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The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE)
is studied based on global theory and simulation. The weak coupling formula gives reasonable estimate of
the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of
energetic particles on global mode structure symmetry breaking in radial and parallel (along B) direction is
demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE
mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated
that the symmetry breaking in radial and parallel direction is intimately connected. The effects of mode
structure symmetry breaking on nonlinear physics, energetic particle transport and the possible insight for
experimental studies are discussed.

I. INTRODUCTION AND MOTIVATION

In non-uniform tokamak plasmas, the 2D mode struc-
ture (in radial and poloidal directions) is related to the
wave-particle interaction and the consequent instability
excitation and energetic particle transport1–4. Symme-
try breaking of the 2D mode structure can also be im-
portant for understanding momentum transport, specif-
ically, the intrinsic momentum transport5,6. While nu-
merical simulations based on initial value approach or
eigenvalue approach have been used to study energetic
particle problems (see, e.g., Ref [7–9]), other theoretical
approaches have also been developed10,11. The gener-
alized fishbone-like dispersion relation (GFLDR)1–3 us-
ing the Mode Structure Decomposition (MSD) method11

provides a general framework for the study of Alfvén
wave and energetic particle physics. In this work, we
focus on the important role of global mode structure, in
particular, the radial and parallel symmetry breaking in
terms of kr and k|| for weakly coupled poloidal harmonics.
For weak magnetic shear (ŝ) and low toroidal mode num-
ber (n), the coupling between poloidal harmonics is weak
as shown in our work, in contrast to that for high n, mod-
erate to high ŝ micro turbulence. The non-perturbative
effect of energetic particles on mode frequency and struc-
ture are studied and its connection to the nonlinear dy-
namics is discussed. The purpose of this work includes,
but is not limited to the following aspects.

1. While global theory has been developed for BAE to
demonstrate the “boomerang” shape structure due
to the anti-Hermitian contribution of energetic par-
ticles using GFLDR12, this work provides a comple-
mentary approach in weak coupling limit, by using
the original gyrokinetic quasi-neutrality and vortic-
ity equations13 for few coupled poloidal harmonics.
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2. By focusing on the weak coupling case, this
work, with energetic particles and electromagnetic
physics taken into account, serves as a comple-
ment of our previous symmetry breaking study
for micro-turbulence14 (strong coupling case, where
many poloidal harmonics are coupled to form the
global mode structure). The weak coupling for-
mulae can also be useful for the study of beta-
induced Alfvén-acoustic eigenmode (BAAE) where
the observed mode structure from experiment and
gyrokinetic studies is dominant by a single ploidal
harmonic15–17.

3. This work can shed light on the understanding of
the mode structure excited by energetic particles
(EPs)18 and the reasons of the different behaviors
of the co-passing and counter-passing EPs19,20.

4. More generally, by identifying the basic ingredient
of symmetry breaking of mode structure, this work
can provide an input to other perturbative/non-
perturbative codes and suggest interpretation of
simulation results7,21–23.

This work is organized as follows. In Section II, the
physics model and the theoretical approach for the en-
ergetic particle driven BAE are introduced. In Section
III, the theoretical analyses and the simulation results
are given along with the symmetry breaking studies in
terms of kr and k||. In Section IV, we give the discussion
and outlook.

II. PHYSICS MODEL

A. Gyrokinetic quasi-neutrality and vorticity equations
with kinetic thermal ion and energetic particle

In this work, we use the equations for the perturbed
scalar potential δφ, the perturbed field δψ, which is re-
lated to the parallel vector potential fluctuation δA‖ by
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δA‖ ≡ −i(c/ω)b · ∇δψ, and the non adiabatic perturbed
particle distribution function δKs, which is related to the
perturbed particle distribution function δfs by

δfs =
es
ms

[
∂F0,s

∂ε
δφ− J0(as)

QF0s

ω
δψeiLks

]
+ δKse

iLks ,

Lks = (msc/esB)(k × b · v), ε = v2/213,24. The
right handed coordinate system (r, θ, φ) and (R,Z, φ) are

used where r, θ and φ are radial-like, poloidal-like and
toroidal-like coordinates. The subscripts s = i, e, f in-
dicate thermal ions, electrons and fast (energetic) parti-
cles respectively. The toroidal current and toroidal mag-
netic field are both in φ > 0 direction. Then the elec-
tromagnetic system is described by the gyrokinetic equa-
tion (GKE), vorticity equation (VE) and quasi-neutrality
equation (QNE) as follows13,

