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Abstract

Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles
is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by
extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular
penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize
physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and
stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were
characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence
and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and
optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their
dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for
encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined.
Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility
of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery
within the living cells.
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Background
The use of polyelectrolyte microcapsules as vehicles for
targeted delivery and controlled release of drugs and
contrast agents and as fluorescent probes for in vitro
and in vivo imaging is a promising line of research in
translational medicine and personalized approach to
diagnosis and treatment of various human diseases [1–4].
Development of theranostic agents combining the func-

tions of drugs and tools for imaging of biomarkers allowing

early diagnosis of various diseases is an important task in
the field of designing drug delivery systems [5, 6]. Systems
based on polyelectrolyte microcapsules are promising
candidates for combining both functions. The conditions
of their fabrication allow the incorporation of biologically
active substances, metal nanoparticles, fluorescent
labels, etc. into the microcapsules [7–9]. Additional file 1:
Figure S1 schematically shows a typical theranostic agent
based on polyelectrolyte microcapsules.
One of effective methods for obtaining polyelectrolyte

microcapsules consists in successive application of
oppositely charged polymer layers onto a substrate of
spherical or other shape, which is removed afterwards
[10, 11]. Interaction of the oppositely charged polycation
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and polyanion at specified pH, ionic strength, and
temperature of the solution and polarity of the solvent
results in an interpolymer complex in the form of a
membrane or shell coating the substrate [12–14].
The factors listed above also affect the morphology of

the resultant microcapsules, including their porosity and
shape and the integrity of the wall. For example, an
increase in the ionic strength or pH of the environment
of the polyelectrolyte microcapsules facilitates conform-
ational changes or protonation/deprotonation of the
polyelectrolytes forming the capsule wall. This, in turn,
leads to its deformation and increase in the porosity
even to the degree of the loss of structural integrity and
transition to the “open” state followed by release of the
inner contents of the capsules and the components
embedded in their walls into the microenvironment
[15, 16]. These properties make polyelectrolyte microcap-
sules good candidates for the role of stimulus-sensitive
delivery systems and a promising basis for designing
theranostic agents [2, 17, 18].
Quantum dots (QDs) are fluorescent semiconductor

nanocrystals 2–10 nm in diameter characterized by a
wide absorption spectrum and a narrow, symmetrical
fluorescence spectrum. This allows QDs with different
fluorescence maxima to be excited from a single radi-
ation source, offering the possibility of their wide use as
fluorophores, especially for multiplexed imaging [19, 20].
A high photostability and bright fluorescence of QDs
determine their advantage over standard organic fluor-
ophores in detection applications [21–24].
Earlier published studies devoted to fluorescent poly-

meric polyelectrolyte microcapsules development demon-
strate one typical approach to classical organic fluorescent
dyes or in situ forming carbon dots under hydrothermal
carbonization and conversion of dextran to luminescent
carbon nanoparticles into polyelectrolyte shell entrapment
within the polymeric structure of the primary prepared
polyelectrolyte microcapsules. The approach of organic
dye entrapment is based on the diffusion of the fluorescein
isothiocyanate or rhodamine B, tetramethylrhodamine
dyes conjugated with low molecular weight dextrane or
bovine serum albumin (BSA) into the porous structure of
the membrane formed by polyelectrolytes that results in
fluorescent dye charging of the whole structure of the
polyelectrolyte microcapsule as in interior hollow and
as in the polymeric membrane. The necessity of high
thermal treatment in case of carbon dot-encoded mi-
crocapsules changes the flexibility of the microcapsule
structure and makes it more rigid that is not undesir-
able in case of pH and ionic strength stimuli-responsive
theranostic systems development [25–30].
In this study, we are describing all technological aspects

of fabrication of polymeric microcapsules encoded with the
highly fluorescent water-soluble QDs, possessing significant

colloidal stability, describe their physico-chemical and
functional properties and demonstrate their application
to live cell imaging and visualization of microcapsules
transportation and delivery within the living cells. The
data may pave the way to the next step to development
of the next generation of theranostic agents based on
the multifunctional functionalized microcapsules.

