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1 Summary

Patent databases contain large amounts of (almost) unstructured references to non-patent literature (NPL). To identify
these references is a general research request, as they are an important indicator for determining and quantifying
various relationships between science and industry. In the present pilot study, we introduce a Patent reference
matching method (PARMA) that is able to process a wide range of patent records by using a combination of full text
search technology with �ltering and matching routines in an RDBMS. Results show that the approach establishes a
solid foundation for future analytic studies on the topic.

2 Introduction
According to the de�nition of the World Intellectual Prop-
erty Organization (WIPO), a patent is a document that
“describes an invention” where invention “means a so-
lution to a speci�c problem in the �eld of technology.”
(World Intellectual Property Organization, 2008, 17). Thus,
patents reveal innovations in technical development.

In order to collect technical knowledge and to make it ac-
cessible, patents are stored in dedicated databases. Data
about patents are valuable not only for examiners of the
respective patent o�ces but also for scientists and engi-
neers who want to get an analytic description of trends,
structures and topics in their �eld. Linking patents with
scienti�c publications provides valuable insights about
interactions between academic and industrial research.
References to the so called non-patent literature (NPL) are
of particular interest here. Existing studies on this topic
revealed typical structures and patterns within the data.
Van Raan (2017) gives a concise overview of this �eld of re-
search. Following the fundamental work of Carpenter et al.
(1980), he describes the amount of references between
patents and scienti�c literature as a measure of “science
intensity” of a technological scienti�c �eld (van Raan, 2017,
16, 22), i.e. radically new and disruptive innovations are
based on a high number of scienti�c research publica-
tions. Nearly half of the NPL refer to scienti�c literature
that originates from publicly funded research.

NPL citations have been investigated from various di�er-
ent perspectives: Ribeiro et al. (2014) use NPL citations
to investigate global innovation networks and transna-
tional transfer of knowledge. Callaert et al. (2014a) point
out that indicators of interactions between scienti�c and
technological R&D activities are highly relevant for re-
cent models of innovation systems. These models make it
possible to understand the dynamics behind innovations,
growth and competitiveness of national economies. Li
et al. (2017) evaluate e�ects of public funding of research
on technological development, Veugelers and Wang (2016)
identify novel �elds of scienti�c research that are relevant

for industry, while Patelli et al. (2017) focus on national
e�ects on R&D.

Despite the importance of NPL data for thorough analy-
ses of the interrelations between scienti�c publications
and patents, the major part of the NPL references is avail-
able only as unstructured free text data. They do not
follow any uniform formatting rule and appear in a large
number of variants. Repeatedly citations are incomplete
or inconclusive. This hinders a matching of references
from patent databases with those from scienti�c publi-
cation databases like Web of Science (WoS) or Scopus
(SCO). As a result, the majority of studies on NPLs was
restricted to relatively small sample sizes. Coward and
Franklin (1989) identi�ed 255 patent-paper pairs in 2,452
patents by matching proper names of persons and institu-
tions between inventors and publication authors. Boyack
and Klavans (2008) identi�ed NPL authors that also occur
as inventors in 56,000 US patents between 2002 and 2006.
He matched rare names only. Magerman et al. (2015) use
text mining and content similarity techniques to analyze
references from 88,248 patent documents from the Euro-
pean Patent O�ce (EPO) and the US Patent O�ce (USPTO).
Li et al. (2017) match scienti�c publications funded by
the US National Institute of Health (NIH) to investigate
e�ects of science funding on the generation of patents in
chemistry and biomedicine. The only large scale studies
published so far have been conducted by Shirabe (2014)
(15M NPLs from USPTO) and Callaert et al. (2014b) (11M
NPLs from WIPO, EPO and USPTO).

