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Abstract
Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and 
the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow 
from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-
glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise 
statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, 
which would otherwise remain hidden. We use an image-processing technique “optimum smoothening” to improve the 
signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional 
accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smooth-
ening, the smallest and the largest core diameter detected is of width 88 ± 23 and 6860 ± 50 nm, respectively, discussed in 
this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for 
detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence 
intensity imaging in the raster mode.
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Introduction

Membrane tubes are found in cells connecting different 
membrane compartments (Lee and Chen 1988). Tubes are 
suggested to play an important role in vesicular transport 
pathways (Simunovic et al. 2016) and ultrafast endocyto-
sis pathways (Boucrot et al. 2015; Renard et al. 2015) in 
cells. In general, tubes can either be composed of a single 
lipid bilayer (unilamellar tubes) of thickness ∼ 5 nm or of 
many (multi-lamellar tubes, MLTs). In vitro experiments 
performed using the synthetic membrane compartments such 

as free-standing giant unilamellar vesicles (GUVs) demon-
strate that unilamellar tubes can form spontaneously if the 
two leaflets of the bilayer face different chemical environ-
ments (Simunovic et al. 2015; Li et al. 2011; Dosti et al. 
2017) or have compositional differences (Lipowsky 2013) 
and can also be pulled in/out by applying local mechanical 
forces (Rossier et al. 2003).

In this paper, we have discussed membrane tubes 
(Bhatia et al. 2015) of the lipid, 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC) that grow from the defects in 
the multilamellar lipid reservoir hydrated in excess water. 
Figure 1a shows a fluorescence confocal polarizing micro-
scope (FCPM) image of a tube with a central core filled 
with solvent having uniform core and outer diameter along 
the long-axis. Figure 1b, c show FCPM image of tubes with 
shape asymmetry, i.e., size of tube is varying (at regions I 
and II) along the tube’s long-axis (x-axis). The bead shown 
in Fig. 1c is a prolate-ellipsoidal structure, which appears on 
some tubes. We have found that near the neck of the beads, 
the inner core of the tubes is not blocked by lipid material, 
i.e., the inner core runs continuously through the tubes and 
the beads. However, the core radii of the tube and the bead 
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are different. We have taken multiple confocal xyz scans of 
the tubes and have found that growth (or retraction) of tubes 
is considerably slowed down for a couple of days after the 
sample cell is sealed and no further morphological shape 
changes occur as described in a previous paper (Bhatia et al. 
2015). Upon sealing of the sample cell tubes do not add 
on to or give away the lipid material to and from the lipid 
reservoir, and hence can be considered as quasi-static and 
structurally stable objects in osmotic equilibrium. The con-
focal xyz scans for the tubes shown in Fig. 1a–c are shown in 
the Movie1.avi, Movie2.avi, and Movie3.avi, respectively, in 
the Supplementary Materials. Figure 1d shows noise spread 
in the region ( 58 × 170 ) pixels of the image shown in Fig. 1a 
with a value between [−0.06, 0.05] that is extracted from the 
image, as described in the Results section.

In this paper, we describe image-analysis techniques that 
are used to reduce noise inherent in the intensity measure-
ments. Reducing the noise without affecting the signal helps 
to detect the shape parameters of MLTs such as core diam-
eter, outer diameter, and lamella thickness with an accuracy 
down to ∼ 23 nm. The image-processing and analysis tech-
niques and the noise modeling discussed in this paper can be 
used for any kind of fluorescence image data obtained in the 
raster mode and is not limited to confocal images.

