myeloid cell
trafficking in inflammation38–40 and macrophage colonization
of the mouse embryo occurs in a CX3CR1-dependent manner21.
We therefore addressed whether pre-macrophage trafficking was
modulated by CX3CR1. In E10.5 embryos we found an increased
cell density in the YS of Cx3cr1GFP/GFP mice, while cell densities
in embryonic tissues were decreased at this stage of development
as previously reported (Fig. 4f)21. However, the number of cells

per minute trafficking from the YS to the embryo was similar
between Cx3cr1GFP/GFP (functional knockout) and Cx3cr1GFP/+

littermates (Fig. 4g). Further, the different hematopoietic lineages
in the fetal liver were not altered by loss of one or both Cx3cr1
alleles (Supplementary Fig. 3d–f). Thus, the molecular cues
restricting macrophage migration from the YS to the embryo
remain to be determined.

Trafficking of CSF1R+ macrophage progenitors. The major
source of YS CX3CR1+ pre-macrophages are EMPs21, and we
have previously shown that they can be labeled using a CSF1R-
driven fate mapping system16. To define the trafficking dynamics
of CSF1R+ macrophage progenitors we first performed intravital
microscopy in Csf1rCre:Rosa26eYFP embryos (Fig. 5a). We
observed a strong increase in YFP+ cells in YS and embryonic
tissues during the early development with the spatiotemporal
distribution pattern being comparable to that of CX3CR1+ pre-
macrophages (Fig. 5b–g). It should be noted that EMPs have
multilineage (i.e. erythroid, megakaryocyte and myeloid) poten-
tial23,41, resulting in the labeling of other hematopoietic cells in
addition to macrophages16. Importantly, CSF1R+ cells traveled
with similar velocity to CX3CR1+ pre-macrophages in the YS
vasculature and the maximum number of trafficking progenitors
was reached between 9.5 and E10.5 in both models, thus showing
similar trafficking dynamics (Fig. 5b–d and Supplementary
Movies 11, 12).

While labeling of CSF1R-expressing cells is more efficient in
mice with constitutively active Cre recombinase as compared to a
tamoxifen (TAM)-inducible system, onset of fetal definitive
hematopoiesis may lead to a bias during microscopy of YS
macrophage trafficking. In order to label YS-derived CSF1R+ cells
and their progeny before the onset of fetal definitive hematopoi-
esis8, we crossed Csf1rMerCreMer mice with a Rosa26eYFP reporter
and applied a single dose of 4-hydroxytamoxifen (OH-TAM) to
induce expression of the yellow fluorescent protein (YFP) in a
temporally-controlled manner (Fig. 6a–g). YFP labeling in E10.5
progenitors was low when OH-TAM was injected at E7.5, but
increased about 6-fold when OH-TAM was injected at E8.5
(Fig. 6b, c), which is in line with previous reports that Csf1r
becomes active during maturation12,16,34. E8.5 OH-TAM injec-
tion labeled about 10–20% erythrocytes, granulocytes and
macrophages whereas cells of the lymphoid lineage were not
labeled, which is consistent with EMP multilineage potential
(Supplementary Fig. 4a–d)16,23.

YFP+ cells were first detected in the YS at E8.5 after OH-TAM
pulse labeling at E7.5. Approximately 12 h later, coinciding with
the onset of circulation, CSF1R+ cells could be also detected in
the embryo (Fig. 6d). Trafficking kinetics of YFP+ cells in
Csf1rMerCreMer:Rosa26eYFP embryos OH-TAM-pulsed at E8.5
were comparable with that of Csf1rCre:Rosa26eYFP and
Cx3cr1GFP/+ embryos analyzed earlier (Fig. 6g and Supplementary
Movies 13, 14). In general, infiltration of the embryo occurred
mostly between E9.5 and E12.5 in these mice confirming that the
trafficking of macrophages and their progenitors from the YS via

