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ABSTRACT Efficient antiviral immunity requires interference with virus replication
at multiple layers targeting diverse steps in the viral life cycle. We describe here a
novel flavivirus inhibition mechanism that results in interferon-mediated obstruction
of tick-borne encephalitis virus particle assembly and involves release of malfunc-
tioning membrane-associated capsid (C) particles. This mechanism is controlled
by the activity of the interferon-induced protein viperin, a broad-spectrum antivi-
ral interferon-stimulated gene. Through analysis of the viperin-interactome, we
identified the Golgi brefeldin A-resistant guanine nucleotide exchange factor 1
(GBF1) as the cellular protein targeted by viperin. Viperin-induced antiviral activ-
ity, as well as C-particle release, was stimulated by GBF1 inhibition and knock-
down and reduced by elevated levels of GBF1. Our results suggest that viperin
targets flavivirus virulence by inducing the secretion of unproductive noninfec-
tious virus particles via a GBF1-dependent mechanism. This as-yet-undescribed
antiviral mechanism allows potential therapeutic intervention.

IMPORTANCE The interferon response can target viral infection on almost every lev-
el; however, very little is known about the interference of flavivirus assembly. We
show here that interferon, through the action of viperin, can disturb the assembly of
tick-borne encephalitis virus. The viperin protein is highly induced after viral infec-
tion and exhibit broad-spectrum antiviral activity. However, the mechanism of action
is still elusive and appears to vary between the different viruses, indicating that cel-
lular targets utilized by several viruses might be involved. In this study, we show
that viperin induces capsid particle release by interacting and inhibiting the function
of the cellular protein Golgi brefeldin A-resistant guanine nucleotide exchange factor
1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and is essential in
the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel
putative drug target.
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The type I interferon (IFN) system is the first line of antiviral defense and an
important part of the intrinsic innate immune response that controls virus dissem-

ination and protects against serious disease. Binding of IFN to the IFN receptor activates
a signaling cascade that leads to the transcriptional activation of hundreds of IFN-
stimulated genes (ISGs), which encode proteins with diverse biological function where
some are potent antiviral proteins and part of the response against mammalian viruses
(1). The antiviral function of ISGs is only partially understood. However, it is well
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accepted that ISGs target different steps in the virus life cycle ranging from cell entry,
virus protein translation, genome replication, and exit of virus particles (reviewed in
reference 2).

The genus Flavivirus, within the family of Flaviviridae, comprises important human
pathogens transmitted by mosquitos and ticks, such as yellow fever virus, dengue virus
(DENV), West Nile virus, Zika virus, and tick-borne encephalitis virus (TBEV). These are
small (�50-nm), spherical, enveloped, positive-stranded RNA viruses. It is well known
that the type I IFN response is crucial for restricting different flaviviruses, and several
ISGs have been identified to restrict flavivirus growth. However, very little is known
about how specific ISGs target the assembly and release of virions. Prior to the
assembly of virions, a single polyprotein is translated from the viral RNA genome. The
polyprotein is cleaved into seven nonstructural proteins and three structural proteins.
Although the nonstructural proteins promote genomic replication and assembly, the
three structural proteins— capsid (C), prM/M (membrane and its precursor), and enve-
lope (E)—form the viral particles (3). The C proteins of all flaviviruses are highly basic,
which gives them the ability to bind the viral genomic RNA to form a nucleocapsid,
which buds into the endoplasmic reticulum (ER), acquiring a host-derived lipid bilayer
coated by the membrane-bound glycoproteins prM and E (4–6). From the ER, the virion
is transported along the secretory pathway toward the Golgi compartment, where the
maturation of carbohydrate groups on prM and E, as well as the cleavage of prM to M,
occurs (7). Finally, the mature virion is released by exocytosis (reviewed in reference 3).

Two major ISGs, tetherin and viperin (virus inhibitory protein, ER associated, IFN
inducible), have been shown to affect assembly and release of viruses (reviewed in
reference 2). Tetherin is encoded by the ISG BST2 and is localized within lipid rafts on
the cell surface, in the trans-Golgi compartment, and/or within recycling endosomes (8,
9). It inhibits release of human immunodeficiency virus type 1 (HIV-1) viral particles by
anchoring the virion to the plasma membrane (10), leading to internalization and
degradation (11, 12). Viperin, encoded by the ISG RSAD2, is highly induced in an
IFN-dependent or -independent manner (as reviewed previously [13]). Viperin is located
to the cytoplasmic side of the ER (14) and has a broad-spectrum antiviral activity against
many different enveloped viruses, e.g., DENV, West Nile virus, TBEV, hepatitis C virus
(HCV), HIV-1, influenza A virus, Sindbis virus, Chikungunya virus, and human cytomeg-
alovirus (13, 15–24). Viperin interferes with HIV-1 and influenza A virus budding from
the plasma membrane. It binds and inhibits farnesyl diphosphate synthase (FPPS), an
enzyme involved in isoprenoid biosynthesis, leading to altered fluidity of lipid rafts,
thereby interfering with virus budding (21, 22). Viperin also inhibits genome replication
of DENV and HCV by interacting with viral nonstructural proteins (15, 16, 23). The
antiviral mechanism(s) of action are poorly understood for most viruses and seem to be
dependent on the virus. However, viral or cellular proteins important in the viral life
cycle are often sequestered by viperin (21, 23, 25).

