
Logical Methods in Computer Science
Vol. 13(4:2)2017, pp. 1–38
https://lmcs.episciences.org/

Submitted Mar. 30, 2017
Published Oct. 25, 2017

MODULAR, FULLY-ABSTRACT COMPILATION
BY APPROXIMATE BACK-TRANSLATION ∗

DOMINIQUE DEVRIESE a, MARCO PATRIGNANI b,†, FRANK PIESSENS a,
AND STEVEN KEUCHEL c

a imec-DistriNet, KU Leuven, Belgium
e-mail address: first.last@cs.kuleuven.be

b MPI-SWS, Saarbrücken, Germany
e-mail address:b first.last@mpi-sws.org

c UGent, Belgium
e-mail address: first.last@ugent.be

Abstract. A compiler is fully-abstract if the compilation from source language programs
to target language programs reflects and preserves behavioural equivalence. Such compilers
have important security benefits, as they limit the power of an attacker interacting with
the program in the target language to that of an attacker interacting with the program in
the source language. Proving compiler full-abstraction is, however, rather complicated. A
common proof technique is based on the back-translation of target-level program contexts
to behaviourally-equivalent source-level contexts. However, constructing such a back-
translation is problematic when the source language is not strong enough to embed an
encoding of the target language. For instance, when compiling from a simply-typed λ-
calculus (λτ) to an untyped λ-calculus (λu), the lack of recursive types in λτ prevents such
a back-translation.

We propose a general and elegant solution for this problem. The key insight is that it
suffices to construct an approximate back-translation. The approximation is only accurate
up to a certain number of steps and conservative beyond that, in the sense that the
context generated by the back-translation may diverge when the original would not, but
not vice versa. Based on this insight, we describe a general technique for proving compiler
full-abstraction and demonstrate it on a compiler from λτ to λu. The proof uses asymmetric
cross-language logical relations and makes innovative use of step-indexing to express the
relation between a context and its approximate back-translation. The proof extends easily to
common compiler patterns such as modular compilation and, to the best of our knowledge,
it is the first compiler full abstraction proof to have been fully mechanised in Coq. We
believe this proof technique can scale to challenging settings and enable simpler, more
scalable proofs of compiler full-abstraction.

2012 ACM CCS: [Security and privacy Logic and verification]: 300; [Software and its engineer-
ing General programming languages]: 300; [Software and its engineering Compilers]: 300.

Key words and phrases: Fully abstract compilation, cross-language logical relation, modular compilation.
∗ extended version of the paper in POPL’16.
† Currently at CISPA.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:2)2017
c© D. Devriese, M. Patrignani, F. Piessens, and S. Keuchel
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

We typeset source and target language terms in blue resp. pink; we recommend to
view/print this paper in colour for maximum clarity.

1. Introduction

A compiler is fully-abstract if the compilation from source language programs to target
language programs preserves and reflects behavioural equivalence [Abadi, 1999, Gorla and
Nestman, 2014]. Such compilers have important security benefits. It is often realistic to
assume that attackers can interact with a program in the target language, and depending on
the target language this can enable attacks such as improper stack manipulation, breaking
control flow guarantees, reading from or writing to private memory of other components,
inspecting or modifying the implementation of a function etc. [Abadi, 1999, Kennedy, 2006,
Patrignani et al., 2015, Abadi and Plotkin, 2012, Fournet et al., 2013, Agten et al., 2012].
A fully-abstract compiler is sufficiently defensive to rule out such attacks: the power of an
attacker interacting with the program in the target language is limited to attacks that could
also be performed by an attacker interacting with the program in the source language.

Formally, we model a compiler as a function J·K that maps source language terms t to
target language terms JtK. Elements of the source language are typeset in a blue, bold
font, while elements of the target language are typeset in a pink, sans-serif font. Roughly,
the compiler is fully-abstract, if for any two source language terms t1 and t2, we have that
they are behaviourally equivalent (t1'ctx t2) if and only if their compiled counterparts
are behaviourally equivalent (Jt1K'ctx Jt2K) [Abadi, 1999]. The notion of behavioural
equivalence used here is the canonical notion of contextual equivalence: two terms are
equivalent if they behave the same when plugged into any valid context. Specifically, we
take contextual equivalence to be equi-termination: t'ctx t

′ def
= ∀C,C[t] ⇓ ⇐⇒ C[t′] ⇓. The

universal quantification over contexts C ensures that the results produced by t and t′ are the
same [Plotkin, 1977, Curien, 2007].

The full-abstraction property can be split into two parts: the right-to-left implication and
the left-to-right implication, which we call (contextual) equivalence reflection and preservation
respectively.

Equivalence reflection. (t1'ctx t2 ⇐ Jt1K'ctx Jt2K) requires that if the compiler produces
equivalent target programs, then the source programs must have been equivalent. In other
words, non-equivalent source programs must be compiled to non-equivalent target programs.
Intuitively, this property captures an aspect of compiler correctness: if programs with different
source language behaviour become equivalent after compilation, the compiler must have
incorrectly compiled at least one of them (this is also called adequacy of the translation
by Schmidt-Schauß et al. [2015]).

We build on cross-language logical relations: a technique that has been proposed for
proving compiler correctness [Hur and Dreyer, 2011, Benton and Hur, 2009, 2010]. The
general idea of this approach is depicted in Fig. 1 (purposely ignoring language-specific
things such as the types of the terms involved). The proof starts from the knowledge
that Jt1K'ctx Jt2K and sets out to prove that t1'ctx t2. That is, for an arbitrary valid
context C, it shows that C[t1] ⇓ if and only if C[t2] ⇓. By symmetry, it suffices to show that
C[t1] ⇓ ⇒ C[t2] ⇓.

The idea of the approach is to define a cross-language logical relation t≈ t that expresses
when a compiled term t behaves as a target-level version of source-level term t. This logical

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 3

t1
?'ctx t2

C
[
t1
]
⇓ ?⇒ C

[
t2
]
⇓

(1)

(2)

(3) C≈ JCK
t2≈ Jt2K

C≈ JCK
t1≈ Jt1K

JCK
[
Jt1K

]
⇓ ⇒ JCK

[
Jt2K

]
⇓

Jt1K 'ctx Jt2K
co

m
pi

le
r

co
rr

ec
tn

es
s

di
re

ct
io

n

Figure 1: Proving one half of full-abstraction: compiler correctness. Only one direction of
this half is presented (⇒), the other one follows by symmetry.

relation is not compiler-specific: it should be understood as a specification of a target-level
calling convention rather than precise representation choices for a specific compiler. If we
can then prove that any term is logically related to its compilation (t≈ JtK), and that the
same result holds for contexts (C≈ JCK), then equivalence reflection follows.1 Starting from
t1≈ Jt1K and t2≈ Jt2K and C≈ JCK, the proof uses the inherent compositionality of logical
relations to know C[t1]≈ JCK[Jt1K] and the same for t2. If the logical relations are constructed
adequately, then related terms necessarily equi-terminate. Thus, C[t1] ⇓ iff JCK[Jt1K]⇓ and
similarly for t2. In particular, this yields the implications (1) and (3) in Fig. 1. Since
implication (2) follows directly from the hypothesis of (contextual) equivalence for Jt1K and
Jt2K, the proof for equivalence reflection is finished.

This direction of compiler full-abstraction is often called compiler correctness, as a
compiler that is correct trivially has this property. However, it is important to note that
full abstraction alone does not yield correctness as it only talks about equivalence classes
and not about respecting a cross-language relation that encodes the meaning of compiled
code. For example, a fully-abstract compiler can swap how true and false are compiled
(and how compiled boolean operators use booleans) and still be fully abstract. However, this
intuitively violates correctness, that intuitively tells that true is compiled to true. This is
why often, fully-abstract compilers are also proven to be correct (as we also do), to both
get one half of full abstraction and be sure to respect the intended meaning of compiled
programs.

Equivalence preservation. (t1'ctx t2 ⇒ Jt1K'ctx Jt2K) requires that equivalent programs
remain equivalent after compilation. This means that no matter what target-level manip-
ulations are done on compiled programs, the programs must behave equivalently if the
source programs were equivalent. This precludes all sorts of target-level attacks that break
source-level guarantees.

If the source language is strong enough, it is possible to apply a strategy analogous
to proving equivalence reflection for proving preservation, as depicted in Fig. 2.2 Given
an arbitrary target-level context C, we need to prove that C[Jt1K]⇓ implies C[Jt2K]⇓. In

1 As contexts C are also programs, they can be compiled with the same compiler for terms.
2Actually, both Figs. 2 and 3 are simplifications. Perceptive readers may notice that the proof depicted

here would falsely imply equivalence preservation for any correct compiler. We correct the simplifications in
Section 5.6.

4 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

t1 'ctx t2

〈〈C〉〉
[
t1
]
⇓ ⇒ 〈〈C〉〉

[
t2
]
⇓

(1)

(2)

(3)
〈〈C〉〉≈ C
t2≈ Jt2K

〈〈C〉〉≈ C
t1≈ Jt1K

C
[
Jt1K

]
⇓ ?⇒ C

[
Jt2K

]
⇓

Jt1K
?'ctx Jt2K

com
piler

security
direction

Figure 2: Proving the other half of full-abstraction: compiler security.

a sufficiently-powerful source language, we can construct a back-translation 〈〈C〉〉 for any
target-level context C. Using the same logical relation as above, it then suffices to prove that
〈〈C〉〉 is a valid source-level context and that 〈〈C〉〉≈ C for any valid context C. Together with
t1≈ Jt1K, and similarly for t2, compositionality and adequacy of the logical relation then
yield implications (1) and (3) in the Figure. The remaining implication (2) follows from the
assumed (contextual) equivalence of t1 and t2.

Constructing a back-translation of contexts is not easy, but it can be done if the source
language is sufficiently expressive. Consider, for example, a compiler that translates terms
from a simply-typed λ-calculus with recursive types (λτ ;µ) to an untyped λ-calculus (λu).
Constructing a back-translation of target-level contexts can be done based on a λτ ;µ type
that can represent arbitrary λu values. Particularly, we can encode the unitype of λu values
in a type UVal as follows:

UVal
def
= µα.B] (α× α)] (α] α)] (α→ α)

given that λu has base values of type B, pairs, coproducts and lambdas. In other words,
all λu values can be represented as λτ ;µ values of type UVal. We can then construct a
back-translation of λu contexts to λτ ;µ contexts such that the latter work with values in
UVal wherever the original λu contexts work with arbitrary λu values.

Contributions of this paper. If the types of the source language are not powerful enough to
embed an encoding of target terms, is it possible to have a fully-abstract compiler between
those languages? In this paper we answer positively to this question and develop a general
technique for proving this. We instantiate this proof technique and develop a fully-abstract
compiler from a simply-typed λ-calculus without recursive types (λτ) to an untyped λ-calculus
(λu). With such a source language, we cannot construct a type like UVal to represent the
values that a λu context works with. Fortunately, we can solve this problem by observing
that a fully accurate back-translation is sufficient for the proof but in fact not necessary.
An approximate back-translation is enough for the full-abstraction proof to work, without
sacrificing the overall simplicity and elegance of the proof technique. The basic idea is
depicted in Fig. 3. The differences from Fig. 2 are the use of asymmetric logical relations .
and & (also known as logical approximations) to express (roughly) that a term (or context)
t terminates whenever t does (t & t) and vice versa (t . t) and the addition of subscripts n
where logical approximations hold only up to a limited number of steps n. Note that n in
the figure is defined as the number of steps in the evaluation C[Jt1K]⇓n and that we write _
for an unknown number of steps.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 5

t1 'ctx t2

〈〈C〉〉n
[
t1
]
⇓_ ⇒ 〈〈C〉〉n

[
t2
]
⇓_

(1)

(2)

(3)
〈〈C〉〉n ._ C
t2 ._ Jt2K

〈〈C〉〉n &n C
t1 &_ Jt1K

C
[
Jt1K

]
⇓n

?⇒ C
[
Jt2K

]
⇓_

Jt1K
?'ctx Jt2K

approx.
com

piler
security

Figure 3: Proving equivalence preservation using an n-approximate back-translation. An _
subscript indicates any number of steps.

The proof starts, again, from an arbitrary target-level context C and the knowledge
that C[Jt1K] ⇓n. We then construct a λτ context 〈〈C〉〉n that satisfies two conditions. First,
it approximates C up to n steps: 〈〈C〉〉n &n C. This means that if C[t] terminates in less
than n steps then 〈〈C〉〉n[t] will also terminate for a term t related to t. This, together with
the knowledge that t & JtK, allows us to deduce implication (1) in the figure. As before,
implication (2) follows directly from the (contextual) equivalence of t1 and t2.

Then we use a second condition on the n-approximation 〈〈C〉〉n, namely that it is con-
servative, to deduce implication (3). Intuitively, the source-level context produced by the
n-approximation may diverge in situations where the original did not, but not vice versa.
Intuitively, the divergence will occur when the precision n of the approximate back-translation
〈〈C〉〉n is not sufficient for the context to accurately simulate the behaviour of C. This is
expressed by the logical approximation 〈〈C〉〉n . C which implies that if 〈〈C〉〉n[t] terminates
(in any number of steps), then so must C[t]. This allows us to deduce implication (3).

The advantage of this approximate back-translation approach is that it can be easier
to construct a conservative approximate back-translation than a full one. For example,
considering λτ without recursive types, we can construct a family of λτ types UValn, indexed
by non-negative numbers n:

UVal0
def
= Unit

UValn+1
def
=

Unit] B] (UValn ×UValn)]
(UValn]UValn)] (UValn → UValn).

Without giving full details here, UValn is an n-level unfolding of UVal with additional unit
values at every level to represent failed approximations. This approximate version of UVal is
enough to construct a conservative n-approximate back-translation of an untyped program
context, and as such, it allows us to circumvent the lack of expressiveness of λτ without
recursive types.

