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In order to provide scaling formulae for geodesic acoustic mode (GAM) frequency and damping rate, GAMs
are studied by means of the gyrokinetic global particle-in-cell code ORB5. Linear electromagnetic simulations
in the low-βe limit have been performed, in order to separate acoustic and Alfvénic time scales and obtain
more accurate measurements. The dependence of the frequency and damping rate on several parameters such
as the safety factor, the GAM radial wavenumber and the plasma elongation is studied. All simulations have
been performed with kinetic electrons with realistic electron/ion mass ratio. Interpolating formulae for the
GAM frequency and damping rate, based on the results of the gyrokinetic simulations, have been derived.
Using these expressions, the influence of the temperature gradient on the damping rate is also investigated.
Finally, the results are applied to the study of a real discharge of the ASDEX Upgrade tokamak.

I. INTRODUCTION

The ion heat transport in the plasma core is gov-
erned by turbulence formed by a class of microinsta-
bilities such as toroidal ion temperature gradient (ITG)
driven modes1. ITG turbulence is known to self-organize
to form macroscopic structures2. These structures take
the form of a macroscopic radial electric field which de-
pends only on the radial coordinate. E×B poloidal flows
associated with this electric field are referred to as zonal
flows (ZFs)3–6.

The action of the toroidal magnetic field curvature on
the ZF gives rise to oscillations of the radial electric field.
These oscillations of the ZFs are called geodesic acous-
tic modes (GAMs)7–9. The modes are observed pre-
dominantly in the edge region of the tokamak plasmas
with characteristic frequency of the order of the sound
frequency ∼ cs/R, where cs =

√
eTe/mi is the sound

speed, R is the major radius, e is the absolute value of
the electron charge, Te is the electron temperature in
electron-volts. One of the main linear damping mecha-
nisms for the stationary ZF are collisional processes and
for the GAM it is a collisionless wave-particle interaction,
namely the Landau damping, and collisional damping at
the very edge of the plasma, where equilibrium tempera-
tures drastically decrease10. A recent comparison of colli-
sionless and collisional damping of GAMs, using existing
analytical theories, for experimentally relevant plasmas
was done in Ref. 11.

The importance of the ZF is that they can regulate
the drift-wave (DW) turbulence12. But it is still a ques-
tion how the GAMs influence the ZF efficiency of the
DW suppression8,13,14. On the other hand, the devel-
opment of zonal structures can play a key role in the
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transition from the low to the high confinement regime
(L-H transition)15. In Ref. 16 interaction of the mean
and oscillatory poloidal flows with the turbulence was
experimentally observed. The turbulence suppression by
the ZFs was observed in experiments described in Ref.
17. On the other hand, in Ref. 18 the role of the mean
flow in the dynamic evolution towards the H-mode is em-
phasized. In Ref. 13, a two predators - one prey system,
including ZF, GAM and turbulence, was developed to
study transitions between states with different combina-
tions of the ZF and GAM.

In this paper, we investigate the GAM frequency and
collisionless damping rate, carrying out linear collision-
less simulations with kinetic electrons. The electromag-
netic global gyrokinetic particle-in-cell code ORB5 is
used20,21. As it has been reported previously22,23, mod-
els, numerical or analytical, derived with adiabatic elec-
trons, result in considerably smaller GAM damping rate
in comparison to simulations performed with kinetic elec-
trons. By adiabatic electron models, we mean here mod-
els treating the m 6= 0 component of the electrons as
adiabatic, and setting the zonal component of the elec-
tron density perturbation to zero. In simulations consid-
ered in this paper, electrons are treated drift-kinetically,
and a realistic ion-electron mass ratio is used. More-
over, to study the influence of the plasma elongation on
the GAM dynamics, magnetic equilibria with realistic
plasma shapes are considered. To summarize the results
obtained in different plasma regimes, interpolating for-
mulae for the GAM frequency and damping rate, based
on the gyrokinetic simulations with ORB5, are derived
(see Sec. III C).

Due to the so-called phase mixing effect, the GAM
damping rate is increased in the presence of a temper-
ature gradient or the safety factor profile8,24–26. This
effect arises when the damping rate of the wave depends
on its wavenumber. In the case of the GAM the damping
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rate increases with the GAM radial wavenumber (more
precisely, with the radial wavenumber of the radial elec-
tric field). Since the GAM frequency depends on the
temperature and safety factor, the GAM oscillates with
different frequencies at different radial points in the pres-
ence of the temperature gradient or magnetic shear. Dis-
torting the GAM radial structure and creating higher ra-
dial wavenumbers, this process can strongly increase the
GAM damping rate8,26. Section IV of our paper is dedi-
cated to the extension of previous works23,25, which were
done treating the electrons as adiabatic, and in circular
flux surfaces, to the inclusion of kinetic electrons and re-
alistic tokamak configurations. Finally, the last section of
this paper is dedicated to the investigation of a realistic
discharge of ASDEX Upgrade, described in Ref. 27. In
Appendix B we show a comparison between ORB5 and
GENE28,29 for the case of non-flat temperature profile.