In this study, we show that type I IFN treatment interferes with the assembly of TBEV
virions. We identified that the viperin protein is responsible for this effect and dem-
onstrate that viperin interacts with and inhibits the function of the GBF1 (Golgi
brefeldin A-resistant guanine exchange factor 1) protein, a key factor for the secretory
pathway. This interaction affects the assembly of progeny virions by strongly increasing
the release of enveloped malfunctioning particles, thereby reducing the production of
infectious particles.

RESULTS
IFN treatment induces secretion of capsid protein. IFN and the expression of ISGs

can target almost any step of the viral life cycle. However, very little is known about the
effect of IFN on particle assembly and egress of flaviviruses. To study viral particle
release, we established an expression system that allows the generation of virus-like
particles (VLPs) composed of the structural proteins C, prM, and E (Fig. 1A) (26). This
system enabled us to study the secretion of VLPs into the supernatant of transfected
A549 cells (Fig. 1B). To test the influence of IFN-�, we compared intracellular and
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extracellular abundance of flavivirus protein and particles in presence or absence of
recombinant IFN-�B/D (Fig. 1B). The effect of IFN treatment on particle assembly was
measured by quantifying the ratio between secreted E and C proteins (VLP) and E and
C proteins in the cell lysate (Lysate). Surprisingly, compared to control treatment,
IFN-�B/D treatment led to a strong increase in C protein release, while the secretion of
E protein remained unaltered (Fig. 1B). Flavivirus C protein has not previously been
described to be secreted separately from the other structural proteins. To test this, only
TBEV C protein was expressed in A549 cells and found to be sufficient for protein
release (Fig. 1C). Again, treatment of transfected cells with IFN-�B/D led to an increase
of C protein secreted to the supernatant (Fig. 1C). Collectively, this suggested that type
I IFN affect the viral structural proteins differently, indicating that C and E proteins are
secreted by different mechanisms.

Capsid particles are membrane associated and exit the ER via a COPII depen-
dent mechanism bypassing the Golgi compartment. Since flavivirus C protein
secretion has not been described before, we set out to characterize the phenomenon
in detail. The C protein detected in the supernatant could be released from cells as
soluble proteins, protein aggregates, or membrane-associated proteins. To characterize
the nature of the secreted C protein, a flotation assay was performed. C protein floated
up and behaved (Fig. 2A, first row) in the same manner as Langat virus (LGTV; a
low-virulence member of the TBEV serogroup, which has been used extensively as a
nonpathogenic models for TBEV) and VLPs containing prM and E (Fig. 2A). This showed
that the C protein released from cells was membrane associated. After the addition of
detergent, the C protein was mainly found in the pellet (Fig. 2A, second row, fraction
6), confirming the membrane association. Analysis of the enriched C-particle fraction
using electron microscopy revealed particles with a round morphology similar to LGTV
and VLPs containing C, prM, and E (Fig. 2B).

It is generally assumed that flavivirus virions assemble in the ER and exit via the
conventional secretory pathway (7, 27), and lipid droplets have been suggested to play
a role in DENV encapsidation (28). However, to gain further information on the exact
localization of TBEV C protein, we performed confocal analysis of cells transfected with
plasmid encoding C-FLAG. The C protein was found in the nucleus and colocalized with
E and the ER marker calnexin (ER) but not with GM130 (Golgi matrix protein) and was

FIG 1 IFN-� induces the release of C protein from cells. (A) Schematic drawing of the experimental setup. (B) Release of CprME-VLPs in the
presence or absence of IFN-�B/D. A549 cells were transfected with plasmids expressing TBEV Hypr C-FLAG, prM, and E. At 8 h posttransfection,
10,000 U/ml IFN-�B/D was added, and the supernatant and cell lysate were harvested 48 h later. Supernatants were concentrated by
ultracentrifugation, and proteins were separated and detected using immunoblotting with the indicated antibodies. (C) Release of C protein in
the presence of IFN-�B/D. A549 cells were transfected with only C protein expression plasmid and treated as described in panel B, except that
C proteins were detected with rabbit anti-C antibody. Representative blots are shown; graphs show quantification (means and standard deviations
[n � 3]) of the Western blots, where C and E proteins in the supernatant were normalized to proteins C and E in the lysate. **, P � 0.01; *, P �
0.05 (Student t test).
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only in some cells associated with lipid droplets (Fig. 3A and B). To specifically block
COPII-mediated transport from the ER toward the ERGIC (ER-Golgi intermediate com-
partment) and Golgi compartment, a dominant-active mutant of the small GTPase Sar1
(Sar1-H79G) was overexpressed, together with prME or C, and progeny particles were
monitored. The Sar1 mutant binds to the ER and initiate the COPII coat protein
recruitment but is not able to detach from the ER, thereby blocking ER-to-Golgi-
compartment transport (29). The overexpression of Sar1-H79G blocked both prME-
particle and C-particle release (Fig. 3C and D), suggesting that COPII-mediated antero-

FIG 2 C protein is released as membrane-associated particles. (A) A flotation assay was used to determine
the membrane association of C protein, prME VLPs, or LGTV. Supernatant from HeLa cells, which were
transiently transfected with plasmids expressing C-FLAG or prM and E, and VeroB4 cells infected with
LGTV were concentrated by ultracentrifugation, followed by a flotation assay. The gradient was fraction-
ated from top to bottom and analyzed by immunoblot analysis. Representative blots from two inde-
pendent experiments are shown. (B) Morphology of VLPs and LGTV as determined by transmission
electron microscopy. Supernatant from cells transfected with C-FLAG or the structural proteins C, prM,
and E or infected with LGTV were harvested, concentrated by using a flotation assay, and analyzed by
negative staining after glutaraldehyde fixation. Representative images are shown.