Experimental
Solubilization and Characterization of Quantum Dots
CdSe/ZnS core/shell QDs with a fluorescence maximum
λmax equal to 590 nm were kindly provided by Dr. Pavel
Samokhvalov (Laboratory of Nano-Bioengineering, National
Research Nuclear University MEPhI (Moscow Engineering
Physics Institute), Moscow, Russia).
Freshly synthesized QDs were coated with trioctylpho-

sphine oxide (TOPO) and were water-insoluble. Their
transfer to the water phase was performed by substitut-
ing D,L-cysteine for TOPO and subsequently replacing
of D,L-cysteine with 12-unit PEG derivative containing
thiol and carboxyl end groups HS−(PEG)12−COOH
(Thermo Fisher Scientific, USA) as described earlier
[22, 31, 32]. For this purpose, a sample of QDs was
dissolved in 800 μl of chloroform, after which 1200 μl
of methanol was added, and the mixture was centri-
fuged for 5 min. The procedure was repeated three
times. Then, the QD pellet was resuspended in 800 μl
of chloroform. A solution of D,L-cysteine in methanol
was added to the suspension with a QD to D,L-cysteine
weight ratio of 1:0.13, and the mixture was centrifuged
at 16,873g for 10 min (Centrifuge 5418, Eppendorf,
USA). The QD pellet was washed of excess D,L-cysteine
with methanol by means of centrifugation for 3 min at the
same speed. The QD pellet was dried in a Concentrator
Plus centrifugal concentrator (Eppendorf, USA) for 2 min.
The dried QDs were suspended in 650 μl of 0.1 M sodium
hydroxide and sonicated for 10 min in an Elma Sonic
P30H ultrasound bath (Elma Schmidbauer, Germany).
Then, the solution was centrifuged at 5509g for 10 min,
and the supernatant was filtered through a Millipore
filter with a pore size of 0.22 μm (Merck, Germany).
The QD content of the samples was determined spec-
trophotometrically at the wavelength of the first exciton
absorption peak.
The obtained water-soluble QD samples were stabilized

by adding HS−(PEG)12−COOH at a QD to PEG derivative
molar ratio of 1:4.6 and incubating the mixture at 2–8 °C
for 24–48 h.

Synthesis of Calcium Carbonate Microparticles
Calcium carbonate microparticles were obtained as
described elsewhere [33, 34]. Fifteen ml of a 0.33 M
Na2CO3 (Sigma-Aldrich, Germany) solution was added to
15 ml of a 0.33 M СаСl2 (Sigma-Aldrich, Germany)
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solution while stirring. The reaction mixture was stirred at
rates of 250, 500, and 750 rpm on an RCT Basic mag-
netic stirrer (IKA, Germany) at room temperature for
15 to 60 s. The СаСl2 and Na2CO3 solutions were pre-
liminarily filtered through filters with a pore size of
0.22 μm.
After that, the stirring was stopped, and the reaction

mixture was incubated for 10 min. The mixture was
washed with MilliQ water by alternatingly resuspending
and centrifuging at 452g for 5 min using a Centrifuge
5810 (Eppendorf, USA). The obtained microparticles
were washed four times. After the final washing, the pellet
was dried in an oven at 60 °C for 90 min.

Preparation of Polyelectrolyte Microcapsules Encoded with
Quantum Dots
The microparticles were encoded with QDs using a
modified technique of layer-by-layer deposition of op-
positely charged polymers [31, 35] and carboxylated
water-soluble QDs onto prepared calcium carbonate
microparticles, which served as a matrice. The polyelec-
trolyte layers consisted of pairs of polymers: the polycation
poly(allylamine hydrochloride) (PAH) with Mw ≈ 15,000 Da
(Sigma-Aldrich, USA) and the polyanion poly(sodium 4-
styrenesulfonate) (PSS) with Mw ≈ 70,000 Da (Sigma-
Aldrich, USA).
The layers were applied in the following order: СаСО3/

PAH/PSS/PAH/PSS/PAH/QD-S-(PEG)12-COOH/PAH/
PSS/PAH/PSS/PAH/PSS.
A sample of dried microparticles was resuspended in