Fig. 1 Intravascular trafficking of CX3CR1+ YS pre-macrophages. a, b Schematic graphs of the mouse model (a) and the intravital imaging setup in
Cx3cr1GFP/+ mice (b). c E16.5 Cx3cr1GFP/+ embryo with surrounding YS and its dense vascular network. d YS tissue with CX3CR1+ pre-macrophages at
indicated time points. Pictures show a representative microscopic field of 400 × 400 µm. e Corresponding quantification of CX3CR1+ cells per microscopic
field of 400 × 400 µm; *** p< 0.001 (two-tailed Mann–Whitney test); graph shows median with interquartile range (±IQR, error bars). f In vivo YS staining
for the endothelial marker CD31 (red) in Cx3cr1GFP/+ (green) embryos at E10.5. g, h, j Images extracted from E10.5 video sequences of CX3CR1+ YS tissue
show a cell entering the vasculature (g, from Supplementary Movie 1) as well as intravascular non-adhering (h, from Supplementary Movie 3) and rolling
(j) cells. CX3CR1+ cells in focus are indicated by arrowheads; direction of flow from bottom to top (g), left to right (h), left to right (j). i Quantification of
intravascular CX3CR1+ cells in the YS in an average-sized vessel; median± IQR. k Velocity of intravascular non-adhering (n= 50) and rolling (n= 5)
CX3CR1+ cells in the YS at E10.5; median± IQR. Scale bars are 1 mm (c), 100 µm (d, f, g, h, j)
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the bloodstream was restricted to this well-defined time window
of development (Fig. 6g). The difference in the number of
trafficking cells at E12.5 between pulse-labeled Csf1rMerCreMer

(Figs 5 and 6f) and Cx3cr1GFP/+ (Fig. 1i) mice could reflect
CSF1R-labeling of EMPs as compared to matured “primitive”
macrophages, the latter having completed their emigration from
the YS at this time.

To dissect the different stages of macrophage development in
the YS, we harnessed Csf1rMerCreMer:Rosa26tdTomato:Cx3cr1GFP/+

mice, in which we combined the E8.5 CSF1R-mediated OH-TAM
pulse labeling approach with the constitutive Cx3cr1GFP/+ model
to identify maturing macrophages. By E10.25/E10.5 a large
proportion of CSF1R+ EMPs had acquired CX3CR1 (Fig. 6h,
Supplementary Fig. 4c), which is in line with the recent reports on
the sequence of macrophage maturation12,21. CSF1R+ CX3CR1+

pre-macrophages displayed a spherical shape and were frequently
found to be traveling to the embryo (Fig. 6h, Supplementary
Movies 3–5 and 7). F4/80 was expressed on mature macrophages
with dendrites. These cells were located throughout the YS and
often adjacent to YS vessels. They displayed reduced migration
capacity and did not travel intraluminally (Figs. 3, 6h and
Supplementary Movies 7, 8). Thus, trafficking of macrophage
progenitors to the embryo correlated with defined stages of their
development.

Expansion of CSF1R+ macrophage progenitors. The pro-
liferative potential of YS EMPs has previously been demonstrated
in vitro using clonogenic assays16. In Csf1rMerCreMer:Rosa26eYFP

embryos in vivo, E8.5 OH-TAM pulse-labeled CSF1R+ progeni-
tors displayed cell clusters in tissues (Fig. 6d, e and
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Supplementary Movies 13, 14). In the YS, cell clusters were
relatively large (about 20 cells) while in the embryo cell con-
glomerates mostly consisted of few YFP+ cells (2–7 cells) at E12.5
(Fig. 6e, f). This suggests that macrophage progenitors expand in
the YS before their emergence and further expansion takes place
inside the embryo. This is in line with the proliferation dynamics
of YS-derived EMPs in the fetal liver16 and of tissue macrophages
in the epidermis of adult mice42. Notably, in liver sections of 1
year-old Csf1rMerCreMer:Rosa26eYFP mice pulsed at E8.5, large
clusters of YFP+ Kupffer cells were present (Fig. 6i, j). Thus, the
patterns of expansion initiated during early embryonic develop-
ment can persist in adult mice. Future fate mapping experiments
harnessing multicolor reporter mice are necessary to proof
clonality of these cell clusters.