FIG 3 E and C localize to the ER and prME VLP release is COPII and COPI dependent, whereas C-particle release is only COPII dependent. Intracellular localization
of C-FLAG with different cellular markers (A). HeLa cells were transfected with C-FLAG, fixed, and stained using antibodies against FLAG, calnexin (ER), and
GM130 (Golgi). Lipid droplets were stained with Bodipy 493/503 at 1 �g/ml. For a clear arrangement, the lipid droplets are colored red in the overlay. (B) HeLa
cells transfected with C-FLAG, prM, and E protein were stained with antibodies against FLAG and TBEV E. (C) Secretion of prME protein was analyzed in HeLa
cells transfected with or without Sar1 H79G (dominant-active mutant) by immunoblot analysis. (D) Immunoblot analysis showing the intracellular expression
of C and the secreted C in the presence or absence of Sar1 H79G. (E and F) Involvement of COPI during prME- or C-particle release. Immunoblot analysis showing
the intracellular expression of E and C, and also E and C secreted from transfected HeLa cells treated with 0.5 �g/ml BFA (E and F, respectively). Representative
blots are shown; the graphs show the quantification (means and standard deviations from n � 3 [C, D, and E] and n � 4 [F] Western blot experiments), where
protein in the supernatant (VLP) was normalized to protein in the lysate. Significance was calculated using a Student t test (*, P � 0.05; **, P � 0.01).
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grade transport is involved in the release of C particles. Next, the cells were treated with
brefeldin A (BFA), which blocks both retrograde transport via COPI vesicles and the
secretion from the trans-Golgi compartment via clathrin-coated vesicles and subse-
quently causes disruption of the Golgi apparatus (30). This leads to a collapse of the
Golgi compartment into the ER and thereby blocks the release of proteins via this
pathway (31). BFA efficiently inhibited the secretion of prME particles (Fig. 3E). How-
ever, BFA increased the secretion of C particles similar to the IFN treatment (Fig. 3F and
Fig. 1C).

Our data suggest that C protein is released as membrane-associated particles and
transported from the ER via a COPII-dependent mechanism. However, whereas virus
particles and prME VLPs use the classical COPI-dependent secretory pathway, the C
particles are released from the cell via a different mechanism, which is induced by both
BFA and IFN treatment.

Viperin enhances the release of TBEV capsid particles. To our knowledge, an ISG

that positively regulates and induce budding of particles has not been reported. TBEV
is budding into the ER and a prominent ISG that localizes to this compartment is
viperin. Viperin has previously been reported to inhibit assembly and egress of influ-
enza A and HIV-1 (21, 22) and inhibits TBEV replication (19). Interestingly, the effect on
TBEV particle release is greater than the effect on RNA replication (19), suggesting a
viperin activity on posttranscriptional level. Viperin colocalized with calnexin (Fig. 4A),
confirming it is localization to the ER. Moreover, we could colocalize viperin with C and
E protein (Fig. 4A), suggesting an involvement of viperin in particle formation.

To assay the effect of viperin on virus protein secretion, we cotransfected FLAG-
tagged C and viperin into 293 FLP-IN T Rex cells expressing prME upon addition of
tetracycline (tet). The accumulation of secreted proteins in the supernatant was ana-
lyzed by immunoblotting for E protein and C-FLAG, respectively. Expression of viperin
did not have an effect on TBEV prME-particle secretion (Fig. 4B) or NS1 protein secretion
(data not shown). However, the amount of released C protein increased drastically in
the presence of viperin (Fig. 4B). The positive effect on C protein release depended on
the dose of transfected viperin (Fig. 4C). In agreement with this, C particles were
detected in the supernatant by electron microscopy when C-FLAG and viperin were
coexpressed (Fig. 4D).

Next, we analyzed which domains in viperin were involved in the enhanced release
of C, using transient transfection of different mutated versions of viperin (Fig. 4E).
Truncation in the C terminus (Δ342-361) and the mutant in the radical SAM motif (M1)
did not impair the ability of viperin to induce secretion of C protein (Fig. 4F). However,
deletion of the N-terminal amphipathic alpha-helix (Δ1-50, also known as TN50 [19]),
which directs the protein to the ER (14) significantly reduced the potency of viperin to
promote C protein release (Fig. 4F and G).

To verify the antiviral effect of viperin on particle release during viral infection, 293
FLP-IN T Rex cells inducibly expressing viperin upon addition of tet were infected with
a high multiplicity of LGTV. Viperin showed a clear antiviral activity against LGTV
(Fig. 5), and the antiviral effect was stronger on released viral particles (Fig. 5B) and
infectivity (Fig. 5E) than on the viral RNA (Fig. 5D) and viral proteins in the cell lysate
(Fig. 5A). The total amount of C protein in the supernatant compared to the E protein
(Fig. 5B and C) was greatly enhanced in the presence of viperin (Fig. 5C).

Collectively, our data show that viperin induces C protein release both during viral
infection and in transient transfected cells expressing C protein. This function requires
localization to the ER and does not impair other cellular secretion systems.