0.5 ml of MilliQ water and sonicated in an ultrasonic bath
for 10 min. A 0.5-ml aliquot of 2 mg/ml PAH solution in
0.5 M NaCl was added to the suspension containing 3.7 ×
108 calcium carbonate microparticles in MilliQ water. The
suspension was sonicated in an ultrasonic bath for 60 s and
then incubated for 20 min while stirring. After that, the
microparticle suspension was washed of excess polymer by
centrifugation at 1054g for 5 min followed by resuspension
in MilliQ water. The washing of calcium carbonate
microparticles after the layering of the polycation was
repeated three times. For application of the next (polyanion)
layer, the microparticles were preliminarily resuspended in
0.5 ml of MilliQ water; the suspension was mixed with
0.5 ml of a 2 mg/ml PSS solution in 0.5 M NaCl, sonicated
in an ultrasonic bath for 60 s, incubated for 20 min while
stirring, and then washed of excess polymer as described
above.
Five polyelectrolyte layers, the outer layer consisting of

PAH, were applied onto the calcium carbonate particles
before encoding. From 0.10 to 2.24 mg of QDs was
added to the suspension of the microparticles. The
mixture was incubated for 80 min while stirring and
then washed three times by centrifugation as described
above. After that, successive layers of oppositely charged

polymers were applied. The encoded microparticles were
stored at + 4 °C in the dark.
For obtaining QD-encoded polyelectrolyte microcap-

sules, the calcium carbonate core was removed from the
microparticles. For this purpose, after centrifugation, the
pellet of QD-encoded microparticles was resuspended in
2 ml of 0.2 M disodium ethylenediaminetetraacetate
(EDTA) (pH 6.5), and the suspension was incubated for
15 min. To guarantee the dissolution of the calcium car-
bonate core, we repeated this procedure two more times,
each time replacing the solution with a fresh aliquot of
0.2 M EDTA (pH 6.5) after 5-min centrifugation of the
sample at 2152g. Then, the suspension of QD-encoded mi-
crocapsules was washed of excess EDTA four times by
resuspending in MilliQ water and centrifuging under the
conditions specified above. The resultant polyelectro-
lyte microcapsules were stored at + 4 °C in the dark.
When studying the interaction of the QD-encoded

polyelectrolyte microcapsules with cells, we modified the
microcapsule surface with BSA (heat shock fraction, pro-
tease free, low endotoxin, suitable for cell culture, pH 7,
≥ 98%; Sigma-Aldrich, USA). Briefly, the encoded micro-
particles with a polycation upper layer were additionally
coated with a polyanion polyacrylic acid (PAA) with
Mw ≈ 15,000 Da (Sigma-Aldrich, USA), and the core was
removed as described above. After the final washing, the
microcapsules were dispersed in a 50 mM phosphate
buffer solution (pH 7.4) containing 1% of BSA and incu-
bated at + 4 °C in the dark. Before use, the microcapsules
were washed of excess BSA with a 50 mM phosphate
buffer solution (pH 7.4).

Characterization of the Quantum Dots, Microparticles,
and Polyelectrolyte Microcapsules Encoded with
Quantum Dots
Size and Charge Study
The hydrodynamic diameter of the solubilized QDs, QD-
encoded microparticles coated with polymer shells, and
QD-encoded polyelectrolyte microcapsules were deter-
mined by the dynamic light scattering method; the surface
charge was estimated from their electrophoretic mobility
using the Doppler effect by means of a Zetasizer NanoZS
(Malvern, UK).

Fluorescence Analysis
The fluorescence lifetimes (fluorescent decay kinetics) of
the solubilized QDs, QD-encoded microparticles coated
with polymer shells, and QD-encoded polyelectrolyte
microcapsules were measured at the wavelength of the
fluorescence maximum. The second harmonic of an
YAG:Nd3+ laser with a pulse length of 350 ps and pulse
rate of 50 Hz was used as an excitation source. The
signal was detected by a photomultiplier detector
connected with a DPO 3054 oscillograph (Tektronix,
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USA) with a time resolution of 2 ns. The suspensions
of QD-encoded microparticles and microcapsules were
permanently stirred during the measurements by means
of a MIXcontrol eco magnetic stirrer (2mag, Germany)
to prevent sedimentation of the sample.

Estimation of the Encoding Efficiency
The encoding efficiency was estimated from the QD
content of the supernatant after the application (adsorp-
tion) of QDs onto the microparticle surface. The amount
of QDs adsorbed on the microparticle surface (QQDabs

)
was calculated as

QQDabs
¼ QQD0

−QQDi
;

where QQD0
is the initial amount of QDs in the aliquot

used for encoding, and QQDi
is the amount of QDs in

the supernatant of the ith sample.
The QD content of samples was determined spectro-

photometrically using an Infinite 200 PRO multimode
plate reader (Tecan, Switzerland).