In order to make this approximate back-translation approach work, we need a way to
formalise the relation between an untyped context and its approximate back-translation.
However, it turns out that existing well-known techniques from the field of logical relations
are almost directly applicable. Asymmetric logical relations (like 〈〈C〉〉n . C above) are a
well-established technique. More interestingly, the approximateness of the relation can very
naturally be expressed using step-indexed logical relations. Despite this naturality, it appears
that this use of step-indexing is novel. The technique is normally used as a way to construct

6 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

well-founded logical relations and one is not actually interested in terms being related only
up to a limited number of steps.

An earlier version of this paper, published at POPL 2016, introduced the technique of
approximate back-translations, and applied it to prove full abstraction for a whole-program
compiler from λτ to λu [Devriese et al., 2016]. This journal version extends the conference
version in two ways. First, we extend the full abstraction proof to a modular compiler from
λτ to λu; i.e., one that operates on open programs (or, components) and links them together
after compilation. This is how most modern compilers operate for efficiency reasons, so this
furthers our belief that this proof technique scales to real-world compilers. Moreover, the
work required to extend the proof to a modular compiler is relatively small, so this provides
evidence of the broader applicability of our proof technique. Finally, proving modular full
abstraction yields that the compiler ensures component-based compartmentalisation, which
provides more fine-grained security guarantees than plain full abstraction.

Second, the original proof has been completely mechanised in Coq, providing additional
assurance about the correctness of our results. Additionally, this highlights that the reasoning
principle behind our proof technique is amenable to mechanisation. To the best of our
knowledge, this is the first fully mechanised proof of compiler full-abstraction.

To summarise, the contributions of this work are:
• a new and general proof technique for proving compiler modular full-abstraction using
asymmetric, cross-language logical relations and targeting untyped languages;
• a fully mechanised instantiation of that proof technique showing full abstraction of a
modular compiler from a simply-typed λ-calculus without recursive types to the untyped
λ-calculus;
• a novel application of step-indexed logical relations for expressing approximateness of a
back-translation.

This paper is structured as follows. First, we formalise the source and target languages
λτ and λu (Section 2). Second, we present the cross-language logical relations that we use to
express the relation between λτ terms and their compilations as well as between λu contexts
and their back-translation (Section 3). We define the compiler in Section 4. It applies type
erasure and dynamic type wrappers that enforce the requirements and guarantees of λτ types
during execution. We then present the approximate back-translation (Section 5) which we
use to prove compiler full-abstraction (Section 6). Then we present how to scale the proof
technique to modular compilers (Section 7). Finally, we discuss the mechanisation of the
proofs (Section 8). We then offer some discussion (Section 9), compare with related work
(Section 10) and conclude (Section 11).

2. Source and Target Languages

The source language λτ is presented in Fig. 4. It is a strict, simply-typed λ-calculus with
Unit, Bool, lambdas, product and sum types and a fix operator providing general recursion.
The figure presents the syntax of terms t, values v, types τ , typing contexts Γ and evaluation
contexts E. We indicate the reduction relation with ↪→; we define that a term t terminates
(t ⇓) if it reduces in a finite number of steps to a value: t ⇓ def

= ∃n,v.t ↪→n v. Apart from the
type and evaluation rules for fixτ1→τ2 , the typing rules and evaluation rules are standard. The
evaluation rules use evaluation contexts to impose a strict evaluation order. The type and
evaluation rule for fixτ1→τ2 are somewhat special compared to a more standard definition (see

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 7

t ::= unit | true | false | λx : τ. t | x | t t | t.1 | t.2 | 〈t, t〉 | inl t | inr t

| case t of inl x1 7→ t | inr x2 7→ t | t; t | if t then t else t | fixτ→τ t

v ::= unit | true | false | λx : τ. t | 〈v,v〉 | inl v | inr v

τ ::= Unit | Bool | τ → τ | τ × τ | τ] τ
Γ ::= ∅ | Γ,x : τ

E ::= [·] | E t | v E | E.1 | E.2 | 〈E, t〉 | 〈v,E〉 | inl E | inr E | case E of inl x1 7→ t1 | inr x2 7→ t2

| E; t | if E then t else t | fixτ→τ E

Γ ` unit : Unit Γ ` true : Bool
(x : τ) ∈ Γ

Γ ` x : τ

Γ, (x : τ) ` t : τ ′

Γ ` λx : τ. t : τ → τ ′

Γ ` t1 : τ1
Γ ` t2 : τ2

Γ ` 〈t1, t2〉 : τ1 × τ2

Γ ` t : τ1 × τ2
Γ ` t.1 : τ1

Γ ` t : τ ′ → τ Γ ` t′ : τ ′

Γ ` t t′ : τ
Γ ` t : τ

Γ ` inl t : τ] τ ′

Γ ` t : (τ1 → τ2)→ (τ1 → τ2)

Γ ` fixτ1→τ2 t : τ1 → τ2

Γ ` t : τ1] τ2
Γ, (x1 : τ1) ` t1 : τ Γ, (x2 : τ2) ` t2 : τ

Γ ` case t of inl x1 7→ t1 | inr x2 7→ t2 : τ

Γ ` t : Bool
Γ ` t1 : τ Γ ` t2 : τ

Γ ` if t then t1 else t2 : τ

Γ ` t1 : Unit
Γ ` t2 : τ

Γ ` t1; t2 : τ

t ↪→ t′

E[t] ↪→E[t′] (λx : τ. t) v ↪→ t[v/x] 〈v1,v2〉.1 ↪→v1

case inl v of

∣∣∣∣ inl x1 7→ t1

inr x2 7→ t2
↪→ t1[v/x1]

v ≡ true⇒ t′ ≡ t1
v ≡ false⇒ t′ ≡ t2

if v then t1 else t2 ↪→ t′

unit; t ↪→ t
fixτ1→τ2 (λx : τ1 → τ2. t) ↪→

t[(λ y : τ1. fixτ1→τ2 (λx : τ1 → τ2. t) y)/x]

Figure 4: Syntax, static and dynamic semantics of the source language λτ (selection of). We
denote syntactic equivalence as ≡.

e.g. Pierce [2002]): the operator is restricted to function types and an additional η-expansion
occurs during evaluation. This is because we have chosen to make fix model the Z fixed-point
combinator (also known as the call-by-value Y combinator) [Pierce, 2002, §5] rather than the
Y combinator. The reason revolves around the compiler devised in this paper. The target
language of that compiler is a strict untyped lambda calculus, where Y does not work but Z
does and using Z in λτ as well keeps the compiler simpler. Working with the more standard

8 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

t ::= unit | true | false | λx. t | x | t t | t.1 | t.2 | 〈t, t〉 | inl t | inr t

| case t of inl x 7→ t | inr x 7→ t | t; t | if t then t else t | wrong

v ::= unit | true | false | λx. t | 〈v, v〉 | inl v | inr v

Γ ::= ∅ | Γ, x

E ::= [·] | E t | v E | E.1 | E.2 | 〈E, t〉 | 〈v,E〉 | inl E | inr E
| case E of inl x1 7→ t1 | inr x2 7→ t2 | E; t | if E then t else t

t ↪→ t′

E[t] ↪→E[t′]

E 6= [·]
E[wrong] ↪→wrong (λx. t) v ↪→ t[v/x] 〈v1, v2〉.1 ↪→ v1

v ≡ unit⇒ t′ ≡ t
v≡/ unit⇒ t′ ≡ wrong

v; t ↪→ t′
case inl v of

∣∣∣∣ inl x1 7→ t1

inr x2 7→ t2
↪→ t1[v/x1]

v ≡ true⇒ t′ ≡ t1 v ≡ false⇒ t′ ≡ t2
(v 6≡ true ∧ v 6≡ false)⇒ t′ ≡ wrong

if v then t1 else t2 ↪→ t′

Figure 5: Syntax and dynamic semantics of the target language λu (selection of).

Y fixpoint combinator in λτ is probably possible but would require the compiler to use an
encoding that would be pervasive but irrelevant to the subject of this paper.

λτ program contexts C are λτ terms that contain exactly one hole [·] in place of a subterm.
We also omit the typing judgement for program contexts ` C : Γ′, τ ′ → Γ, τ , defined by
inductive rules close to those for terms in Fig. 4. The judgement guarantees that substituting
a well-typed term Γ′ ` t : τ ′ in a well-typed context ` C : Γ′, τ ′ → Γ, τ produces a well-typed
term Γ ` C[t] : τ .

Figure 5 presents the syntax, well-scopedness and evaluation rules for the target language
λu: a standard untyped λ-calculus. The calculus has unit, booleans, lambdas, product
and sum values, and produces a kind of unrecoverable exception in case of type errors
(e.g. projecting from a non-pair value, case splitting on a non-sum value etc.). Such an
unrecoverable exception is represented in a standard way (see, e.g., [Pierce, 2002, §14.1]) as
a non-value term wrong with a special reduction rule. We omit unsurprising well-scopedness
rules. The reduction relation ↪→ and termination for terms t ⇓ are defined analogously to
λτ . The evaluation rules again use evaluation contexts to impose a strict evaluation order.
Note that the termination judgement t ⇓ requires termination with a value, i.e. not wrong.
Again, we omit the well-scopedness judgement for contexts ` C : Γ′ → Γ, which is inductively
defined and guarantees that substituting a well-scoped term Γ′ ` t for the hole produces a
well-scoped result term Γ ` C[t].

The interested reader can find all proofs in the companion tech report [Devriese et al.,
2017].

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 9

W ::= (k) with k ∈ N

lev(W)
def
= W.k

. (0)
def
= (0)

. (k + 1)
def
= (k)

(k)w(k′)
def
= k ≤ k′

(k)=(k′)
def
= k < k′

O(W).
def
=
{

(t, t)
∣∣∣ ∃k ≤ lev(W),v. t ↪→k v⇒ ∃k′, v. t ↪→k′ v)

}
O(W)&

def
=
{

(t, t)
∣∣∣ ∃k ≤ lev(W), v. t ↪→k v⇒ ∃k′,v. t ↪→k′ v)

}
Figure 6: Logical relations: Worlds.

3. Logical Relations

This section presents the Kripke, step-indexed logical relations that we use to prove compiler
full-abstraction. First, this section describes the specifications of the world used by the
logical relation (Fig. 6). Then, it defines the logical relations (Fig. 7) and finally it proves
standard properties that the relations enjoy. Part of the logical relation is postponed until
Section 5.2, where we define the back-translation infrastructure that this part depends on.
The goal of this section is to provide an understanding of what it means for two terms to
be related; this will be needed for understanding properties of the compiler in the following
sections.

The cross-language logical relations used in this paper are roughly based on one by Hur
and Dreyer [2011]. Essentially, we instantiate their language-generic logical relations to λτ

and λu and simplify them by removing complexities deriving from the System F type system,
public/private transitions, references and garbage collection.

Since we do not deal with mutable references, we use a very simple notion of worlds,
consisting just of a step-index k that can be accessed with the lev(·) function (Fig. 6). We
define a . modality and a future world relation w, expressing that future worlds allow
less reduction steps to be taken. We define two different observation relations O(W). and
O(W)&. The former defines that a λτ term t approximates a λu term t if termination of the
first in less than lev(W) steps implies termination of the second (in an unknown number of
steps). The latter requires the reverse. All of our logical relations will be defined in terms
of either O(W). or O(W)&. For definitions and lemmas or theorems that apply for both
instantiations, we use the symbol � as a metavariable that can be instantiated to either .
and &.

Figure 7 contains the definition of the logical relations. The first thing to note is that
our logical relations are not indexed by λτ types τ , but by pseudo-types τ̂ . The syntax for
these pseudo-types contains all the constructs of λτ types, plus an additional token type
EmulDVn;p, indexed by a non-negative number n and a value p ::= precise | imprecise.
This token type is not a λτ type; it is needed because of the approximate back-translation.
When necessary, we use a function repEmul() for converting a pseudo-type to a λτ type.
The function replaces all occurrences of EmulDVn;p with a concrete λτ type. We postpone
the definitions and explanations of EmulDVn;p and of VJEmulDVn;pK� to Section 5.2, after we
have given some more information about the back-translation. We will sometimes silently
use normal types where pseudo-types are expected, which makes sense since the latter are a
superset of the former.

10 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

Pseudo-types τ̂ , pseudo-contexts Γ̂, oftype(·) and repEmul(·).
τ̂ ::= Bool | Unit | τ̂ × τ̂ | τ̂] τ̂ | τ̂ → τ̂ | EmulDVn;p
Γ̂ ::= ∅ | Γ̂,x : τ̂

repEmul(τ̂)
def
= · · · (to be defined later, in Fig. 13)

oftype(τ̂)
def
= {v | ∅ ` v : repEmul(τ̂)}

oftype(τ̂)
def
=

v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v = unit if τ̂ = Unit

v = true or v = false if τ̂ = Bool

∃t. v = λx. t if ∃τ̂1, τ̂2. τ̂ = τ̂1 → τ̂2

∃v1 ∈ oftype(τ̂1), v2 ∈ oftype(τ̂2). v = 〈v1, v2〉 if ∃τ̂1, τ̂2. τ̂ = τ̂1 × τ̂2
∃v1 ∈ oftype(τ̂1). v = inl v1

or ∃v2 ∈ oftype(τ̂2). v = inr v2 if ∃τ̂1, τ̂2. τ̂ = τ̂1] τ̂2

oftype(τ̂)

def
= {(v, v) | v ∈ oftype(τ̂) ∧ v ∈ oftype(τ̂)}

Logical relations for values (VJ·K), contexts (KJ·K), terms (EJ·K) and substitutions (GJ·K).