Viperin interacts with GBF1 and induce C-particle secretion. Next, we aimed to

reveal the mechanism behind viperin-induced secretion of C particles. As no direct
interaction between viperin and C protein could be detected (data not shown), host
factors might be involved. We therefore used an affinity proteomics approach to study
cellular interaction partners of viperin. We precipitated wild-type (wt) viperin, the Δ1-50
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FIG 4 Viperin colocalizes with C and E and induces C-particle release via its N-terminal domain. (A) HeLa cells transfected with C-FLAG and viperin or with
C-FLAG, viperin-HA, prM, and E protein stained with antibodies against FLAG, HA, viperin, calnexin, and TBEV E. Representative confocal images are shown. (B)
Release of CprME-VLPs in the presence or absence of viperin. A 293 FLP-IN T Rex cell line inducibly expressing TBEV Hypr prME was treated with 1 �g/ml tet
and transiently transfected with wt viperin and TBE Hypr C 3� FLAG (C-FLAG). Western blot analysis showing the intracellular and secreted proteins. (C)
Dose-dependent release of C protein in the presence of viperin. HeLa cells were transfected with C-FLAG and increasing amounts of viperin (0.75, 1.5, 3, and
6 �g). (D) Morphology of C-FLAG particles by transmission electron microscopy. Supernatants from cells transfected with C-FLAG and viperin were harvested,
concentrated using a flotation assay, and analyzed by negative staining after glutaraldehyde fixation. Scale bar, 100 nm. A representative picture is shown. (E)
Schematic drawing of viperin mutants. (F) Secretion of C protein in the presence of wt and viperin mutants. HeLa cells were transfected with wt, Δ1-50,
Δ341-361, and mutant M1, together with plasmid encoding C–FLAG. (G) Dose-independent release of C protein in the presence of mutant Δ1-50. Increasing
amounts of plasmid expressing Δ1-50 were transfected into HeLa cells, together with C-FLAG. C protein release was measured with or without wt viperin
expression. Representative blots are shown; graphs show the quantification (means and standard deviations from n � 3 [B and C] and n � 2 [F and G] Western
blot experiments), where C in the supernatant is normalized to C in the lysate.
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viperin mutant, or GFP as a control and analyzed associated proteins by liquid chro-
matography coupled to tandem mass spectrometry (LC-MS/MS) (Fig. 6A).

We identified 115 proteins specifically binding to viperin or the Δ1-50 mutant (Fig.
6B and C; see also Table S1 in the supplemental material). Direct comparison of viperin
to the Δ1-50 mutant identified 34 proteins that were significantly more enriched in the
wt protein precipitates compared to precipitations with the mutant protein (Fig. 6D, red
and green dots). Ciao1 identified previously (19) is comparably well enriched by wt
viperin and Δ1-50 mutant, suggesting that the immunoprecipitation (IP) conditions
were similar overall. As additional filter method we considered the subcellular local-
ization of these proteins using annotations based on the Human Protein Atlas. This
analysis showed that the majority proportion of candidates localized to the nucleus.
However, three proteins ARL1 (ADP-ribosylation factor-like protein 1), RCN2 (ERC-55; ER
Ca2� binding protein, 55 kDa), and GBF1 (Fig. 6D, green dots) were annotated to
localize to the ER or the Golgi compartment. Of these proteins, ARL1 has been reported
to regulate intracellular trafficking between the plasma membrane, endosomes, and

FIG 5 Viperin induces LGTV C protein secretion during infection. 293 FLP-IN T Rex cells inducibly
expressing viperin were infected with LGTV and either treated with 1 �g/ml tet at the time point of
infection or left untreated. Cells and virus in the supernatant were harvested 48 h postinfection. (A)
Amounts of viral proteins E and C detected in cell lysate by Western blotting. (B) Supernatants were
concentrated by ultracentrifugation, and comparable levels of viral E proteins with or without viperin
were loaded and detected by Western blotting. The lower panel shows the corresponding C protein in
the supernatant. Representative blots are shown from three independent experiments. (C) Percentages
of E and C protein in the presence of tet-induced viperin compared to uninduced quantification (means
and standard deviations) in Western blots of E and C from the lysate (A) and released particles (B) from
three independent experiments. (D) LGTV RNA levels in the cell lysate measured by real-time RT-PCR. (E)
Plaque assay detecting the infectivity of progeny virions. Mean values and standard deviations (n � 6 [D
and E]). Significance was calculated with a Student t test (*, P � 0.0275; **, P � 0.01; ****, P � 0.0001).
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the trans-Golgi compartment (32). RCN2 has been shown to be a chaperone in the ER
and involved in signal transduction (33). GBF1 is a GTP-exchange factor (GEF), which is
involved in COPI trafficking. BFA treatment is known to inhibit COPI-coated vesicle
formation by binding to and stabilizing the GBF1-ARF1-GDP complex (34). Since BFA
induces C-particle secretion (Fig. 3F), the positive effect of viperin on C-particle release
could be explained by GBF1 targeting. We therefore set out to further study the