Trafficking dynamics of KIT+ EMPs. Application of a OH-TAM
pulse at E8.5 in Csf1rMerCreMer:Rosa26eYFP embryos effectively
labeled YS-derived EMPs (Supplementary Fig. 4b)16,43. However,
maturing macrophages that arise from the first (primitive) wave
of YS hematopoiesis may also be labeled once Csf1r has become
active6,44. Flow cytometry analyses of the YS revealed a CD16/32
+ KIT- population of primitive macrophages progenitors before

the first appearance of EMPs suggesting their independent origin
in line with previous reports (Supplementary Fig. 5a)12,23. Only a
few hours later KIT+ EMPs develop in the YS and seed the fetal
liver (Supplementary Fig. 5a–d) before they differentiate into
KIT- CX3CR1+ pre-macrophages as described previously (Sup-
plementary Fig. 5b, e)12,23.

To more specifically determine the trafficking of YS-derived
EMPs we carried out intravital microscopy in mice, in which Cre-
dependent recombination was under control of the Kit promoter.
KIT has previously been identified as a marker of EMPs12,45, and
distinguishes them from maturing YS macrophages and primitive
progenitors22,23. In order to label KIT+ progenitors, we crossed
KitMerCreMer mice with Rosa26mT/mG reporter mice and applied a
single dose of OH-TAM to induce GFP expression (Fig. 7a). In
KitMerCreMer:Rosa26mT/mG embryos, OH-TAM application from
E7.5 to E8.5 resulted in increased labeling of EMPs (Fig. 7b–d).
Intravital microscopy at E10.5 showed that numerous EMPs, or
their progeny, migrated to the embryo via the YS vasculature
(Fig. 7e, f and Supplementary Movie 15). Cells derived from Kit-
expressing progenitors thereby infiltrated all embryonic regions
including the brain (Fig. 7b, c, g). However, the number of
trafficking cells in E8.5 pulse-labeled KitMerCreMer embryos was
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lower than in E8.5 pulse-labeled Csf1rMerCreMer mice at E10.5,
when trafficking reached its maximum (Figs. 6g and 7e). The
difference might be explained by labeling of both EMPs and
differentiating “primitive” macrophages in the Csf1r-dependent
model. However, other factors such as differences in Cre
recombination efficiency might also play a role. In summary,
the experiments indicate that of the different cell types labeled by
applying a OH-TAM pulse, EMPs and their progeny represent an
integral part trafficking from the YS to the embryo, which is in
line with their role in seeding the fetal liver13,16,46.

Discussion
Our study provides a detailed characterization of early YS mac-
rophage development and trafficking to embryonic tissues in high
spatiotemporal resolution. Shortly after their appearance in the
YS, macrophage progenitors—in both EMP and pre-macrophage
stages—travel within the bloodstream to infiltrate the embryo.
The trafficking process reaches a maximum around E10.5 and is
mostly completed by E12.5. YS macrophages thereby traffic in
spherical mobile shape. A dendrite-rich form is acquired by YS-
derived macrophage progenitors once target tissues have been
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reached and further maturation proceeds. Thus, alterations in cell
morphology accompanying macrophage maturation correlate
with their distribution through the bloodstream (Fig. 8). How-
ever, the transition from round cells to dendritic macrophages
could be happening independently of the trafficking process
within tissues.

By applying intravital microscopy we provided direct evidence
that YS macrophage progenitors colonize the embryo via the
vasculature. There has been an ongoing debate on how YS
macrophages enter the embryo, that is, by trans-tissue migration
or trans-vascular trafficking via the bloodstream. The early
appearance of myeloid colony-forming units in embryonic blood
before the onset of fetal definitive hematopoiesis indicates trans-

vascular trafficking13. Further, infiltration of embryonic tissues by
EMPs and maturing macrophages is impaired in mice lacking a
heartbeat supporting the role of a functional circulation for
macrophage trafficking7,22,47,48,]. However, this model is limited
by its dramatic impairment of overall mouse physiology resulting
in early embryonic lethality49. In contrast to the data supporting
trans-vascular migration, it has been suggested for various species
that macrophages can colonize embryonic tissues independently
of blood vessels via extravascular routes25–27,35. In line with this,
functional circulation is not required for EMP emergence in the
YS22. We interpret our data to indicate that macrophage pro-
genitors infiltrate the embryo predominantly by intravascular
trafficking. However, the microscopy tools applied in this paper
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are suited for imaging fast intravital processes and, therefore, we
cannot quantify nor exclude trans-tissue migration.