II. MODEL

The gyrokinetic simulations presented in this work
have been performed with the code ORB520,21. ORB5 is
a nonlinear gyrokinetic multi-species global particle-in-
cell (PIC) code, which solves the Vlasov-Maxwell system
in the electrostatic or electromagnetic limit, and has a
capability of handling true MHD equilibrium for an ax-
isymmetric toroidal plasma. The particle-in-cell method
consists of coupling a particle-based algorithm for the
Vlasov equation with a grid-based method for the compu-
tation of the self-consistent electromagnetic fields. Sev-
eral physical models are available in ORB5, all of them
derived from a systematic Hamiltonian theory21,30 to
provide exact energy and momentum conservation. In
this work, only one ion species (deuterium) has been
considered while the electrons are assumed to be drift-
kinetic. This corresponds to the following gyrokinetic
total Lagrangian:

L =
∑
sp

∫
dV dWsp

((
Zspe

c
A+ pz,spb

)
· Ṙsp + (1)

+
mspc

Zspe
µspθ̇sp −H0,sp −H1,sp

)
fsp −

−
∑
sp

∫
dV dWspH2,spfM,sp −

∫
dV

B2
⊥

8π
.

The velocity variables are the magnetic moment µsp ≡
(mspv

2
⊥,sp)/(2B), the canonical parallel momentum pz,sp

and the gyroangle θsp of the particle species sp. The
equilibrium magnetic field is B = ∇×A, msp and Zspe
are the mass and charge of the particle species sp. For
electrons Ze = −1 and for deuterium Zd = 1, e is the
absolute value of the electron charge and c is the speed
of light. The volume element of the velocity space is
dWsp ≡ (2π/m2

sp)B
∗
‖,spdpz,spdµsp with B∗‖,sp = B∗sp · b,

b = B/B and B∗sp = B + (c/(Zspe))pz,sp∇× b; dV de-
notes the volume element in physical space. Here fsp is

the distribution function for the species sp, while fM,i is
the equilibrium time independent distribution function
of the ions. In this system, only long wavelength electro-
static perturbation and magnetic perturbations perpen-
dicular to the equilibrium magnetic field are considered.
Note that no second order term in the fields is retained
for the electrons, this is equivalent to neglect the electron
polarization density in the Polarization equation (drift-
kinetic approximation, see Ref. 21 for details). The first
two terms in the total Lagrangian define the charged par-
ticles Lagrangian31. The GK Hamiltonian in general de-
pends on the electrostatic potentials Φ and on the parallel
component of the fluctuation magnetic potential A‖. The
third term in the total Lagrangian is the electromagnetic
field Lagrangian, in which the electric field component
has been neglected (quasi-neutrality approximation, see
Ref. 21 for details). In this work we used the following
Hamiltonian:

Hsp = H0,sp +H1,sp +H2,sp (2)

H0,sp =
p2
z,sp

2msp
+ µspB

H1,sp = Zspe(J0,spΦ−
pz,sp
mspc

J0,spA‖)

H2,sp =
(Zspe)

2

2mspc2
(J0,spA‖)

2 − mspc
2

2B2
|∇⊥Φ|2

the gyroaveraging (Hermitian) operator J0,sp, applied to
an arbitrary function ψ in configuration space, is defined
by

(J0,spψ)(Rsp, µsp) =
1

2π

∫ 2π

0

ψ(Rsp + ρsp(α)) dα, (3)

where ρsp is the vector going from the guiding center
position to the particle position. In this work we have
assumed J0,e = 1 for the electrons (drift-kinetic approx-
imation). The gyrokinetic equations for the particle dis-
tribution function and the GK field equations can be de-
rived from the GK Lagrangian using variational princi-
ples. In summary, the GK model used in the following
is:
• gyrokinetic full-f Vlasov equation for the ions

∂fi
∂t

+ Ṙi · ∇fi + ṗz,i
∂fi
∂pz,i

= 0, (4)

Ṙi =

(
pz,i
mi
− Zie

mic
J0,iA‖

)
B∗i
B∗‖,i

+ (5)

+
c

ZieB∗‖,i
b× [µi∇B + Zie∇(J0,iΨi)] ,

ṗz,i = − B
∗
i

B∗‖,i
· [µi∇B + Zie∇(J0,iΨi)] , (6)

• drift-kinetic full-f Vlasov equation for the electrons:

∂fe
∂t

+ Ṙe · ∇fe + ṗz,e
∂fe
∂pz,e

= 0, (7)
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Ṙe =

(
pz,e
me

+
e

mec
A‖

)
B∗e
B∗‖,e

− (8)

− c

eB∗‖,e
b× [µe∇B − e∇Ψe] ,

ṗz,e = − B
∗
e

B∗‖,e
· [µe∇B − e∇Ψe] , (9)

having introduced the generalized potential

Ψsp ≡ Φ− pz,sp
mspc

A‖. (10)

For convenience, we recall here the definition of the B∗‖,sp
and B∗sp:

B∗‖,sp = B∗sp · b, (11)

B∗sp = B +
cpz,sp
Zspe

∇× b. (12)