Methods

We have prepared lamellar stacks of the lipid DOPC 
(purchased from Sigma-Aldrich) onto a glass coverslip 
by spreading about 20–50 μ l of lipid solution in chloro-
form (containing about 0.2 mol% of the membrane dye, 
lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-
3-phosphoethanolamine, triethylammonium salt, RhPE 
purchased from Molecular Probes). The sample was gently 
dried under a nitrogen stream and kept covered inside a 
desiccator overnight with little vacuum sufficient to hold 
the chamber tight during the whole duration. A coated 
coverslip with dried sample was glued to a larger cov-
erslip at the edges using mica spacers of about 100 μ m 
thickness. Solvent was introduced between the coverslips 
of sample cells by capillary action. The open edges were 
sealed using silicone glue immediately after the solvent 
filled the whole gap. We found that in the sealed sample 
cells, an osmotic equilibrium is reached between the swol-
len lamellar stack and excess water and the tubes remain 
stable for a couple of days. Sample cells are observed 
under a confocal microscope (LEICA TCS-SP2, He–Ne 
laser 543 nm) equipped with a 40× dry objective (0.85 N. 
A.) having a correction collar. Compared to a conventional 
microscope, the image contrast in the confocal microscope 
is improved by introducing two pinholes; (1) an excita-
tion pinhole or illuminating aperture, and (2) an emission 
pinhole or confocal aperture. The first pinhole facilitates 
a point illumination of the tube by exciting fluorophores 
only in a small confocal volume defined by the axial ( �z ) 
and in-plane point spread function ( �x , �y ) of the micro-
scope optics. The second pinhole allows a fluorescence 
signal only from the confocal volume to reach the detec-
tors (Pawley 2006). The detector converts light intensity 
into a corresponding quantity of electric charge carriers. 
Such charge carriers are generated by the signal of inter-
est with non-zero mean [ Iav(y) ] as well as due to random 
fluctuations in the signal intensity, namely noise with zero 
mean. Noise in general can be classified into three cat-
egories (Pawley 2006; Barlow 1999): (1) thermal noise, 
generated by system electronics, (2) Poisson noise, from 
random fluctuations in photon arrival time over a fixed 
period of time (given the mean) at the detector, and (3) 
dark noise, generated in the process of analog-to-digital 
conversion in the instrumentation and the random signal 
produced by photosensitive devices such as PMTs, photo-
diodes, or charge-coupled devices (CCDs) in the absence 
of any incident signal. A thin 2D planar optical-slice (or xy 
plane) of the tube is constructed by physically moving the 
focal spot with area ( ∼ �x�y ) from one edge of the sample 
to the other end with a chosen spatial sampling interval or 
scanning pixel width ( Δx , Δy ) and fixed confocal z-slice 
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Fig. 1   Fluorescence confocal polarizing microscope (FCPM) images 
of tubes where the incident laser beam is polarized along the long 
axis of tubes (x-axis). a A simple uniform tube with central water 
core and uniform core radius rc and outer radius ro along the length 
of the tube. The width of one of the bright band is shown by wy . b, 
c A coaxial tube and a bead on a tube with additional layers outside 
the main tube. I and II show the regions of the tube where number of 
lamella are different. The images shown here are taken at the widest 
horizontal cross section of the tubes. d Noise in the image for a small 
portion ( 58 × 170 ) pixels of the image shown in a 
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thickness ( �z ). In order to build a 3D image, the confocal 
objective is moved by a controlled step in the z-direction 
to image the next consecutive 2D optical slice. Having 
all the 2D optical slices and knowing the consecutive 
z-steps, a computer program is used to build a 3D image 
of the sample. We have experimentally measured the point 
spread function (PSF) of the microscope optics ( �x , �y , 
�z ) for 40× objective by taking xyt and xyz scans of 200-
nm isolated polystyrene fluorescent beads ( �abs = 488 nm, 
�em = 515 nm) settled on the cover-slip in water (Sibarita 
2005). We have analyzed ten fluorescence beads. From the 
Gaussian fit, we get �x = �y = 0.56 μ m and �z = 2.56 μm.

Positional accuracy

Rayleigh criterion considers only the limited numerical 
aperture of the objective to define resolution. Orhaug (1969), 
Falconi (1964), and Fried (1979) showed that the uncertainty 
in determining the position of a point source also depends 
on the signal-to-noise ratio (SNR = Iav∕� ) and the spatial 
sampling interval. The positional uncertainty is defined by 
Downs and Reichley (1983).

