African volcanic emissions influencing atmospheric aerosol particles over the Amazon rain forest

Jorge Saturno¹, Florian Ditas¹, Marloes Penning de Vries¹, Bruna A. Holanda¹, Mira L. Pöhlker¹, Samara Carbone^{2,3}, David Walter¹, Nicole Bobrowski^{4,1}, Joel Brito^{2,5}, Xuguang Chi⁶, Alexandra Gutmann⁷, Isabella Hrabe de Angelis¹, Luiz A. T. Machado⁸, Daniel Moran-Zuloaga¹, Julian Rüdiger⁹, Johannes Schneider¹, Christiane Schulz¹, Qiaoqiao Wang¹⁰, Manfred Wendisch¹¹, Paulo Artaxo², Thomas Wagner¹, Ulrich Pöschl¹, Meinrat O. Andreae^{1,12}, and Christopher Pöhlker¹

¹Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Departments, and Satellite Research Group, Max Planck Institute for Chemistry, P. O. Box 3060, 55020 Mainz, Germany

²Department of Applied Physics, Institute of Physics, University of São Paulo (USP), Rua do Matão, Travessa R, 187, CEP 05508-900, São Paulo, SP, Brazil

³Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil

⁴Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany

⁵Laboratory for Meteorological Physics, Université Clermont Auvergne, Clermont-Ferrand, France

⁶Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China

⁷Department of Chemistry, Johannes Gutenberg University, Mainz, Germany

⁸Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brazil

⁹Atmospheric Chemistry, University of Bayreuth, Dr.-Hans-Frisch-Straße 1–3, 95448 Bayreuth, Germany

¹⁰Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China

¹¹Leipziger Institut für Meteorologie (LIM), Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany

¹²Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92098, USA

Correspondence to: Jorge Saturno (j.saturno@mpic.de) and Christopher Pöhlker (c.pohlker@mpic.de)

This file includes:

Figures S1 to S6. Tables S1 to S2.

Supplementary information

Figure S1. Planetary boundary layer (PBL) OMI SO₂ VCD Hovmöller plots corresponding to a latitude daily average (11° S to 17° N) from March 2012 to July 2017 (left), and September 2014 (right). The VCD color scale was truncated at 2.5×10^{16} molecules cm⁻² to improve visualization. The longitude location of two active degassing volcanoes in Africa, Nyamuragira and Nabro, the ATTO site, and the approximate west to east extension of the South Atlantic Ocean are indicated at the top of the plots. **Note:** The absolute SO₂ VCD values provided here might be overestimated given that they are calculated for PBL heights and the plume was emitted above 3 km a.m.s.l.

Figure S2. Calculated HYSPLIT 14-day forward trajectories corresponding to each month of 2014. The starting location and height are the Nyamuragira volcano and 3200 m a.m.s.l., respectively.

Figure S3. Maps of gridded OMI SO₂ TRM VCD observations corresponding to 7 to 17 September 2014.

Figure S4. Map of M_{sulfate} observations between 3 and 6 km height during the ACRIDICON-CHUVA campaign over the Amazon Basin. Data from different flights from 6 September to 1 October 2014 are included.

Figure S5. Sulfate mass concentration vertical profiles with color coded sulfate-to-OA mass ratios observed during different ACRIDICON-CHUVA flights over the Amazon Basin.

Figure S6. Map of gridded OMI SO₂ VCD, observed on 15 September 2014. Backward trajectories were started at several points along the ACRIDICON-CHUVA flight track AC17 (27 September 2014) at flight altitude. Trajectories starting at points where sulfate-to-OA > 1 are shown in color (see Table S2 for details), all other trajectories are shown in gray; dots are placed at 24-hour intervals. The path of flight AC14 is marked in pink, with stars denoting the starting points of the backward trajectories. The locations of the ATTO site and Nyamuragira are marked with a pink circle and triangle, respectively.

Flight	Date		
AC07	6 Sep 2014		
AC08	9 Sep 2014		
AC09	11 Sep 2014		
AC11	16 Sep 2014		
AC12	18 Sep 2014		
AC13	19 Sep 2014		
AC14	21 Sep 2014		
AC15	23 Sep 2014		
AC16	25 Sep 2014		
AC17	27 Sep 2014		
AC18	28 Sep 2014		
AC19	30 Sep 2014		
AC20	01 Oct 2014		

Table S1. List of ACRIDICON-CHUVA campaign flights and their dates.

Table S2. Measurements at points along the track of flight AC17 (27 September 2014) selected as starting points for backward trajectories presented in Fig. S6. Data points with sulfate-to-OA > 1 are emphasized by bold font.

Time	Latitude	Longitude	Altitude	$M_{ m sulfate}$	Sulfate-to-OA	Color in Fig. S6
(UTC)	[°N]	[°E]	[km]	[µg m ⁻³]		
14:06	-3.04	-60.00	0.93	0.2	0.1	Gray
14:33	-3.90	-58.24	8.07	0.2	0.2	Gray
15:02	-4.20	-56.22	0.94	0.3	0.1	Gray
16:14	-4.22	-56.60	3.84	1.6	1.5	Blue
16:37	-5.02	-55.58	4.48	1.5	11.5	Green
16:45	-5.61	-55.38	4.47	1.5	6.8	Red
16:59	-6.55	-55.29	1.25	0.6	0.1	Gray
18:09	-6.83	-55.41	4.48	0.6	0.9	Gray
18:59	-4.35	-58.31	4.47	1.5	1.7	Light blue
19:54	-2.06	-59.06	1.57	0.8	0.3	Gray