• Linear polarization equation in the long wave-length
limit (and drift-kinetic electrons):∫

dWiZieJ0,ifi −
∫

dWeefe = (13)

−∇ ·
(
n0,imic

2

B2
∇⊥Φ

)
• Linear Ampère’s law:∫

dWi
4πZie

mic
pz,iJ0,ifi −

∫
dWe

4πe

mec
pz,efe = (14)

1

d2
e

A‖ +
1

d2
i

A‖ −∇2
⊥A‖ +∇ · πn0,iTi

B2
∇⊥A‖

where n0,sp is the density associated with the equilib-
rium Maxwellian fM,sp. The skin depth is defined by
d−2
sp = 4πn0,sp(Zspe)

2/(mspc
2), and it appears on the

right-hand-side of the Ampére’s law because of the choice
of the velocity space variables (pz,sp, µsp) instead of the
usual (v‖,sp, µsp). The indexes i and e indicate ions and
electrons respectively. Despite all the approximations
made, this model is highly physically relevant and it can
be used to describe not only the GAM and ZF dynamics,
but also a large class of micro-instabilities excited by the
density and temperature gradients, like ion temperature
gradient (ITG) driven modes, trapped electron modes
(TEM) or kinetic ballooning modes (KBM). It also con-
tains the reduced MHD model as a subset (see, among
other, Ref. 32).

According to the PIC method the particle distribu-
tion function is discretized with macroparticles, known
as markers. The motion of the markers is calculated us-
ing the equations of motions of the gyrokinetic model
while the electromagnetic fields are evolved on a spatial
grid using the two field equations. The charge and cur-
rent density, that are necessary to solve the field equa-
tions, are calculated by projecting the marker weights on
a spatial grid. After that, the fields are calculated using
a finite elements method.

The code is based on a straight-field-line coordinate
system (s, χ, φ). Here, radial coordinate is s =

√
ψ/ψedge

(where ψ is the poloidal flux), χ =
1

q(s)

∫ Θ

0

B · ∇φ
B · ∇Θ1

dΘ1

is the straight-field-line coordinate (where Θ and q are
the poloidal angle and the safety factor respectively) and
φ is a toroidal angle. Two different kinds of magnetic
equilibria are implemented: analytical equilibria with cir-
cular concentric magnetic surfaces and ideal MHD re-
alistic equilibria. For the latter case, the ORB5 code
is coupled with the CHEASE code33, which solves the
Grad-Shafranov equation with a fixed plasma boundary.

III. FREQUENCY AND LANDAU DAMPING

A. Equilibrium and simulations parameters

Linear electromangetic gyrokinetic collisionless simu-
lations with drift-kinetic electrons and a realistic elec-
tron - ion (deuterium) mass ratio me/md = 2.5 · 10−4

have been performed. Electrostatic simulations with ki-
netic electrons are, in principle, faster than electromag-
netic simulations, due to the smaller number of equa-
tions to be solved. Nevertheless, a high frequency os-
cillation, called the ωH -mode36, is observed to be often
numerically unstable. To decrease the level of the high-
frequency oscillations, electromagnetic simulations in the
small-βe (βe = 10−5) limit have been performed instead
of the electrostatic ones. MHD equilibria of the circular
and elongated plasma have been calculated with an ex-
ternal code CHEASE33. Simulations have been carried
out with a flat density profile, which have been shown
to not impact the GAM frequency and damping rate in
linear simulations (Appendix A). To focus on the Landau
damping in the absence of the phase mixing effect, flat
temperature profile has been considered in simulations
used for the results of this section. Since the safety fac-
tor profiles have been taken from the CHEASE, there is
a magnetic shear, that also causes the phase mixing, but
its influence on the GAM damping rate is much smaller
in comparison to the temperature gradient effect.

Plasma parameters have been taken close to the AS-
DEX Upgrade parameters near the plasma edge27: the
major radius R = 1.65 m, the minor radius a = 0.5 m
(inverse aspect ratio is ε = 0.303), the magnetic field
on the axis B = 2 T. Since in the CHEASE code the
plasma elongation κ is defined at the edge and changes
gradually to the plasma center, the GAM frequency
and damping rate have been measured at the same ra-
dial position s0 = 0.90 to perform more accurate scan
on the elongation. We consider a deuterium plasma:
md = 2mp, Zd = 1, where mp is the proton mass.
The temperature has been taken to be Td = Te = 70
eV. It means that cs =

√
eTe/(2mp) = 5.8 · 104 m/s,

ρs = cs/ωcd = 6.1 · 10−4 m and ρ∗ = ρs/a = 1.2 · 10−3.
Here, ωcd = eB/(2mp) (ωcd/(2π) = 15.2 MHz) is the ion
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FIG. 1: Comparison of the results from linear gyrokinetic simulations (blue dots), performed with kinetic electrons,
with the analytical theories Gao et al. 201034 (solid blue line) and Qiu et al. 200935 (dashed red line), derived with
adiabatic electrons. Here, k = krρi is the normalized radial wavenumber, q is the safety factor, κ is the elongation.

gyro-frequency.