Scanning Electron Microscopy
Electron microphotographs of the calcium carbonate
microparticles were obtained using a JSM-7001F scan-
ning electron microscope (JEOL, Japan) equipped with a
Schottky cathode. The powder of dried microparticles
was applied onto a conducting carbon adhesive tape and
scanned at an averaging of 50, a beam current of 20 pA,
and an accelerating voltage of 15–30 kV.
For obtaining microphotographs of the microparticles

coated with layers of polyelectrolytes, a drop of a diluted
microparticle suspension containing ~ 106 microparticles
per 0.5 ml was placed onto a preliminarily purified silicon
substrate and dried at room temperature. The resultant
samples were scanned at an averaging of 50, a beam
current of 20 pA, and an accelerating voltage of 3–30 kV.

Fluorescence and Confocal Microscopy
The morphology and size distribution of the QD-
encoded microparticles were analyzed by means of fluor-
escence microscopy using a Carl Zeiss Axio Scope A1
microscope (Carl Zeiss, Germany) equipped with Texas
Red fluorescence emission filter; 20% aqueous solution
of glycerol was used as a slide mounting media.
The samples of QD-encoded microcapsules were also

studied using a Leica TCS SP5 confocal laser scanning
microscope (Leica Microsystems, Germany) equipped
with lasers for excitation 405, 458, 476, 488, 496, 514, 561,
and 633 nm and Leica LAS AF software version
2.7.3.9723. The analysis was conducted at the excitation
wavelength 488 nm and collecting filters set covering the
emission range at 555–620 nm using Leica HCX PL APO
CS 63×/1.20 CORR WATER objective. Twenty percent

solution of glycerol in PBS buffer pH 7.4 was used as a
slide mounting media. The Image J 1.51 s software (USA)
was used for image analysis and processing.

Uptake of Polyelectrolyte Microcapsules Encoded with
Quantum Dots by Live Cells in Vitro
The immortalized mouse alveolar macrophage cell line
MH-S (ATCC, USA) was maintained in RPMI medium
supplemented with 10% FCS, 0.05mM 2-mercaptoethanol
and 2.06mM glutamine in a humidified atmosphere at 5%
CO2 and 37 °C. The MH-S cells cultured up to 3×106 cells
in 35-mm μ-dishes and 1.2×106 of the QD-encoded poly-
electrolyte microcapsules coated with BSA were added to
each μ-dishe. The cells were further incubated at 37 °C
and 5% CO2 for 4 and 24 h respectively. Then, the cell
nuclei were counterstained using DRAQ5 fluorescent
probe (ex/em wavelengths 646/697 nm, ThermoFisher,
USA) during 30 min and afterwards the cell samples were
washed and analyzed using Leica TCS SP5 confocal laser
scanning microscope (Leica Microsystems, Germany).
The images of the cellular uptake of the QD-encoded
polyelectrolyte microcapsules were acquired using HCX
PL APO CS 63.0 × 1.30 GLYC/OIL, HCX PL APO lambda
blue 40.0 × 1.25 OIL. The fluorescence of the QDs was
excited at 488 nm and the emission was collected at
555–620 nm, while the fluorescence of the cell nuclei
counterstained with DRAQ5 was excited at 633 nm and
the emission collected at 650–750 nm.

Statistical Analysis
The statistical analysis was performed using the MS Office
Excel 2007 and Origin Pro 2015 software. All the data are
shown as the means and standard deviations using the
results from as minimum three independent experiments.

