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Abstract
Phenological	 responses	 to	changing	temperatures	are	known	as	 “fingerprints	of	cli-
mate	change,”	yet	these	reactions	are	highly	species	specific.	To	assess	whether	differ-
ent	plant	characteristics	are	related	to	these	species-	specific	responses	in	flowering	
phenology,	we	observed	the	first	flowering	day	(FFD)	of	ten	herbaceous	species	along	
two	elevational	gradients,	representing	temperature	gradients.	On	the	same	popula-
tions,	we	measured	 traits	being	associated	with	 (1)	plant	performance	 (specific	 leaf	
area),	 (2)	 leaf	biochemistry	(leaf	C,	N,	P,	K,	and	Mg	content),	and	(3)	water-	use	effi-
ciency	(stomatal	pore	area	index	and	stable	carbon	isotopes	concentration).	We	found	
that	 as	 elevation	 increased,	 FFD	was	delayed	 for	 all	 species	with	 a	 highly	 species-	
specific	rate.	Populations	at	higher	elevations	needed	less	temperature	accumulation	
to	start	flowering	than	populations	of	the	same	species	at	lower	elevations.	Surprisingly,	
traits	explained	a	higher	proportion	of	variance	in	the	phenological	data	than	eleva-
tion.	Earlier	flowering	was	associated	with	higher	water-	use	efficiency,	higher	leaf	C,	
and	lower	leaf	P	content.	In	addition	to	that,	the	intensity	of	shifts	in	FFD	was	related	
to	leaf	N	and	K.	These	results	propose	that	traits	have	a	high	potential	in	explaining	
phenological	variations,	which	even	surpassed	the	effect	of	temperature	changes	in	
our	study.	Therefore,	they	have	a	high	potential	to	be	included	in	future	analyses	stud-
ying	the	effects	of	climate	change	and	will	help	to	improve	predictions	of	vegetation	
changes.

K E Y W O R D S

altitude,	carbon	isotope	discrimination	(Δ13C),	leaf	nutrients,	phenology,	specific	leaf	area,	
stomatal	pore	area	index

1  | INTRODUCTION

Changes	 in	 phenology	 are	 easily	 observable	 indicators	 for	 climate	
change,	 as	 especially	 spring	 phenology	 is	 susceptible	 to	 warming	
temperatures	(Menzel	&	Fabian,	1999;	Parmesan	&	Yohe,	2003;	Root	
et	al.,	 2003).	 Both	 experimental	 and	 observational	 studies	 showed	
changes	in	plant	phenology	with	changing	temperatures	(Whittington,	

Tilman,	Wragg,	&	Powers,	2015;	Wolkovich	et	al.,	2012),	yet	besides	
advances,	also	delays	have	been	reported	depending	on	the	species	
and	habitat	observed	(Bock	et	al.,	2014;	Fitter	&	Fitter,	2002;	Menzel,	
2000;	Menzel	et	al.,	2006;	Root	et	al.,	2003;	Vitasse,	Porté,	Kremer,	
Michalet,	&	Delzon,	2009).	Climate	warming	could	thus	enhance	car-
bon	uptake	by	lengthening	canopy	duration	given	sufficient	precipita-
tion	(Liu	et	al.,	2016;	Menzel	&	Fabian,	1999)	and	lead	to	changes	in	
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the	competitive	balance	by	species-	specific	differences	in	phenologi-
cal	sensitivity	toward	temperature	(Vitasse,	Porté,	et	al.,	2009).

The	onset	of	phenological	phases	mirrors	the	fundamental	trade-	
off	between	offspring	development	time	and	fitness	of	 the	parental	
plant	(Bolmgren	&	Cowan,	2008).	The	optimal	timing	of	bud	burst	is	
crucial	for	the	survival	of	the	plants:	too	early,	the	risk	of	frost	dam-
age	is	high,	whereas	too	late,	the	potential	growing	season	is	not	well	
used	(Galvagno	et	al.,	2013;	Hänninen	&	Hari,	1996).	This	could	also	
be	true	for	flowering	phenology,	as	reproductive	shoots	were	found	to	
be	less	frost	resistant	than	vegetative	tissue	(Ladinig,	Hacker,	Neuner,	
&	Wagner,	2013).	Advances	 in	flowering	phenology	might,	however,	
lead	 to	 increased	 fecundity	 if	 there	 is	 no	mismatch	with	 pollinating	
insects	 (Baeten,	 Sercu,	 Bonte,	 Vanhellemont,	 &	 Verheyen,	 2015;	
Sparks,	Jeffree,	&	Jeffree,	2000).	Overall,	studies	confirmed	that	the	
performance	and	abundance	of	species	with	an	advanced	phenology	
increased,	whereas	the	performance	of	the	others	decreased	(Baeten	
et	al.,	2015;	Cleland	et	al.,	2012;	Hulme,	2011;	Willis,	Ruhfel,	Primack,	
Miller-	Rushing,	&	Davis,	2008).	 Studies	 conducted	along	elevational	
gradients	found	significant	changes	in	leaf	phenology	of	tree	species	
and	species-	specific	differences	 in	temperature	sensitivity	 (Schuster,	
Estrella,	&	Menzel,	2014;	Schuster,	Kirchner,	Jakobi,	&	Menzel,	2014;	
Vitasse,	Porté,	et	al.,	2009).	Herbaceous	species	are	scarcely	studied	
although	they	show	strong	changes	 in	phenology	 (Bock	et	al.,	2014;	
Fitter	&	Fitter,	2002;	König	et	al.,	2018;	Menzel,	2000;	Menzel	et	al.,	
2006;	 Root	 et	al.,	 2003;	 Vitasse,	 Porté,	 et	al.,	 2009;	 Vitasse	 et	al.,	
2016).

Typically,	studies	report	the	onset	of	a	phenological	stage	as	day	of	
the	year,	that	is,	first	flowering	day,	FFD	(e.g.,	Cornelius,	Estrella,	Franz,	
&	Menzel,	 2013;	Cornelius,	 Leingärtner,	 et	al.,	 2013;	Fitter	&	Fitter,	
2002).	A	complementary	approach	would	be	to	measure	the	tempera-
ture	 accumulation	 reached	 to	 start	 flowering,	 or	 more	 specifically,	
the	growing	degree	days	to	start	FFD	(GDDFFD;	de	Réaumur,	1735).	
We	focussed	on	flowering	phenology	and	assumed	that	there	is	not	
only	a	shift	in	FFD	along	the	elevational	gradient,	but	that	populations	
from	different	elevations	should	also	display	different	GDDs	needed	
to	reach	FFD	(GDDFFD)	as	besides	temperature,	photoperiod	and	ad-
aptation	to	local	climates	were	also	found	to	influence	phenology	(e.g.,	
Häkkinen,	 Linkosalo,	 &	 Hari,	 1998;	 Heide,	 1993;	Migliavacca	 et	al.,	
2008,	2011).	Day	length	as	a	proxy	for	photoperiod	differs	during	the	
year	and	peaks	at	midsummer.	It	is	assumed	to	be	constant	for	a	given	
day	of	the	year	along	the	elevational	gradients	and	thus	its	importance	
is	negligible	in	our	study.	Its	influence	could	however	be	tangible	in	a	
reduced	time	lag	of	FFD	between	higher	and	lower	elevational	sites	
compared	to	a	purely	temperature-	driven	rate	of	change.