FIG 6 Identification of the protein interactome of viperin by mass spectrometry analysis and verification of GBF1. (A) Schematic representation of an affinity
purification/MS strategy. N-terminal FLAG-tagged viperin, Δ1-50 mutant, and GFP (as control) were expressed by tet treatment of 293 FLP-IN T-Rex cells that
contained a stably integrated transgene or not expressed when tet was omitted. Cells were lysed under mild lysis conditions, and proteins were precipitated
using FLAG beads. After precipitation and extensive washing, the proteins were digested with trypsin and LysC, and the peptides were purified and analyzed
by LC-MS/MS. (B and C) Volcano blots of proteins enriched in viperin wt (B) or Δ1-50 (C) precipitates compared to the GFP background control. The hyperbolic
line delineates nonsignificantly to significantly enriched proteins. (D) Two-dimensional scatter plot comparing proteins enriched in viperin or the Δ1-50 mutant.
Colors: red, significant changes versus the background (two-tailed Welch’s t test [cutoff: FDR � 0.001 with S0 � 1]); green, significant candidates with association
with ER or the Golgi compartment. (E and F) Coimmunoprecipitation analysis shows the interaction between viperin and GBF1. FLAG-tagged viperin was
immunoprecipitated with anti-FLAG antibody either from extracts of HEK293T cells transfected with FLAG-tagged viperin and YFP-tagged GBF1 (E) or only
FLAG-tagged viperin (F). (G) Coimmunoprecipitation analysis of endogenous GBF1 and viperin mutants. HEK293T cells were transfected with plasmids
expressing FLAG-tagged wt viperin, Δ1-50, Δ341-361, M1, HCV NS5a-Δ1-50, or 1-50 mutant and immunoprecipitated with FLAG antibody. HCV NS5a-Δ1-50 is
a chimera with the HCV-NS5a amphipathic alpha helix fused to the viperin Δ1-50 mutant (19). Immunoblots show protein input, and immunoprecipitation (IP)
graphs show the quantification of IP GBF1 (means and standard deviations from three independent experiments).
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interaction between viperin and GBF1. The interaction between viperin and GBF1 could
be confirmed by coimmunoprecipitation of both transiently transfected and of endog-
enous GBF1 (Fig. 6E and F). Mapping of the interaction domain revealed that the 50 first
amino acids of viperin containing the amphipathic alpha-helix were important for the
binding GBF1 (Fig. 6G), further confirming the mass spectrometry data.

To gain additional knowledge on the subcellular localization of viperin and GBF1, we
assessed the subcellular localization of both proteins. Live cell imaging analysis of
mCherry-viperin and eGFP-GBF1 showed that eGFP-GBF1 localized to vesicular struc-
tures surrounded by viperin (Fig. 7A). The colocalization between GBF1 and the
N-terminal 1 to 50 amino acids of viperin in such structures was even more pronounced
(Fig. 7B), confirming the coimmunoprecipitation results and suggesting a critical role of
the viperin N terminus in these assays. The steady-state distribution of GBF1, together

FIG 7 Viperin sequester GBF1 to induce C-particle release. (A) HeLa cells transiently expressing eGFP-GBF1 and mCherry-viperin analyzed in
Live-cell confocal spinning disc microscopy show the colocalization of GBF1 and viperin. Arrowheads indicate vesicular structures. (B) Colocal-
ization of the overexpression of viperin 1-50 and eGFP-GBF1 in HeLa cells. (C) Overexpression of mCherry-viperin in HeLa cells and localization
of endogenous GBF1 relative to the Golgi marker GM130. Representative confocal images of nontransfected control cells (upper row) and cells
transfected with mCherry-viperin (lower row) are shown. The involvement of GBF1 during C (D)- or prME (E)-particle release was assessed.
Immunoblot analysis shows the intracellular expression of C (in the presence or absence of viperin) and E, as well as the secreted C and E in
transfected HeLa cells treated with 10 �M Golgicide (GcA), a specific GBF1 inhibitor. (F) Effect of availability of wt GBF1 on the release of C protein.
HeLa cells were transfected with GBF1-YFP to increase cellular amounts or with CRISPR Cas9 GBF1 plasmid to knock down the cellular GBF1 level.
The amounts of protein in the supernatant and cell lysate were measured by immunoblotting at 48 h after the second transfection. Representative
blots are shown; graph show the quantification (means and standard deviations from a minimum of n � 4 Western blot experiments [D to F]),
where C or E in the supernatant is normalized to C and E in the lysate. Significance was calculated using a Student t test (*, P � 0.05; **, P � 0.01).
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with the Golgi marker GM130, was not altered in the presence of viperin (Fig. 7C). To
clarify whether the function of GBF1 is involved in C-particle secretion, we used a
specific GBF1 inhibitor, Golgicide. Cells transfected with plasmids expressing C-FLAG
and/or viperin were treated with Golgicide, and the effect on C protein release was
evaluated by immunoblotting as described before. Notably, the inhibition of GBF1 by
Golgicide strongly induced secretion of C particles, especially in the presence of viperin
(Fig. 7D). Importantly, no effect of Golgicide was detected on prME secretion (Fig. 7E),
confirming a selective function of GBF1 in flavivirus protein release. To test the
functional relationship between viperin and GBF1, the production of C particles was
analyzed during modulated cellular levels of GBF1 and in the presence of viperin (Fig.
7F). Viperin-induced increase of C-particle release could be inhibited by overexpression
of YFP-GBF1, and transient knockdown of GBF1 with CRISPR Cas9 induced the C-particle
release (Fig. 7F), confirming a functional interaction between viperin and GBF1 and, in
addition, the importance of GBF1 in the assembly of TBEV.

Taken together, our data demonstrate that viperin inhibits the function of GBF1,
leading to the selective release of C particles. This decreases the total number of
infectious TBEV particles and thereby reduces the overall infectivity.

DISCUSSION

Very few studies have focused on the antiviral action of ISGs targeting the assembly
of virions. Here, we show that type I IFN interferes with flavivirus assembly by inducing
unproductive capsid particle release. We found that the IFN-stimulated protein viperin
mediates this host cell response by interacting and interfering with the cellular protein
GBF1, which is a central molecule in vesicle budding and remodeling of membranes.
GBF1 has previously been shown to play a central role in the life cycle of many RNA
viruses, which utilize vesicular trafficking for targeting of viral proteins, and cellular
membranes in their replication cycle and assembly process (35–39). We found that
interfering with GBF1 induce egress of membrane associated C particles, while leaving
secretion of prME particles unaffected.