To weaken the constraint on the space step and to
reduce the effect of the charge accumulation at the edge
of the numerical work box, we have simulated only a
ring from s1 = 0.85 to s2 = 0.95 in a poloidal cross
section with the Dirichlet condition for the potential φ
on boundaries (φ(s1) = φ(s2) = 0).

A typical simulation has the following parameters.
Number of nodes in radial direction is taken to be
ns = 256, in toroidal directions nφ = 4 and along the
straight-field-line coordinate χ the number of nodes is
nχ = 64. Time step is dt[ω−1

ci ] = 2, ωci = ZieB/mi.
The GAM damping rate and frequency have been calcu-
lated for different GAM radial wavenumbers k = krρi ∈
[0.054, 0.377] (in our case ρi = ρd =

√
2vTd/ωcd =

8.57 · 10−4 m is the deuterium Larmor radius and vTd =√
eTd/(2mp) is the deuterium thermal speed), the safety

factor q ∈ [3.5, 5.0] at s0 = 0.90 and the plasma elon-
gation κ ∈ [1.0, 1.6] at the edge. This is the regime
where GAMs are typically observed in tokamak plas-
mas (see, for example, Ref. 27). To simulate the GAM
dynamics, the ORB5 simulations have been initialized
by introducing an axisimmetric density perturbation de-
signed to produce an initial electric potential field of the
form ∼ sin(ks), where s ∈ [s1, s2] (as in the so-called
Rosenbluth-Hinton test4). All toroidal modes n 6= 0 and
poloidal modes |m| > 10 have been filtered out. To study
the GAM dynamics, the frequency and damping rate of

the poloidally averaged radial electric field have been cal-
culated. In Appendix A the method, that has been used
to find the GAM frequency and damping rate, as well as
some results from convergence tests are discussed.

B. Results of gyrokinetic simulations

In Fig. 1, a comparison of the GAM frequencies and
damping rate obtained from numerical simulations with
two analytical theories of Qiu et al. 200935 and Gao et al.
200034 is shown. A good agreement between numerical
results and analytical predictions of the GAM frequency
has been found. Nevertheless, the GAM damping rate,
obtained from the theories, derived using adiabatic elec-
trons, is smaller in comparison to numerical simulations
with kinetic electrons, and the divergence increases for
smaller values of the GAM radial wavenumber. More-
over, since the frequency stops increasing in the domain
of higher wavenumbers (subplot a of Fig. 1), a divergence
between numerical results and analytical theories is ob-
served. The same effect was observed in Ref. 37, where
the GAMs were studied using drift reduced Braginskii
equations.

The Gao et al. 2010 theory describes the GAM de-
pendence on the plasma elongation and it is in a good
agreement with numerical results for the frequency. Al-
though the Gao et al. 2010 theory provides considerably
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FIG. 2: Comparison between numerically simulated values (dots, traingles and squares) of the GAM frequency and
values obtained using the interpolating expression provided in Eq. (15) (solid lines). Dotted lines indicate 95%

confidence bounds of the fitting. Here, k = krρi is the normalized radial wavenumber, q is the safety factor, κ is the
elongation.

smaller damping rate, it seems to give similar trend of
the damping coefficient with the plasma elongation, i.e.,
the damping rate is weakened by the elongation. The
Gao et al. 2010 theory was derived in the large orbit
drift width limit, where the dominant damping mecha-
nism is the resonance ω ∼ ωd (here, ωd = kr · vd is a
magnetic drift frequency, kr is a wave vector of the zonal
potential in the radial direction and vd is a magnetic drift
velocity)38. As explained in Ref. 34, the GAM frequency
decreases with the elongation less rapidly than the drift
frequency. To satisfy the resonance ω ∼ ωd particles have
to have higher drift velocities, which involves fewer parti-
cles in the wave-particle interaction and, as a result, the
GAM damping rate decreases.

C. Interpolating formulae

To provide a scaling of the GAM frequency and damp-
ing rate, corresponding interpolating expressions have
been fitted to the results of the gyrokinetic simulations
described in Sec. III B. For consistency, the regime has
been chosen for the GAM wavenumbers k = krρi in the
range [0.054, 0.377], safety factor q ∈ [3.5, 5.0] and plasma
elongation κ ∈ [1.0, 1.6].

To derive an interpolating expression for the frequency
several assumptions have been used. The experimen-
tally obtained dependence27 on the plasma elongation
1/(1+κ) has been slightly modified to 1/(1+g6κ), where
g6 is an adjustable coefficient. The dependence on the
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FIG. 3: Comparison between numerically simulated values (dots, triangles or squares) of the GAM damping rate
and values obtained by using the interpolating expression provided in Eq. (16) (solid lines). Dotted lines indicate

95% confidence bounds of the fitting. Here, k = krρi is the normalized radial wavenumber, q is the safety factor, κ is
the elongation

safety factor has been taken in the form exp(−g5q
2). In

fact, the q-dependence in a form of
√

1 + g5/q2, that is
given in Ref. 23, gives the same results. To describe
how the frequency changes with the radial wavenumber,
a polynomial has been taken. Moreover, to take into ac-
count the frequency saturation for higher wavenumbers37

we have introduced a function of the form 1/(1 + g4k).