The current study pilots a framework for an e�cient
and reliable matching of complete NPL sets from large
patent o�ces to global scienti�c literature databases. To
cope with the high number of potential comparisons and
the missing structure of the NPL entries, we explored a
pipeline that combines Solr full text search engine tech-
nology with SQL pre- and postprocessing. The setup de-
veloped was run on 22M unique NPLs from WIPO, EPO
and USPTO as citing sources against 50M Web of Science
records as cited targets.
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3 Data Sources and Methods

3.1 Data Sources

The main data sources for this study were DOCDB, the
core reference raw data product of the European Patent
O�ce, Web of Science (WoS), a scienti�c publication
database by Clarivate Analytics and JUNE, an MPDL in-
house database for journal metadata (see table 1). The
goal of the study made it necessary to aquire commercial
licenses for DOCDB and WoS in XML formats.

DOCDB (European Patent O�ce, 2017b) is provided as XML
data in two ways, as a yearly snapshot called “back�le”
containing all patent data up to the snapshot creation
date and as biweekly updates called “front�les”. For this
piloting study we focused on the most recent back�le
(7554 data �les with a total �le size of 715GB). The accord-
ing XSD �les are publicly available on the EPO website
(European Patent O�ce, 2017a).

DOCDB includes records from more than 100 patent of-
�ces. For the pilot study we decided to focus on records
assigned to the three major western patent o�ces, i.e.
World Patent O�ce (WIPO), the European Patent O�ce
(EPO) and the United States Patent and Trademark O�ce
(USPTO). Table 2 gives an overview of record numbers in
the three subsets. The majority of records in these sub-
sets is registered in English and thus compatible to the
metadata records of Web of Science.

Since August 2016, DOCDB includes “rich” citation data
(i.e. EP search report citations) have been added which
contain comprehensive citation data with entries split
into sub�elds. However, only a subset of the references,
mostly from EPO and WIPO, is available in rich format and
all information is contained in the standard citation �eld
as well. Therefore, these extra XML �elds are not taken
into account here.

Web of Science (WoS) XML data are licensed via the Ger-
man Competence Centre for Bibliometrics (CCB) and pro-
visioned by FIZ Karlsruhe as a relational Oracle database.
The dataset encompasses the journal core collection (SCI,
SSCI and AHCI) as well as conference proceedings from
1980 onwards. The raw data are routinely processed by
MPDL to feed a PostgreSQL data warehouse for analytical
purposes. Thereby the data are partially cleaned and en-
riched with standardized data for journals and selected
institutions.

MPDL JUNE serves in-house needs for journal metadata
standardization. All Web of Science journals are covered.
In the context of this study it was used to enrich journal
names as used by Web of Science by additional name
variants.

Name Provider Format Coverage Size base records

starting release date

DOCDB (back�le) EPO XML 1782– 2017-06 715GB ~100M
Web of Science (core collection) Clarivate XML 1980– 2017-01 431GB ~50M
JUNE MPDL RDB 1980– 2017-05 ~80K

Table 1: Data source properties

Object type Set All WIPO EPO USPTO

Patent records total 101.3M 3.7M 5.8M 14.8M
NPL references total 36.7M 4.6M 4.6M 24.3M

unique 24.4M 3.5M 3.5M 15.0M

Table 2: DOCDB data volumes
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3.2 Methods

For the present study, we decided to use Solr, a search en-
gine technology based on Lucene (Apache Software Foun-
dation, 2017), to provide fast and comprehensive string
matching functions. Standard settings, however, would
not have been powerful enough to cope with the large
amount of data that had to be compared (more than 20M
by 50M pairs). Extensive tests of various Solr setups were
run to �nd a good enough setting with the technical equip-
ment available (20 cores, 130GB RAM, SSDs). The �nal con-
�guration provided us with a throughput of 35 sec/1000
queries, which was considered su�cient for the needs of
the pilot study.

The Solr full text search procedure �nds a ranked set of
potential NPL-WoS matches, however, it does not allow
for an absolute measure to decide between true and false
positives. These decisions were made by �eld-wise SQL
comparisons of the top search results of each query.