Particle assembly of flavivirus virions occurs by nucleocapsid budding into the ER
acquiring the E and prM envelope near the replication complex (6, 40, 41). Secretion of
both C particles and prME VLPs were found to be dependent on the conventional COPII
secretory pathway, whereas only prME VLPs appeared be released via the Golgi
compartment through conventional secretion, in a way similar to that described for
other flaviviruses (7). C particles, however, are released from the cell via a different
mechanism, which is induced by BFA, Golgicide treatment, and viperin expression.

Both viperin and GBF1 are able to peripherally attach to membranes of the ER, and
viperin seems to affect protein secretion when membrane associated. Viperin has been
shown to target the ER membrane via its N-terminal amphipathic helical domain (14,
19). This domain has also been found to induce crystalloid ER and thereby rearranging
the smooth ER membranes into a lattice-like pattern (14). We demonstrate here that the
enhanced secretion of C protein by viperin was dependent on its N terminus and
binding to GBF1. Interestingly, the N-terminal domain of viperin seems to be very
important for viperin function since the numbers of cellular proteins interacting with
the mutant lacking the amphipathic helix were very low (see Table S1 in the supple-
mental material). This indicates that the intracellular localization of viperin to the ER
membrane or the N-terminal itself is important for protein-protein interaction. This
domain in viperin is also important for the inhibition of Chikungunya virus (18), TBEV
(19), and HCV (16) and directly mediates the binding to GBF1. GBF1 normally regulates
membrane dynamics in the secretory pathway, and most RNA viruses rely on cellular
vesicular trafficking for proper intracellular localization of viral proteins. GBF1 is impor-
tant in the life cycles of several different viruses: GBF1 is necessary for RNA replication
of DENV, HCV, and SARS coronavirus (35–37), for particle assembly of Ebola virus and
influenza A virus (38, 39), and for targeting of DENV C protein to lipid droplets, which
is important for DENV infection (36, 42). An interaction between DENV C protein and
the N-terminal of viperin has been shown (15). This interaction occurred at the interface
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of lipid droplets (15), a hub for DENV assembly (28). Interestingly, a physical interaction
between viperin and TBEV C protein could not be detected and thus might not be
necessary for the induced secretion of C particles. Immunofluorescence analysis re-
vealed that the N-terminal region of viperin localized to vesicular structures, together
with GBF1 in agreement that this region is sufficient to target GBF1. It can be envisaged
that modulation of GBF1 by viperin would potentially modulate all of the above-
mentioned functions both in the presence and in the absence of interaction between
viperin and viral proteins and therefore constitute a widely used mechanism to impair
virus spread.

Viperin increases the secretion of membrane-associated C protein but does not
affect the transport and release of transmembrane protein prME or vesicular stomatitis
virus glycoprotein (14). Similarly, inhibiting GBF1 with BFA completely blocks secretion
of prME VLPs and soluble proteins (43) but induces the secretion of TBEV C particles,
indicating that proteins are selectively loaded in transport vesicles and viperin affects
protein secretion differently, depending on whether they are soluble, membrane-
associated, or transmembrane proteins. This selectivity also suggests that cells express-
ing viperin can reduce viral assembly specifically while leaving the cytokine release
untouched.

The membrane association of C protein observed in this study is probably mediated
via a hydrophobic domain within the C protein. A similar type of hydrophobic mem-
brane association of the C protein has been suggested for DENV, yellow fever virus, and
West Nile virus (44, 45) and even tick-borne flaviviruses (LGTV, Powassan, and TBEV).
Notably, the C protein appears to have an intrinsic ability in vitro to assemble into
particles even in the absence of membranes (46, 47). However, assembly and release of
capsid particle in cell culture have not been previously reported for flaviviruses.
Interestingly, naked capsid-like HCV particles have been reported in vivo (48–50), raising
the possibility that viperin might be involved in inducing secretion of such capsid-like
HCV particles. We found that the membrane association of the TBEV capsid particles
was quite sensitive to mechanical stress; therefore, it could be that the HCV C particles
are also secreted with a membrane that is lost shortly after cellular release. HCV C
particles are taken up by clathrin-mediated endocytosis in human hepatoma cells
(48, 51) and can induce an immune response by modifying specific phenotypic and
functional markers in T cells (52). TBEV C particles may have a similar immune modular
capacity. A potential antiviral purpose of C-particle secretion could be multifarious
ranging from being a side product of disturbed viral assembly, thereby reducing the
overall infectivity, to having paracrine or endocrine functions, as reported for HCV
(48, 52).

Taken together, we show that IFN selectively induces TBEV C-particle release from
cells and that the ISG viperin expression increases C-particle release after infection. We
identified GBF1 as a novel interaction partner to viperin. The mechanism behind the
induced release of C particles seems to depend on the ability of viperin to interact with
GBF1. Viperin is known to have an antiviral effect against a broad range of viruses such
as DENV, HCV, influenza A virus, and Chikungunya virus (15, 18, 21, 25). Most of these
viruses use GBF1 for their life cycles (35, 39, 53), suggesting that the viperin-GBF1
interaction might be relevant for the antiviral defense against many different viruses
and identifying GFB1 as a novel putative drug target for antivirals.