Here, k = krρi, vTi =
√
ZieTi/mi. The resulting fre-

quency interpolating formula is the following one (here,

the frequency is normalized to
√

2vTi/R)::

fω

[√
2vTi
R

]
=
g1 + g2k

2 + g3k
4

1 + g4k

exp
(
−g5q

2
)

1 + g6κ
. (15)

Among different tested functions, this form gives the

best approximation to numerically simulated values of
the GAM frequency, it has one of the smallest 95% confi-
dential bounds and is not overfitted. The corresponding
coefficients g with their 95% confidential bounds (lower
glc and upper guc bounds) are

g =[3.7733, 6.3505, −1.9741e1,

1.3557e− 1, 1.4620e− 3, 1.1684],

glc =[3.6745, 3.3168, −2.8800e1,

−6.0078e− 2, 1.1373e− 3, 1.1234],

guc =[3.8720, 9.3843, −1.0682e1,

3.3121e− 1, 1.7866e− 3, 1.2135].

Results for the Eq. (15) are depicted in Fig. 2.
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For the damping rate we have derived the follow-
ing expression (here, the damping rate is normalized to√

2vTi/R):

fγ

[√
2vTi
R

]
=

(
h1 + h2k

2
)

exp
[
−h3q

2
]

1 + h4κ2
+ (16)

+

(
h5 + h6k

2
)

exp
[
−h7q

2
]

1 + h8κ4
.

with interpolating coefficients

h =[−1.2494e− 2, −8.9688e− 1, 4.5498e− 2,

−1.9884e− 1, −1.1248e− 2,−2.5481,

−5.3340e− 3, 7.7748e− 1],

hlc =[−2.3115e− 2, −1.6490, 2.5215e− 2,

−3.3573e− 1, −2.5523e− 2, −3.1909,

−1.9665e− 2, 5.1924e− 2],

huc =[−1.8723e− 3, −1.4471e− 1, 6.5781e− 2,

−6.1955e− 2, 3.0272e− 3, −1.9053,

8.9973e− 3, 1.5030].

Comparison between the results from the gyrokinetic
simulations and the interpolation expression for the
GAM damping rate is shown in Fig. 3 for some specific
values of parameters taken as examples.

IV. PHASE MIXING

To investigate the influence of the phase mixing on
the GAM dynamics, the same parameters as described
in chapter III A have been used, but a temperature gra-
dient (the same for both electrons and ions to have
τe = Te/Ti = 1, Ti(s0) = 70 eV) at the radial posi-
tion s0 = 0.90 has been introduced. The radial point
s0 = 0.90 has been chosen here to be in agreement with
the section III A. The initial radial wavenumber of the
radial electric field is k = 0.108. The safety factor is
q(s0) = 4.0. We consider a temperature profile of the
following form, similarly to Ref. 25:

Te(s)

Te(s0)
= exp

[
−∆ · kT · tanh

(
s− s0

∆

)]
, (17)

where ∆ = 0.04, kT = − d[ln(T )]/ds|s=s0 . The temper-
ature profiles and the corresponding temperature gra-
dient profiles for different kT in a radial interval s =
[0.85, 0.95], are shown in Fig. 4. Dependence of the
GAM half-decay time t1/2 on the temperature gradi-
ent has been investigated in the domain kT ∈ [1, 15].
A scan of gyrokinetic simulations with the temperature
gradient kT has been performed, and the results are de-
picted in Fig. 5. in the presence of a temperature gra-
dient, the GAM is observed to oscillate with different
frequencies at different radial points, that leads to the
distortion of the initial GAM radial structure. Produc-
ing higher radial wavenumbers, this distortion amplifies

s
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k
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FIG. 4: Temperature and temperature gradient radial
profiles for different kT : kT = [1, 5, 15] (blue solid, red

dashed and green dotted curves respectively).

the GAM damping. This combined effect, already in-
vestigated for a more simplified configuration in Ref. 24
and 25, has been observed even more pronounced in the
simulations described here. In fact, here the phase mix-
ing effect is investigated using gyrokinetic simulations
with kinetic electrons that significantly influences the
GAM damping, and, as a consequence, the GAM half-
decay time. For example, using the Sugama-Watanabe
model39, which is derived with adiabatic electrons, for
the Landau damping and combining with phase mixing,
using Eq. 24 below for the evolution of the wavenumber,
we have obtained t1/2[R/(

√
2vTi)] = 118 for the kT = 1

and t1/2[R/(
√

2vTi)] = 23.4 for kT = 10, that predicts
much longer half-decay time of the GAM in comparison
to the calculations based on the simulations with the ki-
netic electrons (compare with Fig. 5).

In order to verify the results of gyrokinetic simulations,
we have used a theoretical simplified model of the phase
mixing, proposed in Ref. 8, 24, and 25, where the linear
growth in time of the radial wavenumber is considered.