. R
def
= {(W,v, v) | lev(W) > 0⇒ (.W,v, v) ∈ R}

VJUnitK�
def
= {(W,v, v) | v = unit and v = unit}

VJBoolK�
def
= {(W,v, v) | ∃v ∈ {true, false}.v = v and v = v}

VJτ̂ ′ → τ̂K�
def
=

(W,v, v)

∣∣∣∣∣∣∣∣
(v, v) ∈ oftype(τ̂ ′ → τ̂) and

∃t, t.v = λx : repEmul(τ̂ ′). t and v = λx. t and

∀W′= W, (W′,v′, v′) ∈ VJτ̂ ′K�. (W′, t[v′/x], t[v′/x]) ∈ EJτ̂K�

VJτ̂1 × τ̂2K�

def
=

(W,v, v)

∣∣∣∣∣∣∣
(v, v) ∈ oftype(τ̂1 × τ̂2) and
∃v1,v2, v1, v2.v = 〈v1,v2〉 and v = 〈v1, v2〉 and
(W,v1, v1) ∈ . VJτ̂1K� and (W,v2, v2) ∈ . VJτ̂2K�

VJτ̂1] τ̂2K�

def
=

(W,v, v)

∣∣∣∣∣∣∣
(v, v) ∈ oftype(τ̂1] τ̂2) and either

∃v′, v′. (W,v′, v′) ∈ . VJτ̂1K� and v = inl v′ and v = inl v′ or

∃v′, v′. (W,v′, v′) ∈ . VJτ̂2K� and v = inr v′ and v = inr v′

VJEmulDVn;pK�

def
= · · · (to be defined later, in Fig. 12)

KJτ̂K�
def
= {(W,E,E) | ∀W′wW, (W′,v, v) ∈ VJτ̂K�. (E[v],E[v]) ∈ O(W′)�}

EJτ̂K�
def
= {(W, t, t) | ∀(W,E,E) ∈ KJτ̂K�. (E[t],E[t]) ∈ O(W)�}

GJ∅K�
def
= {(W, ∅, ∅)}

GJΓ̂, (x : τ̂)K�
def
= {(W, γ[x 7→ v], γ[x 7→ v]) | (W, γ, γ) ∈ GJΓ̂K� and (W,v, v) ∈ VJτ̂K�}

Figure 7: Logical relations (partial, the missing definition can be found in Figs. 12 and 13).

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 11

Logical relations for open terms and program contexts.

Γ̂ ` t �n t : τ̂
def
=

{
repEmul(Γ̂) ` t : repEmul(τ̂) and dom(Γ̂) ` t and
∀W. lev(W) ≤ n⇒ ∀(W, γ, γ) ∈ GJΓ̂K�. (W, tγ, tγ) ∈ EJτ̂K�

Γ̂ ` t � t : τ̂
def
= Γ̂ ` t �n t : τ̂ for all n

` C �n C : Γ̂′, τ̂ ′ → Γ̂, τ̂
def
=

` C : repEmul(Γ̂′), repEmul(τ̂ ′)→ repEmul(Γ̂), repEmul(τ̂)

and ` C : dom(Γ̂′)→ dom(Γ̂)

and for all t, t. if Γ̂′ ` t �n t : τ̂ ′, then Γ̂ ` C[t] �n C[t] : τ̂

Figure 8: Definition of logically related terms and contexts.

The value relation VJτ̂K� is defined by induction on the pseudo-type. Most definitions
are quite standard. All cases require related terms to be in the oftype relation, which
requires well-typedness of the λτ term and an appropriate shape for the λu value. Unit and
Bool values are related in any world iff they are the same base value. Pair values are related
if both are pairs and the corresponding components are related in strictly future worlds at
the appropriate pseudo-type. Similarly, sum values are related if they are both of either the
form inl · · · or inr · · · and if the contained values are related in strictly future worlds at the
appropriate pseudo-type. Finally, function values are related if they have the right type, if
both are lambdas and if substituting related values in the body yields related terms in any
strictly future world.

The relation on values, evaluation contexts and terms are defined mutually recursively,
using a technique known as biorthogonality (see, e.g., Benton and Hur [2009]). So, evaluation
contexts are related in a world if plugging in related values in any future world yields related
observations. Similarly, terms are related if plugging the terms in related evaluation contexts
yields related observations. Relation GJΓK� relates substitutions instantiating a context Γ,
which simply requires that substitutions for all variables in the context are related at their
types.

Figure 8 contains the definition of logically-related open and closed terms as well as
contexts. For open terms, we define a logical relation Γ̂ ` t �n t : τ̂ . This relation expresses
that an open λτ term t is related up to n steps to an open λu term t at pseudo-type τ̂ in
pseudo-context Γ̂ if the first is well-typed, the second is well-scoped and if closing t and t
with substitutions related at pseudo-context Γ̂ produces terms related at pseudo-type τ̂ , in
any world W such that lev(W) ≤ n. If Γ̂ ` t �n t : τ̂ for any n, then we write Γ̂ ` t � t : τ̂ .
Finally, we define a logical relation for program contexts ` C � C : Γ̂′, τ̂ ′ → Γ̂, τ̂ which
requires that substituting terms related at the appropriate pseudo-type produces terms
related at the appropriate pseudo-type.

It is interesting to note that the simple type system of our source calculus does not
actually present a technical need for the use of step-indexing. Because there are no recursive
types or general references, it is a simple enough system that we can give well-founded logical
relations without any step-indexing. However, as mentioned before, we use step-indexing for
a different reason than other work: not for constructing a well-founded logical relation, but
for stating that two terms are related only up to a certain number of steps. More details
follow in Section 5.

12 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

fix
def
= λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

erase(unit)
def
= unit

erase(false)
def
= false

erase(x)
def
= x

erase(〈t1, t2〉)
def
= 〈erase(t1), erase(t2)〉

erase(t1; t2)
def
= erase(t1); erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

erase(t.1)
def
= erase(t).1

erase(t.2)
def
= erase(t).2

erase(inl t)
def
= inl erase(t)

erase(inr t)
def
= inr erase(t)

erase(true)
def
= true

erase(λx : τ. t)
def
= λx. erase(t)

erase(fixτ1→τ2 t)
def
= fix erase(t)

erase(if t then t1 else t2)
def
= if erase(t) then erase(t1) else erase(t2)

erase(case t of inl x1 7→ t1 | inr x2 7→ t2)
def
= case erase(t) of

∣∣∣∣∣ inl x1 7→ erase(t1)

inr x2 7→ erase(t2)

Figure 9: Type erasure: the first pass of the compiler.

These logical relations are constructed so that termination of one implies termination of
the other, according to the direction of the approximation (. or &, Lemma 3.1).

Lemma 3.1 (Adequacy for . and &).
• If ∅ ` t .n t : τ and t ↪→m v with n ≥ m, then t ⇓.
• If ∅ ` t &n t : τ and t ↪→m v with n ≥ m, then t ⇓.

4. The Compiler

This section presents our compiler from λτ to λu. The compiler proceeds in two passes: type
erasure (Fig. 9) and dynamic typechecking wrappers (Fig. 10).

The erasure function is called erase; it converts all λτ constructs to the corresponding
λu constructs. fixτ1→τ2 is erased to a λu definition of the Z combinator fix .

The erase function can be considered as a compiler, but it is only a correct compiler,
not a fully-abstract one, as explained in Example 4.1.

Example 4.1 (Erasure is correct but not secure [Patrignani et al., 2015, Fournet et al.,
2013]). Consider the following, contextually equivalent λτ functions of type Unit→ Unit:

λx : Unit.x 'ctx λx : Unit. unit

The erase function will map these to the following λu functions:

λx. x 6'ctx λx. unit

The results of erase are not contextually equivalent, essentially because applying them to a
non-unit value like true will produce true for the left lambda and unit for the right lambda.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 13

protectUnit
def
= λx. x protectBool

def
= λx. x

protectτ1×τ2
def
= λy. 〈protectτ1 y.1, protectτ2 y.2〉

protectτ1]τ2
def
= λy. case y of

∣∣∣∣∣ inl x 7→ inl (protectτ1 x)

inr x 7→ inr (protectτ2 x)

protectτ1→τ2
def
= λy. λx.protectτ2 (y (confineτ1 x))

confineUnit
def
= λy. (y; unit)

confineBool
def
= λy. if y then true else false

confineτ1×τ2
def
= λy. 〈confineτ1 y.1, confineτ2 y.2〉

confineτ1]τ2
def
= λy. case y of

∣∣∣∣∣ inl x 7→ inl (confineτ1 x)

inr x 7→ inr (confineτ2 x)

confineτ1→τ2
def
= λy. λx. confineτ2 (y (protectτ1 x))

Figure 10: Dynamic type checking wrappers: the second pass of the compiler.

In this example, contextual equivalence is not preserved because the original functions are
only defined for Unit values, but their compilations can be applied to other values too.

The following lemma states that every λτ term is related to its erased term at its type.

Lemma 4.2 (Erase is semantics-preserving (for terms)).
If Γ ` t : τ , then Γ ` t � erase(t) : τ .

An analogous result applies to program contexts:

Lemma 4.3 (Erase is semantics-preserving (for contexts)).
If ` C : Γ′, τ ′ → Γ, τ , then ` C � erase(C) : Γ′, τ ′ → Γ, τ .

One should intuitively understand this result as “t behaves the same as erase(t) when
both are treated as values of type τ ”. The result does not specify what happens when we treat
t as a value of a different type, like we did in Example 4.1 to demonstrate a full abstraction
failure. Intuitively, it only specifies a kind of equivalence reflection for the erase function,
not preservation.

Remember that a fully-abstract compiler must protect terms from being used in ways
that are not allowed by their type, as in Example 4.1. This is taken care of by the second
pass of the compiler.

We construct a family of dynamic typechecking wrappers protectτ and confineτ . protectτ
is a λu term that wraps an argument to enforce that it can only be used in ways that are
valid according to type τ , as often done in secure compilation work [Patrignani et al., 2015,
Bowman and Ahmed, 2015, Fournet et al., 2013, Ahmed and Blume, 2008]. Dually, confineτ
wraps its argument so that it can only behave in ways that are valid according to type τ . In
the definition, the cases for product and coproduct types simply recursively descend on their
subterms preserving the expected syntax of a product or coproduct argument. Protecting at

14 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

a function type means wrapping the function to confine its arguments and protect its results,
and dually for confining at a function type. Finally, protecting at a base type (i.e., Unit or
Bool) does nothing, simply because there is nothing one can do to a base value that is not
allowed by its type. Confining a value at a base type is more interesting. Both for Unit and
Bool values, we use the value in such a way that will only work when the value is actually
of the correct type. If it is, we return the original value, otherwise the term will reduce to
wrong.3

Remark on different inhabitants for Unit. In some lambda calculi, any value can be given
type Unit and the sequencing operator does not require the term before the semicolon to be
unit in order to reduce, but an arbitrary value. Thus, two syntactically-different source terms
true and unit can be semantically equivalent at type Unit in this language. Interestingly,
in such a language, the definitions of protectUnit and confineUnit would need to be swapped:

protect-altUnit
def
= λy. (y; unit) confine-altUnit

def
= λx. x

In fact, in the target language a context can distinguish what is syntactically different but
semantically equivalent in the source. Thus the compiler needs to enforce that the chosen
representation for terms of type Unit in the compiled code is unique. Conversely, any value
received from a target context is now valid at type Unit, so no checks are made.

Example 4.4 (Protect and confine make a term secure). Consider the protect wrapper
protectUnit→Unit for type Unit→ Unit, which is (roughly) equal to λy. λx. y (x; unit). Apply-
ing that wrapper to a function f (i.e. protectUnit→Unit f) reduces to λx. f (x; unit). Applying
this value to a non-unit value will simply evaluate to wrong, therefore addressing the issues
of Example 4.1.

For the second pass of the compiler, Lemma 4.5 holds.

Lemma 4.5 (Protect and confine are semantics-preserving).
If Γ ` t �n t : τ , then Γ ` t �n protectτ t : τ and Γ ` t �n confineτ t : τ .

Lemma 4.5 states that if t is related to t at type τ , then adding a protectτ or confineτ
wrapper around t does not change that. In other words, the wrappers do not change the
behaviour of t as long as they are treated as values of type τ . In Section 5.5, we will have
more to say about the security of the wrappers.

This section concludes with the definition of the compiler used in this paper.

Definition 4.6 (The J·K compiler). If Γ ` t : τ , then t is compiled to JtK and: JtK def
=

protectτ (erase(t)).

Lemmas 4.2 and 4.5 about the first and second pass of the compiler can be combined
into Lemma 4.7 to obtain that a λτ term of type τ behaves like its compilation when both
are treated as terms of type τ .

Lemma 4.7 (J·K is semantics-preserving). If Γ ` t : τ , then Γ ` t � JtK : τ .

3It would also be valid to diverge in this case, if λu had some form of dynamic type test which allowed us
to do that.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 15

5. Approximate Back-Translation

This section presents the core idea of our proof technique: the approximate back-translation.
As explained in Section 1, the idea is to translate a target language program context C to a
source language program context 〈〈C〉〉n which conservatively n-approximates C. Intuitively,
this means that 〈〈C〉〉n behaves like C for up to n steps but it may diverge in cases where the
original did not if C takes more than n steps. We will make this more precise in Section 5.2.

At the core of the approximate back-translation is the λτ type UValn. The type is
essentially a λτ encoding of the unitype of λu. Where the untyped context C manipulates
arbitrary λu values, its back-translation 〈〈C〉〉n manipulates values of type UValn. Section 5.1
defines UValn and the basic tools (constructors and destructors) for working with it. To
explain how values in UValn model values in λu, Section 5.2 fills in the missing piece of the
logical relations of Fig. 7 by defining VJEmulDVn;pK�.