The complete pipeline consists of six main steps (�g. 1):

Step 1 DOCDB XML Extraction:
Extraction of relevant nodes from the XML raw
data and import of the extracted information into
a PostgreSQL relational database

Step 2 SQL Preprocessing:
Filtering and cleaning of data, extraction of publi-
cation years and other patterns Generation of full
text query strings from the NPL entries.

Step 3 Solr Search Index:
Export of relevant �elds of Web of Science into a
Solr search index

Step 4 Solr Queries:
Search of the NPL full text strings (step 2) in the
Web of Science index (step3)

Step 5 SQL Postprocessing:
Field-based scoring of the top ranked NPL–WoS
pairings

Step 6 Quality Assurance:
Manual processing of random samples to verify
categorization and matching

Web of Science
PostgreSQL rdbms

Results
PostgreSQL rdbms

DOCDB
PostgreSQL rdbms

Solr
Search engine cluster

(WoS index)

DOCDB
raw XML

DOCDB
queries

DOCDB
–

Web of Science
matches

Web of Science

(MPDL processed)

MPDL JUNE

search index generation

export

import

Figure 1: Processing pipeline
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3.2.1 DOCDB XML extraction

We extracted information from the 7,554 DOCDB XML �les
and transferred it to a PostgreSQL database. Based on the
o�cial documentation and the XML Schema De�nitions,
we selected 39 elements (nodes or attributes) relevant
for our project. The contents of these elements were ex-
tracted by a Python script iterating over the records and
accessing the data with appropriate XPath expressions. In
total 101,308,828 records were extracted and written into
a set of CSV �les. The latter were imported into the Post-
greSQL database, where they were cleaned, aggregated
and prepared for the matching process. The �elds "coun-
try" for the patent o�ces and "nplcit" for the reference
entries where those of special interest for the analyses
presented. The "nplcit" entries were transformed to lower
case and the unique variants of all entries across the
database were used for further processing.

3.2.2 SQL preprocessing

An initial inspection of the NPL references in the DOCDB
subset selected showed an enormous variance. The same
targets are registered in multiple variants and thus the
number of unique references is only slightly lower than
the total number. A substantial amount of the entries does
not even refer to what we would consider non-patent-
literature. We found records that are cross-references
to patent databases or describe steps from patent pro-
cessing. We also found records that are very short and
contain cryptic or incomplete entries that cannot be reli-
ably matched to literature targets. Random examples can
be found in the list of quality assurance records provided
in the supplementary material.

To cope with this situation and optimize the subsequent
Solr query performance, several preprocessing steps were
executed. They all were based on PostgreSQL regular ex-
pressions combined with full text indices.

As the Solr matching ties up substantial processing time,
we tried to lower the number of records to be processed.
This was done by �ltering out those records that can be
identi�ed with su�cient certainty as non-targets. Two
main groups were excluded from further general process-
ing:

The category “most likely no NPL references” includes en-
tries that do not refer to literature or literature databases.
This comprises references to other patents within DOCDB,
to other patent databases, and references to patent pro-
cessing steps. In general, cross-references have rather
clear patterns, that can easily be detected. This is how-
ever not true for the subset that re�ects patent processing

steps. These can be found in a substantially high num-
ber of variants and thus were covered with limited recall
only.

Our target database Web of Science includes only a se-
lected subset of journal articles and conference proceed-
ings. We therefore de�ned a category that comprises
records that are “most likely non-targets”. References
with a publication year before 1980 could be detected
with su�cient precision and were included into this cate-
gory. Entries with a length of less than 20 latin characters
were also added to this category.

The remaining “candidates for matching” were cleaned
from special characters and substrings that certainly will
not be found in the Web of Science index, as for instance
URLs and XP-numbers.After cleaning, all candidates from
this group were used as Solr query strings. To allow for the
blocking concept, the numbers that are likely publication
years were extracted and used as routing parameter in
the Solr queries (see step 3 and 4).