MATERIALS AND METHODS
Cells, viruses, and reagents. Simian Vero B4 cells were grown in M199 (Invitrogen), and human lung

carcinoma cells (A549), HeLa cells, and HEK293T cells were grown in Dulbecco modified Eagle medium
(DMEM), both supplemented with 5% fetal calf serum (FCS) and penicillin-streptomycin. Human 293
FLP-IN T Rex cells inducibly expressing wt viperin were kindly provided by Ju-Tao Guo. Human 293 FLP-IN
T Rex cells (Invitrogen) inducibly expressing TBEV Hypr E and prM protein were generated according to
protocol (Invitrogen). Human 293 FLP-IN T Rex cells were propagated in DMEM supplemented with 5%
tetracycline-negative FCS (PAA) and penicillin-streptomycin. For induction, 1 �g/ml tetracycline (Sigma)
was used. Langat strain TP21 (kindly provided by Gerhard Dobler, Bundeswehr Institute of Microbiology,
Munich, Germany) was propagated in Vero B4 cells under biosafety laboratory 2 conditions. BFA stock
solution was 5 mg/ml in ethanol (Sigma). Golgicide (Sigma) stock solution was 17 mM in dimethyl
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sulfoxide. The recombinant human IFN-�B/D hybrid (54) (kindly provided by Peter Stäheli, Institute of
Virology, Medical Center University of Freiburg, Freiburg, Germany).

Plasmids. Expression plasmids encoding TBE Hypr C, C 3� FLAG, prM, and E (41)—as well as human
wt viperin, Δ1-50 (TN50), Δ342-461 (TC20), and M1 mutant viperin—and N-terminally FLAG-tagged wt
and mutated viperin in the eukaryotic expression vector pI.18 or pcDNA 3.1 have all been described
previously (19). The YFP-GBF1-wt plasmid (34) was kindly provided by Catherine L. Jackson, Institut
Jacques Monod, University Paris Diderot, Paris, France. The eGFP-GBF1-wt plasmid was generated from
the YFP-GBF-wt plasmid by site-directed mutagenesis. The pIRES DsRed2 Sar1 H79G (active mutant)
plasmid (55) was kindly provided by Hirofumi Kai, Kumamoto University, Kumamoto, Japan. The
mCherry-viperin was constructed by lifting viperin from pI.18 into a mCherry backbone. Transfection was
performed with Nanofectin (PAA) or GeneJuice (Novagen) according to the manufacturer’s protocol; the
transfection efficiency ranged between 40 and 80%.

Antibodies. Primary antibodies were directed against TBEV E (mouse monoclonal antibodies 1493.1
and 1786.3 [56]). TBEV C protein polyclonal antibody was generated in rabbits by immunization with
peptide CMVKKAILKGKGGGPPRRVSK according to a standard protocol (Agrisera). Additional primary
antibodies included the following: actin (rabbit polyclonal; Sigma), FLAG epitope (mouse monoclonal M2
[Stratagene]; chicken polyclonal [Abcam]; and rabbit polyclonal [Sigma]), HA epitope (rabbit polyclonal;
Abcam), viperin (rabbit polyclonal and mouse monoclonal; Abcam), calnexin (rabbit polyclonal and
mouse monoclonal; Abcam), GM130 (mouse monoclonal; BD Biosciences), beta-tubulin (rabbit poly-
clonal; Abcam), eGFP (rabbit polyclonal; Invitrogen), and GBF1 (rabbit polyclonal [Abcam], rabbit poly-
clonal [Invitrogen]). Secondary antibodies included goat anti-chicken Alexa Fluor 488 (Invitrogen), goat
anti-chicken Alexa Fluor 555 (Abcam), donkey anti-mouse Alexa Fluor 488/555 and donkey anti-rabbit
Alexa Fluor 488/555 (Invitrogen), goat anti-mouse Alexa Fluor 647 (Life Technologies), goat anti-rabbit
Alexa Fluor 488 (Life Technologies), and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
and goat anti-mouse IgG secondary antibody (Thermo Fisher).

Immunoblotting. The cells were lysed, and proteins were separated by SDS-PAGE and Western
blotting was performed as previously described (19). The membrane was incubated with primary and
HRP-conjugated secondary antibodies (Pierce). Detection was performed by using a SuperSignal West
Pico or Femto kit (Pierce). For semiquantitative analysis, the Gel Analyzer program in Fiji/Image J was
used.

Immunofluorescence. Cells were grown on coverslips to 20 to 40% confluence, transfected, and
incubated for 24 h. Cells were washed, fixed, and stained with antibodies. Confocal images were acquired
using a Nikon A1R laser scanning confocal microscope (Nikon) with a 60� oil immersion lens (Plan-
Apochromat VC) under the control of NIS-Elements microscope imaging software (Nikon). For live-cell
microscopy, 140,000 HeLa cells were seeded in a 35-mm MatTek glass-bottom dish. Cells were transiently
transfected with eGFP-GBF1 and mCherry-viperin using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s recommendations. After 8 h, the transfection medium was replaced with fresh medium,
followed by incubation for another 16 h. Spinning-disc confocal live-cell microscopy was performed at
5% CO2 using a 63� objective lens (Plan-Apochromat 1.40 Oil DIC M27) in a Cell Observer spinning disc
confocal microscope system (Andor iXon Ultra; Zeiss) controlled by ZEN software. Image analysis and
preparation were completed using ImageJ and Adobe Photoshop CS5.

Viral infection, quantification, and titration. LGTV infection and viral titers were determined by a
focus-forming assay as previously described (41). Total RNA was isolated at 48 h postinfection using
NucleoSpin RNA II kit (Macherey-Nagel) as previously described (41), and cDNA was synthesized from 500
ng of RNA using a QuantiTect reverse transcription kit (Qiagen) according to the manufacturer’s
instructions. mRNA expression of actin was detected by a QuantiTect primer assay (Qiagen) and the Kapa
SYBR FAST qPCR kit (Kapa Biosystems) using a StepOnePlus fast-real-time PCR system (Applied Biosys-
tems). TBEV RNA was quantified using previously described primers (57) and a Kapa Probe Fast qPCR kit
(Kapa Biosystems).