The type UValn is sufficiently large to contain n-approximations of λu values. However,
it also contains approximations of λu values up to less than n steps. Sometimes, values of
type UValn will be downgraded to a type UValm with m < n. Dually, there will be cases
where some values need to upgrade. Section 5.3 defines functions to perform value upgrading
and downgrading.

With UValn and the related machinery introduced, Section 5.4 constructs the function
emulaten, responsible for emulating a context such that it translates a λu term t into a
λτ term of type UValn. This function is easily extended to work with program contexts,
producing contexts with hole of type UValn as expected.

However, remember from Fig. 3 in Section 1 that the goal of the back-translation is
generating a context 〈〈C〉〉n whose hole can be filled with λτ terms t1 and t2. Their type is
not UValn but an arbitrary λτ type τ . Thus, there is a type mismatch between the hole
of the emulated context emulaten(C) and the terms that we want to plug in there. Since
the emulated contexts work with UValn values, we need a function that wraps terms of
an arbitrary type τ into a value of type UValn. This is precisely what Section 5.5 defines,
namely a function injectτ ;n of type τ → UValn.

Finally, Section 5.6 defines the approximate back-translation function 〈〈·〉〉τ ;n, mapping
a λu context C to a λτ context 〈〈C〉〉τ ;n. The additional index τ w.r.t. earlier discussions is
needed to introduce an appropriate call to injectτ ;n as discussed above, so that the hole of
〈〈C〉〉τ ;n is of type τ . Plugging a term t1 in 〈〈C〉〉τ ;n n-approximates plugging in the compilation
Jt1K in context C.

Immediately after the definition of each of the concepts discussed above (downgrade,
upgrade, injectτ ;n and emulaten), this section formalises the results about their behaviour.
These results are expressed in terms of the logical relations of Fig. 7 and of the EmulDVn;p
pseudo-type; they will be used to prove equivalence preservation in Section 6.

5.1. UVal and its Tools. The family of types UValn is defined as follows:

UVal0
def
= Unit

UValn+1
def
=

Unit] Unit] Bool] (UValn ×UValn)]
(UValn]UValn)] (UValn → UValn)

UValn is the type that emulated λu terms have when back-translated into λτ . For every
n, UValn is clearly a valid λτ type. At non-zero levels, the type UValn+1 is a disjunct
sum of base values (the second occurrence of Unit and Bool), products and coproducts of

16 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

inunk;n : UValn+1

inUnit;n : Unit→ UValn+1

inBool;n : Bool→ UValn+1

in×;n : (UValn ×UValn)→ UValn+1

in];n : (UValn]UValn)→ UValn+1

in→;n : (UValn → UValn)→ UValn+1

unkn : UValn

unk0
def
= unit

unkn+1
def
= inunk;n

omegaτ : τ

omegaτ
def
= fixUnit→τ (λx : Unit→ τ.x) unit

caseUnit;n : UValn+1 → Unit

caseBool;n : UValn+1 → Bool

case×;n : UValn+1 → (UValn ×UValn)

case];n : UValn+1 → (UValn]UValn)

case→;n : UValn+1 → UValn → UValn

caseUnit;n
def
= λx : UValn+1. case x of {inUnit;n x 7→ x;_ 7→ omega}

caseBool;n
def
= λx : UValn+1. case x of {inBool;n x 7→ x;_ 7→ omega}

case×;n
def
= λx : UValn+1. case x of {in×;n x 7→ x;_ 7→ omega}

case];n
def
= λx : UValn+1. case x of {in];n x 7→ x;_ 7→ omega}

case→;n
def
= λx : UValn+1. λy : UValn. case x of{in→;n z 7→ z y;_ 7→ omega}

Figure 11: Basic tools for working with UValn. The subscript of omega is omitted when it is
clear from the context.

UValns and functions mapping a UValn to a UValn. All of these cases are used to emulate a
corresponding λu value. Additionally, at every level including n = 0, the type UValn contains
a Unit case which is needed to represent an arbitrary λu value in cases where the precision
of the approximate emulation is insufficient to provide more information. Note that the
two occurrences of Unit in the definition of UValn+1 are not a typo. The first is used for
imprecisely representing arbitrary λu terms while the second accurately represents λu unit

values.
To work with UValn values, we need basic tools for dealing with sum types: tag injections

and case extractions (Fig. 11). Functions inunk;n, inUnit;n, inBool;n, in×;n, in];n, in→;n are
convenient names for nested applications of coproduct injection functions for the nested
coproduct in the definition of UValn+1. The term unkn produces either the single value of
UVal0 or uses inunk;n to produce a UValn+1 value representing a 0-precision approximate
back-translation of an arbitrary untyped term. For using UValn values, we define functions
caseUnit;n, caseBool;n, case×;n, case];n, case→;n using a somewhat liberal pattern matching
syntax that can be easily desugared to nested case expressions. The functions are lambdas
that inspect their UValn+1 argument and return the contained value if it is in the appropriate

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 17

branch of the coproduct, or diverge otherwise. To achieve divergence, we use a term omegaτ
constructed using fix. We simply write omega when the type τ can be inferred from the
context.

5.2. λu Values vs. UVal. To make the correspondence between a λu term and its emulation
in UValn more exact, this section fills in the definition of VJEmulDVn;pK�, the missing piece
of the logical relations of Fig. 7. Intuitively, the previously presented cases of the logical
relations define the relation between a λτ term and its compilation. The VJEmulDVn;pK� case
defines the relation between a λu term and its UValn-typed back-translation, as motivated
in Example 5.1. This relation depends on the index n of type UValn and additionally on a
parameter p ::= precise | imprecise, that is explained below.

Example 5.1 (The need for EmulDV). Consider the term t ≡ inBool;1 true. Since UValn is
a sum type, according to the definition of VJτ] τ ′K, it can be related only to terms that have
the same tag. However, for the back-translation we do not want this, we want that term to
be related to the t term that t approximates (in this case, true). Type EmulDVn;p serves the
purpose of expressing this t-emulates-t relation (as opposed to the t-is-the-compilation-of-t
relation expressed by the other types). In other words, inBool;1 true and true will be related
at pseudo-type EmulDV2;p.

Before explaining the definition of the logical relations for EmulDVn;p, we should elaborate
on the approximateness of the correspondence.

Example 5.2 (Approximate values unkn). Consider the UVal6 value

in×;5 〈in];4 (inl unk4), unk5〉
This value might be used by the approximate back-translation to represent the λu term
〈inl 〈unit, true〉, λx. x〉. Our VJEmulDVn;pK� specification will enforce that terms of the form
in×;n 〈·, ·〉 or in];n (inl ·) represent the corresponding λu constructs, but terms unk4 and
unk5 can represent arbitrary terms (in this case: a pair of base values and a lambda).

The limited size of the type UValn sometimes forces us to resort to unkn values in the
back-translation, making it approximate. However, VJEmulDVn;pK� does not allow these unkn

values to occur just anywhere, because they could compromise the required precision of our
approximate back-translation.

In fact, VJEmulDVn;pK� provides two different specifications for the occurrence of unkn,
depending on the value of p. The case where p = imprecise is used when we are proving
〈〈C〉〉n . C, which means roughly that termination of 〈〈C〉〉n in any number of steps implies
termination of C. In this case, VJEmulDVn;pK� allows unkn values to occur everywhere
in a back-translation term, and they can correspond to arbitrary λu terms. These mild
requirements on the correspondence of λu terms place a large burden on the code in a back-
translation 〈〈C〉〉n. This code must be able to deal with unkn values and produce behaviour for
them that approximates the behaviour of C for the arbitrary values that the unkns correspond
with. Luckily, when we are proving 〈〈C〉〉n . C, we can achieve this by simply making all
the functions in our back-translation diverge whenever they try to use a UValn value that
happens to be an unkn. This is sufficient because the approximation 〈〈C〉〉n . C trivially holds
when 〈〈C〉〉n diverges: it essentially only requires that C terminates whenever 〈〈C〉〉n does, but
nothing needs to be shown when the latter diverges.

18 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

VJEmulDV0;pK�
def
= {(W,v, v) | v = unit and p = imprecise}

VJEmulDVn+1;pK�
def
=

(W,v, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ oftype(UValn+1) and one of the following holds:

v = inunk;n and p = imprecise

∃v′.v = inUnit;n v′ and (W,v′, v) ∈ VJUnitK�
∃v′.v = inBool;n v′ and (W,v′, v) ∈ VJBoolK�
∃v′.v = in×;n v′ and

(W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�
∃v′.v = in];n v′ and

(W,v′, v) ∈ VJEmulDVn;p] EmulDVn;pK�
∃v′.v = in→;n v′ and

(W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�

Figure 12: Specifying the relation between λu values and their emulation in VJEmulDVn;pK�.

Example 5.3 (Relatedness with imprecise). Consider the term t ≡ in×;42 〈unk42, unk42〉.
This term will be related to 〈t1, t2〉 at pseudo-type EmulDV43;imprecise for any terms t1 and t2
and in any world.

The case when p = precise specifies where values unkn are allowed when we are
proving that 〈〈C〉〉n &n C, meaning roughly that termination of C in less than n steps implies
termination of 〈〈C〉〉n. In this case, the requirements on the back-translation correspondence
are significantly stronger: unkn is simply ruled out by the definition of VJEmulDVn;pK�. That
does not mean, however, that unkn cannot occur inside related terms, rather that unkn can
only occur at depths that cannot be reached using the number of steps in the world.

Example 5.4 (Relatedness with precise). Consider again the term t
def
= in×;42 〈unk42,unk42〉.

This term will still be related by EmulDV43;precise to t
def
= 〈t1, t2〉 for any terms t1 and t2, but

only in worlds W such that lev(W) = 0. More precisely, our specification will state that
(W, t, t) ∈ VJEmulDV43;preciseK� iff

(W, 〈unk42, unk42〉, 〈t1, t2〉) ∈ VJEmulDV42;precise × EmulDV42;preciseK�.

By the definition in Fig. 7, this requires in turn that (W,unk42, t1) and (W,unk42, t2) are in
. VJEmulDV42,preciseK�. However if lev(W) = 0, then this is vacuously true by definition of
the . operator, independent of the requirements of VJEmulDV42,preciseK�.

Intuitively, it is sufficient to only forbid unkn at depths lower than the number of steps
left in the world because we are proving 〈〈C〉〉n &n C (emphasis on the index n of &n). So,
if C terminates in less than n steps, then the evaluation of C cannot have used values that
are deeper than level n in any UValn. The corresponding execution of 〈〈C〉〉n will also not
have had a chance to encounter the unkns. Therefore, the executions must have behaved
identically.

With this approximation aspect explained, Fig. 12 presents the definition of VJEmulDVn;pK�.
For relating terms v and v in a world W, the definition requires that v has the right type
and that p = imprecise if v is unkn. Additionally, the structure of the λτ term stripped

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 19

toEmul(∅)n;p = ∅
toEmul(Γ, x)n;p = toEmul(Γ)n;p, (x : EmulDVn;p)

repEmul(∅) = ∅
repEmul(Γ, (x : τ̂)) = repEmul(Γ), (x : repEmul(τ̂))

repEmul(τ̂ × τ̂ ′) = repEmul(τ̂)× repEmul(τ̂ ′)

repEmul(τ̂] τ̂ ′) = repEmul(τ̂)] repEmul(τ̂ ′)

repEmul(τ̂ → τ̂ ′) = repEmul(τ̂)→ repEmul(τ̂ ′)

repEmul(EmulDVn;p) = UValn

repEmul(Bool) = Bool

repEmul(Unit) = Unit

Figure 13: Helper functions for EmulDVn;p.

of its UValn tag and the structure of the λu term must coincide. Formally, this is ex-
pressed by the following conditions: (W,v′, v) are in VJBK� (recall that B are ground types),
VJEmulDVn;p × EmulDVn;pK�, VJEmulDVn;p] EmulDVn;pK� or VJEmulDVn;p → EmulDVn;pK� if v =
inB;n v′, v = in×;n v′, v = in];n v′ or v = in→;n v′ respectively.

In addition to EmulDVn;p, we still need to define two helper functions (Fig. 13). The
first, repEmul(·), was left open in Fig. 7. It re-maps all variables of a Γ that are of type
EmulDVn;p to type UValn. A second function, toEmul(·)n;p, turns an untyped Γ into one
where all variables are mapped to EmulDVn;p.

The adequacy property of the logical relations (Lemma 3.1) holds for the complete
definition of the logical relations, including the definition for VJEmulDVn;pK.

5.3. Upgrading and Downgrading Values. Figure 14 defines the functions downgraden;d :
UValn+d → UValn and upgraden;d : UValn → UValn+d (by induction on n) that we talked
about before. Most cases simply work structurally over the type, but some are more inter-
esting. There is a contravariance in the cases for function values in both downgraden;d and
upgraden;d: a function UValn → UValn is turned into a function of type UValn+d → UValn+d

by constructing a wrapper that downgrades the argument and upgrades the result and
vice versa. Unknown values are always mapped to unknown values, but additionally, the
case for downgraden;d when n = 0 will throw away the information contained in its ar-
gument of type UVald and simply returns the single unknown value in UVal0. Note that
downgraden;d and upgraden;d are not inverse functions, since downgraden;d throws away
information that was previously there. Informally, while t ∼ downgraden;d (upgraden;d t),
the reverse (t ∼ upgraden;d (downgraden;d t)) is not true, since applying downgrade first
reduces precision.