Amongst the candidate strings we tagged the category
“probably non-targets” (books, reports, literature and fact
databases, norms, etc.). These, however, could not be
identi�ed with su�cient precision and recall and thus
remained included in the matching set.

3.2.3 Solr Search Index

The core of this routine is a search engine cluster which op-
erates on a searchable full text index that was created by
collapsing the most relevant �elds of the Web of Science
database (cf. XML-listings in the supplementary mate-
rial):

• Web of Science identi�er (UT)
• digital object identi�er (DOI)
• publication year (PY)
• source title (SO)
• source short title (J2)
• source volume (VL)
• source start and ending page (BP, EP)
• source number (ARTN)
• up to 3 authors (lastname, �rstname(s))
• publication title (TI)

In a �rst step, we split up the search index into several
smaller parts, a technique that is called sharding. Shard-
ing allows to search an index in less time as all shards
can be searched in parallel. Since release 4.0 in 2012 Solr
o�ers SolrCloud, a feature allowing to set up and manage
distributed search and indexing that is scalable and easy
to maintain.

Sharding alone does not provide us with a su�cient search
speed to e�ectively process the NPL queries, as still the
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Parameter Explanation Values

defType query parser eDisMax
mm minimum should match parameter 3
qf indexed �eld to be searched WoS full text �eld
� �elds to return as result unique id, score
_route_ shards to be searched publication year(s) extracted
q main query NPL full text record

Table 3: Solr Query Parameters used

whole index would have to be searched for every query.
To avoid this, we combined sharding with blocking, i.e. we
arranged the shards into blocks formed by a previously
known information entity. We chose the publication year
as the blocking factor, as it is relatively easy to extract
from the NPL records (see step 2). On the SolrCloud side,
we de�ned an “implicit” router, which allows it to use a
router �eld parameter during the creation of a “collec-
tion” (i.e. the cluster of indexes). The router �eld is an
additional �eld in the data which carries the name of the
shard. During indexing, each "document" (Web of Science
record) is automatically routed to the speci�c shard de-
�ned by the router �eld. This way, we spread the index
over 38 shards with one shard per publication year. Fig-
ure 2 schematically shows a part of the index. Shards are
gathered into one collection and are replicated over sev-
eral Solr nodes, which in the present set up are Jetty/JVM
instances running on the Server under separate individual
ports.

Collection
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Figure 2: SolrCloud with a sharded index blocked by
publication year

3.2.4 Solr Queries

The actual query process is realized by a Python script
that sends search queries to the REST (representational
state transfer) interface of the SolrCloud cluster, collects
the Solr responses, and saves the resulting data into CSV
�les. To increase performance, query processes run in
parallel using multiple CPU cores.

The Solr query parameters given in Table 3 yielded opti-
mal results with regard to the requirements of the project.
Apart from obvious choices like the query string itself,
index �eld queried, and the format of the result, we made
some speci�c decisions. The extended Maximum Disjunc-
tion (eDisMax) query parser allows google-like full text
searches and the use of further parameters that restrict
the set of results. In our case, this was primarily the Mini-
mum Should Match Parameter (mm) which we set to 3, i.e.
a minimum of three clauses/terms should match in order
to retrieve a result.

The route parameter is relevant for the Solr index set up
chosen (step 3). With a blocked and sharded index, the
search requests sent to the SolrCloud server are automat-
ically routed to the shard that contains the documents
with the referring publication year, such that only this
shard needs to be searched.

Solr was set to retrieve the top 10 records ranked by the
eDisMax scoring algorithm. This score takes into account
term frequency, inverse document frequency and inverse
�eld length. It is a relative measure, that applies to a
given query (= NPL reference) only. Identi�er, scores and
runtimes of the top 10 matches were written to CSV �les
and imported into the PostgreSQL databases.