where � is the root mean square deviation of the noise and 
has the dimension of intensity, Iav is the average intensity, Ik 
is the intensity at kth point, with N points in the profile and 
Δyk is the spatial sampling interval at kth point. We have 
obtained confocal images of the narrow features with sam-
pling interval finer than Nyquist sampling. The two length 
scales in the image have orders of magnitude difference that 
are associated with (1) the width wy of the feature of interest 
and (2) the pixel width or sampling interval Δy . Given that 
( Δy ≪ wy ) , it is possible to separate the Fourier components 
that correspond to the true signal (confined to lower spatial 
frequencies) and the random fluctuations in the true signal 
present in each pixel (confined to higher spatial frequencies). 
For an image having Ny pixels (or data points) along y, if Δy 
is the sampling width in the image domain, then correspond-
ing sampling width in the Fourier domain is given by 
Δqy = 1∕[NyΔy] . We explore the possibility to improve the 
SNR of the feature based on the fact that the signal intensi-
ties are correlated over the length scale of the feature-width 
whereas random fluctuations in the observed intensities are 
not. We preferentially attenuate the noise in the higher spa-
tial frequencies using suitable spatial frequency filter (low 
pass), amounting to smoothening in the image domain. We 
optimize the extent of smoothening operation for a particular 
feature of interest (e.g., one of the bright bands in the image) 

(1)
(�∕Iav)��∑

k=1,..n(ΔIk∕Δyk)
�2

,

such that only noise is reduced without affecting the signal 
contribution. Let ys be the scale of smoothening in the image 
domain that corresponds to qys in the Fourier domain. For an 
image having Ny pixels (or data points) along y, the scale of 
smoothening will be m = (ys∕Δy) pixels in the image 
domain corresponding to mq = (Ny∕m) spectral points in the 
Fourier domain. The low-pass filter used to smoothen our 
images is the 1-d double-Hann filter in Fourier domain 
shown in Fig. 2. This filter response smoothly goes to 0 at 
|||qy

||| = qys∕2 and beyond and is defined as

For discretizing the window function, we express the Fourier 
variable qy = (tq Δqy) where tq ∈ [−(Ny∕2), (Ny∕2) − 1] . The 
function becomes

 

Results

The average intensity profile for tubes shown in Fig. 1 is 
given by Iav(y) =

∑Nf

k=1

�∑Nx

j=1
If(xj, y)∕Nx

�
Nf , where Nx is the 

number of rows averaged along x and Nf is the number of 
frames. The intensity deviation from the mean at a pixel 
location (x, y) in a frame, IN(x, y) = [I(x, y) − Iav(y)] gives the 
noise distribution across the image. Figure 3a shows the 

(2)
H4(qy) = cos4(𝜋qy∕qys), |qy| ≤ qys∕2

= 0, |qy| > qys∕2

(3)
H4(tqΔqq) = cos4(𝜋tq∕mq), |tq| ≤ mq∕2

= 0, |tq| > mq∕2
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Fig. 2   A 1-D low-pass filter, namely, double-Hann filter, H4(tq) 
(black) is shown for mq = 160 and Ny = 256 in Fourier domain where 
tq is a discrete number of spectral points defined in the text
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smoothened intensity profiles for m = (0.5 �y∕Δy) , ( �y∕Δy) 
and (1.5 �y∕Δy) on top of the raw intensity profile for the 
tube. We restrict our discussion to 1-D variation of the fluo-
rescence intensity along y at fixed x. We estimate the vari-
ance of the f luctuations in f luorescence intensity, 
�2(y) =

∑Nf

k=1

∑Nx

j=1
[IN(xj, y)]

2∕NxNf in the image. The red 

line in Fig. 3b shows the best model fit of the data (red color) 
with �2(y) = 10.10−4 Iav(y) + 7.10−6 . The statistical distribu-
tion of noise contaminating the intensity measurement is 
completely defined by the variance [ �2(y) ] and the mean 
[ Iav(y) ]. We have (1) thermal noise for which �2

th
 is propor-

tional to the observed mean square fluorescence intensity 
I2
av
(y) , (2) Poisson noise for which �2

P
(y) is proportional to 

the observed mean fluorescence intensity Iav(y) and (3) dark 
noise for which �2

d
(y) is independent of the signal intensity. 

From the fit shown in Fig. 3b we have �2
d
= 7.10−6 and 

ap = [�2
P
∕Iav(y)] = 10−3.