Although	 the	 response	of	 flowering	phenology	 to	 changing	en-
vironmental	 conditions	 differs	 between	 species	 (Angert,	 Horst,	
Huxman,	 &	 Venable,	 2010;	 Cleland,	 Chiariello,	 Loarie,	 Mooney,	 &	
Field,	2006;	König	et	al.,	2018;	Morin,	Roy,	Sonie,	&	Chuine,	2010;	
Vitasse,	 Delzon,	 et	al.,	 2009),	 growth	 forms	 (König	 et	al.,	 2018),	
and	 cultivars	 (e.g.,	 Bock	 et	al.,	 2015),	 the	 reasons	 for	 these	 differ-
ing	 responses	 are	not	yet	 understood.	Most	 studies	have	 focussed	
on	 relating	 phenological	 shifts	 to	 temperature	 changes,	 but	 a	 few	
have	explored	the	variation	in	species	response	with	respect	to	their	

functional	 traits	 (e.g.,	 Fitter	&	 Fitter,	 2002;	König	 et	al.,	 2018;	 Sun	
&	Frelich,	2011).	With	our	 study,	we	want	 to	 shed	 light	on	 the	as-
sociation	 between	 flowering	 phenology	 and	 plant	 functional	 traits.	
We	 focus	on	 two	different	aspects.	First,	we	analyze	whether	FFD	
is	 related	 to	 functional	 traits.	 In	a	 second	approach,	we	 investigate	
whether	the	species-	specific	differences	in	the	intensity	of	observed	
shifts	in	FFD	along	elevational	gradient	can	be	explained	with	func-
tional	traits.	We	assume	that	a	species’	trait	might	enable	it	to	adapt	
to	changing	environments	as	traits	might	be	linked	to	either	earlier	or	
later	flowering.	Thus,	we	assume	several	traits	to	be	related	to	FFD,	
that	is	traits	related	to	(1)	plant	performance	(specific	leaf	area,	SLA),	
(2)	leaf	biochemistry	(leaf	C,	N,	P,	K,	and	Mg	content),	and	(3)	water-	use	
efficiency	(stomatal	pore	area	index	[SPI]	and	stable	carbon	isotopes	
concentration).	 Specific	 leaf	 area	 is	widely	 accepted	 as	 a	 good	 ap-
proximation	of	plant	growth	rate	(Garnier,	1992;	Pérez-	Harguindeguy	
et	al.,	2013)	and	indicates	competitive	ability	and	environmental	tol-
erance	 (Poorter,	 Niinemets,	 Poorter,	Wright,	 &	Villar,	 2009;	 Reich,	
Walters,	&	Ellsworth,	1997).	It	was	found	to	have	a	negative	relation	
with	flowering	time,	that	is,	early	flowering	plants	had	higher	growth	
rates	 (Sun	&	Frelich,	 2011),	 and	higher	 SLA	was	 found	 to	be	 asso-
ciated	with	stronger	phenological	shifts	in	herbaceous	plants	(König	
et	al.,	2018).	Area-	based	leaf	carbon	content	(Carea)	is	a	measure	for	
the	plants	 investment	 in	structural	components	and	photosynthetic	
sugar	 accumulation,	 thus	 early	 flowering	 plants	 might	 contain	 less	
Carea	 as	 it	 accumulates	over	 time	 (Larcher,	1994),	whereas	 shifts	 in	
phenology	should	be	less	pronounced	due	to	a	trade-	off	between	the	
investment	in	growth	and	reproduction	(Bolmgren	&	Cowan,	2008).	
Biochemical	traits	related	to	enzyme	content	and	thus	to	photosyn-
thesis	rates	(Narea	and	Parea,	Mgarea;	Bond,	Farnsworth,	Coulombe,	&	
Winner,	1999;	Bucher,	Bernhardt-	Römermann,	&	Römermann,	2018;	
Evans,	1989;	Feng	&	Dietze,	2013;	Larcher,	1994)	should	be	higher	in	
early	flowering	plants,	as	they	are	important	to	start	metabolism	rap-
idly.	Leaf	nutrients	should	also	influence	the	strength	of	the	shift	in	
FFD	as	plant	performance	is	positively	associated	with	phenological	
shifts	(Cleland	et	al.,	2012;	Willis	et	al.,	2008).	Potassium	(K)	is	an	im-
portant	ion	for	the	activation	of	enzymes	(e.g.,	in	photosynthesis	and	
nitrate	 reductase)	 and	 for	 electrochemical	 interactions	 such	 as	 the	
transmembrane	potential	difference,	osmotic	regulation,	and	stoma-
tal	movements	and	was	shown	to	have	a	big	influence	on	leaf	unfold-
ing	(Jochner	et	al.,	2013).	Accordingly,	we	also	expect	early	flowering	
to	be	correlated	with	higher	K	values	and	a	positive	influence	in	the	
strength	of	shifts	in	FFD.	Stomata	are	the	mediators	of	gas	exchange	
as	 they	 govern	 the	 uptake	 of	CO2	 and	 the	 regulation	 of	 transpira-
tion	(Chaerle,	Saibo,	&	Van	Der	Straeten,	2005;	Roelfsema	&	Hedrich,	
2005)	 and	 are	 associated	 with	 actual	 conductance	 and	 maximum	
photosynthesis	 rates	 (Bucher	 et	al.,	 2016;	 Sack,	 Cowan,	 Jaikumar,	
&	Holbrook,	 2003).	We	 expect	 a	 negative	 relationship	 of	 stomatal	
traits	 and	 FFD	 as	 they	 relate	 to	 a	more	 conservative	 strategy	 and	
leaves	might	not	be	fully	developed	but	higher	SPI	should	strengthen	
the	 shift	 in	 FFD	 via	 its	 association	with	 performance.	 The	 carbon	
isotope	discrimination	 (Δ13C)	can	be	used	as	a	proxy	 for	water-	use	
efficiency	 and	 the	 relative	 internal	 CO2 concentrations and relates 
to	photosynthesis	rates	(Bucher	et	al.,	2018;	Farquhar,	Ehleringer,	&	
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Hubick,	1989;	Pérez-	Harguindeguy	et	al.,	2013).	As	with	early	flow-
ering,	plants	might	not	be	fully	developed	and	water	conservation	is	
not	as	important	as	in	summer,	we	expect	lower	water-	use	efficiency	
in	these	individuals	yet	a	positive	influence	on	shifts	in	FFD.	Table	1	
gives	an	overview	on	hypothesized	relationships	between	plant	traits	
and	flowering	phenology.