Results and Discussion
Synthesis and Characterization of Calcium Carbonate
Microparticles
The use of spherical inorganic crystals, in particular,
calcium carbonate microspherolites, as a substrate is
determined by their biocompatibility, as well as the
possibility of their removal in the course of the forma-
tion of polyelectrolyte microcapsules without using
solvents aggressive for living systems. Calcium carbonate
microparticles per se can also be used as a system of
drug delivery with modified or prolonged release, serving
as a matrix for loading drugs and controlling their release
into the microenvironment, i.e., they have multiple poten-
tial uses in delivery systems [36–46].
The key factors determining the size and shape of the

microcrystals are the rate and duration of stirring and the
time of incubation of the reaction mixture [33, 41]. We
have experimentally determined the conditions for obtain-
ing calcium carbonate microspherolites with an optimal
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size distribution. Single CaCO3 microparticles have
been found to have an almost regular rounded shape.
Additional file 1: Figure S2 shows the size distributions
of calcium carbonate microparticles obtained at differ-
ent stirring rates. As seen from these data, the size
heterogeneity of the particles increased with increasing
stirring rate. If the stirring rate was 250 rpm, the size of
the particles obtained ranged from 4.0 to 6.0 μm. In this
case, all microparticles in the sample were separate, and
their size distribution was close to normal (Additional file 1:
Figure S2a). However, if the mixture was stirred at
500 rpm, we observed particles of irregular shape which
were aggregations of smaller particles, the mean size
of individual particles varying from 2.7 to 5.6 μm
(Additional file 1: Figure S2b). At a stirring rate of
750 rpm, the scatter of the particle size was increased. This
sample also contained irregularly shaped aggregations,
with the mean size of individual microparticles in the range
from 3.8 to 5.7 μm (Additional file 1: Figure S2c).
Thus, stirring of the reaction mixture at a rate of

250 rpm made it possible to obtain particles with an
optimal size distribution and a nearly regular shape and
prevented particle aggregations. Therefore, we estimated
the effect of the stirring duration on the microparticle
size distribution at this stirring rate (Additional file 1:
Figure S3). Stirring of the reaction mixture for 15 s
yielded an increased number of larger particles compared
to 30-s stirring. An increase in the stirring duration to
60 s had a similar effect. That is, the stirring duration
was insufficient in the former case (Additional file 1:
Figure S3a) and excessive in the latter case (Additional file 1:
Figure S3c). Thus, we considered the rate of 250 rpm and
duration of 30 s to be optimal conditions of stirring.
According to scanning electron microscopy (SEM) data,

the surface of the calcium carbonate microparticles was
heterogeneous, characterized by porosity (Fig. 1a). At a
magnification of × 40,000, it could be seen that the micro-
particles were, in turn, formed by smaller, submicrometer
particles (Fig. 1b). Thus, the obtained microparticles had a

porous structure and represented matrices which not only
are suitable as substrates, but also can be used per se as
delivery systems and due to their particular surface struc-
ture may be easily used as a matrice for layer-by-layer
polymer deposition.

Preparation and Characterization of Polyelectrolyte
Microcapsules Encoded with Quantum Dots
The prepared water-soluble QDs were characterized by
a wide absorption spectrum and a narrow fluorescence
spectrum with an emission max of 590 nm (Fig. 2). The
hydrodynamic diameter of these QD samples ranged
from 23.96 to 28.2 nm. Additional file 1: Figure S4
shows the size distribution of the QDs stabilized with
HS−(PEG)12−COOH. The modification of the QD sur-
face with HS−(PEG)12−COOH ensured the QD stability
in the water phase, as well as the surface negative charge
sufficient for the effective adsorption of QDs between
positively charged polyelectrolyte layers during the en-
coding procedure [22, 47].
The measured surface charge values of the calcium

carbonate microparticle samples during each step of
deposition of the polyelectrolyte layers and QDs (Table 1)
confirmed that the surface charge of the original matrice,
the solubilized QDs, as well as the surface recharge after
each polymers deposition are sufficient for the effective
absorption of each subsequent layer.
The intrinsic surface charge and the porous surface

structure of the synthetic calcium carbonate micropar-
ticles allowed them to be used as a matrice for the
oppositely charged polyelectrolyte and QD deposition
(Fig. 3). Application of PAH and PSS polymers in QD-
encoded polyelectrolyte polymeric microcapsules is
determined by their biocompatibility and non-toxicity
and also non-biodegradability that additionally helps to
retain QDs within the shell. The biodegradability of
the poly-L-arginine, poly-L-lysine, chitosan, alginic acid
sodium salt, and dextrane sulfate which are also widely
used in polyelectrolyte microcapsules formation will