3.2.5 SQL Postprocessing

Whenever the criteria set for the Solr matching function
(tab. 3) are met, Solr retrieves records from the index. Due
to our very liberal settings the top records retrieved in-
clude a high fraction of false positives. Solr ranking scores
cannot be used for further selection as they are not com-
parable accross queries and they cannot be interpreted
as an absolute measure of matching quality. Therefore
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we used SQL procedures to calculate a domain speci�c
and absolute matching score for the NPL–WoS pairings
suggested by Solr. For the pilot study, we restricted these
analyses to the top ranked pairing for every NPL record.

The matching �ngerprint is made up from individual com-
parisons for six �elds of the WoS records (�g.3): publica-
tion year (PY), source volume (VL), source beginning page
(BP), �rst author (AU), article title (TI), and source title vari-
ants (SO). For all �elds, the exact strings were searched
within the preprocessed NPL string. When found, they
were marked with an 1 in the scoring �ngerprint. Article
and source titles where speci�cally processed as there is
a high probability that they do not match exactly between
the NPL reference and the WoS record.

Article titles: many NPL records delimit the article title
with double quotation marks. These parts were extracted
and the relative Levensthein distance to the paired WoS
article title was calculated. If that distance was below a
threshold of 10% of the average string lengths the scoring
position was marked 1.

Source titles: source titles show an enormous variance
within the NPL records. Any possible (and impossible)
abbreviation is used and there is no pattern frequent
enough to use it for a reliable extraction of the source
title from the full string. MPDL maintains an in-house jour-
nal databases (MPDL JUNE) including all WoS journal and
series titles and their standard abbreviations. These, how-
ever, did not cover even frequently used abbreviations
in NPL records. Therefore, we extracted potential source
titles with very broad regular expressions (e.g. anything
between a dot and ’vol’). The most frequent strings de-

rived were then matched against the existing journal titles
by a semi-manual procedure. All variants derived from
this procedure were used for the scoring comparison.

The total matching score was calculated by the sum of
hits in the �ngerprint and thus ranged from 0 (no WoS
record with at least 3 common terms found) to 6 (all WoS
elements checked have been found in the NPL string).
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Figure 3: Matching Fingerprint

3.2.6 Quality Assurance

For quality assurance, we randomly selected 1000 refer-
ences per patent o�ce.

Every record was inspected by an expert and quali�ed
as "target" (part of our Web of Science data set) or "no
target" (not part of it). Non-targets where either identi�ed
directly in obvious cases or in case of doubt veri�ed by
searching the Web of Science web interface with a strategy
optimizing recall.

For those records that had been identi�ed as target the
Solr mapping between DOCDB and Web of Science was
categorized into "wrong" and "found".
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most likely no NPL references
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candidates for matching – probably non-targets
candidates for matching – other

World Intellectual Property O�ce (WIPO)
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United States Patent and Trademark O�ce (USPTO)

Figure 4: Categorization of NPL references and scoring results.
score = number of matching �elds; 0 = no match, 6 = best match
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WIPO EPO USPTO

manual classi�cation [%] manual classi�cation [%] manual classi�cation [%]
n no targets targets n no targets targets n no targets targets

processing category wrong found wrong found wrong found

candidates score 6 195 0 0 100 112 0 0 100 99 0 0 100
score 5 215 0 0 100 133 0 0 100 161 0 0 100
score 4 103 4 2 94 57 0 2 98 88 5 1 94
score 3 45 36 13 51 35 34 6 60 44 36 9 55
score 2 73 89 10 1 47 83 13 4 99 85 8 7
score 1 104 98 2 0 74 95 5 0 204 96 4 0
score 0 12 100 0 0 5 100 0 0 44 100 0 0

no target short 0 2 100 5 100
pre 1980 41 100 54 100 62 100

no NPL derwent 29 100 18 100 4 100
see references 170 100 429 100 0

patent processing 13 92 34 100 190 99

1.000 1.000 1.000

scoring precision n cum. [%] n cum. [%] n cum. [%]

>99% 422 56 250 54 304 41
>90% 207 84 131 82 292 81
>80% 73 94 47 92 99 94
<80% 45 100 35 100 44 100