In the phase mixing simulations a space point s0 is
considered with a certain temperature T (s0) and tem-
perature gradient kT (s0). Initial radial electric field has
the following radial structure:

E(s) = E0 cos(k0s) (18)

with an initial amplitude E0 and initial normalized radial
wavenumber k0. The electric field is assumed to evolve
in time at a point s0 according to a simple rule

E(s0, t) = Ea(s0, t) cos(ω(s0)t), (19)

where Ea(s0, t) is the amplitude of the electric field, that
changes in time due to the damping, Ea(0) = E0. The
general form of the GAM frequency is

ω(s, t) =

√
2cs
R

ω∗(k(t), q, κ) = (20)

√
2

R

√
Te(s)

mi
ω∗(k(t), q, κ),
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where R is the major radius, ω∗(k(t), q, κ) describes the
frequency dependence on the radial wavenumber, the
safety factor and the elongation. Here, we also have con-
sidered the deuterium plasma. The safety factor profile
is taken to be flat, and a plasma with a circular cross-
section is considered: κ = 1.00, r ≈ as.

The damping rate is defined as

γ(s0, t) =
1

E(s0, t)

dE(s0, t)

dt
. (21)

At the beginning of every time interval [t1, t1 + ∆t],
new values of the damping rate γ(s0, t1) and frequency
ω(s0, t1) are found with the scaling formulae given in Eq.
(16) and (15), using the current value of the wavenumber
k(s0, t1). The new value of the electric field can be found,
assuming that the damping rate is constant at the lapse
of time [t1, t1 + ∆t]:

E(s0, t1 + ∆t) = E(s0, t1) · (1 + γ(s0, t1)∆t). (22)

After that, the new value of the wavenumber k(s0, t1 +
∆t) is calculated using the radial derivative of the fre-
quency

∂ω(s, t1)

∂s

∣∣∣∣
s=s0

= −1

2
ω(s0, t1)kT . (23)

With that, the wavenumber is assumed to change linearly
in time as8

k(s0, t1+∆t) = k(s0, t1)−
√

2ρ∗
∂ω(s, t1)

∂s

∣∣∣∣
s=s0

∆t, (24)

where ρ∗ = ρs/a, ρs = cs/ωci. Another option is to
estimate the time evolution of the radial wavenumber di-
rectly from numerical calculations in ORB5. Substitut-
ing new value of the normalized wavenumber k(s0, t1 +
∆t) into Eq. (16), we can find the damping rate
γ(s0, t1 + ∆t) at the next time point.

The results obtained with this reduced theoretical
model are also shown in Fig. 5. As it can be seen in
Fig. 5, the qualitative dependence of the half-decay time
on the temperature gradient finds a good match of gy-
rokinetic simulations of ORB5 and analytical theory. The
difference is due to the global dynamics of the ORB5 sim-
ulations, which is compared here with a theory where the
phase mixing follows a local estimation given in Ref. 8.

V. COMPARISON WITH EXPERIMENTAL DATA

The dispersion relations obtained in Sec. III C as an
interpolation of gyrokinetic simulations and given in Eqs.
(15), (16) can be used to compare numerical estimations
of the GAM behaviour to measurements of the GAM fre-
quency, performed on ASDEX Upgrade tokamak27 using
Doppler reflectometry. More precisely, we consider the
discharge AUG#20787 with the plasma elongation at the

k
T

0 1 2 3 5 10 15

t 1
/
2
·

√

2
v
T
i/
R

0

5

10

15

20
THEORY

THEORY: k est.

        from ORB5

ORB5

FIG. 5: Dependence of the GAM half-decay time on
the temperature gradient obtained from the simulations
in ORB5 (green squares), from the theory using a linear

estimation Eq. (24) (blue dots) and estimation from
ORB5 (red triangles) of the radial wavenumber.

edge κ = 1.09 (and we assume that it is constant at the
considered radial region ρ = r/a = [0.8, 1.0]).

The GAM radial wavenumber is considered to be con-
stant and is estimated to be kra = 40π from the experi-
mental radial profile of the GAM amplitude (see Fig. 5f
in Ref. 27). Experimental safety factor and ion temper-
ature profiles have been taken to estimate the GAM fre-
quency and damping rate using the scaling formulae (15),
(16) at different radial points ρ. In Fig. 6 the GAM fre-
quency profiles with corresponding theoretical prediction
are depicted. A good general agreement is found in the
central region of interest, where the GAM intensity, mea-
sured in the experiments, is peaked. On the other hand,
the linear dispersion relation 15 can not explain neither
the staircase nature (the plateaus) of the frequencies nor
the GAM peak splitting that is observed experimentally
at the radius positions ρ = 0.922 or ρ = 0.932 (although
the presence of GAM eigenmodes has been suggested by
simplified analytical models40,41, whose detailed analysis
is out of the scope of this paper). For this reason, we can
conjecture that the coherent phenomena at the basis of
the formation of GAM extended eigenmode or frequency
splitting must have a nonlinear origin. We also notice
that it is consistent with GENE nonlinear simulations42.