We	 used	 elevational	 gradients	 to	 investigate	 the	 association	
between	 changes	 in	 flowering	 phenology	 in	 response	 to	 chang-
ing	 environments	 (i.e.,	 air	 temperature)	 and	 plant	 functional	 traits.	
More	specifically,	we	monitored	 flowering	phenology	and	measured	
plant	functional	traits	concurrently	of	ten	herbaceous	species	 in	the	
Bavarian	Alps.	To	account	for	spatiotemporal	variations,	we	monitored	
these	species	along	two	elevational	gradients	during	two	consecutive	
growing	seasons.	We	addressed	the	following	questions:

1. Do	 herbaceous	 plants	 react	 analogously	 to	 tree	 species	 and	
delay	 the	 onset	 of	 FFD	 along	 the	 elevational	 gradient	 and	 are	
there	differences	among	species,	between	gradients	and	between	
years?

2. Does	flowering	time	have	an	influence	on	the	intensity	of	shifts	in	
FFD,	 that	 is,	 do	 early	 flowering	 species	 shift	 their	 phenology	
stronger	than	late-flowering	species?

3. Does	GDDFFD	 as	 an	 ecological	measure	 of	 phenological	 changes	
also	change	along	the	elevational	gradient?

4. Can	plant	functional	traits	be	used	to	capture	and	thus	explain	dif-
ferences	in	FFD	as	well	as	the	intensity	with	which	species	change	
their	FFD	along	the	elevational	gradients?

Studying	 the	 phenology	 of	 herbaceous	 plants	 complements	 our	
knowledge	on	vegetation	responses	to	environmental	changes,	and	the	
output	of	this	study	may	serve	as	a	first	step	to	understand	the	role	of	
trait	values	 for	variations	 in	 flowering	phenology	and	 thus	 to	 improve	
predictions	of	vegetation	changes.

2  | MATERIAL AND METHODS

2.1 | Study area and selected species

The	study	area	was	 located	in	the	montane	to	subalpine	belt	of	the	
northern	limestone	Alps	in	the	area	of	Garmisch-	Partenkirchen.	Two	
south-	facing	 elevational	 gradients	 (along	 “Kramer”	 and	 “Kreuzeck”	
mountain;	 see	 Schuster,	 Estrella,	 et	al.,	 2014)	 were	 set	 up	 ranging	
from	700	to	1,800	m	a.s.l.	and	800—1,700	m	a.s.l.,	respectively.	Mean	
annual	 temperatures	 decrease	with	 a	 lapse	 rate	 of	 −0.55°C/100	m	
(Kirchner	 et	al.,	 2013).	 According	 to	 their	 occurrence	 along	 a	 wide	
elevational	 range	 (as	queried	 in	 the	 regional	vegetation	database	of	
Ewald	 (2012)	 and	 based	 on	 personal	 observations),	 ten	 perennial	
hemicryptophytes	were	chosen	for	this	study.	We	selected	Aposeris 

TABLE  1 Overview	of	leaf	functional	traits	measured	and	analyzed	in	our	study	as	well	as	their	ecological	significance	and	their	
hypothesized	relationship	with	first	flowering	day	(FFD)	and	shifts	in	FFD

Trait Abbreviation Unit Ecological significance Link to flowering phenology

Area-	based	leaf	carbon	
content

Carea g/m2 Structural	compounds,	photosynthesis	
product	(Larcher,	1994)

Associated	with	later	flowering	as	Carea 
accumulates	over	time,	shifts	should	be	
less	pronounced	because	of	trade-	off	
between	growth	and	reproduction

Carbon	isotope	
discrimination

Δ13C ‰ Water-	use	efficiency,	internal	CO2 
concentration	(Bucher	et	al.,	2018;	
Farquhar	et	al.,	1989;	Pérez-	
Harguindeguy	et	al.,	2013)

Associated	with	later	flowering	as	
water-	use	efficiency	is	less	important	
early	in	the	year,	shifts	less	pronounced	
due	to	conservative	strategy	of	plants

Area-	based	leaf	nitrogen	
content

Narea g/m2 Proxy	for	photosynthetic	capacity/	
RubisCO	content	(Bond	et	al.,	1999;	
Bucher	et	al.,	2018;	Evans,	1989;	
Larcher,	1994)

Associated	with	earlier	flowering	and	
stronger	shifts	as	flowering	is	associated	
with	high	metabolic	activity

Area-	based	leaf	
phosphorus	content

Parea g/m2 Important	in	metabolism	and	synthesis	
(Feng	&	Dietze,	2013;	Larcher,	1994)

Associated	with	earlier	flowering	and	
stronger	shifts	as	flowering	is	associated	
with	high	metabolic	activity

Area-	based	leaf	potassium	
content

Karea g/m2 Activation	of	Enzymes,	electrochemistry,	
osmotic	potential	(Larcher,	1994)

Associated	with	earlier	flowering	and	
stronger	shifts	in	flowering	phenology	
(Jochner	et	al.,	2013)

Area-	based	leaf	
magnesium	content

Mgarea g/m2 Important	in	metabolism,	osmotic	
potential,	photosynthesis	(Larcher,	
1994)

Associated	with	earlier	flowering	but	
weaker	shifts	because	of	trade-	off	
between	growth	and	reproduction

Stomatal	pore	area	index SPI – Potential	conductance,	photosynthesis	
rates	(Bucher	et	al.,	2016;	Sack	et	al.,	
2003)

Associated	with	later	flowering	and	shifts	
less	pronounced	because	of	trade-	off	
between	growth	and	reproduction

Specific	leaf	area SLA m2/kg Proxy	for	growth	rate	(Garnier,	1992;	
Pérez-	Harguindeguy	et	al.,	2013)

Associated	with	earlier	flowering	(Sun	&	
Frelich,	2011)	and	stronger	shifts	in	
flowering	phenology	(König	et	al.,	2018)
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foetida	(L.)	Less.,	Aster bellidiastrum	(L.)	Scop.,	Buphthalmum salicifolium 
L.,	Carduus defloratus	L.,	Knautia dipsacifolia	Kreutzer,	Lotus cornicula-
tus	L.,	Mercurialis perennis	L.,	Phyteuma orbiculare	L., Trifolium pratense 
L.,	and	Potentilla erecta	(L.)	Raeusch.	Habitat	conditions	were	kept	as	
constant	as	possible	along	the	elevational	gradient	following	the	spe-
cies’	optimum	conditions,	for	example,	shade	species	such	as	M. per-
ennis	were	always	collected	from	the	forest	edge	whereas	sun-	loving	
species	such	as	B. salicifolium	were	collected	from	open	habitats.	The	
Table	S1	in	Supporting	Information	gives	an	overview	on	mean	FFD	
and	GDDFFD	of	all	species.

2.2 | First flowering day

Phenology	 was	 monitored	 in	 two	 consecutive	 years	 (2012	 and	
2013).	The	first	day	when	a	species	was	found	to	display	fully	devel-
oped	flowers	 (FFD)	was	recorded	following	Fitter	and	Fitter	 (2002).	
Populations	of	the	selected	species	were	monitored	weekly	along	the	
two	gradients	every	100-	m	increase	in	elevation	during	the	growing	
season	 (beginning	of	April	until	beginning	of	November).	We	moni-
tored	up	to	three	replicate	populations	per	elevational	band,	which	we	
then	averaged	for	consecutive	analyses	and	calculated	a	mean	value	
for	each	species	per	elevational	band,	year,	and	gradient.