747 463 739

Table 4: Manual quality assurance

4 Results

Our pilot setup made it feasible to process all matching
candidates assigned to the three patent o�ces chosen.
In total 21.7M records were handled by the methods de-
scribed with a total machine processing time of less than
8 days. The lion’s share of that time was allocated to
the Solr searching process, which has to select potential
matching candidates out of 50M Web of Science records
for every NPL record. Several measures increased perfor-
mance at that step: Preprocessing �ltered out most likely
non-candidates and shortened reference strings and thus
the number of matching terms. The Solr setup allowed
to e�ciently run several tasks in parallel. The far most
e�ective measure turned out to be the implementation of
blocking, in our case the creation of separate Solr indices
per publication year.

Regular pattern analysis revealed substantial insight into
the types of entries and the quality of our matching pro-
cedure. During preprocessing, the patterns successfully
identi�ed a large volume of non-target entries with su�-
cient certainty to exclude them from thematching process.
We also were able to extract potential publication years in
most references, a prerequisite for our blocking approach.
As foundation for the scoring process, potential document
and source titles were extracted by regular patterns.

Automated bulk processing was backed by manually pro-
cessing random samples of 1000 records for each patent

o�ce. This gives valuable insight into recall and precision
of our procedures. The quality assurance set comprises
examples for all major variants and thus is included in
the supplementary material.

Figure 4 and table 4 give an overview over the volumes
of basic categories (pie charts) and scoring classes (bar
charts) along with the estimated accuracy (manual quality
assurance) for the three patent o�ces. For the basic cate-
gories de�ned in 3.2.2, we �nd the following volumes:

“most likely no NPL references” (red segments in �gure 4):
Around 20% of WIPO and USPTO and 50% of the EPO
unique records were identi�ed as entries di�erent from
what we would consider non-patent-literature references.
In WIPO and EPO subsets, these include a very high frac-
tion of simple cross-references to other patents or patent
databases. These cross-references were determined by
simple regular expressions with su�cient accuracy. This
is more challenging for USPTO, as the reference �elds of
this o�ce include many strings that seem to be annota-
tions out of the patent handling process. These strings
are highly variable and patterns show a typical long tail
distribution. Even with considerable e�ort in the devel-
opment of adequate regular expressions these could be
captured with limited recall and precision only.

“most likely non-targets” (dark blue): References to pub-
lication years between 1900 and 1979 ("pre 1980") make

9
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up between 4 and 7 percent of the unique references in
the three o�ces. They were identi�ed with high reliability
(> 99%, table 4) and thus excluded from further process-
ing.

“probably non-targets” (light blue): There are many jour-
nals, conference proceedings, books, reports, literature
databases, and other source types, that are not covered
in the Web of Science core collection. We put some ef-
fort to �nd appropriate patterns for these, but within
the scope of the pilot study this was limited to the more
prominent cases. We identi�ed some 5% for each o�ce
via the regular expressions developed. This recall is far
from complete. Manual quality assurance suggests this
segment to be approximately 15% for EPO and 20% for
WIPO. The even higher share of around 35% for USPTO
includes also undetected non-NPL-entries. The complete
category remained part of the candidates for matching.

The “candidates for matching” (green and light blue) ac-
count for 2.7M (77%) in WIPO, 1.6M (45%) in EPO and 11M
(73%) in USPTO. The matching scores for the three o�ces
showed similar frequency distributions. Medium scores
are less frequent than those at both ends of the scale
(with the exception of score 0, which labels the rare cases
where no Solr match was retrieved).

Manual quality assurance shows that scores of 5 and 6
reliably indicate the correct match of a NPL reference to

a Web of Science article. The error rate for these scores
is less than 1%. A score of 4 still shows an acceptable
precision with an error rate of less than 10%. Scores of 0
and 1 have a high prevalence of non-target references and
some rare targets that were not matched to their correct
counterparts. Thus, these matches can safely be excluded
from any further consideration.