Concentration, purification, and flotation of VLPs and virus particles. Supernatants of trans-
fected or infected cells were collected, concentrated by ultracentrifugation as previously described (58),
and resuspended in reducing Laemmli SDS-PAGE sample buffer before Western blot analysis. In the case
of further analysis steps, particles were concentrated by ultracentrifugation through a 20/60% sucrose
(sucrose in TN buffer [0.1 M NaCl, 0.05 M Tris-HCl; pH 7.4]) cushion at 100,000 � g for 1.5 h at 4°C (SW32;
Beckman Coulter), and the interface between 20 and 60% sucrose was harvested. A flotation assay was
performed as previously described (59). Briefly, the sucrose concentration was adjusted to a final
concentration of �60% sucrose, incubated with or without 1% Triton X-100 for 1 h at 4°C, overlaid with
a 30 and 10% sucrose solution, and centrifuged at 200,000 � g for 5 h at 4°C (SW60; Beckman Coulter).
Fractions were collected and further concentrated by ultracentrifugation (100,000 � g, 45 min, 4°C,
SW41; Beckman Coulter).

Electron microscopy. Supernatants from cells transfected with C-FLAG or the structural proteins prM
and E or infected with LGTV were harvested and concentrated using a flotation assay. Glow-discharged
Formvar carbon-coated nickel grids were floated on drops of the virus or VLP suspensions washed with
water, fixed with glutaraldehyde 2.5% for 2 min, washed again with water, and stained with 1.5%
aqueous uranyl acetate.

Affinity purification/LC-MS/MS experiments. 293 FLP-IN T-Rex cells expressing FLAG-tagged vi-
perin, Δ1-50 mutant, or green fluorescent protein (GFP) were lysed, and �-FLAG antibody coupled beads
were used to immunoprecipitate proteins of interest. Four independent affinity purifications were
performed for each bait. Sample preparations and LC-MS/MS analysis were conducted as described
previously (60). Briefly, FLP-IN cells expressing the FLAG-tagged protein of interest were lysed by
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snap-freezing cells in liquid nitrogen, incubation in TAP buffer (50 mM Tris [pH 7.5], 100 mM NaCl, 5%
[vol/vol] glycerol, 0.2% [vol/vol] Nonidet P-40, 1.5 mM MgCl2, and protease inhibitor cocktail [EDTA-free,
cOmplete; Roche]) for 30 min on ice, and clarification of the lysate by centrifugation at 16,000 � g.
�-FLAG antibody-coupled beads were incubated with 6-mg portions of cleared lysates for 60 min on a
rotating wheel, and the proteins were precipitated and washed with TAP buffer. After the final three
washes in TAP buffer, the samples were in also washed twice with TAP buffer lacking Nonidet P-40 to
remove residual detergent. Samples were sequentially digested with LysC (Wako Chemicals USA) and
trypsin (Promega), acidified with 0.1% TFA, desalted with C18-stage tips, and analyzed by LC-MS on an
Orbitrap XL instrument (Thermo Fisher Scientific).

Mass spectrometry raw files were processed with MaxQuant software versions 1.5.1.1 (61, 62) using
the built-in Andromeda engine to search against human and mouse proteomes (UniprotKB, release
2012_06) containing forward and reverse sequences. In MaxQuant, the label-free quantitation (LFQ) (63)
algorithm and the Match Between Runs option were used as described previously (60). The MaxQuant
output tables were transferred to the Perseus computational platform (64) for statistical enrichment
analysis. Only proteins identified on the basis of at least two peptides and a minimum of three
quantitation events in at least one experimental group were considered. LFQ protein intensity values
were log transformed, and missing values were supplied by imputation. Specific enrichment was
determined by multiple equal variance t tests with permutation-based false discovery rate (FDR) statistics
(n � 250 permutations). FDR thresholds and S0 parameters were empirically set to separate background
from specifically enriched proteins.

Coimmunoprecipitation. HEK293T cells were transfected 24 h before cell lysis (1 mM MgCl2, 1 M
Tris-HCl, 5 M NaCl, 5% glycerol, 0.2% NP-40, and protease inhibitor). The FLAG-viperin/GBF1 complex was
immunoprecipitated with monoclonal antibodies directed against FLAG (Stratagene), as previously
described (19, 65).

CRISPR Cas9 knockdown of GBF1. Three different targets for human GBF1 were selected and
cloned into pSpCas9(BB)-2A-GFP (PX458) (Addgene number 48138) using the protocol established by F.
Zhang (66). The primer sequences were as follows: TBE 434F, CRISPR Cas9 GBF1.1 (CACCGATGGATTAC
GTCAATCCCCG); TBE 435R, CRISPR Cas9 GBF1.1 (AAACCGGGGATTGACGTAATCCATC); TBE 436F, CRISPR
Cas9 GBF1.2 (CACCGACACGACCGCCATAACTCAG); TBE 437R, CRISPR Cas9 GBF1.2 (AAACCTGAGTTATGG
CGGTCGTGTC); TBE 438F, CRISPR Cas9 GBF1.3 (CACCGACAGTGATTGACAGCACCG); and TBE 439R, CRISPR
Cas9 GBF1.3 (AAACCGGTGCTGTCAATCACTGTC). All three target plasmids were cotransfected at a ratio of
1:1:1; at 48 h posttransfection, the cells were reseeded and used for experiments.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JVI
.01751-17.

SUPPLEMENTAL FILE 1, XLSX file, 0.1 MB.
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