The SNR is defined as [ Iav(y)∕�(y) ]. One of the 
bright bands in the image shown in Fig. 1a has a width 
wy ≃ 1.65 μm with peak mean intensity Iav(y) ≃ 0.37 at 
pixel number y = 156 shown in Fig. 3a and �(y) ≃ 0.007 
[estimated using the relation between �2(y) and Iav(y) ]. Thus, 
the peak SNR of this particular feature is (Iav(y)∕�(y)) ≃ 53 . 
Noise can be reduced if and only if [ �(y) ] is decreased 

without affecting the [(Iav(y) ] giving a higher SNR. However, 
if [ Iav(y) ] is also decreased (by over-smoothening) together 
with [ �(y) ] then this eventually results in a decrease in SNR. 
To know precisely the value of the radius of smoothening 
(m) at which we do over-smoothening, we have scrutinized 
the fluorescence intensity profiles for different values of m 
on top of each other with the raw intensity profile ( m = 0 ) 
shown in Fig.  3a. To assess an optimum smoothening 
scale, we systematically vary trial values of the scale of the 
smoothening m and examine the resultant SNR shown in 
Fig. 3c for m ∈ [0.5(�y∕Δy), 5(�y∕Δy)] , where the PSF width 
in pixels is ( �y∕Δy ∼ 12 ) for this image. As the radius of 
smoothening m is changed, the peak SNR of the feature is 
increased by 3.2 times from 53 up to 145 by smoothening 
operation. The magnitude of the SNR initially increases as 
we increase m, reaches a maximum at m = 1.5(�y∕Δy) and 
then reduces. From Fig. 3a, we find that the peak intensity 
of the selected feature (at pixel number y = 156 shown in 
Fig. 3a) starts to come down for m > 0.5(𝛿y∕Δy) , and hence 
m = 0.5(�y∕Δy) would be considered optimum for this fea-
ture, with SNR ≃ 105 . Therefore, to retain the feature shape 
as intact as possible, we choose conservative smoothening, 
at the expense of (i.e., with less) SNR.

For the tube shown in Fig. 1b, we have performed the 
smoothening operation for the feature shown at cross sec-
tion I and the result of smoothening operation is shown in 
Fig. 4. We compare the raw intensity profiles of the tube 
with the smoothened intensity profiles shown in the Fig. 4a 
for m = 0 , (0.5 �y∕Δy ), ( �y∕Δy ) and (1.5 �y∕Δy ) where 
the PSF width in pixels is ( �y∕Δy ∼ 25 ) for this image. 
The peak mean intensity is Iav(y) ≃ 0.37 at pixel number 
y = 240 shown in Fig. 4a. We estimate the variance of the 
fluctuations in fluorescence intensity in the image and the 
red line in Fig. 4b show the best model fit of the data with 
�2(y) = 2.10−4 I2

av
(y) + 5.10−4 Iav(y) + 3.10−7 . From the 

fit, we have �2
d
= 3.10−7 , ap = [�2

P
∕Iav(y)] = 5.10−4 and 

ath = [�2
th
∕I2

av
(y)] = 2.10−4 . We estimate the �(y) using the 

relation between �2(y) and Iav(y) and this gives the peak SNR 
of this particular feature as (Iav(y)∕�(y)) ≃ 500 . As shown in 
Fig. 4c, if we increase the smoothening radius (m) , the SNR 
initially increases, and reaches a maximum at m = 3(�y∕Δy) 
and then starts to reduce slowly. We have improved the peak 
signal-to-noise ratio (SNR) of the feature by six times from 
(Iav(y)∕�(y)) ≃ 500 up to 3000 by smoothening operation. 
From Fig. 4a we find that the peak intensity at pixel num-
ber y = 240 and the knee intensity at pixel number y = 180 
and y = 330 of the selected feature starts to come down for 
m > 0.5(𝛿y∕Δy) . Hence, m = 0.5(�y∕Δy) would be consid-
ered optimum for this feature, with SNR ≃ 1600.

For the tube shown in Fig. 1c, we have performed the 
smoothening operation for the feature shown at cross section 
I and the result of smoothening operation is shown in Fig. 5. 
We compare the raw intensity profiles of the tube with the 
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Fig. 3   Improving the signal-to-noise ratio (SNR) of a feature in the 
image shown in Fig. 1a. a Transverse 1-D intensity profiles (arbitrary 
units, plotted against pixel number) for m = 0 (black), (0.5 �y∕Δy) 
(red), ( �y∕Δy) (green) and (1.5 �y∕Δy) (blue) on top of each other 
for judging the smoothening operation. The PSF width in pixels is 
( �y∕Δy ∼ 12 ) for this image. The intensity is maximum at pixel num-
ber y = 65 and y = 156 for the tube. b Plot of noise variance [ �2(y) ] 
vs. average 1− D fluorescence intensity [ Iav(y) ] of the tube. The red 
line shows a model fit to the data. c Signal-to-noise ratio (SNR) is 
plotted as a function of the smoothening radius m in the units of 
∼ (�y∕Δy) . The peak SNR is improved from (Iav(y)∕�(y)) ≃ 53 up to 
145 by smoothening operation
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smoothened intensity profiles shown in the Fig. 5a for m = 0 
(black), (0.5 �y∕Δy) (red), ( �y∕Δy) (green) and (1.5 �y∕Δy) 
(blue) where the PSF width in pixels is ( �y∕Δy ∼ 12 ) for this 
image. The peak mean intensity is Iav(y) ≃ 0.37 at pixel num-
ber y = 115 shown in Fig. 5a. We estimate the variance of 
the fluctuations in fluorescence intensity in the image and the 
red line in Fig. 5b show the best model fit of the data with 
�2(y) = 9.10−5 I2