[
v||∂|| − i(ω − ωd)

]
s
δKs = i

es
ms

QF0s

[
J0(as)(δφ− δψ) +

ωds
ω
J0(as)δψ

]
, (1)

B∂||

[
1

B

k2⊥
k2θ
∂||δψ

]
+
ω2

v2A

(
1− ω∗pi

ω

) k2⊥
k2θ
δφ+

α

q2R2
gδψ =

〈∑
s=i,f

4πes
c2k2θ

J0(as)ωωdsδKs

〉
, (2)

(
1 +

1

τ

)
(δφ− δψ) +

(
1− ω∗pi

ω

)
biδψ =

Ti
ne
〈J0(ai)δKi〉 , (3)

where ωd,s = vd,skθg, vd,s = −(v2‖ + v2⊥/2)/(ωc,sR),

g = cos θ+(kr/kθ) sin θ, ωcs = esB/(msc), QF0s =
ω(∂F0s/∂ε) + (1/ωcs)k × b · ∇F0s, bs = k2⊥ρ

2
ts/2,

ρts = cmsvts/(esB), vts =
√

2Ts/ms, α = −R0q
2β′,

β = 8πP/B2, P is the total plasma pressure,
ω∗ps = ω∗s + ω∗Ts, ω∗s = −ρtsvtskθ/(2Lns), ω∗Ts =
−ρtsvtskθ/(2LTs), Lns = −(d lnns/dr)

−1, LTs =
−(d lnTs/dr)

−1, τ = Te/Ti, and 〈. . .〉 indicates the in-
tegral in velocity space. Here, J0(as) accounts for finite
Larmor radius effects using the standard notation for the

Bessel function and as = k⊥ρs. Furthermore, for sim-
plicity, we assume high aspect-ratio, low-pressure toka-
mak plasma equilibrium with concentric circular mag-
netic flux surfaces.

In order to obtain the eigenvalue equation, firstly,
δK = δK(∆φ, δψ) is obtained from GKE where ∆φ ≡
δφ − δψ; secondly, δK(∆φ, δψ) is substituted into the
QNE to obtain ∆φ = ∆φ(δψ); and lastly, δK(δψ) and
∆φ(δψ) are substituted into the VE to obtain the lin-
earized eigenvalue equation. With Fourier decomposition
δy = δyn exp{−inφ} where δy = δψ, δφ, δK and integra-
tion along un-perturbed particle orbit, Eqs. 1 and 3 yield

J0(ai)δKi,n =
e

mi

QF0i

w
Jt,i

{
− (1− ω∗pi/ω)biδψm

D̄mRm,i
− δat,iN̄mδψm−1

D̄mRm,i
− δbt,iN̄mδψm+1

D̄mRm,i
+
δa,iδψm−1
Rm,i

+
δb,iδψm+1

Rm,i

}
eimθ

(4)

J0(af )δKf,n =
e

mf

QF0f

w
Jt,f

{
δa,fδψm−1
Rm,f

+
δb,fδψm+1

Rm,f

}
eimθ , (5)

where Rm,s = v̄||,s/ζm,s − 1, v̄|| = v||/vts, ζm,s =
Ωs/(m − nq), Ωs ≡ ω/ωts, ωts = vts/(qR), δa/b,s =

vd,ska/b/ω, δat/bt,s = vdt,ska/b/ω, vdt,s = −v2ts/(ωc,sR),

ka/b = (kθ ∓ ikr)/2, k2⊥ = k2r + m2/r2, vts =
√

2Ts/ms,

D̄m,s ≡ D̄s(ζm,s) = 1 + 1/τ +
〈
κsF̄0sJt,s/Rm,s

〉
, F̄os =

F0s/n0s, Jt,s = J2
0 (as)J

2
0 (λs), λs = −qRvd,sk⊥/v||,

κs = −(v2ts/2)(QF0s/ω)/F0s, repeated subscripts indi-
cate summation. For the sake of simplicity, in the follow-
ing, the subscript ‘s’ in ζm,s, Rm,s etc is omitted when
no ambiguity is brought in. In deriving δKf,n, only the