2.3 | Temperature records and growing degree 
days of FFD (GDDFFD)

Temperature	 was	 recorded	 at	 10-	min	 intervals	 with	 automatic	
weather	stations	(HOBO	V2	with	radiation	shield,	Onset,	Bourne,	MA,	
USA)	installed	at	all	sites	along	the	elevational	gradients	(22	in	total).	
The	GDD	were	determined	for	the	FFD	of	each	species	and	site	(re-
ferred	 to	 as	GDDFFD)	 following	equation	1	 starting	 from	 the	1st	 of	
January.	

Tmax	is	the	daily	maximum	temperature,	Tmin	the	daily	minimum	tem-
perature,	 and	Tbase	 the	base	 temperature	above	which	plant	growth	
could	occur,	thus	all	negative	values	were	deleted	before	summing	up.	
In	our	 study,	we	used	a	base	 temperature	of	5°C.	We	checked	 that	
(Tmax + Tmin)/2	was	highly	correlated	with	Tmean (r	=	.997,	p < .001).

2.4 | Plant functional traits

For	each	species	and	in	both	years,	all	populations	were	characterized	
with	respect	to	traits	associated	with	(1)	plant	performance	(SLA),	(2)	
biochemical	traits	(leaf	C,	N,	P,	K,	and	Mg	content),	and	(3)	water-	use	
efficiency	(SPI	and	Δ13C).	All	traits	were	measured	on	five	fully	flower-
ing	individuals	per	elevational	band	and	gradient	following	standard-
ized	methods	 (Pérez-	Harguindeguy	 et	al.,	 2013)	 to	 characterize	 the	
populations’	trait	values.	Table	1	gives	an	overview	on	traits	and	their	
ecological	functions.

Specific	 leaf	area	 is	defined	as	the	ratio	of	fresh	 leaf	area	to	dry	
mass	 (m2/kg).	 For	 each	 focal	 individual,	 two	 replicate	 leaves	 were	

collected.	Dry	mass	was	recorded	separately	using	a	fine	scale.	Leaf	
area	 was	 quantified	 by	 scanning	 fresh	 leaves	 (CanoScan	 LiDE110,	
Cannon,	Tokyo,	Japan).	 From	 the	 scans,	 leaf	 area	was	 retrieved	 and	
SLA	was	 calculated	 in	 R	 (R	 Core	 Team	 2016)	 using	 the	 R-	Package	
LeafTraits	(M.	Bernhardt-	Römermann,	unpublished).

For	the	analysis	of	chemical	compounds,	the	leaves	were	pooled	
per	population.	Mass-	based	leaf	carbon	concentration	(Carea),	carbon	
isotope	 composition,	 and	 mass-	based	 leaf	 nitrogen	 concentration	
(Narea)	were	measured	using	0.2	mg	of	dried,	milled	leaf	tissue	weighed	
into	tin	capsules,	and	combusted	in	an	elemental	analyzer	(NA	1110,	
Carlo	Erba,	Milan,	 Italy)	coupled	 to	an	 isotope	ratio	mass	spectrom-
eter	via	a	Conflow	interface.	The	relative	carbon	isotope	ratio	(δ13C)	
was	calculated	and	the	discrimination	 (Δ13C)	was	calculated	accord-
ing	to	Farquhar	et	al.	(1989).	We	used	δ13C	in	leaves	and	δ13C	in	the	
atmosphere	 1	month	 before	 sampling	 of	 the	 leaf	 to	 calculate	Δ13C	
as	described	in	Bucher	et	al.	(2016).	Leaf	nitrogen	concentration	and	
leaf	carbon	concentration	per	unit	leaf	area	(μg/mm2) were calculated 
by	 dividing	 the	mass-	based	values	 of	 the	 respective	 compounds	 by	
SLA.	Similarly,	we	determined	leaf	Parea,	Karea, and Mgarea content via 
an	inductively	coupled	plasma	mass	spectrometry	(iCAP	Qc	ICP-	MS;	
Thermo	Fisher	Scientific	GmbH,	Bremen,	Germany)	following	DIN	EN	
ISO	17294-	2	after	a	high	pressure	(30	bar),	acid	digestion	of	the	sam-
ples	at	high	temperatures	(180°C).

Stomatal	 traits	 were	 investigated	 using	 the	 clear	 nail	 polish	
method	as	described	 in	Hilu	and	Randall	 (1984).	Two	imprints	from	
the	abaxial	and	one	 from	the	adaxial	 side	of	one	 leaf	of	each	 focal	
individual	were	taken	to	assess	stomatal	density	on	two	fields	of	view	
and	 stomata	 size	on	 two	 replicate	 stomata	per	 field	of	view.	Using	
these	measures,	the	dimensionless	SPI	was	calculated	as	proposed	by	
Sack	et	al.	(2003)	as:	

2.5 | Data analyses

To	 characterize	 spatiotemporal	 variations	 in	 abiotic	 conditions,	 we	
compared	the	mean	temperatures	of	all	temperature	logger	sites	be-
tween	 (1)	 the	 two	 gradients,	 (2)	 the	 2	years	 separately,	 and	 (3)	 be-
tween	the	months	of	each	year.	We	used	the	Welch	two-	sample	t test 
or	the	Wilcoxon	rank	sum	test	with	continuity	correction	after	having	
checked	for	normal	distribution	and	homogeneity	of	variance.

To	investigate	whether	herbaceous	plants	shifted	their	FFD	along	
the	gradient,	we	analyzed	whether	FFD	differed	along	the	elevational	
gradient	between	species,	gradients	(along	Kramer	or	Kreuzeck),	year	
of	observation,	or	a	combination	of	these	variables.	We	set	up	linear	
models	using	FFD	as	dependent	variable	and	species,	gradient,	eleva-
tion,	and	year,	as	well	as	all	twofold	interactions	thereof	as	explanatory	
variables.	 Full	 models	 were	 subsequently	 simplified	 using	 stepwise	
backwards	 selection	 until	 the	 least	 significant	 adequate	model	was	
found	(Crawley,	2012).	In	all	cases,	variances	were	homogeneous	and	
the	residuals	normally	distributed.

To	test	whether	flowering	time	(early	or	late	flowering)	had	an	in-
fluence	 on	 the	 shifts	 of	 phenology	 along	 the	 gradient,	we	 set	 up	 a	
linear	model	with	the	rate	of	change	along	the	elevational	gradient	as	

(1)GDDFFD =

∑ Tmax + Tmin

2
−Tbase

(2)SPI = (guard cell length)2stomatal density
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calculated	for	each	species,	year,	and	gradient	as	dependent	variable	
and	FFD	as	explanatory	variable.

To	 test	whether	we	 find	 similar	 patterns	 for	 GDDFFD,	 the	 same	
models	analyzing	the	difference	GDDFFD in along the elevational gra-
dient	between	species,	gradients,	and	year	of	observation	were	set	up	
using	GDDFFD	as	dependent	variable	instead	of	FFD.