Macrophage trafficking reached its maximum around E10.5,
and we detected hardly any intravascular CX3CR1+ pre-
macrophages after E12.5. Blood flow velocity in the YS vascu-
lature still increases at this gestational age in mice. It is half
maximal at E10.5 and does not reach a plateau before E13.550.
Therefore, flow velocity does not seem to relevantly contribute to
the trafficking of macrophages to the embryo. Further, trafficking
is not influenced by the onset of fetal definitive hematopoiesis as
demonstrated in Myb-deficient mouse embryos. The absence of
CX3CR1 chemokine receptor signaling resulted in higher mac-
rophage densities in the YS and impaired colonization of the
embryo21; however, the quantity of intravascular cells was not
altered. Thus, CX3CR1 does not affect intravascular trafficking of
macrophage progenitors from the YS, it might however alter
macrophage proliferation in the YS51 or modulate survival in
peripheral embryonic tissues52,53, which remains to be deter-
mined. The molecular cues regulating macrophage trafficking
from the YS to the embryo will need to be addressed in future
studies. In addition to potential soluble molecules in the YS
environment or cell surface receptors expressed on YS progeni-
tors, endothelium-derived signals have recently been reported to
modulate the seeding of macrophages in their destined tissue
within the embryo54.

YS hematopoiesis gives rise to multipotent cells that can
develop into fetal lymphoid progenitors55–58. The EMPs and pre-
macrophages progenitors pulse-labeled in Csf1rMerCreMer:
Rosa26eYFP embryos did not express markers of lymphoid cells.
Although we did not carry out clonogenic assays and we therefore
cannot formally exclude the lymphoid potential of trafficking
CSF1R+ cells22,59, our findings are in line with a recent study by
McGrath and colleagues who phenotyped purified EMPs and
demonstrated their lack of B-lymphoid potential23. Further,
lineage tracing in Rag1Cre:Rosa26eYFP mice indicated that tissue
macrophages develop independently of lymphoid-primed YS
progenitors59.

Using intravital microscopy, we show that YS macrophage
progenitors migrate to the embryo in both EMP and pre-
macrophage stages. This is in line with the concept that EMPs

travel to the embryo to colonize the nascent fetal liver before
E10.5, where they give rise to tissue macrophages and other
myeloid cells (Supplementary Fig. 4b)13,16,46. The observation
that more fluorescent cells were trafficking in E10.5
Csf1rMerCreMer embryos than in KitMerCreMer mice might be
explained by the labeling of both maturing macrophages derived
from primitive hematopoiesis and EMPs in the CSF1R-dependent
model, whereas pulse labeling in KitMerCreMer embryos is more
specific for fate mapping of EMPs23.

Most macrophage progenitors travel between E9.5 and E10.5;
however first pre-macrophages enter the embryo around E9.0
with the onset of functional circulation. This population of
macrophages predominantly infiltrates the embryonic brain
(Figs. 2a–d and 5f, g and Supplementary Fig. 3a–c). It is possible
that these cells arise from the first wave of KIT- CD16/32+ pri-
mitive progenitors6. However, this population might be hetero-
geneous and additional markers to unequivocally identify
primitive macrophages remain to be determined. In close tem-
poral proximity, emerging EMPs give rise to an increasing pool of
macrophage progenitors that seed all embryonic tissues.
Depending on the organ environment, these YS-derived resident
macrophages then persist (e.g. brain, liver) or are replaced by
circulating monocytes, either rapidly (e.g. intestine) or over time
(e.g. lung, serous cavities)7,16,60–62,]. In summary, our study
provides novel insights into the emergence of macrophage pro-
genitors from the YS, a key process in the establishment of the
innate immune system.