dominant kinetic particle compression (KPC) contribu-
tion is kept for the parameters in Table I (k⊥ρf,b ≈ 0.092
for EP birth energy, n = 2 and normalized EP den-
sity nf/ni � 1). Since we focus on the study of
low n mode, only J0(λ) is kept for finite orbit width
(FOW) effect. Note, however, that the present choice
of mode number does not correspond to the most un-
stable mode and that, unlike the typical conditions dis-
cussed in Ref. [3], the EP response is dominated by
the fine radial structure in the kinetic/singular layer1,2.
With Eqs. 4, and 5 substituted into 2, by defining
KPCs ≡ 〈4πes/(c2k2θ)J0(as)ωωdsδKs〉, we have
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KPCi = − 2v2ti
k2θv

2
AR

2

{
−
(

1− ω∗pi
ω

)
bi
N̄m−1
D̄m−1

kaω

vdt,i
δψm−1 −

(
1− ω∗pi

ω

)
bi
N̄m+1

D̄m+1

kbω

vdt,i
δψm+1

−k2a
N̄2
m−1

D̄m−1
δψm−2 − kakb

N̄2
m+1

D̄m+1
δψm − kakb

N̄2
m−1

D̄m−1
δψm − k2b

N̄2
m+1

D̄m+1
δψm+2

+k2aH̄m−1,iδψm−2 + kakbH̄m+1,iδψm + kakbH̄m−1,iδψm + k2b H̄m+1,iδψm+2

}
, (6)

KPCf = − 2v2tin̄f
k2θv

2
AR

2

{
k2aH̄m−1,fδψm−2 + kakbH̄m+1,fδψm + kakbH̄m−1,fδψm + k2b H̄m+1,fδψm+2

}
, (7)

where n̄f = nf/ni, N̄m ≡ N̄(ζm,i) = 〈Jt,iκiF̄0i(v̄
2
⊥/2 +

v̄2||)/Rm,i〉, H̄m,s ≡ H̄(ζm,s) = 〈Jt,sκsF̄0s(v̄
2
⊥/2 +

v̄2||)
2/Rm,s〉. The response functions D̄m,s, N̄m,s and

H̄m,s describe the response of δns (density perturbation)
and δjs (current perturbation) to ∆φ and δψ.

For thermal ion with Maxwellian distri-
bution F̄0i = exp{−v̄2}/(π3/2v3ti), we have
κi = 1 − ω∗i/ω

[
1 + ηi

(
v̄2 − 3/2

)]
and H̄i,m =

(1 − ω∗i/ω)F̄i,m − ω∗TiḠi,m. By ignoring the finite
Larmor radius (FLR) and finite orbit width (FOW)
effects (Jt = 1), which is valid for parameters in Table I
(kθρti ≈ 0.0226), D̄m, N̄m, F̄m and Ḡm can be calculated
analytically and are equivalent to D, N , F and G in
[13] and [25] with the connection N(ζ) = N̄(ζ)/ζ,
F (ζ) = F̄ (ζ)/ζ, G(ζ) = Ḡ(ζ)/ζ and D(ζ) = D̄(ζ)/ζ
(D, N , F and G are variables defined in [13]), where
D̄ = 1 + 1

τ +
(
1− ω∗

ω

)
ζZ(ζ)− ω∗T

ω ζ
[
ζ +

(
ζ2 − 1

2

)
Z(ζ)

]
,

N̄ = ζ
(
1− ω∗

ω

)
[ζ +

(
ζ2 + 1

2

)
Z(ζ)] − ζ ω∗T

ω [ζ
(
ζ2 + 1

2

)
+(

ζ4 + 1
4

)
Z(ζ)], F̄ = ζ2

(
ζ2 + 3

2

)
+ ζ

(
ζ4 + ζ2 + 1

2

)
Z(ζ),

Ḡ = ζ2
(
ζ4 + ζ2 + 2

)
+ ζ

(
ζ6 + ζ4

2 + ζ2 + 3
4

)
Z(ζ) and

Z(ζ) = (1/
√
π)
∫∞
−∞ dxe−x

2

/(x− ζ) is the plasma
dispersion function. Based on the multiple spatial scales
of the fluctuation structure, the analyses in this work
is equivalent to the asymptotic matching approach1–3.
In the following, we focus on the BAE mode with
ω/ωti � 1. Then for weak coupling case, the dominating
poloidal harmonic, referred to as “central poloidal
harmonic” in the following, has much larger amplitude
than its neighboring ones (cf. Fig. 5 of [26]). By keeping
only the central poloidal harmonics, Eq. 6 yields