To	assess	whether	FFD	is	associated	to	plant	traits,	we	set	up	two	
different	models	including	traits	besides	elevation,	gradient,	and	year.	
One	model	 focusses	 on	 absolute	values	 in	 FFD,	 the	 other	 focusses	
on	species-	specific	shifts	in	FFD	along	the	elevational	gradient.	In	the	
first	model	 approach,	we	 ignored	 species	 identity	because	we	were	
merely	 interested	 in	 the	 functional	 association	between	 trait	values	
and	FFD.	Preliminary	analyses	(not	shown)	revealed	that	each	species,	
included	as	 a	 covariate,	 showed	clear	 species-	specific	patterns	 thus	
including	species	identity	as	a	covariate	would	have	covered	the	rela-
tive	importance	of	the	trait	values	to	explain	FFD.	This	approach	was	
assessed	to	be	sound	as	for	all	FFD	data	points,	in	situ	measurements	
of	traits	on	all	populations	were	available.	In	the	first	FFD-	trait	model,	
we	 included	 FFD	 as	 dependent	 variable	 and	 trait	 values,	 elevation,	
and	gradient	as	explanatory	variable.	 In	 the	second	model,	we	used	
the	species-	specific	slope	of	 the	relationship	between	FFD	and	ele-
vation	(intensity	of	shifts,	i.e.,	based	on	estimates	from	the	regression	
of	FFD	along	the	elevational	gradient)	as	dependent	variable	and	the	
mean	trait	values	for	each	species,	year,	and	gradient	as	explanatory	
variables.	In	both	models,	we	used	boosted	regression	trees	(BRT)	as	
described	in	Elith,	Leathwick,	and	Hastie	(2008)	because	they	provide	
insights	into	the	relationships	between	predictor	and	dependent	vari-
ables.	The	BRT	output	 provides	 importance	measures	 for	 each	pre-
dictor	variable	included	(i.e.,	the	sensitivity	of	a	trained	model	to	each	
of	the	predictors)	and	partial	dependency	plots	that	marginalize	(inte-
grate)	over	the	effect	of	all	other	predictor	variables	(Friedman,	2001).	
Thus,	 the	 relationship	 of	 a	 predictor—as	 independent	 of	 all	 other	
predictors	 included—can	be	displayed.	Boosted	 regression	 trees	 is	a	
flexible	regression	technique	based	on	machine	learning.	BRTs	do	not	
require	a	priori	information	on	functional	relationships,	but	“learn”	the	
relationships	between	the	response	and	 its	predictors	by	 identifying	
patterns	 in	the	data.	Gaussian	error	distribution	was	used	as	well	as	
a	bag	fraction	(the	fraction	of	the	training	set	observations	randomly	
selected	to	propose	the	next	tree	in	the	expansion)	of	0.5,	tree	com-
plexity	of	2,	and	a	 learning	 rate	of	0.001.	We	simplified	 the	models	
and	used	the	cross-	validation	error	(cv)	as	predictor	of	the	goodness	
of	fit.	For	all	variables,	if	included	in	the	simplified	models,	the	relative	
importance	(%)	is	given.

For	 calculation	 and	 simplification,	 the	 “gbm”	 package	was	 used	
(Ridgeway,	 2015).	 All	 analyses	 were	 conducted	 in	 R	 3.3.0	 (R	 Core	
Team,	2016).

3  | RESULTS

3.1 | Abiotic conditions and flowering phenology

Temperatures	 were	 not	 significantly	 different	 between	 gradients	
(W	=	30,821,	 p	=	.18)	 or	 between	 2012	 and	 2013	 (W	=	43,062,	

p	=	.43),	 yet	 monthly	 temperatures	 differed.	 In	 February,	 mean	
daily	 temperatures	were	 significantly	warmer	 in	2013	 than	 in	2012	
(t	=	−4.89,	p < .001).	March,	May,	and	June	temperatures	were	signifi-
cantly	colder	in	2013	than	in	2012	(March:	t	=	13.49,	p < .001;	May:	
t	=	5.87,	p < .001;	 June:	 t	=	4.24,	p < .001).	 July	 (t	=	−5.59,	p < .001) 
and	October	(t	=	−3.82,	p < .001)	were	warmer	in	2013	than	in	2012.	
August (t	=	2.44,	 p < .05) was a little colder in 2013 than in 2012 
and	November	was	significantly	colder	 in	2013	 (t	=	11.87,	p < .001) 
whereas	December	was	 significantly	warmer	 in	 2013	 than	 in	 2012	
(t	=	−9.09,	p < .001).	For	a	graphical	display,	please	see	Figure	S1.

The	 species	 which	 flowered	 earliest	 were	 M. perennis	 (mean	
FFD	=	126.1,	 beginning	 of	 May)	 and	 A. foetida	 (mean	 FFD	=	149.4,	
end	 of	 May)	 whereas	 B. salicifolium	 (mean	 FFD	=	192.2,	 mid-	July)	
and K. dipsacifolia	 (mean	 FFD	=	205.4,	 end	 of	 July)	 flowered	 latest.	
All	 species	 showed	a	delay	 in	FFD	along	 the	elevational	gradient	 in	
a	species-	specific	way	(species	effect	p < .001;	Figure	1).	The	flower-
ing	phenology	differed	between	Kreuzeck	and	Kramer	(p < .001) and 
between	years	(p < .001; R2	=	.85,	F39,371	=	52.3,	p < .001). M. perennis 
showed	 the	weakest	 change	with	only	0.84	day	100/m	while	C. de-
floratus	 showed	 the	 strongest	 change	 with	 3.28	day	 100/m.	 Apart	
from	L. corniculatus,	B. salicifolium, and K. dipsacifolia,	all	species	flow-
ered	later	on	Kreuzeck	than	on	Kramer	(for	details,	see	Table	S1),	thus	
flowering	 per	 se	was	marginally	 later	 on	 Kreuzeck	 than	 on	 Kramer	
(W	=	18,909,	p < .1).	The	 intensity	 of	 shifts	 in	 FFD	 along	 the	 eleva-
tional	gradient	(slope)	was	positively	related	to	FFD	(R2	=	.14,	F1,38	=	6,	
p < .05),	indicating	that	late-	flowering	species	were	more	responsive	in	
their	phenology	than	early	flowering	species.

Species	also	differed	in	their	FFD	response	to	temperature	accu-
mulation	 as	 expressed	by	GDDFFD	 (Figure	2).	GDDFFD	depended	on	
elevation,	 species,	 gradient,	 and	year	 and	 the	 interaction	of	 species	
with	elevation,	gradient,	and	year	(R2	=	.82,	F32,369	=	54.1,	p < .001). All 
species	despite	C. defloratus	 in	2013	showed	a	decrease	 in	GDDFFD 
with increasing elevation.