Methods
Mice. Cx3cr1GFP/+ 37, Cx3cr1Cre 9, Myb−/− 63, Csf1rCre expressing an improved Cre
sequence under control of the Csf1r promoter64, TAM-inducible Csf1rMerCreMer 65

and KitMerCreMer 66, as well as Rosa26eYFP 67, Rosa26mT/mG 68 and Rosa26tdTomato 69

reporter mice have been previously described. Csf1rCre and Csf1rMerCreMer were on
FVB/N background, all other mice were on C57BL/6J background (backcrossed for
at least 5 generations). Timed matings were carried out using 10–20 weeks old
mice. Embryos were analyzed at indicated time points without determining their
sex. Mice were maintained in a specific pathogen-free environment and fed stan-
dard mouse diet ad libitum. All animal procedures were performed in adherence to
our project licence (55.2-1-54-2532-181-13) issued by the German regional council
at the Government of Bavaria (Regierungspräsidium Oberbayern), Munich, Ger-
many, and by the Institutional Review Board (IACUC 15-04-006) of the Memorial
Sloan Kettering Cancer Center, New York, USA.

Timed matings and pulse labeling. Mice of desired genotypes were mated
overnight. Embryonic development was estimated considering midday of the
vaginal plug as embryonic day 0.5 (E0.5). Pregnant females were used for sub-
sequent experiments on indicated time points. For genetic cell labeling, we crossed
TAM-inducible Csf1rMerCreMer or KitMerCreMer with Rosa26eYFP or Rosa26mT/mG.
Recombination was induced in embryos by single injection of 75 µg per g (body
weight) of 4-hydroxytamoxifen (Sigma) into pregnant females at indicated time
points.

Intravital epifluorescence microscopy. Experiments were performed in deep
anesthesia. Access to the abdominal cavity of pregnant mice was provided by a
cesarean section. Depending on the developmental stage, intravital imaging was
predominantly carried out in separation from the mother animal (E8.5–E12.5) for
reasons of image quality or in continuous connection to the maternal circulation
(E12.5–E16.5). Quantity and velocity of trafficking CX3CR1+ cells in separated
E10.5 embryos was similar to embryos being in continuous connection to the
mother (Supplementary Fig. 1g, h). Imaging of all embryos was performed in a
heated environment in 37 °C PBS with continuous temperature monitoring.
Average sized vessels of the YS (Supplementary Fig. 1f) were imaged using an
Olympus BX51WI epifluorescence microscope with a Plan N 10x/0.25 or PlanApo
N 1.25x/0.04 objective for 3–15 min in different areas of the YS or the embryo
using the Olympus cell R imaging software. Maximum total imaging periods per
YS were about 60 min. Vascular borders were identified by spontaneous image
contrast in the GFP channel and confirmed by an intravital endothelial staining
with a rat anti-CD31 (PECAM-1) antibody (clone MEC 13.3, Biolegend, 1:100)
(Figs. 1f and 2e). Cell clusters were defined as a cell-to-cell distance <2 cell dia-
meters (Fig. 6f). After imaging, mice were sacrificed and embryos were used for
further analysis.

E9.5 E10.5 E14.5

Yolk sac Embryonic tissue

Fig. 8 YS-derived macrophages traffic during defined stages of
development. Graphical summary of morphology-dependent trafficking
dynamics: macrophage progenitors expand in the YS from E8.5 onwards.
They traffic to embryonic organs via vascular routes during a restricted
time frame until E14.5. This trafficking period is characterized by a spherical
cell shape. Along with progressive macrophage maturation an increasing
amount of dendrites is formed and macrophages lose intravascular
trafficking capacity
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Intravital spinning disc confocal microscopy. Experiments were performed in
deep anesthesia. Embryos were prepared as described above for intravital epi-
fluorescence microscopy. Analysis of YS-derived macrophage trafficking in real-
time in vivo was performed in Cx3cr1Cre:Rosa26mT/mG embryos (E9.5, E10.5) using
an upright spinning disk confocal microscope (Examiner, Zeiss, Germany)
equipped with a confocal scanner unit CSU-X1 (Yokogawa Electric Corporation,
Japan) and a CCD camera (Evolve, Photometrics, USA). Images were acquired with
a 20x/ 1.0 NA or a 63x/ 1.0 NA water immersion objective (Plan Apochromat,
Zeiss, Germany) using a laser with an excitation wavelength of 488 nm for the
detection of macrophages and a laser with an excitation wavelength of 561 nm for
the detection of the tomato fluorescence signal of all other tissues. Imaging and
image processing was performed using Slidebook 6.0.11 Software (3i, USA) and Fiji
(NIH, USA)70.