Fig. 1 Scanning electron microphotographs of calcium carbonate microparticles (a) and their surface at a higher magnification (b)
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induce the QD diffusion out of the polymeric mem-
brane that should result in decrease of the fluorescent
properties of the microparticles [3, 11, 39, 48–52]. The
PAH polycation and PSS polyanion used in this study
contain, respectively, amine and sulfate groups ensuring
electrostatic interaction between the polymer layers, that

results in the formation of interpolymer complexes
[16, 25, 36, 37]. The choice of the first polymer layer was
determined by the surface charge value of the synthesized
calcium carbonate microparticles.
Figure 4 shows SEM images of the stages of polymer

shell formation on the substrate surface. As seen in the
microphotographs, the microparticles contained a core
of calcium carbonate grains and a shell, which became
more distinct with increasing number of the adsorbed
polymer layers. The surface of the microparticles coated
with the polyelectrolyte layers followed the shape of the
substrate with its characteristic homogeneity, which
suggested that it was also porous (Fig. 4a, b) [44]. As
the polymer shell became thicker, the microparticle
surface became more even and smooth (Fig. 4c, d).
The final step of preparation QD-encoded polyelectro-

lyte microcapsules included the removal of the calcium
carbonate core and formation of the ultimate structure of
the microcapsules. To dissolve the matrice consisting of
calcium carbonate grains, the microparticles were washed
with EDTA. EDTA was used primarily because it forms
water-soluble complexes upon interaction with salts of
divalent metals, including calcium, and its low molecular
weight ensures permeability of the polyelectrolyte shell for
EDTA and its complexation with Ca2+. This leads to the
dissolution of the core of the polyelectrolyte particles and
formation of a hollow structure [45, 46].
The QD-encoded microparticles and polyelectrolyte

microcapsules obtained in our study had a spherical or
nearly spherical shape and a size from 3.8 to 6.5 μm
(Fig. 5). Analysis of the morphology and structure of the
microparticles and microcapsules in the fluorescent mode
showed cavities within the polyelectrolyte microcapsules,

Fig. 2 Optical characteristics of the CdSe/ZnS core/shell quantum dots solubilized with HS−(PEG)12−COOH ligands

Table 1 Surface charge of the microparticles upon of polymer
layer deposition and encoding with quantum dots. Number of
each repeated measurements n = 5

Sample ζ- potential, mean ± SD, mV

Surface before layering of polymers and quantum dots

CaCO3 microparticles − 6.0 ± 1.6

QD–S–(PEG)12–COOH − 21.9 ± 0.4

Microparticle surface after layering of polymers and quantum dots

Layer 1, PAH + 13.1 ± 0.8

Layer 2, PSS − 17.8 ± 0.9

Layer 3, PAH + 12.7 ± 0.5

Layer 4, PSS − 26.3 ± 1.0

Layer 5, PAH + 13.2 ± 0.6

Layer 6, QD–HS–(PEG)12–COOH − 9.3 ± 0.6

Layer 7, PAH + 9.9 ± 0.4

Layer 8, PSS − 16.9 ± 1.0

Layer 9, PAH + 11.6 ± 0.3

Layer 10, PSS − 22.7 ± 0.8

Layer 11, PAH + 14.9 ± 0.6

Layer 12, PAA − 25.3 ± 0.7

Layer 12, PAA, after removal of the core − 19.9 ± 0.3

Layer 12, PAA, after coating with BSA − 18.0 ± 1.6
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as evident by their higher transparency compared to
the microparticles (Fig. 5b). This demonstrated that the
procedure of core dissolution with EDTA was effective.
The confocal microscopy data also showed the hollow
structure of the obtained fluorescent polyelectrolyte
microcapsules (Fig. 6). These microcapsules could be
distinguished as single particles (Fig. 6a, b) which can
be characterized as spherical particles with rough surface
due to their surface modification by BSA coating.

Estimation of Encoding Efficiency
The efficiency of encoding was estimated by the amount
of QDs adsorbed on the positively charged polymer sur-
face of the microparticle. Estimation of the amounts of

QDs in the original solution used for microparticle en-
coding and in the supernatant before and after incuba-
tion of microparticles with the QD solution showed that
the number of QDs bound to the microparticle surface
linearly increased with increasing QD content in the re-
action mixture from 0.36 to 2.241 mg (Fig. 7a). Further
increase in the amount of QDs in the solution led to a
decrease in the number of adsorbed QDs. This may have
resulted from an insufficient density of the positive
charge determined by amine groups of PAH on the mi-
croparticle surface because of an excessive amount of
QDs and the resultant saturation of the surface with them.
Apparently, the QDs were adsorbed more efficiently if
their amount was smaller than 2.241 mg owing to