3.2 | Relation of FFD to plant functional traits

The	results	of	the	BRTs	(cv	=	0.75)	showed	that	plant	functional	traits	
had	a	higher	relative	 importance	for	explaining	FFD	(in	total	85.1%)	
than	 abiotic	 conditions	 as	 represented	 by	 elevation,	 gradients,	 and	
years	 (in	 total	14.8%).	Elevation,	accounting	 for	11.5%	of	 the	varia-
tion,	was	only	ranked	third	among	the	explanatory	variables,	gradient	
was	of	minor	importance	(3.3%)	and	year	had	no	influence	on	FFD	in	
the	final	model.	The	variables	being	most	closely	related	to	FFD	were	
Carea	(35.3%)	and	Δ

13C	(19.9%;	see	Figure	3),	both	showing	a	positive	
relationship	with	FFD,	that	 is.,	with	 increasing	trait	values,	FFD	was	
delayed.	SPI	(6.5%)	and	Mgarea	(4.3%)	were	also	positively	related	to	
FFD.	In	contrast,	Parea	(9%),	SLA	(4.2%),	Narea	(3.5%),	and	Karea	(2.4%)	
were	negatively	related	to	FFD.	For	detailed	information	on	how	traits	
influence	FFD	along	the	elevational	gradient,	partial	dependency	plots	
are	 presented	 in	 Figure	 S2.	 The	 regression	 of	 predicted	 versus	 ob-
served	values	suggests	a	good	model	fit	and	can	be	found	in	Figure	S3.

The	second	BRT	model	showed	that	especially	high	Narea	(40.3%),	
Karea	 (17.5%),	 and	Δ

13C	 (13.7%;	 see	 Figure	4)	were	 associated	with	
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stronger	shifts	in	phenology	along	the	elevational	gradient	(cv	=	0.52).	
In	addition	to	that,	higher	Carea	(6.2%),	Parea	(6.0%),	and	SPI	(3.5%)	val-
ues	 lead	to	stronger	shifts	 in	FFD	whereas	higher	Mgarea	 (7.5%)	and	
SLA	(5.3%)	led	to	less	intense	changes	of	phenology.	For	detailed	in-
formation	on	how	traits	influence	the	shifts	of	FFD	along	the	eleva-
tional	gradient,	partial	dependency	plots	are	presented	 in	Figure	S4.	
The	regression	of	predicted	versus	observed	values	suggests	a	good	
model	fit	and	can	be	found	in	Figure	S5.

4  | DISCUSSION

Our	results	clearly	confirm	that	also	in	herbaceous	species,	flower-
ing	phenology	was	delayed	with	increasing	elevation	and	thus	with	
decreasing	mean	annual	temperatures	in	a	species-	specific	intensity,	
which	confirms	studies	that	analyzed	these	relations	in	woody	plants	
(Schuster,	 Estrella,	 et	al.,	 2014;	 Schuster,	 Kirchner,	 et	al.,	 2014;	
Vitasse,	Porté,	et	al.,	2009).	We	found	that	GDDFFD decreased with 
elevation,	which	indicates	both,	a	dependence	on	temperatures	but	
also	on	photoperiod.	A	very	striking	result	 is	that	traits	were	more	
important	 to	explain	changes	 in	FFD	compared	to	elevation,	espe-
cially	traits	related	to	water-	use	efficiency	and	growth	of	the	leaves	

had	the	highest	relative	importance	to	explain	variations	in	flower-
ing	phenology.	Changes	in	FFD	along	the	elevational	gradient	were	
also	associated	with	plant	traits	and	especially	higher	Narea,	Karea, and 
Δ13C	 values	 led	 to	 stronger	 shifts	 of	 phenology	 along	 elevational	
gradients.

We	could	not	confirm	previous	studies	which	found	that	advances	
of	flowering	phenology	are	stronger	the	earlier	plants	flowered	(Fitter	
&	Fitter,	2002;	Menzel	et	al.,	2006;	Miller-	Rushing	&	Primack,	2008),	
but	the	opposite	was	true	for	our	dataset,	however,	revealed	by	the	
space	 for	 time	 approach.	We	 also	observed	differences	 in	 FFD	be-
tween	the	two	gradients	and	years,	which	are	likely	due	to	differing	
abiotic	conditions	or	local	adaptations	of	the	plant	populations,	as	the	
years	differed	in	mean	monthly	temperatures	but	the	gradients	did	not.	
Similar	results	could	be	observed	by	Ziello,	Estrella,	Kostova,	Koch,	and	
Menzel	(2009)	on	a	larger	scale,	who	found	not	only	a	species-	specific	
delay	 of	 phenology	with	 increasing	 elevation	 but	 also	 detected	 re-
gional	differences,	namely	a	stronger	response	 in	the	northern	than	
in	the	southern	Alps.	Also,	Cornelius,	Estrella,	et	al.	 (2013)	detected	
differences	in	phenological	responses	between	observational	sites	in	
the	Alps.	Hopkins	law	states	that	species	should	delay	their	phenol-
ogy	by	3.3	day	100/m	(Fitzjarrald,	Acevedo,	&	Moore,	2001;	Vitasse,	
Delzon,	et	al.,	2009)	yet	only	three	species	reacted	almost	as	strongly	

F IGURE  1 First	flowering	day	given	in	day	of	the	year	(doy)	along	two	elevational	gradients	(Kramer	vs.	Kreuzeck)	as	depending	on	species	
and	year	(2012	vs.	2013)	as	well	as	the	interactions	of	elevation:species,	species:gradient,	and	species:year.	Light	blue	indicates	2012,	dark	blue	
indicates	2013.	Solid	lines	and	circles	represent	Kramer,	dashed	lines,	and	triangles	represent	Kreuzeck	gradient
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as	predicted.	C. defloratus	 shifted	 its	phenology	by	3.28	day	100/m,	
P. orbiculare	by	3.26	day	100/m,	and	T. pratense	by	3.06	day	100/m,	
the	 other	 species	 were	 less	 responsive.	 Other	 observational	 stud-
ies	 in	 alpine	grasslands	 showed	an	average	delay	of	3.8	day	100/m	
(Cornelius,	Estrella,	et	al.,	2013;	Cornelius,	Leingärtner,	et	al.,	2013).	
Interestingly,	for	A. foetida and M. perennis,	the	reaction	was	much	less	
pronounced	compared	to	the	observations	on	these	species	reported	
by	Cornelius,	 Estrella,	 et	al.,	 2013	 and	Cornelius,	 Leingärtner,	 et	al.,	
2013;	 2.19	day	 100/m	 instead	 of	 3.7	day	 100/m	 for	A. foetida and 
0.85	day	100/m	compared	to	3.5	day	100/m	for	M. perennis,	respec-
tively).	This	illustrates	highly	variable	regional	patterns.	However,	this	
reaction	seems	to	be	quite	conserved	within	the	small-	scale	region	as	
the	slope	of	FFD	along	the	elevational	gradients	did	not	vary	between	
years	and	the	two	gradients	of	our	study.