Antibodies for immunofluorescence. For cryosections of mouse tissues, we used a
rat anti-CD31 (PECAM-1) antibody (clone MEC 13.3, Biolegend, 1:50) and a
rabbit anti-GFP antibody (polyclonal, Invitrogen Life Technologies, 1:200). Cy3-
and Alexa 488-conjugated secondary antibodies (Dianova Immuno Research) were
added at a dilution of 1:500. For whole mount stainings we used a rat anti-CD31-
PE antibody (clone MEC13.3, Biolegend, 1:200), an armenian hamster anti-CD31
antibody (clone 2H8, Thermo Scientific, 1:500) and a rat anti-F4/80 antibody
(clone: Cl:A3-1, Biorad, 1:500). Secondary antibodies used were anti-armenian
hamster DyLight 405 (Jackson ImmunoResearch, 1:500) and anti-rat Alexa Fluor
647 (Invitrogen, 1:500). Nuclei were stained using Hoechst (Hoechst 33342,
ThermoFisher, 1:2000) or DAPI (ThermoFisher, 1 µg/ml).

Human cryosections were stained with a primary mouse anti-CD68 antibody
(clone CL1346, Sigma, 1:1000), rabbit anti-CD68 antibody (polyclonal, Sigma,
1:1000), rabbit anti-CX3CR1 (polyclonal, Abcam, 1:100), or rat anti-EMR2 (clone
W15101A, Biolegend, 1:100), as well as a secondary goat-anti-mouse IgG Cy2
antibody (Jackson ImmunoResearch, 1:100), goat anti-rat IgG Cy3 (Dianova,
1:100), goat anti-rabbit IgG Cy2 (Dianova, 1:100), or goat anti-rabbit IgG Cy3
antibody (Dako, 1:100). Nuclei were stained using Vectashield mounting medium
for fluorescence with DAPI (Vector Laboratories, 1.5 µg/ml).

Human samples and laser scanning confocal microscopy. Preparation and
analysis of human material was approved by the Institution’s ethics committee
(reference #337-06 amended 26/08/2013). The study protocol conformed to the
ethical guidelines of the 1975 Declaration of Helsinki and written informed consent
was obtained from each patient included in the study. Human samples were fixed
in 4% neutral buffered formalin, dehydrated and consecutively embedded in par-
affin. Blocks were sliced in 5 µm sections. Afterwards sample sections were washed
and stained with indicated primary antibody for 60 min at room temperature and
secondary antibodies for 30 min at room temperature. Confocal fluorescence
images were obtained with a LSM880 Zeiss microscope with a 20x/0,8 dry objective
and an Airyscan module. Images were acquired using ZEN software (Zeiss,
Germany).

Analysis of mouse liver sections. Timed matings were performed as described
above and Csf1rMerCreMer:Rosa26eYFP embryos were pulse-labeled at E8.5. 1 year
after birth, mice were euthanized under terminal anesthesia and livers were har-
vested. Organs were washed in PBS, fixed in 4% PFA and incubated in 30% sucrose
overnight at 4 °C. Samples were embedded in Tissue-Tek OCT (Sakura Finetek)
and cryoblocks were sliced into 15 μm sections. Sections were incubated in PBS
containing BSA (5%) and normal goat IgG (1:60). Primary antibodies were added
overnight at 4 °C. After washing, secondary antibodies were incubated for at least 2
h at room temperature. Nuclei were counterstained with DAPI. Sections were post-
fixed with PFA 1% for 1 min and mounted with mounting medium (Vector
Laboratories). Acquisitions were performed using a Leica TCS SP5 confocal
microscope (Leica Microsystems) with tile scan software and 10x/0.4 (dry) as well
as 20x/0.7 (water immersion) objective.