KPCi =
k2⊥ω

2
BAE

k2θv
2
A

δψme
imθ , (8)

where ω2
BAE = (7/4 + τ)v2ti/R

2.
For energetic particles, we assume a slowing down

distribution27,

Ff =
C0δ(Λ− Λ0)

ε3/2
H (εb − ε) , (9)

where C0 =
√

2(1− Λ0B)Bβf/(2
5π2mf εb), δ(x) is the

Dirac delta function, the pitch angle is defined as Λ =
v2⊥/(v

2B), εb is the birth energy, the Heaviside function
H(x) = 0 for x < 0 and H(x) = 1 for x > 0, the EP beta

βf = 4π
∫
dv3Ffmv

2/B2. Then for weak coupling case,
Eq. 7 yields

KPCf = 2
n̄fv

2
tf

k2θv
2
AR

2

ω∗f
ω
× (1− Λ0B/2)2

1− Λ0B
δψme

imθ

× kakb
∑

σ=m±1

{
ζ2σ,f

[
1 + ζ̄2σ,f ln

(
1− 1

ζ̄2σ,f

)]}
,

(10)

where ζ̄σ,f = ζ2σ,f/[2(1 − Λ0B)ε̄b], uniform EP tempera-
ture profile is assumed and only EP density is considered
to be non-uniform.

B. Global and local analysis of BAE eigenvalue and mode
structure

With Eqs. 8 and 10 substituted into Eq. 2, the global
equation for uniform thermal ion is obtained

B∂||

[∇2
⊥∂||δψ

B

]
+∇ ·

[
ω2 − ω2

BAE

v2A
∇⊥δψ

]
+ k2θKPCf

= 0 , (11)

where KPCf includes the non-Hermitian part due to
EPs. In large aspect ratio and weak coupling limit, Eq.
11 reduces to

Y0
∂2

∂r2
δψm + Y1

∂

∂r
δψm + Y2δψm = 0 , (12)

where Y0 = −k2|| + (ω2 − ω2
BAE + ω2

tiKPCf,m)/v2A,

Y1 = −2k||∂k||/∂r, Y2 = −
[
Y0(r)k2θ + k||∂

2k||/∂r
2
]
, and

KPCf,m ≡ KPCf,m[ω2
ti/(k

2
θv

2
A)k2⊥δψm]−1. In deriv-

ing Eq. 12, we ignored O(r/R) terms from (∇vA)/vA
and ∇ni/ni terms due to the large aspect ratio assump-
tion and the uniform thermal ion assumption; we ig-
nored the variation of the metric tensor along B, i.e.,
∂||∇2

⊥ = 0, (but ∇2
⊥∂|| = i∇2

⊥k|| 6= 0); we used ∇2
⊥ ≈

(1/r)∂/∂r(r∂/∂r) + (1/r2)∂2/∂θ2.

The local dispersion relation for BAE is obtained in
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weak coupling limit that corresponds to Y0 = 0, i.e.,

D0 = Ω2 − Ω2
BAE −

(nq −m)2

βi
−C̄f

(1− Λ0B/2)2

1− Λ0B

Ω

2

×
∑

σ=m±1

1

(σ − nq)2

[
1 + ζ̄2σ,f ln

[
1− 1

ζ̄2σ,f

]]
= 0 ,

(13)

where the frequency is normalized with ωti = vti/(qR),
Ω2
BAE = (7/4 + τ) q2, C̄f = −n̄fτfikθρiq3/(2ēfεnf ),