Early	plants	flowered	later	in	2012	than	in	2013	whereas	this	trend	
was	reversed	with	later	flowering	species.	This	might	be	due	to	much	
colder	February	temperatures	 in	2012,	which	 inhibited	plant	growth	
early	 in	 the	 season,	whereas	 spring	 to	early	 summer	 (mainly	March,	
May,	and	June)	was	warmer	in	2012.	In	previous	studies,	early	flow-
ering	subarctic	species	showed	less	intraspecific	variability	in	FFD	on	
an	elevational	gradient	via	a	tighter	coupling	of	phenology	and	climatic	
cues	 and	were	more	variable	when	 comparing	 several	years	 due	 to	

interannual	changes	in	climate	(Lessard-	Therrien,	Bolmgren,	&	Davies,	
2014).	Again,	for	herbaceous	species,	we	could	not	confirm	this	trend	
with	our	analysis	as	variability	of	the	2	years	and	two	gradients	did	not	
change	with	elevation	(Figure	1).

The	detected	negative	 relationship	between	GDDFFD and eleva-
tion	might	indicate	a	slight	influence	by	photoperiod	as	assessed	via	
day	of	 the	year,	which	was	assumed	 to	be	constant	 throughout	 the	
elevational	 gradient.	 It	might	 advance	 the	 phenology	 of	 higher	 ele-
vational	species	as	compared	to	lower	elevational	species	 leading	to	
this	negative	relationship.	This	confirms	the	finding	of	Heide	(1993),	
who	stated	that	longer	days	decreased	the	thermal	time	to	budburst.	
Experimental	studies	of	33	plant	species	in	the	Central	Alps	demon-
strated	that	around	50%	of	the	species	might	be	under	strong	limita-
tions	by	photoperiod	in	their	spring	phenology	(Keller	&	Körner,	2003)	
which	 is	 pronounced	 in	 the	 case	 of	 very	 early	 snowmelt	 (Galvagno	
et	al.,	2013;	Migliavacca	et	al.,	2011).	Differently,	Vitasse	et	al.	(2016)	
found	 that	 alpine	 phenology	 was	 determined	 mostly	 by	 snowmelt	
date	and	they	found	no	major	limitation	by	photoperiod	as	assessed	
via	day	of	the	year.	Unfortunately,	we	do	not	have	reliable	snowmelt	
data	for	our	dataset.	Previous	studies	reported	a	negative	relationship	
between	GDD	requirements	and	chilling	accumulation	and	a	decline	
of	 GDD	 with	 latitude	 (Fu	 et	al.,	 2014;	 Laube	 et	al.,	 2014;	 Pellerin,	

F IGURE  2 Growing	degree	days	of	first	flowering	day	along	two	elevational	gradients	(Kramer	vs.	Kreuzeck)	as	depending	on	species	and	
year	(2012	vs.	2013)	as	well	as	the	interactions	of	elevation:species,	species:gradient,	and	species:year.	Yellow	indicates	2012,	orange	2013.	
Solid	lines	and	circles	represent	Kramer,	dashed	lines,	and	triangles	represent	Kreuzeck
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Delestrade,	Mathieu,	 Rigault,	&	Yoccoz,	 2012).	However,	 this	might	
not	only	be	due	to	unfulfilled	chilling	requirements	(e.g.,	Laube	et	al.,	
2014)	but	also	to	a	lower	Tbase	of	species	which	might	decrease	along	
the	elevational	gradient.	The	fact	that	GDDFFD is declining with eleva-
tion	is	contrasting	the	results	for	budburst	in	woody	species,	namely	
Fraxinus excelsior	 L.,	Betula pendula	Roth,	 and	Larix decidua Mill. and 
leafing	for	B. pendula and F. excelsior	(Pellerin	et	al.,	2012)	but	is	in	line	
with	results	shown	for	other	temperate	trees	in	Hunter	and	Lechowicz	
(1992).	Moreover,	FFD	 is	both	showing	a	delay	with	 increasing	ele-
vation	and	a	decline	of	GDDFFD,	suggesting	that	our	species	are	con-
trolled	 by	multiple	 factors	 at	 the	 same	 time.	 Figure	2	 suggests	 that	
the	variability	in	GDDFFD decreased with increasing elevation with the 
same	slope	for	all	species,	which	could	also	be	confirmed	when	testing	
this	relation	in	a	linear	model	(R2	=	.23,	F10,99	=	2.95,	p < .01). This re-
sult	might	indicate	a	stronger	abiotic	filtering	at	higher	elevations,	that	
is.	stronger	selection	for	individuals,	which	respond	to	a	temperature	
cue than in lower elevational sites.

In	 addition,	we	 found	 that	 functional	 traits	were	 strongly	 as-
sociated	with	 the	FFD	and	were	 even	more	 important	 to	 explain	
variations	 than	elevation.	Most	 influential	was	Carea	 as	a	measure	
of	 plants’	 investment	 in	 structural	 components	 and	 photosyn-
thetic	 sugar	 accumulation	 (Larcher,	 1994).	 It	was	 associated	with	
later	dates	of	FFD,	which	 indicates	a	 trade-	off	between	offspring	
development	 time	and	 fitness	of	 the	parental	plants	 (Bolmgren	&	

Cowan,	2008).	Carbon	isotope	discrimination	as	a	time-	integrated	
estimate	of	internal	CO2	concentration	and	intrinsic	water-	use	ef-
ficiency	 (Farquhar	 et	al.,	 1989;	 Pérez-	Harguindeguy	 et	al.,	 2013)	
was	 also	very	 important	 to	 explain	variations	 in	FFD.	Higher	dis-
crimination	 and	 thus	 lower	water-	use	 efficiency	were	 associated	
with	 later	 dates	of	 first	 flowering.	Δ13C	 is	 increased	when	either	
stomata	 are	 open	 or	 photosynthesis	 rates	 are	 low	 (Bucher	 et	al.,	
2018;	Farquhar	et	al.,	1989).	Our	results	indicate	that	higher	pho-
tosynthesis	 rates	 are	 associated	 with	 earlier	 FFD,	 which	 is	 sup-
ported	 by	 the	 fact	 that	 nitrogen	 and	 phosphorus,	 both	 linked	 to	
enzyme	content	and	metabolism	were	also	associated	with	earlier	
FFD.	Phosphorus	is	essential	for	plant	growth	but	is	often	limited	
under	natural	conditions	 (Vitousek,	Porder,	Houlton,	&	Chadwick,	
2010),	which	has	been	documented	 for	Picea abies	 (L.)	Karst	 and	
Fagus sylvatica	L.	 in	the	same	research	area	 (Ewald,	2000;	Mellert	
&	Ewald,	2014).	In	horticulture,	phosphorus	is	often	used	to	induce	
flowering.	Previous	studies	 found	a	 link	between	soil	phosphorus	
content	 and	phenology	 in	F. sylvatica	where	high	 soil	 phosphorus	
led	to	higher	tissue	P	content	and	advanced	leaf	unfolding	but	not	
bud	 break	 (Yang,	 Zavišić,	 Pena,	 &	 Polle,	 2016),	 yet	 there	was	 no	
significant	 relationship	 of	 soil	 P	 and	 leaf	 Parea	 in	 our	 study	 (anal-
yses	 not	 shown).	Higher	 SPI	was	 associated	with	 later	 flowering.	
Römermann,	 Bucher,	 Hahn,	 and	 Bernhardt-	Römermann	 (2016)	
found	highest	SPI	during	midseason	within	a	species,	and	Bucher	
et	al.	 (2016)	 displayed	 the	 positive	 relationship	 between	 SPI	 and	