Microscopy of mouse whole mount stainings. YSs were mounted and visualized
using a Axio Imager.M2 microscope (Zeiss, Germany) with a 20x/0.75 Plan
Apochromat or 40x/0.8 Plan Neofluar objective and AxioVision Software (Zeiss,
Germany) (refers to data presented in Supplementary Fig. 1d, e). Alternatively, a
LSM880 Zeiss microscope with 40x/1.4 (oil) objective with ZEN black software
(Zeiss, Germany) was used and data was analyzed with Imaris software (refers to
data presented in Fig. 6g).

Flow cytometry of mouse embryonic tissues. Pregnant females were sacrificed
by cervical dislocation. Embryos ranging from embryonic day (E) 8.5 to E16.5 were
dissected out from the uterus and washed in 4 °C phosphate buffered saline (PBS,
Invitrogen). The YS, fetal liver or embryonic regions (brain, trunk, tail) were
harvested and digested in PBS containing 1 mg/ml Collagenase D (Roche), 100 U/
ml Desoxyribonuclease I (Sigma) and 1% fetal bovine serum (PAA Laboratories) at
37 °C. Tissues were mechanically dissociated and passed through a 100 μm cell
strainer (BD). Cells were centrifuged at 400 g for 5 min, resuspended in 4 °C PBS,
plated in multi-well round-bottom plates and immunolabeled for flow cytometry

analysis. Antibody mixes were added in 1% BSA/PBS and incubated for 20 min on
4 °C.

APC-Cy7-labeled anti-CD45.2 (clone 104) antibodies were from BD
Pharmingen. Brilliant violet 421-labeled anti-F4/80 (clone BM8), APC-labeled anti-
B220 (clone RA3-6B2), brilliant violet 421-labeled anti-CSF1R (CD115; clone
AFS98), Alexa 647-labeled anti- CX3CR1 (clone SA011F11), PE-labeled anti-CD4
(clone H129.19), PE-labeled anti-CD19 (clone 6D5), APC-labeled anti-IL7Ra
(CD127; clone A7R34), PE-labeled anti-Ter119 (clone Ter-119) and PE-labeled
anti-CD16/32 (FcgRIII/II; clone 93) antibodies were from Biolegend. APC-labeled
anti-KIT (CD117; clone 2B8) and PE-labeled anti-CD11b (clone M1/70) antibodies
were from BD Biosciences. APC-labeled anti-Gr1 (Ly6G; clone RB6-8C5)
antibodies were from eBiosciences. Flow cytometry was performed using a BD
Biosciences LSR Fortessa flow cytometer and data were analyzed using FlowJo 10.

Statistics. Data were tested for normal distribution using the D’Agostino &
Pearson omnibus test. In case of normal distribution, comparisons between groups
were calculated using unpaired, two-tailed Student’s t-test or one-way analysis of
variance ANOVA (with Tukey’s multiple comparisons test). If normal distribution
was not given, Mann-Whitney test or Kruskal-Wallis test (with Dunn’s multiple
comparisons test) was used. A p-value of <0.05 was regarded as significant. Data is
indicated as (***) p< 0.001, (**) p< 0.01, (*) p < 0.05, or not significant (n.s.) if p ≥
0.05. Data are are expressed as mean± standard deviation (SD) if normal, or as
median with interquartile range (IQR) if not distributed normally. Dots represent
individual values. All graphs and calculations were generated with GraphPad Prism
7 software.

Animal experiments were analyzed in a blinded manner where possible, i.e.,
when the genotype of the embryos was unknown at the time of experiments
(analysis of Cx3cr1GFP/+ vs. Cx3cr1GFP/GFP, and Myb+/+ vs. Myb−/− mice).

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information files.
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