ēf = ef/ei, τfi = Tf/Ti, 1/εnf = R/Lnf . Note that
while the local solution corresponds to a small radial scale
(|krLeq| � 1, where Leq is the equilibrium characteristic
length), EPs are still dominated by the geodesic curva-
ture response to provide the instability drive. Namely,
krρf (n = 2) is assumed to be small so that the devia-
tion of J0(λf ) away from 1 is small. This is valid as long
as the radial mode width (∼ 1/kr) is in the mediate spa-
tial scale between ρf and Leq. As shown in Section III,
this gives a reasonable estimate of growth rate for our
considered low n mode. At the mode rational surface
(nq −m = 0), ζ± = ±Ωf = ω/ωtf , and

D0= Ω2 − Ω2
BAE−C̄f

(1− Λ0B/2)2

1− Λ0B
Ω×{

1 +
Ω2

(1− Λ0B)v̄2bi
ln

[
1− (1− Λ0B)v̄2bi

Ω2

]}
.(14)

III. NUMERICAL RESULTS AND THE COMPARISON
WITH XHMGC

A. Methods and parameters

Equation 13 is solved numerically for local dispersion
relation. Equation 12 is solved for the symmetry break-
ing study of the central poloidal harmonics and compared
with simulation results using XHMGC code9,28,29. For
bell shape radial mode structures, the global solution
is calculated using Galerkin method based on parabolic
cylinder functions hl(r) as basis functions, which satisfy
∂2hl(r)/∂r

2+(2l+1−r2)hl(r) = 0. The method adopted
in this work is similar to that in [14] and is not explained
in detail here.

Similar parameters as those in [19] are adopted. The
safety factor profile is

q(r) = q0 + (qa − q0)(r/a)2 , (15)

where q0 = 1.9, qa = 2.3. The energetic particle density
profile is

n̄f = n̄f0Cnf0

{
1 + Cnf1

[
tanh

(
rcf − r
rwf

)
− 1

]}
,

(16)

dn̄f
dr

= − n̄f0Cnf0Cnf1
rwf

[
1− tanh2

(
rcf − r
rwf

)]
, (17)

FIG. 1. Profiles of normalized energetic particle density n̄f =
nf (r)/nf (r = 0) and its radial derivative (left); profiles of
safety factor q and magnetic shear ŝ (right).

where Cnf0 = {1 + Cnf1 [tanh (rcf/rwf )− 1]}−1. In
simulation we use Cnf1 = 0.5, rcf = 0.5, rwf = 0.1
and profiles are shown in Fig. 1. For the base case, other
parameters at the reference radius are shown in Table I.

B. Result benchmark for the base case

The real frequency and growth rate calculated theoret-
ically using the local approximation are shown in Fig. 2
and compared with XHMGC results. The agreement be-
tween the XHMGC results and theoretical results agree
with each other reasonably. It should be noticed that
the theoretical model in this work has the following ap-
proximations. The drive from ∂F0f/∂ε is ignored due to
the dominance of the ∂F0f/∂r term in QF0f (the ra-
tio of the latter to the former is kθρfqωtf/(2ωεn) �
1); XHMGC uses slowing down EP distribution Ff =

C0δ(Λ− Λ0)/(ε3/2+ε
3/2
c )H (εb − ε) (self consistently cou-

pled to the field equation29), while the analytical model
adopts the εb/εc � 1 approximation (Eq. 9) with βf
matched to that in HMGC; the local eigenvalue is esti-
mated at the mode rational surface; and the well passing
particle assumption is adopted in the theoretical model
while in XHMGC, particle motion is calculated according
to equation of motion29. By using the analytical KPCf ,
the technical complication is minimized but the key fea-
tures due to EPs, e.g., the Hermitian and anti-Hermitian
contribution from EPs, are kept.
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rc/a a/R0 qc Te/Ti ρi,c/a vi,c/vA,c vbf,c/vA,c nf,c/ni,c Λ0B vbf,c/vcrit,c

0.5 0.1 2 0 0.002
√

2 0.06
√

2 0.3
√

2 0.006/2 0
√

4.15

TABLE I. Parametes for BAE (similar to those in [19]). The subscript ‘c’ denotes the value at the reference radius r = rc.

The
√

2 is due to the definition of vt =
√

2T/m in this work rather than the XHMGC convention (vXHMGC
t =

√
T/m).

nf,c/ni,c = 0.003 corresponds to the on-axis value nf,axis/ni,c = 0.006.