F IGURE  3 Relative	importance	of	plant	functional	traits	and	
elevation	and	gradient	as	integrating	factors	over	site	conditions	on	
first	flowering	day	(FFD)	as	deduced	from	boosted	regression	trees.	
Carea:	Carbon	per	unit	leaf	area	(g/m

2),	Δ13C:	Discrimination	of	13C	
(‰),	elevation	(m	a.s.l.),	Parea:	Phosphorus	per	unit	leaf	area	(g/m

2),	
SPI:	Stomatal	pore	area	index	(×102),	Mgarea:	Magnesium	per	unit	leaf	
area	(g/m2),	SLA:	Specific	leaf	area	(m2/kg),	Narea:	Nitrogen	per	unit	
leaf	area	(g/m2),	gradient:	Kramer	and	Kreuzeck,	and	Karea:	Potassium	
per	unit	leaf	area	(g/m2).	For	the	partial	dependency	plots	displaying	
the	relationships	of	the	explanatory	variables	to	FFD	in	detail,	please	
see	Appendix	S2

F IGURE  4 Relative	importance	of	plant	functional	traits	on	the	
shifts	of	first	flowering	day	(FFD)	along	the	elevational	gradient	as	
deduced	from	boosted	regression	trees.	Narea:	Nitrogen	per	unit	
leaf	area	(g/m2),	Karea:	Potassium	per	unit	leaf	area	(g/m

2),	Δ13C:	
Discrimination	of	13C	(‰),	Mgarea:	Magnesium	per	unit	leaf	area	(g/
m2),	Carea:	Carbon	per	unit	leaf	area	(g/m

2),	Parea:	Phosphorus	per	unit	
leaf	area	(g/m2),	SLA:	Specific	leaf	area	(m2/kg),	and	SPI:	Stomatal	
pore	area	index	(×102).	For	the	partial	dependency	plots	displaying	
the	relationships	of	the	explanatory	variables	to	the	shifts	in	FFD	in	
detail,	please	see	Appendix	S4
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photosynthesis	rates.	Contrasting	to	our	hypothesis,	Mgarea,	which	
is	essential	for	photosynthesis	was	related	to	a	later	onset	of	phe-
nology,	indicating	higher	maturity	of	the	leaves.	As	opposing	other	
leaf	 biochemical	 compounds,	Mg	 is	mostly	 located	 in	 chlorophyll	
and	 rarely	 found	 in	 other	 enzymes	which	 explains	 the	 deviation	
from	 the	 results	 for	 Narea	 and	 Parea,	 the	 latter	 two	 being	 related	
to	 earlier	 FFD.	 High	 SLA	 is	 linked	 to	 high	 growth	 rates	 (Pérez-	
Harguindeguy	 et	al.,	 2013)	 and	 had	 an	 advancing	 effect	 on	 FFD.	
The	relationship	of	SLA	to	 later	FFD	confirms	studies	by	Sun	and	
Frelich	(2011)	which	might	indicate	the	trade-	off	between	flower-
ing	phenology	and	offspring	development	 time	and	fitness	of	 the	
parental	plant	(Bolmgren	&	Cowan,	2008).	Potassium	is	involved	in	
cell	extension,	membrane	function,	and	stability	and	leads	to	ear-
lier	onset	of	FFD	in	our	study,	confirming	studies	demonstrating	a	
strong	 correlation	 of	 spring	 phenology	 of	Betula pubescens	 Ehrh.	
with	potassium	content	(Jochner	et	al.,	2013).

Moreover,	we	 could	 demonstrate	 that	 traits	 are	 associated	with	
shifts	 in	phenology	along	the	elevational	gradient	and	are	thus	influ-
encing	 the	 ability	 of	 species	 to	 adapt	 to	 climate	 change.	We	 found	
that	 especially	 higher	 nitrogen	 and	 potassium	 content	 were	 linked	
to	stronger	phenological	shifts	as	well	as	higher	Δ13C	and	thus	lower	
water-	use	efficiency.	Nitrogen,	being	related	to	enzyme	content	and	
photosynthesis	 rates	 (Bucher	et	al.,	 2018;	Evans,	1989),	 had	highest	
importance	for	the	ability	to	shift	FFD	which	strengthens	the	claim	of	
shifts	in	FFD	being	directly	related	to	plant	performance	(Cleland	et	al.,	
2012;	Willis	et	al.,	2008).	In	our	study,	we	found	that	SLA	was	related	
to	less	pronounced	shifts	in	FFD	which	is	opposing	findings	by	König	
et	al.	(2018)	for	herbaceous	plants	on	a	global	scale.	However,	SLA	had	
a	low	relative	importance	in	our	model	which	emphasizes	that	differ-
ent	mechanisms	could	act	on	different	scales.	As	SLA	is	also	driven	by	
leaf	thickness,	the	investment	in	thicker	leaves	and	thus	higher	resis-
tance	and	lower	growth	rates	seem	to	slow	down	phenological	shifts.	
We	also	hypothesized	weaker	shifts	with	increasing	Carea and stronger 
shifts	with	increasing	Mgarea	which	could	not	be	found	in	our	data.	This	
might	be	due	to	the	fact	that	carbon	is	not	only	located	in	structural	
compounds,	an	aspect	which	is	also	captured	indirectly	via	SLA	but	also	
accumulates	during	photosynthesis	where	CO2	 is	 fixed	via	RubisCO.	
Thus,	 it	captures	plant	performance	as	well,	which	is	 in	line	with	our	
findings	for	Narea,	Parea,	Karea,	and	Mgarea.	On	the	other	hand,	it	reduces	
the	strength	of	shift	in	FFD	similar	to	SLA	and	indicates	the	investment	
in	long-	lasting	leaf	organs	and	thus	a	more	conservative	life	strategy.	
This	indicates	that	plants	displaying	higher	photosynthesis	and	metab-
olism	rates	are	able	to	shift	their	phenology	stronger	than	plants	with	
lower	performance.	Traits	may	thus	be	used	 in	vegetation	models	as	
proxy	to	describe	the	ability	of	species	to	respond	to	changing	climate.

Our	findings	indicate	a	relationship	between	FFD	and	traits,	yet	
further	research	is	needed	concerning	the	intraannual	variability	and	
its	 association	 with	 phenology,	 as	 proposed	 by	 Römermann	 et	al.	
(2016).	We	could	demonstrate	 that	 traits	 related	 to	water-	use	effi-
ciency	and	growth	of	the	leaves	had	the	highest	relative	importance	
to	 explain	 differences	 in	 flowering	 phenology	 surpassing	 even	 the	
explanatory	 power	 of	 temperature	 on	 the	variation	 in	 FFD	 and	 in-
fluenced	the	ability	to	shift	phenology.	This	study	represents	a	first	

indication	 to	analyze	species-	specific	changes	 to	changing	environ-
mental	conditions	and	will	help	to	better	grasp	the	effects	of	changing	
temperatures	on	vegetation	changes	and	improve	future	predictions.
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