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Understanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biol-

ogy. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural lay-

ers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs) and sub-TAD contact

domains. TADs appear to act as regulatory microenvironments by constraining and segregating regulatory interactions

across discrete chromosomal regions. However, it is unclear whether other (or all) folding layers share similar properties,

or rather TADs constitute a privileged folding scale with maximal impact on the organization of regulatory interactions.

Here, we present a novel algorithm named CaTCH that identifies hierarchical trees of chromosomal domains in Hi-C

maps, stratified through their reciprocal physical insulation, which is a single and biologically relevant parameter. By apply-

ing CaTCH to published Hi-C data sets, we show that previously reported folding layers appear at different insulation levels.

We demonstrate that although no structurally privileged folding level exists, TADs emerge as a functionally privileged scale

defined by maximal boundary enrichment in CTCF and maximal cell-type conservation. By measuring transcriptional out-

put in embryonic stem cells and neural precursor cells, we show that the likelihood that genes in a domain are coregulated

during differentiation is alsomaximized at the scale of TADs. Finally, we observe that regulatory sequences occur at genomic

locations corresponding to optimized mutual interactions at the same scale. Our analysis suggests that the architectural

functionality of TADs arises from the interplay between their ability to partition interactions and the specific genomic po-

sition of regulatory sequences.

[Supplemental material is available for this article.]

Characterizing the three-dimensional organization of chromo-
somes inmammalian cells is a central challenge, especially in light
of determining how regulatory sequences such as enhancers and
promoters interact and ensure precise control of gene expression
during development. Methods based on chromosome conforma-
tion capture (3C) and notably 4C, 5C, and Hi-C, which measure
physical interaction frequencies of genomic loci in the three-di-
mensional nuclear space, have revealed that mammalian chromo-
somes possess a rich hierarchy of structural layers (Gibcus and
Dekker 2013). Each chromosome is partitioned inmulti-megabase
‘A’ and ‘B’ compartments, reflecting the associations of alternating
large regions of active and inactive chromatin (Lieberman-Aiden
et al. 2009).Compartmentsare further subdivided into topological-

ly associating domains (TADs), contiguous sub-megabase genomic
regions within which the chromatin fiber preferentially associates
(Dixon et al. 2012; Nora et al. 2012), which are further partitioned
into smaller substructures and ‘contact domains’ (Berlivet et al.
2013; Phillips-Cremins et al. 2013; Rao et al. 2014). Finally, as a fur-
ther level of complexity, TADs also interact with each other into
“meta-TAD” trees that extend up to several Mb (Fraser et al. 2015).
Given the cell population-averaged nature of 3C-based experi-
ments, the observed nested hierarchies of interaction domains
may arise as statistical patterns resulting from an average over mil-
lions of alternative conformations of the chromatin fiber
(FudenbergandMirny2012;Giorgettietal.2014; Junieretal.2015).

Althoughmore than onemechanismmight give rise to TADs
and sub-TAD structures, CTCF (CCCTC-binding factor) and the
cohesin complex appear to be largely responsible for the establish-
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boundaries. Indeed,CTCFand cohesin are enriched at TADbound-
aries (Dixon et al. 2012; Van Bortle et al. 2014), but they also bind
pervasively within TADs and are involved in the formation of
sub-TAD structure (Rao et al. 2014; de Wit et al. 2015; Sanborn
et al. 2015), although themolecularmechanisms that lead to struc-
ture formation are unclear (Merkenschlager andNora 2016). In ad-
dition,openchromatinandactivetranscriptionpositivelycorrelate
with the presence of TADs and sub-TAD structure (Hou et al. 2012;
Phillips-Creminset al. 2013;Ulianovetal. 2015), andactivehistone
modifications are enriched at TAD boundaries (Dixon et al. 2012),
suggesting that interactions between active regulatory sequences
may contribute to establish chromosomal architecture. However,
transcription does not seem to be strictly needed for maintaining
TAD boundaries (Nora et al. 2012).

Irrespective of the mechanisms underlying their forma-
tion, genetic evidence suggests that TADs contribute to establish
correct interaction patterns between enhancers and promoters
(Symmons et al. 2014; Lupiáñez et al. 2015; Franke et al. 2016).
Consistent with this, transcriptional coregulation of neighboring
genes is favored within TADs during differentiation (Nora et al.
2012) and upon transcriptional responses to external stimuli (Le
Dily et al. 2014). TADs are thought to act, on the one hand, by in-
creasing the chances that regulatory elements meet each other in
the three-dimensional space within a single domain, and on the
other hand, by segregating physical interactions across boundar-
ies, thus decreasing the probability that deleterious interactions
occur. Hence, the degree to which each TAD is insulated with re-
spect to its neighbors may be an important parameter in the estab-
lishment of the correct regulatory connections. It is, however,
unclear whether the functional attributes that have been observed
at the level of TADs (namely the ability to constrain enhancer-pro-
moter interactions and promote transcriptional coregulation) are
specific to the folding layer of TADs themselves, and if so, why
those properties emerge at this particular folding scale.