Fig. 3 Preparation procedure for microcapsules encoded with quantum dots: formation of the layers of the polycation (1) and polyanion (2), the PAH
and PSS polyelectrolytes, respectively, on the matrice surface; encoding of the resultant microparticles with quantum dots and further layer-by-layer
polymers deposition (3); removal of the calcium carbonate core (4)

Fig. 4 Scanning electron microscopy images of calcium carbonate microparticles after application of four (a, b) and ten (c, d)
polyelectrolyte layers
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sterically favorable conditions and less interference with
one another’s attachment. The pattern of the dependence
of the encoding efficiency on the QD content of the
solution used for the encoding agrees with our earlier
data [22].
Estimation of the optical characteristics of the obtained

polyelectrolyte microcapsules is an essential stage of
the assessment of encoding efficiency. Its results show
how suitable the given technique is for fabrication of
imaging agents based on QD-encoded polyelectrolyte
microcapsules.
Figure 7b shows the fluorescence intensities of the

microparticles and microcapsules measured as the mean
normalized intensity of gray color as dependent on the
amount of QDs used for encoding them. As seen from

the figure, the fluorescence intensity of the encoded
microparticles was higher than that of the microcapsules
obtained from them. At the same time, the microcap-
sules encoded with different amounts of QDs did not
differ significantly from one another in fluorescence
intensity (p > 0.05). Despite some decrease in the fluores-
cence intensity of the microcapsules, their encoding with
the amount of QDs indicated above ensures a contrast
sufficient for effective imaging.

Quantum Dot Fluorescence Lifetime within Encoded
Polyelectrolyte Microcapsules
As noted above, the fluorescence intensity of the poly-
electrolyte microcapsules was decreased compared to
the microparticles used for their fabrication and encoded

Fig. 5 Fluorescence microscopy images of calcium carbonate microparticles coated with polyelectrolyte and encoded with quantum dot (a) and
polyelectrolyte microcapsules obtained from them (b)

Fig. 6 Confocal microscopy images of the polyelectrolyte microcapsules encoded with quantum dots and coated by BSA: cross-sections of the
microcapsules (a); 3D projection of a single polyelectrolyte microcapsule (b)

Nifontova et al. Nanoscale Research Letters  (2018) 13:30 Page 8 of 12



with the same QDs. Therefore, we have estimated the
fluorescence lifetimes of both the original QDs and
the same QDs embedded in the microparticles or the
polymeric walls of the microcapsules.
The QD fluorescence kinetic curves (Fig. 8) are char-

acterized by monoexponential dependence of fluorescent
intensity on time according to the following equation:

I tð Þ ¼ A1∙e−x=t1 ;

where I(t) is the intensity of QD fluorescence in response
to excitation pulses and A1, х, and t1 are parameters
describing the change in the intensity with time.
We determined the fluorescence lifetime for each sample

(Table 2). The original solubilized QDs had the longest

fluorescence lifetime; it was decreased after the QDs were
adsorbed onto the microparticles and incorporated into
the structure of the polymer shell. This may have resulted
from interaction between the QDs and PAH, as we found
earlier [22]. In the case of microcapsules, the QD fluores-
cence lifetime tended to further decrease compared to the
QDs within the microparticles from which the microcap-
sules were fabricated. A possible cause of this decrease was
a technological factor entailed in the fabrication of micro-
capsules, namely, the dissolution of the core and the
related increase in the necessary number of washings.
It should be noted, that the fluorescence lifetime also

tended to decrease with time after the microcapsule
fabrication. However, since 48 h after the microcapsule
fabrication, further changes in the mean fluorescence

Fig. 7 Estimation of the efficiency of encoding of microparticles with different amounts of quantum dots (a) and their fluorescence characteristics
(b). Asterisk indicates significant difference of QD-encoded microbeads from the QD-encoded microcapsules (p < 0.05)

Fig. 8 Fluorescence lifetimes of the solubilized CdSe/ZnS quantum dots with a fluorescence peak at 590 nm incorporated in the fabricated
microparticles and microcapsules

Nifontova et al. Nanoscale Research Letters  (2018) 13:30 Page 9 of 12



lifetime were insignificant. The fluorescence decay was
apparently caused by a decrease in the fluorescence
quantum yield of QD embedded in the shells of the
capsules. This effect is likely to have resulted from the
change in the distribution of the electron potential and
the geometric rearrangement of QDs in the inner layers of
the polymer shell after the core removal that increased the
probability of nonradiative recombination due to the
charge transfer to between neighboring QDs or between
QDs and polymer molecules [22].