Example 5.5 (Downgrading terms). Suppose that we want to emulate a λu term λx. 〈x, x〉
in UVal· for a sufficiently-large n. We would expect roughly the following λτ term:

in→;n−1 (λx : UValn−1. in×;n−2 〈x,x〉)

20 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

downgraden;d : UValn+d → UValn

downgrade0;d
def
= λv : UVald. unk0

downgraden+1;d
def
= λx : UValn+d+1. case x of∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

inunk;n+d 7→ inunk;n

inUnit;n+d y 7→ inUnit;n y

inBool;n+d y 7→ inBool;n y

in×;n+d y 7→ in×;n 〈downgraden;d y.1,downgraden;d y.2〉

in];n+d y 7→ in];n case y of

∣∣∣∣∣ inl x 7→ inl (downgraden;d x)

inr x 7→ inr (downgraden;d x)

in→;n+d y 7→ in→;n (λz : UValn.downgraden;d(y (upgraden;d z)))

upgraden;d : UValn → UValn+d

upgrade0;d
def
= λx : UVal0. unkd

upgraden+1;d
def
= λx : UValn+1. case x of∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

inunk;n 7→ inunk;n+d;

inUnit;n y 7→ inUnit;n+d y;

inBool;n y 7→ inBool;n+d y;

in×;n y 7→ in×;n+d 〈upgraden;d y.1,upgraden;d y.2〉

in];n y 7→ in];n+d case y of

∣∣∣∣∣ inl x 7→ inl (upgraden;d x)

inr x 7→ inr (upgraden;d x)

in→;n y 7→ in→;n+d (λz : UValn.upgraden;d(y (downgraden;d z)))

Figure 14: Upgrade and downgrade for UValn.

Indices n−1 and n−2 of the UValn constructors are imposed by the well-typedness constraints.
However, even this is not enough to guarantee well-typedness. With a closer inspection, the
variable x of type UValn−1 is used where a term of type UValn−2 is required (it is inside a
pair tagged with in×;n−2). This is a problem of type safety, not precision of approximation.
Since x appears inside a pair, inspecting x for any number of steps requires at least one
additional step to first project it out of the pair. In other words, for the pair to be a precise
approximation up to ≤ n− 1 steps, x needs only to be precise up to n− 2 steps. It is then
safe to throw away one level of precision and downgrade x from type UValn−1 to UValn−2.

We will use the function downgrade for the situation of Example 5.5 and similar ones
in the next sections. In dual situations we will need to upgrade terms from type UValn to
UValn+d. This will neither increase precision of the approximation, nor decrease it.

The correctness property for downgrade and upgrade is stated in the following lemma.

Lemma 5.6 (Compatibility lemma for upgraden;d and downgraden;d). Suppose that
• either (n < m and p = precise)

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 21

emulaten(t) : UValn

emulaten(unit)
def
= downgraden;1 (inUnit;n unit)

emulaten(true)
def
= downgraden;1 (inBool;n true)

emulaten(false)
def
= downgraden;1 (inBool;n false)

emulaten(x)
def
= x

emulaten(λx. t)
def
= downgraden;1 (in→;n (λx : UValn. emulaten(t)))

emulaten(t1 t2)
def
= case→;n (upgraden;1 (emulaten(t1))) emulaten(t2)

emulaten(〈t1, t2〉)
def
= downgraden;1 (in×;n 〈emulaten(t1), emulaten(t2)〉)

emulaten(inl t)
def
= downgraden;1 (in];n (inl emulaten(t)))

emulaten(inr t)
def
= downgraden;1 (in];n (inr emulaten(t)))

emulaten(t.1)
def
= (case×;n (upgraden;1 (emulaten(t)))).1

emulaten(t.2)
def
= (case×;n (upgraden;1 (emulaten(t)))).2

emulaten(t; t′)
def
= (caseUnit;n (upgraden;1(emulaten(t)))); emulaten(t′)

emulaten(wrong)
def
= omega

emulaten(case t1 of inl x 7→ t2 | inr x 7→ t3)
def
=

case (case];n (upgraden;1 (emulaten(t1)))) of

∣∣∣∣∣ inl x 7→ emulaten(t2)

inr x 7→ emulaten(t3)

emulaten(if t then t1 else t2)
def
=

if (caseBool;n (upgraden;1 (emulatent))) then emulaten(t1) else emulaten(t2)

Figure 15: Emulating λu terms in UValn.

• or (� =. and p = imprecise),
then
• If Γ ` t �n t : EmulDVm+d;p, then Γ ` downgradem;d t �n t : EmulDVm;p.
• If Γ ` t �n t : EmulDVm;p, then Γ ` upgradem;d t �n t : EmulDVm+d;p.

This lemma covers both situations that we discussed previously. It requires that either
n < m (so that the results only hold in worlds W with lev(W) ≤ n < m), in which case
p = precise, or � =. and p = imprecise. If that is the case, the lemma says that if a term
t is related to t by EmulDVm+d;p (or EmulDVm;p) then it stays related to t after upgrading or
downgrading.

5.4. Emulation. Having defined downgrade and upgrade, Fig. 15 defines the emulaten
function. That function maps arbitrary λu terms to their approximate back-translation: λτ

22 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

terms of type UValn. emulaten is defined by induction on t. The different cases follow the
same pattern: every term t is mapped to a λτ term constructed recursively from the emulation
of sub-terms, producing and consuming UValn terms wherever t works with untyped terms.
Additionally, the definitions use upgraden;1 and downgraden;1 to make the resulting term
type-check, as explained in Example 5.5. For example, the case for pairs applies in×;n to
a pair constructed from the emulations of its components. Since this produces a UValn+1,
downgraden;1 is used to downgrade this to a UValn term. Finally, the untyped term wrong
is back-translated to a divergent term.

The back-translation produced by emulaten is necessarily approximate, as the type UValn
is not large enough for back-translating arbitrary terms. Inaccuracies in the back-translation
are introduced in the calls to downgraden;1 in several of the cases. The approximation is
accurate enough for the following lemma to hold.

Lemma 5.7 (Emulate relates at EmulDV). If Γ ` t, and if
• either (m > n and p = precise)
• or (� =. and p = imprecise),
then we have that toEmul(Γ)m;p ` emulatem(t) �n t : EmulDVm;p.

Like Lemma 5.6, Lemma 5.7 requires that either n < m (so that the results only hold in
worlds W with lev(W) ≤ n < m), in which case p = precise, or � =. and p = imprecise.
This again covers what we need for the two logical approximations of 〈〈C〉〉n in Fig. 3. The
lemma states that the back-translation of any well-scoped term is related to the term by
EmulDVm;p, as intended.

An analogous result holds for contexts.

Lemma 5.8 (Emulate relates contexts at EmulDV). If ` C : Γ′ → Γ, and if
• either (m > n and p = precise)
• or (� =. and p = imprecise),
then ` emulatem(C) �n C : toEmul(Γ′)m;p, EmulDVm;p → toEmul(Γ)m;p, EmulDVm;p

5.5. Injection and Extraction of Terms. One final thing is missing to construct a back-
translation 〈〈C〉〉n of an untyped program context C. While emulaten(C) produces a λτ context
that expects a UValn value (just like C expects an arbitrary λu value), the back-translation
should accept values of a given type τ (the type of the terms t1 and t2 that we are compiling).
To bridge this difference, Fig. 16 defines a λτ function injectτ ;n of type τ → UValn which
injects values of an arbitrary type τ into UValn. We define it mutually recursively with a
dual function extractτ ;n : UValn → τ which is needed for contravariantly converting UValn
arguments to the appropriate type in the injectτ ;n case for function types.

Generally, injectτ ;n converts a value v of type τ to a value of type UValn that behaves
like the compilation JvK. The cases for base values use the appropriate tagging and case
functions (e.g., inUnit;n and caseBool;n) to achieve this. For pair and sum values, injectτ ;n
and extractτ ;n simply recurse over the structure of the values, respectively applying in×;n,
in];n and case×;n, case];n to construct and destruct UValns of a certain expected form.
Note that when UValn values do not have the form expected for type τ , then extractτ ;n will
diverge by definition of the case··· ;n functions. This divergence corresponds to the wrong
that we get when an untyped context attempts to use λu values as pairs, disjunct sum values
or base values when those values are of a different form.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 23

extractτ ;n : UValn → τ

extractτ ;0
def
= λx : UVal0. omega

extractUnit;n+1
def
= λx : UValn+1. caseUnit;n x

extractBool;n+1
def
= λx : UValn+1. caseBool;n x

extractτ1→τ2;n+1
def
= λx : UValn+1. λy : τ1. extractτ2;n (case→;n x (injectτ1;n y))

extractτ1×τ2;n+1
def
= λx : UValn+1. 〈extractτ1;n (case×;n x).1,extractτ2;n (case×;n x).2〉

extractτ1]τ2;n+1
def
= λx : UValn+1. case case];n x of

∣∣∣∣∣ inl y→ inl (extractτ1;n y)

inr y→ inr (extractτ2;n y)

injectτ ;n : τ → UValn

injectτ ;0
def
= λx : τ. omega

injectUnit;n+1
def
= λx : Unit. inUnit;n x

injectBool;n+1
def
= λx : Bool. inBool;n x

injectτ1→τ2;n+1
def
= λx : τ1 → τ2. in→;n (λx : UValn.injectτ2;n (x (extractτ1;n x)))

injectτ1×τ2;n+1
def
= λx : τ1 × τ2. in×;n〈injectτ1;n x.1,injectτ2;n x.2〉

injectτ1]τ2;n+1
def
= λx : τ1] τ2. in];n (case x of

∣∣∣∣∣ inl y 7→ inr (injectτ1;n y)

inr y 7→ inr (injectτ2;n y)

)

Figure 16: Injecting λτ values into UValn.

For function types, injectτ ;n and extractτ ;n produce lambdas that contravariantly
extract and inject the argument and covariantly inject and extract the result. Finally, when
n = 0, then the size of our type is insufficient for extractτ ;n and injectτ ;n to accurately
perform their intended function. Luckily, to obtain the necessary precision of our approximate
back-translation, it is sufficient for them to simply diverge in this case: they simply return
omega terms of the expected type.

For a value v of type τ , injectτ ;n will produce a value UValn that behaves as the
compilation of v, JvK. More precisely and more generally, the following lemma states that if
a term t is related to a term t at type τ (intuitively if t behaves as t when used in a way
that is valid according to type τ), then injectτ ;n t behaves as the emulation of protectτ t.
A dual result about extractτ ;n and confineτ states (intuitively) that if a term t behaves as
an emulation of value t, then confineτ t will behave as extractτ ;n t when used in ways that
are valid according to type τ .

Lemma 5.9 (Inject is protect and extract is confine). If Γ̂ ` t �n t : τ and if
• either (m ≥ n and p = precise)
• or (� =. and p = imprecise)
then Γ̂ ` injectτ ;m t �n protectτ t : EmulDVm;p.

24 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

If Γ̂ ` t �n t : EmulDVm;p, and if
• either (m ≥ n and p = precise)
• or (� =. and p = imprecise)
then Γ̂ ` extractτ ;m t �n confineτ t : τ .

Example 5.10. Consider again Example 4.1. We have that

∅ ` λx : Unit.x � λx. x : Unit→ Unit.

λx : Unit.x behaves like λx. x, when the latter is used in ways that are valid for a value of
type Unit→ Unit. Lemma 5.9 then yields:

∅ ` injectτ ;n (λx : Unit.x) �n protectUnit→Unit (λx. x) : EmulDVm;n.

For n sufficiently large and modulo some simplifications, these terms become:

injectτ ;n (λx : Unit.x) = in→;n−1 (λx : UValn−1. inUnit;n−2 (caseUnit;n−2 x))

protectUnit→Unit (λx. x) = λx. x; unit

We invite the reader to verify that both expressions behave appropriately when applied to
any values v and v that are related by EmulDVn;p: for example (v = inUnit;n−1 unit and
v = unit), (v = in→;n−1 (λx : UValn−1.x) and v = λx. x) or (v = unkn, v is any λu term
and � =.).

5.6. Approximate Back-Translation. We are now ready to define the approximate back-
translation 〈〈C〉〉τ ;n of an arbitrary untyped context C with a hole of type τ . However, before
we do, we need to correct a few simplifications that were made in Fig. 3.

First, as we have already explained, the back-translation 〈〈C〉〉n does not just depend on
n but also on the type τ of the terms t1 and t2 that we are compiling. As such, we define
the back-translation with τ as an additional parameter.

Definition 5.11 (n-approximate back-translation 〈〈·〉〉τ ;n). The n-approximate back-translation
of a context C with a hole of type τ is defined as follows. 〈〈C〉〉τ ;n

def
= emulaten+1(C)[injectτ ;n ·]

A second simplification in Fig. 3 was the fact that we claimed 〈〈C〉〉n &n C and 〈〈C〉〉n . C.
Fig. 17 shows a more accurate picture of the relations that we have. As we will see
in the next section, this more accurate picture still allows us to conclude the facts that
∅ ` 〈〈C〉〉τ ;n[t1] &n C[Jt1K] : EmulDVn;precise and ∅ ` 〈〈C〉〉τ ;n[t2] .n′ C[Jt2K] : EmulDVn;imprecise
so that the proof goes through unchanged.

The correctness of 〈〈·〉〉τ ;n is captured in Lemma 5.12.

Lemma 5.12 (Correctness of 〈〈·〉〉τ ;n). If Γ ` t �n t : τ , and if
• either (m ≥ n and p = precise)
• or (� =. and p = imprecise)
then Γ ` 〈〈C〉〉τ ;m[t] �n C[protectτ t] : EmulDVm;p.

Proof. Follows from Lemmas 5.8 and 5.9.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 25

�n �n �n

emulaten(C)[injectτ ;n t]

〈〈C〉〉τ ;n

C[protectτ erase(t)]

JtK

〈〈C〉〉τ ;n[t]

�n

C[JtK]

Terms related by Lemma 4.2 Terms related by Lemma 5.9
Terms related by Lemma 5.8

expands to thisThis statement

Figure 17: A more accurate picture of related components of compiled term t, program
context C, compilation JtK and emulation 〈〈C〉〉τ ;n than in the simplified Fig. 3.