av
(y) + 14.10−3 Iav(y) + 11.10−5 . From the 

fit, we have �2
d
= 11.10−5 , ap = [�2

P
∕Iav(y)] = 14.10−3 and 

ath = [�2
th
∕I2

av
(y)] = 9.10−5 . We estimate the �(y) using the 

relation between �2(y) and Iav(y) and this gives the peak SNR 
of this particular feature as (Iav(y)∕�(y)) ≃ 20 . As shown in 
Fig. 5c, if we increase the smoothening radius (m) , the SNR 
initially increases, reaches a maximum at m = 3.5(�y∕Δy) and 
then starts to reduce slowly. We have improved the peak SNR 
of the feature from (Iav(y)∕�(y)) ≃ 20 up to 64 by smoothen-
ing operation. From Fig. 5a, we find that the peak intensity 
at y = 115 of the selected feature starts to come down for 
m > 0.5(𝛿y∕Δy) . Hence m = 0.5(�y∕Δy) would be considered 
optimum for this feature, with SNR ≃ 35.

Advantage of optimum smoothening 
in the model fitting

We retain the images with their original sampling, which 
offers advantage at the model fitting stage as described 
below. For a given cross section of tube at x, the best fits are 
obtained by minimizing the weighted �2(�, rc, ro, �z) given 
by Bevington and Robinson (2002)

where Ism is the smoothened intensity profile chosen opti-
mally, IM is the model intensity profile, � is a scaling param-
eter required for the fit of Ism with IM , �j is the standard 
deviation of the noise associated with jth pixel along the 
y-axis for a given x (calculated from noise modeling), and 
k labels separate concentric tubes in a given cross section. 
The number of pixels (j) are kept the same as originally 
chosen for image scanning, even though the intensity profile 
is smoothened with optimally chosen spatial smoothening 
scale. The model for the tubes to obtain the IM in Eq. (4) 
is discussed in detail previously (Bhatia et al. 2015). We 
model the two halves (divided by the xz plane) separately to 

(4)�2 =
1

N

N∑

j=1

[
( Ism(yj) − �

∑

k

I
(k)

M
(yj;rc, ro, �z) )∕�j

]2
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are plotted on top of each other for m = 0 (black), (0.5 �y∕Δy) (red), 
( �y∕Δy) (green) and (1.5 �y∕Δy) (blue), for judging the smoothen-
ing operation. The PSF width in pixels is ( �y∕Δy ∼ 25 ) for this 
image. The jump in the intensity profile beyond pixel no. y = 400 is 
an artifact. b Plot of noise variance [ �2(y) ] vs. average 1-D fluores-
cence intensity [(Iav(y) ] of the tube. The red line shows a model fit 
to the data. c signal-to-noise ratio (SNR) is plotted as a function of 
the smoothening radius m in the units of ∼ (�y∕Δy) . The peak sig-
nal-to-noise ratio (SNR) of the feature is improved by six times from 
(Iav(y)∕�(y)) ≃ 500 up to 3000 by smoothening operation
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Fig. 5   Improving the signal-to-noise ratio (SNR) of a feature in the 
image shown in Fig. 1c at cross section I. a Transverse 1-D fluores-
cence intensity profiles (arbitrary units, plotted against pixel number) 
are plotted on top of each other for m = 0 (black), (0.5 �y∕Δy) (red), 
( �y∕Δy) (green) and (1.5 �y∕Δy) (blue), for judging the smoothening 
operation. The PSF width in pixels is ( �y∕Δy ∼ 12 ) for this image. 
The jump in the intensity profile before pixel no. y = 50 and beyond 
pixel no. y = 140 is an artifact. b Plot of noise variance ( �2(y) ) vs. 
average 1-D fluorescence intensity ( Iav(y) ) of the tube. The red line 
shows a model fit to the data. c Signal-to-noise ratio (SNR) is plotted 
as a function of the smoothening radius m in the units of ∼ (�y∕Δy) . 
The peak signal-to-noise ratio (SNR) of the feature is improved from 
(Iav(y)∕�(y)) ≃ 20 up to 64 by smoothening operation
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estimate the fitting parameters (rc, ro, �z) because for asym-
metric tubes (shown in Fig. 1b), the axis of shape asymmetry 
need not be same as the central axis of the tube.