FIG. 2. Comparison of local solution and global solution from
XHMGC. Note that nf (r = rc) = nf0/2. XHMGC includes
dissipation and the result exhibits a critical nf0 for growth
rate γ while the theoretical model ignores dissipation.

C. The local and global solution with EP contribution

The global eigenvalue and its connection to the local
solution is shown in Fig. 3, where the local and global so-
lutions are calculated using Eqs. 13 and 12 respectively.
The local real frequency is mainly contributed by the ki-
netic particle compression term of thermal ions and the
parallel field bending term Ω2

BAE + (nq −m)2/βi. The
global growth rate is slightly lower than the largest local
one (at r ∼ 0.5). The global solution is a suitable super-
position of local solutions with proper complex phases.
The additional global correction due to the radial mode
structure variation in the ∂/∂r terms of Eq. 12 leads to
the change of the local eigenvalue and leads to the global
eigenvalue formation.

D. The parallel and radial symmetry breaking

The parallel and radial symmetry breaking are two as-
pects of the global mode structure. The radial mode
structure of the central poloidal harmonic and the con-

FIG. 3. Local and global eigenvalue of BAE in large aspect
ratio limit. Compared with the local eigenvalue at r/a = 0.5
(ωloc = −2.7062 + 0.1873i), the global eigenvalue (ωglob =
−2.8065 + 0.1660i) has a growth rate around 12% lower than
the local one and real frequency around 4% higher than the
local one.

struction of the global 2D mode structure are shown in
Fig. 4 for EP drive (dnf/dr) with different rcf values.
For EP drive with rcf near r/a = 0.5, the radial mode
structure is relatively symmetric with respect to r = rcf
(the central column). As rcf/a shifts away from 0.5,
the radial mode structure symmetry breaking appears
and the 2D “boomerang” structure is characterized with
asymmetric tails (the left and right columns). The 2D
mode structures obtained from XHMGC simulation sup-
port this point while the difference compared with the
theoretical results can be from the simplifications in the
theoretical model as mentioned in Section III B.

The radial symmetry breaking is analyzed as shown in
Fig. 5. In these cases, the radial mode structure has a
bell shape amplitude. The radial wave number kr, de-
fined according to δψm(r) = exp{i

∫
krdr}, describes the

amplitude and phase variation along r. The maximum
amplitude radial location is characterized by Im{kr} = 0
(denoted by point PI) and it overlaps with Re{kr} = 0
(denoted by point PR) for symmetric radial mode struc-
ture. The asymmetric radial mode structure is charac-
terized by the mismatching between PR and PI , which
indicates a preferential propagation direction of the wave
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FIG. 4. Radial mode structure (first row) and 2D mode structure (second row) of BAE calculated theoretically for rcf/a = 0.42
(left), rcf/a = 0.50 (middle) and rc/a = 0.55 (right) with EP drive in large aspect ratio limit (Eq. 12 with the geometry
effect term 1/r∂δψ/∂r ignored) Third row: 2D mode structure for rcf/a = 0.42 (left), rcf/a = 0.50 (middle) and rc/a = 0.55
calculated using XHMGC.

packet.
The parallel symmetry breaking in terms of the in-

tensity weighted parallel (nq −m)|δψ|2 wave number is
shown in Fig. 6, where δψ is the normalized perturba-
tion with the maximum amplitude |δψ| = 1 at r ∼ 0.5.
Corresponding to the symmetric radial mode structure,
the volume averaged (nq −m)|δψ|2, i.e., 〈k||〉V , tends to
vanish due to its opposite sign and similar magnitude
inside and outside rcf . As rcf shift away from the crit-
ical value for symmetric radial structure, the symmetry
breaking of (nq − m)|δψ|2 appears and the volume av-
eraged (nq −m)|δψ|2 can be generated. The generation
of 〈k||〉V can be relevant to the wave-particle resonance
and parallel residual stress/Maxwell stress and will be
studied in the future.

The symmetry breaking in radial and parallel direc-
tion are intimately connected. Figure 7 shows the effect
of the EP drive location on the symmetry breaking. As
rcf shifts away from the critical value rcf,0 ∼ 0.5a, the

volume averaged kr and k|| are generated and both in-
crease in magnitude.