For reference we have given here estimation of the
GAM collisional damping rate using formulae, derived
by Gao in Ref. 10. Introducing normalized ion colli-
sion rate ν̂i = νiqR/vTi, the collisional damping rate is
calculated as10

γcol

vTi/(qR)
= − 3ν̂i

14 + 8τi
, (25)

if ν̂i � 1, and as:

γcol

vTi/(qR)
= −3

8
ν̂i

(
7

4
+ τi +

ν̂2
i

q2

)−1

, (26)

if ν̂i ≥ 1. To find the ion collisional rate we have used
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FIG. 6: Comparison of the experimental GAM frequencies27 to the numerical values, obtained with the formula
given in Eq. (15). Numerical damping rate is depicted on the right plot. The grey dotted line is an estimation of the
collisional damping rate of the GAM found using expressions given by Gao in Ref. 10. The red dotted lines are the

95% confidential bounds of the approximated damping rate.

classical expressions:

νi = 4.8 · 10−8Z4µ−1/2ni[cm
−3]Ti[eV ]−3/2 ln Λ, (27)

ln Λ = 23− ln

[√
2ni[cm−3]

Z3

Ti[eV ]3/2

]
, (28)

where µ ≡ mi/mp = 2, Z = 1.
According to the Fig. 6, the collisional damping is

found to be negligible in the radial domain where GAMs
are experimentally measured, except in a very narrow
region close to the separatrix, where it can be of the
same order of magnitude as the Landau damping.

VI. CONCLUSIONS

In tokamak plasmas, the drift-wave turbulence gives
rise to the zonal flows that shear turbulent cells. This
leads to the saturation of the turbulence and, conse-
quently, to a reduction of radial heat transport. Ac-
tion of the magnetic curvature results in the oscillatory
zonal flows, so-called geodesic acoustic modes. Because
of their oscillatory behaviour, the GAMs can influence
the efficiency of the ZF to shear the turbulence cells.
The nonlinear interactions between the GAM and the
DW turbulence is determined to a high degree by the
GAM damping rate. Lack of the experimental data of
this characteristic of the GAM makes the results from
linear gyrokinetic simulations particularly important for
analytical and numerical investigation of the nonlinear
GAM-DW systems.

In this work, linear gyrokinetic simulations have been
performed with kinetic electrons to study the GAM dy-
namics. Numerical results have been compared to ana-
lytical theories, derived with adiabatic electrons. It has
been shown that analytical theories, derived with adi-
abatic electrons, result in smaller values of the damp-
ing rate and for higher wavenumbers diverge from nu-
merical calculations of the frequency (Fig. 1). That is

why, investigating the GAM dependence on the plasma
safety factor, elongation and radial wavenumber, we have
found approximating analytic expressions for the fre-
quency (Eq. 15) and damping rate (Eq. 16) to predict
the GAM behaviour in different plasma regimes. The de-
rived expressions can be used to estimate the GAM linear
characteristics used in analytical models of the nonlin-
ear interactions between the GAM and the DW, such as
different reduced models8,43. Using these formulae, the
phase mixing effect on the damping rate has also been
calculated. Based on the gyrokinetic simulations with ki-
netic electrons, the results have shown smaller half-decay
times of the GAM (Fig. 5) in comparison with the Ref.
24 and 25.

The GAM is one of the special features of the I-
mode and can be observed in the L-mode16,44,45. Com-
parison of the characteristic drive time of the GAM
tRD ∼ 1/γRD, which is given by the nonlinear coupling
with the ion-temperature-mode (ITG)8,43, with the GAM
half-decay time t1/2 confirms the results of the Ref. 24
and 25. Indeed, we estimate the GAM drive time to
be tRD < ts (where ts ∼ 2−1/2R/vTi) in the L-mode,
tRD ∼ ts in the I-mode and tRD ∼ 10ts in the H-mode,
according to Ref. 25. In this case, it can be seen from
the Fig. 5 that the GAM half-decay time, which is de-
fined by both the Landau damping and the phase mixing
effect, is much higher than the drive-time in the L and I

modes, t1/2 > tL,IRD, for all considered values of kT . This
means that the energy transfer rate from the ITG tur-
bulence to the GAM exceeds the Landau-phase mixing
damping rate of the GAM. As a result, the GAM can be
observed in the L and I modes, but not in the H-mode,
where t1/2 < tHRD already for kT > 3. This could be
the explanation for the result that the GAM are not ob-
served in the high-confinement mode, as proposed in Ref.
24 and 25.

The approximating expressions for the GAM frequency
(Eq. 15) have shown quite good agreement with exper-
imental data (Fig. 6), but estimations of the GAM fre-
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quency, obtained from linear gyrokinetic simulations, do
not explain the staircase radial profile of the frequency
and the GAM peak splitting. The frequency expression
Eq. 15 describes only the continuum mode in contrast
to eigenmode. The latter is characterized by the GAM
mode frequencies which are predicted to remain constant
over a large radial extent, but a significant radial overlap
in the frequency radial profile can be observed, that leads
to the GAM frequency peak splitting45.
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Appendix A: Numerical convergence tests

To calculate the GAM damping rate and frequency,
poloidally averaged radial electric field has been fitted,
using the Levenberg–Marquardt algorithm46, to a func-
tion of the form exp(γt) cos(ωt), where γ, ω are sought-
for damping rate and frequency. Before the fitting it’s
necessary to filter the radial electric field to get ride of
the high-frequency Alfvén oscillations. In Fig. 7 the fit-
ting is depicted for the case: κ = 1.30, q = 4.0, k = 0.108.
It is worth to mention that the choice of a time interval,
where the fitting is performed, can influence the result
damping rate, and it is not so crucial for the GAM fre-
quency calculation.