We first consider the simple tube Fig. 1a. The folded 
left and right halves of the tube are plotted on top of each 
other, as shown in Fig. 6a, after finding the symmetry axis 
by cross correlation. We find that the tube consists of a sin-
gle core. The best fit of the smoothened intensity profile for 
m = 0.5(�y∕Δy) with the model intensity profile is shown in 
Fig. 6b. The error bars on the smoothened intensity profile 
are calculated from noise statistics [ �2(y), Iav(y) ] at each 
pixel. From the best fit, we find: (rc, ro) = (1.74, 3.45) μm 
and � = 0.35.

Figure  6c shows the folded left and right halves  of 
the cross section labeled II of the tube shown in Fig. 1b. 
For the best fit of the smoothened intensity profile for 
m = 0.5(�y∕Δy) with the model intensity profile, this region 
requires three values of k, i.e., three separate tubes where 
the radii of various regions are denoted by r1 , r2 , r3etc., as 
described in Eq. (4). From the best fit, we find that the cross 
section II consists of three tubes with shape parameters: 
((rc1, ro1) , (rc2, ro2) , (rc3, ro3)) = ((0.044, 0.92), (1.03, 1.69), 

(2.17, 2.86)) μm , and � = 0.5 . We plot the �2 values of the 
fit for the core diameter (2rc1) shown in Fig. 6d, where we 
vary the innermost core size from 0.046 to 0.16 μm in the 
steps of 4–23 nm shown in the inset of Fig. 6d. We find that 
the values for 𝜒2(0.088 μm) < 𝜒2(0.092 μm) or for higher 
core size and �2(0.088 μm) = �2(0.084 μm) or for lower core 
size up to 46 nm (two pixels). The innermost core size, as 
decided by the minimum �2 , is (46–88) nm with a sensitiv-
ity of ± 23 nm (one pixel) for the image shown in Fig. 1b. It 
is important to emphasize that it is possible to extract core 
sizes as small as 46–88 nm with a sensitivity of ± 23 nm 
(one pixel) as a result of optimum smoothening (shown in 
Fig. 4a) for m = 0.5(�y∕Δy) , which would otherwise remain 
hidden under the noise. For the tube shown in Fig. 1c, the 
shape parameters are provided in a previous paper (Bhatia 
et al. 2015).

Conclusions

The image-processing, analysis techniques and the noise 
modeling discussed in this paper can be used for extracting 
the structural parameters of objects with features width at 
sub-optical and at or above optical length scales. The pro-
cedure is demonstrated by three different examples of tubes, 
as shown in Fig. 1. The image-processing procedure, “opti-
mum smoothening”, has the potential to reduce the noise 
inherent to the intensity measurements during image forma-
tion without affecting the true signal. The SNR is defined 
as [ Iav(y)∕�(y) ]. Noise is reduced if and only if [ �(y) ] is 
decreased without affecting the [ Iav(y) ] giving a higher 
SNR, as shown in Figs. 3c, 4c, and 5c for m = 0.5(�y∕Δy) . 
However, if data is over-smoothened, then [ Iav(y) ] is also 
decreased together with [ �(y) ] and this eventually results in 
a decrease in SNR. To know precisely the optimum value 
of the radius of smoothening (m) beyond which we start to 
lose [ Iav(y)] , we have scrutinized the fluorescence intensity 
profiles for different values of m on top of each other with 
the raw intensity profile ( m = 0 ) shown in Figs. 3a, 4a, and 
5a. As the radius of smoothening, m, is changed in the half-
integral values of the PSF width from 0.5 to 1.5, the value 
of the peak intensity at pixel number y = 156 (in Fig. 3a) 
starts to come down for m > 0.5(𝛿y∕Δy) . Similar behavior 
is seen in Fig. 4a at y = 180 (knee intensity), y = 240 (peak 
intensity) and 330 (knee intensity) and in Fig. 5a at y = 115 
(peak intensity). We have chosen an optimum value of m 
such that only random fluctuations are smoothened (noise 
is reduced) without affecting the peak or the knee intensity 
(true signal) shown in Figs. 3a, 4a, and 5a.