6. Compiler Full-Abstraction

This section presents the proof that the compiler J·K is fully-abstract (Theorem 6.3) by
relying on the logical relations of Fig. 7. As previously mentioned, this results in proving
equivalence reflection (Theorem 6.1) and preservation (Theorem 6.2). As suggested by Fig. 1
in Section 1, the lemmas presented in Section 4 are enough to prove equivalence reflection
for J·K. Dually, as suggested by Fig. 3 in Section 1, the lemmas presented in Section 5 are
enough to prove equivalence preservation for J·K.

Recall from Definition 4.6 that JtK is protectτ (erase(t)).

Theorem 6.1 (J·K is correct). If ∅ ` t1 : τ , ∅ ` t2 : τ and ∅ ` Jt1K'ctx Jt2K, then
∅ ` t1'ctx t2 : τ .

Proof. Take C so that ` C : ∅, τ → ∅, τ ′. By definition of 'ctx , we need to prove that C[t1]⇓
iff C[t2]⇓. By symmetry, it suffices to prove the ⇒ direction. So, assume that C[t1]⇓. We
need to prove that C[t2]⇓.

Define C
def
= erase(C), Lemma 4.3 yields ` C � C : ∅, τ → ∅, τ ′. By Lemma 4.7, we get

∅ ` t1 � Jt1K : τ and ∅ ` t2 � Jt2K : τ . By definition of ` C � C : ∅, τ → ∅, τ ′, we get
(specifically) that ∅ ` C[t1] & C[Jt1K] : τ ′ and ∅ ` C[t2] . C[Jt2K] : τ ′.

C[t1]⇓ and ∅ ` C[t1] � C[Jt1K] : τ ′ imply that C[Jt1K]⇓ by Lemma 3.1. From Jt1K'ctx Jt2K
and C[Jt1K]⇓, we get that C[Jt2K]⇓. ∅ ` C[t2] � C[Jt2K] : τ ′ and C[Jt2K]⇓ yield C[t2]⇓ by
Lemma 3.1.

Theorem 6.2 (J·K is secure). If ∅ ` t1 : τ , ∅ ` t2 : τ and t1'ctx t2 : τ , then Jt1K'ctx Jt2K.

Proof. Note that Jt1K = protectτ (erase(t1)) by definition and similarly for t2.
Take a ` C : ∅→∅ and suppose that C[protectτ (erase(t1))]⇓, then we need to show that

C[protectτ (erase(t2))]⇓.
Take n larger than the number of steps in the termination of C[protectτ (erase(t1))]⇓.
By Lemma 4.2, we have that ∅ ` t1 &n erase(t1) : τ .
By Lemma 5.12 (taking m = n ≥ n, p = precise and � = &), we then have that

∅ ` 〈〈C〉〉τ ;n[t1] &n C[protectτ (erase(t1))] : EmulDVn;precise.

26 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

Now by Lemma 3.1, by C[protectτ (erase(t1))]⇓, and by the choice of n, we have that
〈〈C〉〉τ ;n[t1]⇓.

It now follows from ∅ ` t1'ctx t2 : τ and 〈〈C〉〉τ ;n[t1]⇓ that 〈〈C〉〉τ ;n[t2]⇓.
Now take n′ the number of steps in the termination of 〈〈C〉〉τ ;n[t2]⇓. We have from

Lemma 4.2 that ∅ ` t2 .n′ erase(t2) : τ .
By Lemma 5.12, we then have (taking m = n, n = n′, p = imprecise and � = .) that

∅ ` 〈〈C〉〉τ ;n[t2] .n′ C[protectτ (erase(t2))] : EmulDVn;imprecise

Now by Lemma 3.1, by the choice of n′ and by the fact that 〈〈C〉〉τ ;n[t2]⇓, we get that
C[protectτ (erase(t2))]⇓ as required.

Theorem 6.3 (J·K is fully-abstract). If ∅ ` t1 : τ and ∅ ` t2 : τ , then

t1'ctx t2 ⇐⇒ Jt1K'ctx Jt2K

Proof. Theorem 6.1 provides the ⇐ direction while Theorem 6.2 provides the ⇒ one.

7. Modular Fully-Abstract Compilation

For the sake of simplicity, so far we only considered compilers that take a whole program
as input, keeping modular compilers (and thus linking of compiled programs) out of the
picture. However, for the proof technique to be applicable and useful in real-world scenarios,
it must scale to modular compilers. Modular compilers compile different parts of a program
separately, leading to faster re-compilation times since only the fragments that changed since
the last compilation are recompiled. This section extends the presented proof technique to
modular compilers.

More in detail, a modular compiler considers source programs that are open; it compiles
these open programs independently and links the result to form the runnable program. Open
programs are those that have dependencies on other ones, e.g., a secure transactions program
could rely on third-party cryptographic-signing function to accomplish its task. The program
does not implement the signing function itself, rather it relies on such a function to be
provided at link time. Linking is the process of taking open programs and fulfilling their
dependencies with the other programs they are linked against. When the aforementioned
secure transaction program is linked against the code that provides the signing function, the
linker ensures that whenever the program calls that function, the call is dispatched to the
actual implementation.

Full-abstraction as stated in Theorem 6.3 is not a correct criterion for modular compilers,
as it is stated for closed terms. Instead, a generalisation exists for modular compilers: modular
full-abstraction [Patrignani et al., 2016]. Modular full-abstraction forces one to reason about
linking of programs when developing a fully-abstract compiler. Modular full-abstraction can
be derived from compiler modularity and full-abstraction stated with an open environment
(so not as in Theorem 6.3).

In the remainder of this section, we explain how to turn the compiler developed so far
into a modular one and prove it to be modularly fully-abstract. In order to discuss modularity
and linking, this section first defines what open terms are and introduces a notion of linking
in both source and target languages (Section 7.1). Then it extends the compiler to work for
open terms (Section 7.2) so that it can be proven to be modularly fully-abstract (Section 7.3).
The proofs are all carried out using the machinery developed in the previous section, which
furthers our belief in the strength of the proof technique.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 27

7.1. Open Terms and Linking. Open terms are already part of the model since they are
those that are type checked against a non-empty environment. For the sake of simplicity, we
only consider linking two terms t1 and t2 (linking an arbitrary number of terms simply adds
an inductive step to the formal development but no additional insight). Both t1 and t2 have
a single free variable that the other term is intended to fulfill, i.e. t1 has a free variable x2

of the same type as t2, and t2 has a free variable x1 of the same type as t1. We allow t1
and t2 to be mutually dependent, but the case for non-mutually dependent terms follows as
a special case.

Intuitively, the linker must return the pair of t1 and t2 where the free variable of each
term is replaced with the other term. Because these two terms have mutual dependencies,
linking is encoded by using a fixpoint to produce a pair containing versions of t1 and t2
with the occurrences of the free variable of t1 filled in with t2 (and vice-versa). Recall that
fixpoint is a syntactic form that exists in both languages.

Since we are in a call-by-value setting, fixpoints are a bit delicate. Specifically, if we
just feed any two arbitrary terms t1 and t2 to the fixpoints, it is not possible to produce
the fixpoint without risking divergence. To address this (known) problem, we restrict the
compiler to lambdas λx′1 : τ ′1. t1 and λx′2 : τ ′2. t2, as one would expect from a call-by-value
program.

However, we cannot simply use a fixpoint to produce the pair that we want because
we had to encode fix in λu as the Z combinator (which can only produce fixpoints that are
functions). While intuitively the linker should just use fix to produce the pair of the two
terms, in this case it needs to be wrapped into a lambda that discards its argument. We
choose to supply Unit-type values to such a lambda.

Definition 7.1 presents linking in λτ and λu.

Definition 7.1 (Linking). If

x2 : τ ′2 → τ2 ` t1 : τ ′1 → τ1

x1 : τ ′1 → τ1 ` t2 : τ ′2 → τ2

then

t1 + t2
def
=

fixUnit→((τ ′1→τ1)×(τ ′2→τ2))

(λp : Unit→ ((τ ′1 → τ1)× (τ ′2 → τ2)). λ_ : Unit.〈
λx′1 : τ ′1. ((λx2 : τ ′2 → τ2. t1) ((p unit).2)) x′1,

λx′2 : τ ′2. ((λx1 : τ ′1 → τ1. t2) ((p unit).1)) x′2

〉
)

 unit

We can show that the this produces a well-typed term:

t1 + t2 : ((τ ′1 → τ1)× (τ ′2 → τ2))

If

x2 ` t1

x1 ` t2

then

t1 + t2
def
=

(
fix

(
λp. λ_.

〈
λx′1. ((λx2. t1) (p unit).2) x′1,

λx′2. ((λx1. t2) (p unit).1) x′2

〉))
unit

28 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

Both linkers are defined analogously. They use the recursive fix arguments (p and
p respectively) inside the lambda term, binding the projections of that argument to the
corresponding free variable (for instance, binding the second projection of p to x2). As
stated before, the recursive application is done after an eta-expansion to prevent the term
from diverging.

In the context of modular full abstraction, it is important that for any term t, linking
with t produces a valid program context ·+ t. This way, a program context (representing
an adversary) can link the program with an arbitrary term of its choosing, i.e. a compiled
program cannot trust what it is being linked against. As a result of this, compiled programs
must perform checks against that code too; these checks are the modifications to the compiler
to which we turn next. The advantage of the fact that linking produces valid contexts is that
if we take C[t1 + t2], i.e. we let a linked program t1 + t2 interact with an adversary context
C, then if t2 contains a security bug, we can still change our point of view and consider
C[·+ t2] as an adversary context that trusted program t1 is being linked against. In other
words, modular full abstraction implies a form of compartmentalisation: security bugs in a
component do not expose other components’ internals.

7.2. A Secure Compiler for Open Terms. The compiler definition changes as in Defini-
tion 7.2 to account for open terms and compiled terms being in a lambda-form.

Definition 7.2 (A Modular Compiler J·Kλ
τ

λu). Assuming
• x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1,
then:

q
λx′1 : τ ′1. t1

yλτ
λu

= protectτ ′1→τ1(λx′1. ((λx2. erase(t1))(confineτ ′2→τ2 x2)))

The compiler knows that erase(λx′1. t) will generate an open term with an open variable
x2. So it closes that variable with a λx2. · just to open it again with the argument of that
lambda (the term (confineτ ′2→τ2x2)). The point of this is to force a confine· around the free
variables.

If one considers two source terms being compiled with this compiler and then linked,
then the extra confine· is redundant. However, linking at the target level can be done with
arbitrary terms, so they need to be restricted on how they interoperate with these terms
by calling confine· on them. The term supplied for the open variable is like the argument
of a function (the linker really treats it that way), thus the choice of confine·. Adding
this additional confine· does not disrupt the functionality of compiled code, as proved by
Lemma 7.3.

Lemma 7.3 (An extra confine is just fine). If Γ,x : τ ′ ` t : τ , then

Γ,x : τ ′ ` t �n (λx. erase(t))(confineτ ′ x) : τ

7.3. Modular Full-Abstraction for J·Kλ
τ

λu . The property that J·Kλ
τ

λu must have is modular
full-abstraction [Patrignani et al., 2016], which is the combination of compiler full-abstraction
with an open environment (Theorem 7.7 in Section 7.3.1) and compiler modularity (Theo-
rem 7.8 in Section 7.3.2).

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 29

7.3.1. Full-Abstraction with an Open Environment. The first step to re-prove compiler full-
abstraction is compiler correctness for open lambda-terms (Theorem 7.4).

Theorem 7.4 (J·Kλ
τ

λu is correct). If

x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1

then

x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 �n protectτ ′1→τ1(λx′1. ((λx2. erase(t1))(confineτ ′2→τ2 x2))) : τ ′1 → τ1.

We then re-state Theorem 6.1 and Theorem 6.2 to work for open lambda terms only
and to work for the new definition of J·Kλ

τ

λu .

Theorem 7.5 (J·Kλ
τ

λu reflects equivalence). If

x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1,

x : τ ′ → τ ` λx′2 : τ ′1. t2 : τ ′1 → τ1,

x `
q
λx′1 : τ ′1. t1

yλτ
λu
'ctx

q
λx′2 : τ ′1. t2

yλτ
λu

then
x : τ ′ → τ ` λx′1 : τ ′1. t1'ctx λx′2 : τ ′1. t2 : τ ′1 → τ1.

Theorem 7.6 (J·Kλ
τ

λu preserves equivalence). If

x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1,

x : τ ′ → τ ` λx′2 : τ ′1. t2 : τ ′1 → τ1,

x : τ ′ ` λx′1 : τ ′1. t1'ctx λx′1 : τ ′2. t2 : τ ,

then
x `

q
λx′1 : τ ′1. t1

yλτ
λu
'ctx

q
λx′2 : τ ′2. t2

yλτ
λu
.

The proofs of Theorem 7.5 and of Theorem 7.6 are analogous to their closed-environments
analogues except that they rely on Theorem 7.4. They are reported in the companion tech
report.

Theorem 7.7 (Compiler Full Abstraction). If

x : τ ′ → τ ` λx′1 : τ ′1. t1 : τ ′1 → τ1,

x : τ ′ → τ ` λx′1 : τ ′1. t2 : τ ′1 → τ1,

then

x : τ ′ → τ ` λx′1. t1'ctx λx′2. t2 : τ ′1 → τ1 ⇐⇒ x `
q
λx′1. t1

yS
T 'ctx

q
λx′2. t2

yS
T .

Proof. By Theorem 7.6 and Theorem 7.5.