The transitional zone between these two rather well-
de�ned clusters is found for the scores 2 and 3. Matches
with these scores have the least reliable predictive power.
These records need to be excluded from any analysis that
cannot account for false positives. They still include many
targets and thus any re�nement of the method has to
lower their share.

Summing up manual quality assurance, we achieved the
highest reliability (precision > 99%, scores 0 for non-target,
5 and 6 for targets) for more than half of the matching
candidates in WIPO (56%) and EPO (54%) and little less
for USPTO (40%). If we accept error rates of up to 10%,
i.e. if we include score 1 for non-targets and 4 for targets,
we can cover more than 80% of the records in any of the
three o�ces.

In short, successful matching was achieved for more the 6
million unique NPL-references with the highest reliability
(scores 5 and 6) and another 2 million with an expected
error rate of less than 10 percent (score 4).
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5 Discussion
The framework implemented for the pilot study ful�lled
our goal to process a signi�cant amount of NPL refer-
ences with acceptable matching quality. Current hardware
and mature full text search and database technology en-
abled us to run the pipeline with acceptable throughput.
Building on this, we can envisage further development
including new data sources and optimizing algorithms.

Previous studies report issues with respect to process-
ing time. Shirabe’s (2014) algorithms run “a couple of
weeks” for 15M records (USPTO 1992-2012). With the cur-
rent setting, we are able to process this volume in about
a week. The lion’s share of that time is consumed by Solr
full text matching. The con�guration for this step is ready
to be scaled for faster hardware, extended memory and
increased parallelization without major changes. The key
feature of our concept is the separation of the Solr full text
matching from single �eld comparisons and string pat-
tern analyses implemented in the PostgreSQL database.
The development of the latter needs many more cycles
and thus bene�ts considerably from practicable stepwise
processing times in the range of minutes to a maximum
of some hours for the full data set.

Callaert et al. (2014b) matched a similar set of references
from the EPO PATSTAT (a derivative of DOCDB) to Web of
Science. They processed 12.5M NPL records of the patent
application years 1993 to 2009 from the o�ces WIPO, EPO,
and USPTO. Using a speci�cally trained machine learning
algorithm (Callaert et al., 2012), they identi�ed 52% as “sci-
enti�c” NPL references, including citations to journals and
conference proceedings. These references were further
processed in two steps using single �eld comparisons with
high recall analogous to our Solr full text matching and
a third step with �eld based �lters to improve precision
similar to our SQL scoring. With that procedure 3.3M valid
matches were found, i.e. 26% of the total number of NPL
records. This compares well to the 28% yield for our best
scores 5 and 6.

With the current setting we found 8 million matches with
satisfactory precision (scores 4-6) out of the 22 million
unique references analyzed. If we extrapolate results from
our manually processed random samples, we can expect
another 1.5 million to match with Web of Science records.
We suppose that most of these have been successfully

matched by Solr but lack con�rmation by the scoring pro-
cess.

There are many tweaking options for an improvement of
the scoring algorithms: For the pilot, we analyzed the top
ranked Solr result only, but there might be cases where
a lower rank gives a better score. A substantial gain in
precision could be achieved by an identi�cation of further
source title variants. Eventually, the inclusion of further
author names also would be an additional bene�t. For the
reliable exclusion of non-targets, there are many options
to improve the detection patterns. However, all measures
that include work on regular expressions, are typical long-
tail problems and any increase in discriminatory power is
accomplished by an exponential increase in development
time. Future studies might exploit the input of machine
learning algorithms at these steps.

Another approach to increase the fraction of reliable
matches would be an extension of the target database. We
already run a successful pilot on Scopus, another global
literature database, that has a broader coverage than Web
of Science. Crossref, the global DOI registry, would also be
a very valuable target resource. Beyond that, more spe-
cialized collections like ArXive, BIOSIS, CiteSeer and many
others could be included. The pilot study suggests that
our framework is ready to cope with these scenarios.
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