We have shown that optimum smoothening can be used 
to increase SNR. This helps in detecting the innermost core 
size of 46–88 nm with a sensitivity of ± 23 nm (one pixel), 
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Fig. 6   Finding symmetry axis and shape parameters of tubes. a The 
left and right halves of the tube are plotted on top of each other for 
a fixed x along y-axis. b Transverse 1-D experimental smoothened 
intensity profiles Ism for m = 0.5(�y∕Δy) (black with error bars) of 
the tube (shown in Fig.  1a) is plotted with the model intensity pro-
file (black). From the fit, we get rc = 1.74 μm , ro = 3.45 μm and 
� = 0.35 . c For the tube shown in Fig.  1b at cross section II: the 
left and right halves of the tube are plotted on top of each other for 
a fixed x along y-axis. d Transverse 1-D experimental smoothened 
intensity profiles Ism for m = 0.5(�y∕Δy) (black with error bars) 
of the tube and model (black curve), constituent tubes (dotted and 
dashed curves) with ((rc1, ro1) , (rc2, ro2) , (rc3, ro3))  =  ((0.044,  0.92), 
(1.03, 1.69), (2.17, 2.86)) μm , � = 0.5 . In the inset, we plot the �2 val-
ues for the different value of the innermost core diameter (2rc1)  for 
the left (L) and right (R) halves of the tube
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which would otherwise remain hidden in the noise. The only 
requirement for the imaging method is that it should be in 
the raster mode (pixel by pixel). The choice can be either 
standard confocal or super-resolution microscopes depend-
ing on the samples. In both cases, as long as we have separa-
tion of length scales in the images with feature width much 
larger than the sampling interval, it is possible to separate 
out the Fourier components of the noise and the true sig-
nal. The random noise associated with each pixel cannot 
be avoided but can be minimized by using a low-pass filter, 
such as a 1-D double Hann filter. The choice of low-pass fil-
ter may vary from sample to sample depending on the nature 
and dynamics of the feature of interest. We choose the 1-D 
double Hann filter because in the image domain, the associ-
ated smoothening function of H4(tq) has lower side-lobe lev-
els. This reduces the possible “ringing” effect in the image. 
The method described here can be used to extract shape 
parameters of features such as membrane tubes (or beads) 
that are reported previously (Simunovic et al. 2015, 2016; 
Boucrot et al. 2015; Renard et al. 2015; Domanov and Kin-
nunen 2006; Domingues and Miranda 2010; Arouni et al. 
2011; Stossel and Hartwig 2006; Virchow 1854; Chapman 
and Fluck 1966; Sandermann and Vatter 1977; Sakurai and 
Sakurai 1989; Zou and Nagel 2006; Zou 2009; Huang et al. 
2005). The choice of membrane dye is arbitrary because it 
is possible to find out independently the orientation of the 
dye in the lipid bilayer to model the intensity profiles.

With oversampling in our images at sampling frequency 
much larger than the Fourier components corresponding 
to the signal, we have explored the possibility of optimum 
smoothening in the image domain. Finding the statistics of 
the image noise, i.e., the relation between �2(y) and Iav(y) 
is helpful to model the noise, which is used to extract and 
reduce the random fluctuations in the signal intensity at 
each pixel in the image. By understanding the nature of the 
noise, we try to optimize the image processing by optimiz-
ing the scale of smoothening in order to increase the SNR 
for a feature of interest. The results from application of this 
method are used for further modeling the structure of the 
tubes and beads of a common well-hydrated phospholipid 
DOPC in the L� phase. We find that almost all tubes have 
a core, with a few tubes having a core diameter below the 
optical resolving limit. We could detect features of size as 
small as (88 ± 23) nm by enhancing the SNR using optimum 
smoothening without deconvolution.
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