30 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

t1 + t2 'ctx t1 + t2

〈〈C〉〉n
[
t1 + t2

]
⇓_ ⇒ 〈〈C〉〉n

[
t1 + t2

]
⇓_

(1)

(2)

(3)
〈〈C〉〉n ._ C

t1 + t2 ._ Jt1Kλ
τ

λu +Jt2Kλ
τ

λu

〈〈C〉〉n &n C
t1 + t2 &_ Jt1 + t2K

C
[
Jt1 + t2K

]
⇓n

?⇒ C
[
Jt1Kλ

τ

λu +Jt2Kλ
τ

λu

]
⇓_

Jt1 + t2Kλ
τ

λu
?'ctx Jt1Kλ

τ

λu +Jt2Kλ
τ

λu

Figure 18: Proving compiler modularity. Only one direction of this half is presented (⇒),
the other one follows by symmetry.

7.3.2. Compiler Modularity. Compiler modularity is a property that is stated just between
λu terms. Intuitively, it states that linking two source terms t1 and t2 and compiling the
result is contextually-equivalent to compiling t1 and t2 individually and then linking the
result in the target. Formally, this is captured by Theorem 7.8, where compiler modularity is
written with a closed environment as linking is generally a global step.

Theorem 7.8 (Compiler modularity). If

x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1

x1 : τ ′1 → τ1 ` λx′2 : τ ′2. t2 : τ ′2 → τ2

then
∅ `

q
λx′1 : τ ′1. t1 + λx′2 : τ ′2. t2

yλτ
λu
'ctx

q
λx′1 : τ ′1. t1

yλτ
λu

+
q
λx′2 : τ ′2. t2

yλτ
λu
.

The formal setup developed so far (i.e., the logical relation) however, is only built for
cross-language reasoning. Since we do not really have a λu logical relation, nor do we want
to build one, we resort to an analogous of the proof of compiler security – the part that relies
on the back translation, except that we will have the same term on both sides of the source
contextual equivalence (Figure 18).

Step 1 is given by the correctness of J·Kλ
τ

λu (Theorem 7.4) and Step 2 is trivial since a term
is equivalent to itself. All that remains to be proven is Step 3, as captured by Lemma 7.9.

Lemma 7.9 (Source linking is related to target linking). If

x2 : τ ′2 → τ2 ` λx′1 : τ ′1. t1 : τ ′1 → τ1

x1 : τ ′1 → τ1 ` λx′2 : τ ′2. t2 : τ ′2 → τ2

then

∅ ` (λx′1 : τ ′1. t1) + (λx′2 : τ ′2. t2) �n
q
λx′1 : τ ′1. t1

yλτ
λu

+
q
λx′2 : τ ′2. t2

yλτ
λu

: (τ ′1 → τ1)× (τ ′2 → τ2).

Given that source and target linking are defined to be syntactically duals, this proof is a
mere application of several compatibility lemmas and Lemma 7.3.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 31

8. Mechanically verified proof

Proofs of full abstraction for non-trivial compiler passes are very often only given on paper.
The reason is that they are quite involved and require a significant effort to mechanically
verify. This is unfortunate because the proofs are often lengthy and non-trivial, so they
would benefit from the extra assurance offered by mechanical verification. In this section,
we report on our succesful mechanical verification using Coq of the full abstraction proof
presented in Section 7.2.

This proof has been a significant undertaking (± 2-3 man-months, 11k lines of code
excluding comments) resulting in a medium-sized coq development, available online4. The
proof only assumes a single axiom: functional extensionality, i.e. the property that two
functions are provably equal if they produce the same result for all inputs. This is used in
the substitution machinery and for proving propositional equality for the folding/unfolding
of the well-founded fixpoints that define the logical relations. In this section, we provide an
overview of the construction of the proof and some discussion of our experience constructing
it.

The Coq version of the proof largely follows the structure of the “on-paper” version. As is
often the case in proofs about properties of lambda calculi, a lot of the overhead arises from
the definition of the syntax and more precisely, its use of variables and variable binding. Since
the POPLmark challenge [Aydemir et al., 2005], the literature has seen a lot of proposals for
encoding such definitions in proof assistants. However, our requirements on the encoding
go beyond those of the challenge in some places, so that our options for the encoding were
a bit more limited. In particular, we require a notion of simultaneous closing substitutions
(i.e. substitutions that simultaneously substitute closed values for all the free variables of a
term), we need to deal with two separate lambda calculi (λτ and λu) without duplicating all
the binding infrastructure and finally, we want to keep our options open for extending the
proof to System F (see Section 9).

Because of these requirements, we decided to rely on traditional but proven technology
and we chose a standard encoding using de Bruijn indices (with a separate well-scopedness
judgement). We used the UniDB library5 for de Bruijn encodngs in Coq (developed by the
last author using his experiences working on the Knot framework Keuchel et al. [2016]).
UniDB is instantiated with language specific traversal functions of our source and target
language and properties of these traversal, from which the variable binding boilerplate like
simultaneous substitution and its properties are derived. The library defines a set of Coq
type classes as an interface that allows us to use the same notation for the source and target
language. On top of what UniDB provides, we have constructed a number of Ltac tactics
for automating the construction of language-specific well-typedness, well-scopedness and
evaluation proofs.

Encoding the logical relation did not cause major concerns. The step-indexing in the
LR could be expressed without many problems using a library for well-founded induction
over natural numbers from Coq’s standard library. We did not encounter major problems in
the original on-paper proof, although we did run into some minor problems, like the need to
be more explicit about the required closedness of untyped terms in the value relation.

In summary, this mechanical verification obviously strengthens our trust in the proof.
However, we point out that, to the best of our knowledge, it is the first full proof of full

4http://people.cs.kuleuven.be/dominique.devriese/permanent/facomp-stlc-coq.tar.xz
5Available at: https://github.com/skeuchel/unidb-coq

http://people.cs.kuleuven.be/dominique.devriese/permanent/facomp-stlc-coq.tar.xz
https://github.com/skeuchel/unidb-coq

32 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

abstraction for a non-trivial compiler pass (see Section 10 for a discussion of related work).
As such, it demonstrates that such proofs are within reach of current tools like Coq, although
there is room for improvement: 2-3 man-months is more effort than we would hope to spend
for a proof that we have already done in much detail on paper. Conversely, the fact that
our proof did not uncover any major problem and most of the effort went into dealing with
variable binding, well-typedness proofs etc., also shows that this sort of logical relation-based
proofs of full abstraction lend themselves well to mechanisation and the level of detail of our
original proof is a good level to aim for.

9. Discussion and Future Work

Our interest in fully-abstract compilation comes from a security perspective. We think
that a fully-abstract compiler from realistic source languages to a form of assembly that is
efficiently executable by processors has important security applications (combining trusted
and untrusted code at the assembly level and compartmentalising applications). So far, it
remains unclear precisely which security properties are preserved by fully abstract compilers,
although it seems that at least important security properties like noninterference [Bowman
and Ahmed, 2015] are. Unless targeting typed assembly language [Morrisett et al., 1999], a
crucial step of a secure compiler is a form of secure type erasure. The contribution of this
paper is mostly the proof technique that proves the type erasure step secure. We intend to
reuse this proof technique in other settings.

There are a number of important problems that need to be solved in order to develop a
realistic fully-abstract compiler. Several widely-implemented high-level language features
present significant challenges: parametric polymorphism, (higher-order) references, exceptions
etc. Generally, we believe that low-level assembly languages should be defined that are
not only efficiently executable but also provide sufficient abstraction features to enable
fully abstract compilation of such standard programming language features. For now, it
remains an open question whether this is feasible. Let us zoom in on some of these features
in more detail. A long-standing open problem is fully-abstract compilation of parametric
polymorphism to a form of operational sealing primitives [Sumii and Pierce, 2007, Matthews
and Ahmed, 2008, Neis et al., 2009]. More concretely, several researchers have developed
interesting results about fully-abstract compilation from System F to λseal (an untyped
lambda calculus with sealing primitives), but a fully-abstract compiler in this setting has so
far only been conjectured. We believe that the problem is quite related to the one tackled in
this paper. Without providing details (for space reasons), an exact back-translation from
λseal to System F seems possible, but only if we assume a form of generally recursive type
constructors of kind ∗ → ∗, which we cannot add to System F without causing other problems
for the compilation. We have been working on a proof using an approximate back-translation,
but we ran into an unexpected problem: the conjectured full abstraction of Sumii-Pierce’s
compiler is false. We will report on this further in future work.

In other settings, it is also not clear whether it is possible to construct a fully-abstract
compiler. For example, if we add typed, higher-order references to λτ and untyped references
to λu, it is not clear if a fully-abstract compiler can be devised. The problem is essentially to
choose a representation for typed references and a way of manipulating them that reconciles
a number of requirements: (1) trusted code reading from a reference always produces a
type-correct value, (2) trusted code writing a type-correct value to a reference always works,
(3) untrusted code should be able to read/write type-correct values from references, (4)

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 33

dynamic type checks or wrappers may only be added where the context could also choose to
fail for other reasons (i.e. not at the time of reading/writing a reference by trusted code),
(5) efficiency: we do not want to check the contents of all references every time control is
passed from trusted code to the context. Several obvious solutions do not work: representing
references as objects with read and write methods violates requirement (4), just checking
the contents of a reference when it is received from the context is not enough to guarantee
(1) and (2). We intend to explore a solution based on trusted but abstract read/write/alloc
methods (using sealing primitives as used for parametric polymorphism) but this remains
speculation for the moment.

Another interesting problem when compiling to an assembly language is the enforcement
of well-bracketed control flow. The question is essentially how to represent return pointers
at the assembly level. Even if we prevent functions from accessing parts of the stack and
only give them access to an opaque invokable return pointer, they still have ways to misuse
them [Patrignani et al., 2016]. Imagine a trusted assembly function f invoking an untrusted
g. Additionally, assume that g in turn re-invokes f and f simply re-invokes g again. Now g
might attempt to invoke the wrong return pointer, returning on its first invocation without
first returning on the second. Such an attack breaks the well-bracketedness of control flow
that trusted code may rely on in languages without call/cc primitives [Dreyer et al., 2010].
[Ahmed and Blume, 2011] have demonstrated a solution for this problem which exploits
parametric polymorphism to enforce the invocation of the correct continuation, and it is
interesting to see if their work can be reused as an intermediate step on the way to assembly
language.

On a technical level, we expect few problems for applying our technique of approximate
back-translation to all of these settings. The Hur-Dreyer-inspired cross-language logical
relations can be applied in diverse settings including ML and assembly and support references
(through Kripke worlds), parametric polymorphism (through quantification over abstract
type interpretations as relations) and well-bracketed control flow guarantees (through pub-
lic/private transitions in the transition systems stored in the worlds). We have also shown in
this paper that they can be easily modified to an asymmetric setting.

10. Related Work

Secure compilation through full-abstraction was pioneered by Abadi [1999] and successfully
applied to many different settings [Patrignani et al., 2015, Fournet et al., 2013, Bowman
and Ahmed, 2015, Ahmed and Blume, 2011, 2008, Tse and Zdancewic, 2004, Shikuma and
Igarashi, 2007, Abadi and Plotkin, 2012, Jagadeesan et al., 2011, Riecke, 1993, Ritter and
Pitts, 1995, Mitchell, 1993, McCusker, 1996, Smith, 1998, Larmuseau et al., 2015].

Recently, Gorla and Nestman [2014] and Parrow [2014] have argued against the use of the
mere existence of fully-abstract translations as a measure of language expressiveness, because
very often fully abstract translations exist but are in some sense degenerate, uninteresting
and/or unrealistic. These arguments are not directly relevant to our work, because we are
not interested in the mere existence of a fully abstract compiler as a measure of language
expressiveness, but we prove the fully abstractness of a specific, realistic compiler.

Some secure compilation works prove compiler full-abstraction using logical relations.
Ahmed and Blume [2011] and Ahmed and Blume [2008] proved that typed closure conversion
and CPS transformation are fully-abstract when compiling from System F and the simply-
typed λ-calculus (respectively) to System F. Tse and Zdancewic [2004] started a line of

34 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

work to compile the dependency core calculus of Abadi et al. [1999] (DCC) into System F,
effectively proving that non interference can be encoded with parametricity. They achieve a
property analogous to fully-abstract compilation where contextual equivalence is replaced
with non-interference. Due to an imprecision in their proof, the result of Tse and Zdancewic
does not hold; Shikuma and Igarashi [2007] refined their result for a weaker form of DCC.
A fully-abstract translation from DCC to System F was provided by Bowman and Ahmed
[2015], and that is the closest work to what is presented here. The formal machinery adopted
by Bowman and Ahmed does appear a bit heavier than the one presented here. Specifically,
we do not need a new logical relation to prove well-foundedness of the back-translation. The
secure compilation of DCC to System F is quite different from our setting, since our target
language is untyped and our source and target languages are both non-terminating.

In a paper that is closely related to our work, New et al. [2016] prove full-abstraction
of closure conversion of a simply-typed lambda calculus with recursive types into a simply
typed language with exceptions and an effect system to track exceptions. To achieve this,
they apply a back-translation using a universal type, similar to our UVal. They present
a very interesting comparison to a previous version of this work. They explain how one
can see our approximation of target-language terms as an underapproximation because
we only back-translate a part of the behaviour of the term. While they do not need this
under-approximation, because their source language includes recursive types, they apply
an over-approximation because their universal type can embed more than just their target
language: like our UVal, it can embed the full untyped lambda calculus, rather than just the
subset of terms that are well-typed in the target language.

Independently from our work, the idea of using an approximate back-translation was
also mentioned recently by Schmidt-Schauß et al. [2015]. In this work, Schmidt-Schauß et al.
present a framework for defining and reasoning about fully abstract compilation and related
notions in a wide variety of languages. Using the name families of translations, they define
what we call an approximate back-translation (in relation to full abstraction of a language
embedding). They apply the idea to show that a simply-typed lambda calculus without fix
but with stuck terms can be embedded into a simply-typed lambda calculus with fix. The
idea is to use an approximate back-translation that unrolls applications of fix n times in
the nth approximation. The proof is not very detailed, but seems a lot simpler than ours.
Partly this is because the proof addresses a simpler problem, but the idea of approximate
back-translation also seems simpler to use for a language embedding. This suggests that the
proof in this paper may be simplified by factoring our compiler into two separate compilation
passes: (1) embedding λτ into λτ with recursive types (using an approximate back-translation
to prove full abstraction of the embedding) and (2) compiling λτ with recursive types into
λu as we do here (using a full, non-approximate back-translation to prove full abstraction).