Interaction of Quantum Dot-Encoded Polyelectrolyte
Microcapsules with Phagocytic Cells In Vitro
We used confocal microscopy to analyze the interaction
of QD-encoded polyelectrolyte microcapsules with live

phagocytic cells, their uptake by cells, and the possibility
of cell labeling. The murine alveolar macrophage (MH-S)
cells were used as a model, because of the capability of
these cells to phagocytize xenogenic objects.
The MH-S cells were treated with approximately

1.2×106 of QD-encoded microcapsules by short-term
(4 h) or long-term (24 h) incubations. We observed
signs of primary uptake of the microcapsules in both
cases: after the short- and (Fig. 9a–d) long-term incu-
bation (Fig. 9e–h). Polyelectrolyte microcapsules or
their conglomerates could be seen in green color. The
microcapsules could be clearly distinguished both in
the external environment of cells and inside the MH-S
cells that could be evidenced by the distance between
the microcapsules and nuclei of the MH-S cells which
were stained by far-red DNA stain DRAQ5 and can be
seen as red spherical shaped objects at all the micro-
photographs. As individual microcapsules and as their
conglomerates were detected to undergo the uptake
process. The fact that microcapsules were located in
internal cell environment or at least attached to the
surface of the macrophages is confirmed by clearly
distinguished short distances between the nuclei and the
polyelectrolyte microcapsules (Fig. 9b, d, g, h). In Fig. 9g,
residually stained boundaries of the macrophage cyto-
plasmic membranes are distinctly seen, which indicates
effective uptake, and well-discernible microcapsules are
easy to detect to be attached on their surface either
within the cells.

Table 2 Quantum dot fluorescence lifetime data

Sample Lifetime, ns*

Solubilized QDs 21.09

QD-encoded microparticles 9.88

QD-encoded microcapsules (24 h after fabrication) 5.99**,***

QD-encoded microcapsules (48 h after fabrication) 3.82**

QD-encoded microcapsules (72 h after fabrication) 5.12

QD-encoded microcapsules (1 week after fabrication) 4.39***

QD, quantum dot
*The microparticles and microcapsules significantly differ from the solubilized
quantum dots in fluorescence lifetime (p < 0.05)
**, ***Significant differences between the samples of microcapsules in fluorescence
lifetime (p< 0.05)

Fig. 9 Confocal images of the MH-S cells treated with the QD-encoded polyelectrolyte microcapsules coated with BSA. The upper row shows the
images of the samples after 4 h of short-term incubation; the microcapsules are shown by white arrows (a–d). The lower row demonstrates the
images of the samples after 24 h of long-term incubation; the microcapsules are shown by white arrows (e–h). The nuclei of the macrophages
were counterstained with far-red DNA stain DRAQ5
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During the short-term incubation, single microcapsules
were found to be phagocytized by MH-S cells prior to
conglomerates of the microparticles. While after long-
term incubation (24 h), the amount of the conglomerates
of the polyelectrolyte microcapsules undergoing the up-
take process and located inside cells or at least attached to
the cell surface was more significant than after short-term
incubation. Thus, the polyelectrolyte microcapsules ob-
tained in this study used as promising tools for imaging
and tracking of live cells.

Conclusions
Our study has demonstrated the feasibility of fabrication
of stable QD-encoded polyelectrolyte microcapsules with
optimized fluorescence characteristics and a narrow size
distribution. The technique for incorporation of water-
soluble and stabilized with three-functional polyethylene
glycol derivatives core/shell QDs into the polymer wall of
the microcapsules and detailed characterization at each
stage of experimental procedure ensured efficient fluores-
cent encoding of microcapsules. The efficient intracellular
uptake of developed QD-encoded microcapsules by murine
macrophages was demonstrated, thus confirming the possi-
bility of efficient use of developed system for live cell
imaging and visualization of microcapsules transportation
and delivery within the living cells.
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