This ambiguity in the choice of the time interval can
be explained by the fact that at the beginning of the sim-
ulations there are some transient processes that must be
excluded from the damping rate measurements. More-
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over, with the time, the global effects start to play a
significant role, distorting initial radial structure of the
radial electric field, that makes the damping rate to be
variable in time.

The GAM dynamics (frequency and damping rate)
doesn’t depend on the plasma density in linear calcula-
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FIG. 10: Convergence tests on the number of points in the radial space grid ns (κ = 1.60, q = 4.0, krρi = 0.108)
(Fig. 10a 10b), on the normalized time step dtnorm for different values of the plasma elongation κ = 1.00, 1.60

(q = 3.5, krρi = 0.108) (Fig. 10c 10d) and on the number of markers Nmarkers (κ = 1.60, q = 4.0, krρi = 0.108)
(Fig. 10e 10f).

tions (see Fig. 8 and 9). But the frequency of the Alfvén
waves decreases with the increase of the density, and for
high values of the plasma density it becomes difficult to
separate acoustic and Alfvénic time scales (see Fig. 9).

The transition from the simulations with the adiabatic
electrons to the ones with the kinetic electrons applies
additional restrictions on several numerical parameters
such as the time step and the number of markers (see
Fig. 10). In projects with adiabatic electrons the nor-

malized time step dtnorm = dt ·ωci can be of the order of
20, but in case of the kinetic electrons it has to be signifi-
cantly reduced till 2 because of the high parallel velocity
of the passing electrons. Also electrostatic simulations of
the kinetic electrons reveal high-frequency oscillations36.
These oscillations can lead to numerical instabilities in
case of low number of markers. To reduce their level we
have passed to electromagnetic simulations with small
values of electron beta that gave us an opportunity to
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keep the number of markers on the level of 107.
The radial space step (or number of the points in the

radial space grid) is determined by, among other param-
eters, the GAM wavenumber. To investigate the GAM
dynamics with higher values of the radial wavenumber,
we simulated a narrow poloidal ring near the edge instead
of the full plasma cross-section to reduce the number of
radial space points.

Appendix B: Comparison with the code GENE

A complete cross-code verification between the gyroki-
netic ORB5 and GENE28,29 codes has already been done
in Ref. 23 on the linear collisionless dynamics of the
GAMs with adiabatic and kinetic electrons in the spe-
cific case of flat temperature profiles. For completeness,
in this paper a comparison between these different codes
is shown including the additional phase mixing physi-
cal effect, which is driven by non-flat temperature pro-
files. The motivation behind this study is that although
the linear physical models between ORB5 and GENE are
equivalent47, the numerical schemes are different. GENE
is an Eulerian code, where the distribution function is
not discretized with markers, but it is discretized on a
5D fixed grid in phase-space (R, v‖, µ), where R is the
gyrocenter position, v‖ is the parallel velocity, and µ is
the magnetic momentum. The simulation plasma param-
eters have been taken as in Sec. IV for both GENE and
ORB5. A sinusoidal perturbation in the potential field
is initialised, as defined in Sec. III A and is let evolved
in time. In GENE, the radial box size is 60ρs. We have
used 128 grid points in radial direction in order to have
at least two points per ion Larmor radius. Along the
field line 68 points have been used. In velocity space, 68
points and 128 equidistant symmetric grid points have
been used for resolving respectively the µ and the v‖
space. The velocity space domain has been fixed to 3
and 9 times the thermal velocity, respectively in the v‖
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FIG. 11: Comparison between ORB5 and GENE for the
case of the ion-electron temperature gradient kT = 10.

Here, the time is normalized to R/(
√

2vTi).

and µ space. In order to avoid any recurrence problem,
an hyperdiffusivity scheme has been used in the v‖ direc-
tion. In Fig. 11 peaks of the flux-surface averaged radial
electric field, measured at the radial position s0 = 0.90
for the ion-electron temperature gradient kT = 10, are
shown for both GENE and ORB5. Half-decay time, cal-
culated in ORB5, is torb1/2[R/(

√
2vTi)] = 4.9 and for the

case of GENE it is tGENE1/2 [R/(
√

2vTi)] = 4.8.
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21A. Bottino and E. Sonnendrücker, J. Plasma Phys. 81, 435810501
(2015).

22H. S. Zhang and Z. Lin, Phys. Plasmas 17, 072502 (2010).
23A. Biancalani, A. Bottino, C. Ehrlacher, V. Grandgirard,

G. Merlo, I. Novikau, Z. Qiu, E. Sonnendrücker, X. Garbet,
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