Many other secure compilation works prove full-abstraction by replacing target-level
contextual equivalence with another equivalent equivalence (most times it is trace equivalence
or bisimilarity) [Fournet et al., 2013, Abadi and Plotkin, 2012, Jagadeesan et al., 2011,
Patrignani et al., 2015]. These works rely on additional results of the equivalence used for
full-abstraction to hold, and this can complicate and lengthen proofs relying on this other
technique. Earlier, McCusker [1996] has shown that proving full abstraction of a compiler
can be simplified by limiting the back-translation to contexts that are in a certain sense
compact. This is related to our approximate back-translations, though not quite the same. A
downside of McCusker’s approach is that it does not always seem clear how to characterize
the compact elements in a language.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 35

To the best of our knowledge, the only paper on secure compilation that comes with a
mechanised proof of full abstraction (or a variant of it), is by Juglaret et al. [2016]. They
propose and study Secure Compartmentalizing Compilation: a variant of full abstraction
that supports unsafe source languages (where full abstraction cannot be expected to hold for
components that exhibit undefined behaviour), and includes a notion of modularity. They
report on a Coq mechanization of some of their results, but it is not a “full mechanization”
like ours, in the sense that they keep many lemmas and results as unproven assumptions.

As mentioned in Section 1, the presented proof technique borrows from recent results
in compiler correctness [Hur and Dreyer, 2011, Benton and Hur, 2010, 2009]. These results
build cross-language logical relation based on a common language specification in order
to prove compiler correctness. Benton and Hur [2009] provided a correct compiler from a
call-by-value λ-calculus as well as for System F with recursion to a SECD machine [Benton
and Hur, 2010]. Hur and Dreyer [2011] devised a correct compiler from an idealised ML
to assembly. The techniques devised in these works were further developed into Relational
Transition Systems (RTS) and Parametric Inter-Language Simulations (PILS) in order to
prove both vertically- and horizontally-composable compiler correctness [Hur et al., 2012,
Neis et al., 2015]. A different approach to cross-language relations could have been adopting
a Matthews and Findler-style multi-language semantics, where source and target language
are combined [Matthews and Findler, 2009]. For example, Perconti and Ahmed [2014]
devised a two-step correct compiler for System F with existential and recursive types to
typed assembly language using multi-language logical relations. As the focus of this work
is compiler full-abstraction for a compiler that is not multi-pass, there was no necessity
to use RTS nor multi-language systems. However, were our compiler to be multi-pass, we
would have had to resort to a different proof technique like those described above. This is
because even if compiler full abstraction scales to multi-pass compilers (i.e., it is vertically
composable), compiler correctness proven with logical relations does not. As compiler full
abstraction ought to always be accompanied by a compiler correctness result (Theorem 6.1
in our case), and since both can be proven with a single proof technique, we believe that to
prove compiler full abstraction for a multipass compiler one would have to port the findings
of this paper to one of the techniques above.

Some elements of our proof technique are reminiscent of techniques from the field of
denotational semantics. First, our family of types UValn can be seen as a kind of syntactical
version of an iteratively constructed Scott model for the untyped lambda calculus [Scott, 1976].
In fact, the analogue of our UValn used by New et al. [2016] extends this correspondence to a
language with effects (using an exception monad to model a target language with exceptions).
We note also that using a family of finite approximations (like our UValn types) to interpret
a recursive type (like the type UVal discussed in the introduction) is quite standard in
denotational semantics [MacQueen et al., 1984].

11. Conclusion

This paper presented a novel proof technique for proving compiler full-abstraction based
on asymmetric, cross-language logical relations. The proof technique revolves around an
approximate back-translation from target terms (and contexts) to source terms (and contexts).
The back-translation is approximate in the sense that the context generated by the back-
translation may diverge when the target-level counterpart would not, but not vice versa.
The proof technique is demonstrated for a compiler from a simply-typed λ-calculus without

36 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

recursive types to the untyped λ-calculus. That compiler is proven to be fully-abstract in
Coq, and this is the first such result for fully abstract compilation proofs. Although logical
relations have been used for full-abstraction proofs, this is the first usage of cross-language
logical relations for compiler full-abstraction targeting an untyped language. We believe the
techniques developed in this paper scale to languages with more advanced functionalities
and they can be used to prove compiler full-abstraction in richer settings.

Acknowledgements

Dominique Devriese holds a Postdoctoral Fellowship from the Research Foundation - Flanders
(FWO). This research is partially funded by project funds from the Research Fund KU
Leuven and the Research Foundation - Flanders (FWO).

References

M. Abadi. Protection in programming-language translations. In Secure Internet programming,
pages 19–34. Springer-Verlag, 1999. ISBN 3-540-66130-1.

M. Abadi and G. D. Plotkin. On protection by layout randomization. ACM Transactions
on Information and System Security, 15:8:1–8:29, July 2012. ISSN 1094-9224. doi:
10.1145/2240276.2240279.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In
Principles of Programming Languages, pages 147–160. ACM, 1999. doi: 10.1145/292540.
292555.

P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation to modern processors.
In Computer Security Foundations, pages 171–185, 2012.

A. Ahmed and M. Blume. Typed closure conversion preserves observational equivalence. In
International Conference on Functional Programming, pages 157–168. ACM, 2008. doi:
10.1145/1411204.1411227.

A. Ahmed and M. Blume. An equivalence-preserving CPS translation via multi-language
semantics. In International Conference on Functional Programming, pages 431–444. ACM,
2011. doi: 10.1145/2034773.2034830.

B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The
poplmark challenge. In Theorem Proving in Higher Order Logics, pages 50–65. Springer
Berlin Heidelberg, 2005. doi: 10.1007/11541868_4.

N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correctness. In
International Conference on Functional Programming, volume 44, pages 97–108. ACM,
2009. doi: 10.1145/1596550.1596567.

N. Benton and C.-K. Hur. Realizability and compositional compiler correctness for a
polymorphic language. Technical report, MSR, 2010.

W. J. Bowman and A. Ahmed. Noninterference for free. In International Conference on
Functional Programming. ACM, 2015.

P.-L. Curien. Definability and full abstraction. Electron. Notes Theor. Comput. Sci., 172:
301–310, 2007. ISSN 1571-0661. doi: 10.1016/j.entcs.2007.02.011.

D. Devriese, M. Patrignani, and F. Piessens. Fully abstract compilation by approximate
back-translation. In Principles of Programming Languages. ACM, 2016.

MODULAR, FULLY-ABSTRACT COMPILATION BY APPROXIMATE BACK-TRANSLATION 37

D. Devriese, M. Patrignani, and F. Piessens. Modular fully abstract compilation by approxi-
mate back-translation: Technical appendix. Technical Report CW 702, Dept. of Computer
Science, KU Leuven, 2017.

D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects on
local relational reasoning. In International Conference on Functional Programming, pages
143–156, 2010. doi: 10.1145/1863543.1863566.

C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits. Fully abstract
compilation to JavaScript. In Principles of Programming Languages, pages 371–384. ACM,
2013. doi: 10.1145/2429069.2429114.

D. Gorla and U. Nestman. Full abstraction for expressiveness: History, myths and facts.
Math. Struct. Comp. Science, 2014.

C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly. In Principles
of Programming Languages, pages 133–146. ACM, 2011. doi: 10.1145/1926385.1926402.

C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations and Kripke
logical relations. In Principles of Programming Languages, pages 59–72. ACM, 2012. doi:
10.1145/2103656.2103666.

R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via layout randomization.
In Computer Security Foundations Symposium, pages 161–174. IEEE Computer Society,
2011. doi: 10.1109/CSF.2011.18.

Y. Juglaret, C. Hriţcu, A. Azevedo de Amorim, and B. C. Pierce. Beyond good and evil:
Formalizing the security guarantees of compartmentalizing compilation. In CSF. IEEE
Computer Society Press, July 2016. URL https://arxiv.org/abs/1602.04503.

A. Kennedy. Securing the .NET programming model. Theor. Comput. Sci., 364(3):311–317,
Nov. 2006. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.08.014.

S. Keuchel, S. Weirich, and T. Schrijvers. Needle & knot: Binder boilerplate tied up. In
European Symposium on Programming, pages 419–445. Springer Berlin Heidelberg, 2016.
doi: 10.1007/978-3-662-49498-1_17.

A. Larmuseau, M. Patrignani, and D. Clarke. A secure compiler for ML modules. In
Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang,
South Korea, November 30 - December 2, 2015, Proceedings, pages 29–48, 2015. doi:
10.1007/978-3-319-26529-2_3. URL http://dx.doi.org/10.1007/978-3-319-26529-2_3.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types. In
Principles of Programming Languages, pages 165–174. ACM, 1984. doi: 10.1145/800017.
800528.

J. Matthews and A. Ahmed. Parametric polymorphism through run-time sealing or, theorems
for low, low prices! In Programming Languages and Systems, volume 4960 of LNCS, pages
16–31. Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78739-6_2.

J. Matthews and R. B. Findler. Operational semantics for multi-language programs. ACM
Transactions on Programming Languages and Systems, 31:12:1–12:44, Apr. 2009. ISSN
0164-0925. doi: 10.1145/1498926.1498930.

G. McCusker. Full abstraction by translation. Advances in Theory and Formal Methods of
Computing, 1996.

J. C. Mitchell. On abstraction and the expressive power of programming languages. Science of
Computer Programming, 21(2):141 – 163, 1993. ISSN 0167-6423. doi: 10.1016/0167-6423(93)
90004-9.

G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich,
and S. Zdancewic. TALx86: A realistic typed assembly language. In Second Workshop on

https://arxiv.org/abs/1602.04503
http://dx.doi.org/10.1007/978-3-319-26529-2_3

38 D. DEVRIESE, M. PATRIGNANI, F. PIESSENS, AND S. KEUCHEL

Compiler Support for System Software, pages 25–35, 1999.
G. Neis, D. Dreyer, and A. Rossberg. Non-parametric parametricity. In International
Conference on Functional Programming, pages 135–148. ACM, 2009. doi: 10.1145/1596550.
1596572.

G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pilsner: A
compositionally verified compiler for a higher-order imperative language. In International
Conference on Functional Programming. ACM, 2015.

M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation via universal
embedding. In International Conference on Functional Programming, pages 103–116. ACM,
2016. doi: 10.1145/2951913.2951941.

J. Parrow. General conditions for full abstraction. Math. Struct. Comp. Science, 2014.
M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens. Secure compilation

to protected module architectures. ACM Trans. Program. Lang. Syst., 37(2):6:1–6:50, Apr.
2015. ISSN 0164-0925. doi: 10.1145/2699503.

M. Patrignani, D. Devriese, and F. Piessens. On Modular and Fully Abstract Compilation.
In CSF 2016, 2016.

J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-language semantics.
In ESOP, volume 8410 of Lecture Notes in Computer Science, pages 128–148, 2014.

B. C. Pierce. Types and programming languages. MIT press, 2002.
G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,

5:223–255, 1977. doi: 10.1016/0304-3975(77)90044-5.
J. G. Riecke. Fully abstract translations between functional languages. Mathematical
Structures in Computer Science, 3:387–415, 12 1993. ISSN 1469-8072. doi: 10.1017/
S0960129500000293.

E. Ritter and A. M. Pitts. A fully abstract translation between a λ-calculus with reference
types and Standard ML. In M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda
Calculi and Applications, volume 902 of LNCS, pages 397–413. Springer Berlin Heidelberg,
1995. ISBN 978-3-540-59048-4. doi: 10.1007/BFb0014067.

M. Schmidt-Schauß, D. Sabel, J. Niehren, and J. Schwinghammer. Observational program
calculi and the correctness of translations. Theoretical Computer Science, 577:98 – 124,
2015. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2015.02.027.

D. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522–587, 1976. doi:
10.1137/0205037.

N. Shikuma and A. Igarashi. Proving noninterference by a fully complete translation to
the simply typed λ-calculus. In M. Okada and I. Satoh, editors, Advances in Computer
Science - ASIAN 2006. Secure Software and Related Issues, volume 4435 of LNCS, pages
301–315. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-77505-8_24.

S. F. Smith. The coverage of operational semantics. In Higher Order Operational Techniques
in Semantics, Publications of the Newton Institute, pages 307–346. Cambridge University
Press, 1998.

E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theor. Comput. Sci., 375
(1-3):169–192, Apr. 2007. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.12.032.

S. Tse and S. Zdancewic. Translating dependency into parametricity. In International
Conference on Functional Programming, pages 115–125. ACM, 2004. doi: 10.1145/1016850.
1016868.

	1. Introduction
	2. Source and Target Languages
	3. Logical Relations
	4. The Compiler
	5. Approximate Back-Translation
	5.1. NavyBlueUVal and its Tools
	5.2. blackWildStrawberryu Values vs. NavyBlueUVal
	5.3. Upgrading and Downgrading Values
	5.4. Emulation
	5.5. Injection and Extraction of Terms
	5.6. Approximate Back-Translation

	6. Compiler Full-Abstraction
	7. Modular Fully-Abstract Compilation
	7.1. Open Terms and Linking
	7.2. A Secure Compiler for Open Terms
	7.3. Modular Full-Abstraction for black"464A671 NavyBlue "564B679 blackblackNavyBlueblackblackWildStrawberryu

	8. Mechanically verified proof
	9. Discussion and Future Work
	10. Related Work
	11. Conclusion
	Acknowledgements
	References