IV. DISCUSSION AND OUTLOOK

The symmetry breaking of Beta-induced Alfvén Eigen-
mode (BAE) driven by energetic particles is studied
based on theoretical model and simulation using XH-
MGC. The theoretical formulae capture the important
aspects of the radial and parallel symmetry breaking of
the global mode structure and the non-perturbative ef-
fect of the energetic particles compared with the XH-
MGC simulation results. It is also shown that the ra-
dial and parallel symmetry breaking are intimately con-
nected. The different types of distorted 2D mode struc-
tures can be produced depending on the radial location
of the EP drive. It is also shown that the radial location
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FIG. 5. Profiles of |δψ(r, n = 2,m = 4)|, kr,R and kr,I for the base case (central column) and those with shifted EP drive (left
and right columns). The mismatch between the PR point (kr,R = 0) and PI point (kr,I = 0) is observed for cases with shifted
EP drive.

of the energetic particle drive is closely connected to the
radial/parallel symmetry breaking and volume averaged
radial/parallel wave number generation.

While this work focuses on the global analysis of the
symmetry breaking, by using the analytical EP contribu-
tion and simplified geometry in theoretical model, more
detailed analyses for parametric scaling and effects of dif-
ferent terms in the gyrokinetic quasi-neutrality and vor-
ticity equations merit more efforts, by including more
comprehensive physics and optimized numerical method.
Several aspects as further steps are listed below.

1. While the present work ignored the FLR and FOW
effects (kθρti = 0.0226 for base case), the FLR and
FOW effects is important for high n, high temper-
ature plasma, in particular, when energetic parti-
cles are present. While previous work on micro-
turbulence symmetry breaking observed that the
competition between the FLR term and magnetic
drift term can lead to the k|| reversal30–32, the FLR
and FOW effects of thermal ions and EPs for BAE
symmetry breaking are not clear. The considera-
tion of FLR and FOW effects, either in theoretical
analyses, XHMGC simulation or the more compre-
hensive eigenvalue code LIGKA7, can be important
for general cases in both local and global analyses.

2. While the BAE with bell shape radial structure
is observed from XHMGC simulation a priori for
the present chosen parameters, the critical condi-
tion for the BAE excitation such as critical EP and
thermal ion parameters needs to be analyzed in
detail, by comparing effect of thermal ion kinetic
and EP’s Hermitian and anti-Hermitian contribu-
tions. The finite element method7,33 or finite dif-
ference method34 will be useful to identify the tran-
sition from the singular radial structure solution to
smooth one and the corresponding critical excita-
tion condition.

3. The connection between the present BAE prob-
lem with monotonous q profile to the Alfvén eigen-
mode or energetic particle mode (EPM) for hol-
low q profiles33,35,36 and toroidal induced Alfvén
mode18 can be analyzed considering the similarity
in the equation structure with kinetic effects. The
consideration of the non-perturbative EP Hermi-
tian and anti-Hermitian contribution can be im-
portant in the study of mode width and symmetry
features.

The global linear study in this work can shed light on
the understanding of nonlinear simulation. During non-
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FIG. 6. Radial profiles of (m − nq)|δψ|2 calculated theoret-
ically (upper) and from XHMGC (lower). Only the central
poloidal harmonic is kept. It is indicated that volume aver-
aged k|||δψ|2 is generated as EP drive center rcf shifts away
from BEA accumulation point.

FIG. 7. Volume averaged kr and k|| for different EP drive
locations rcf .

linear stage, the EP density profile is flattened and the
drive center shifts inward or/and outward. As observed
in this work, the mode structure is modified due to the
EP drive center shift. Then the symmetry breaking in
terms of k|| can enter the wave-particle resonance condi-
tion and in turn can change the EP driven instabilities.
Developing the diagnosis tool in nonlinear simulation to
track the mode structure can be helpful for identifying
the interplay of EP transport and instability excitation.

The study of the non-pertubative EP effect and sym-
metry breaking can be important for the future burn-
ing plasma considering the higher EP portion and en-
ergy compared with the present ones. Besides the mode
structure symmetry breaking study, its relevance to other
problems can be analyzed in the future, such as the effects
of the symmetry breaking on the wave-particle interac-
tion between EPs/thermal ions and Alfvén eigenmode
and the consequent thermal ion momentum transport5,6

and EP transport4.
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