A comprehensive analysis that considers all previously identi-
fied topological levels simultaneously and compares them to one
another in terms of their functional and physical properties is
currently lacking. A small number of algorithms that identify hier-
archies of topological domains are available (Filippova et al. 2014;
Lévy-Leduc et al. 2014; Shin et al. 2015; Weinreb and Raphael
2015; Chen et al. 2016; Shavit et al. 2016). However, none of
them provides a quantitative description of how the various layers
of domains differ from one another. In addition, these algorithms
define hierarchies of interaction domains depending on one or
more parameters that do not have a clear biological or structural in-
terpretation. To overcome these limitations, we developed a novel
algorithm called CaTCH (Caller of Topological Chromosomal
Hierarchies) that identifies nested topologies of structural domains
in Hi-C data sets based on a single parameter, the reciprocal physi-
cal insulation between domains, which is a simple and biologically
relevant measure. Here, we describe the CaTCH algorithm and re-
port the results of comparing the structural and functional proper-
ties of domains across the folding hierarchy of themouse genome.

Results

CaTCH: an algorithm to detect and stratify nested hierarchies

of topological domains

In order to comprehensively describe the multiscale organization
of chromosomal folding hierarchies, we developed an algorithm
that segments Hi-C interaction maps into multiple alternative

sets of domains and stratifies them according to a single parameter.
We adopted a thermodynamic interpretation of Hi-C data sets
(Fudenberg and Mirny 2012) in which the Hi-C signal between a
pair of loci is proportional to the probability of detecting them in
proximity across the cell population. For any pair of adjacent chro-
mosomal domains A and B, we then defined their reciprocal insu-
lation (RI) as

RI(A,B) = [Pin(A) + Pin(B) − Pout(A,B)]/[Pin(A) + Pin(B)]
× 100, (1)

where Pin and Pout are the average Hi-C counts within a domain
and across two adjacent domains, respectively (Fig. 1A; see
Methods section). Small (large) values of RI thus correspond to do-
mains that are poorly (strongly) insulated from their first neigh-
bors. For example, 70% reciprocal insulation means that the
average Hi-C counts across the boundaries of two adjacent do-
mains are 70% smaller than the average counts within the two
domains.

Given a certain degree of reciprocal insulation, the algorithm
merges all consecutive domains whose reciprocal insulation is
lower than the chosen threshold (Fig. 1B; see Methods section),
similarly to what is commonly performed by agglomerative hierar-
chical clustering (Hastie et al. 2009). Thus, for any reciprocal insu-
lation threshold, detected domains are at least insulated by the
threshold value. By smoothly increasing the threshold on the insu-
lation, the algorithm detects a set of domains that are increasingly
more insulated, larger, and containing previous domain layers.
This results in a nested hierarchy of differentially insulated do-
mains (Fig. 1C). We dubbed this algorithm CaTCH, for Caller of
Topological Chromosomal Hierarchies.

A key property of CaTCH is that it does not rely on the tuning
of any free parameter to identify one particular folding scale. The
only parameter in the algorithm is the reciprocal insulation thresh-
old itself, which is systematically varied to define and stratify the
entire hierarchy of domains, rather than tuned to identify a single
domain set.Moreover, unlike parameters in existing approaches to
identify multiscale domain structures in Hi-C data sets (Filippova
et al. 2014; Lévy-Leduc et al. 2014; Shin et al. 2015; Weinreb and
Raphael 2015; Chen et al. 2016; Shavit et al. 2016), the reciprocal
insulation is a biologically relevant measure estimating how effi-
ciently a domain is physically insulated from its immediate neigh-
bors. CaTCH is provided as an R package at https://github.com/
zhanyinx/CaTCH_R (source code can be found in Supplemental
Methods).

Sub-TAD contact domains, TADs, and compartments emerge

at different levels in the folding hierarchy

We first applied CaTCH to published Hi-C data sets from female
mouse ESCs (Giorgetti et al. 2016) binned at 20-kb resolution. As
expected, when increasing the reciprocal insulation parameter,
the algorithm detected increasingly larger and fewer topological
domains (Fig. 1C), with 5% changes in reciprocal insulation trans-
lating into ∼30% changes in the number and size of domains
(Supplemental Fig. S1a). We found a similar trend when analyzing
other cell types, notably neural precursor stem cells (NPCs) derived
from the same ESC line (Giorgetti et al. 2016) and themouse B-cell
lymphoma CH12 cell line (Supplemental Fig. S1b; Rao et al. 2014).
In ESCs, below 40% reciprocal insulation domains are too small
(<100 kb on average) to be characterized with data at 20-kb resolu-
tion. At higher insulation values, however, we detected domains
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with a size (180 kb on average) in the range of sub-TAD structures
and ‘contact domains’ identified in previous studies (Fig. 1D, left;
Supplemental Fig. S1c; Berlivet et al. 2013; Phillips-Cremins et al.
2013; Rao et al. 2014). More than 60% of domain boundaries iden-
tified at 55% reciprocal insulation contain at least a CTCF peak
identified in a published ChIP-seq data set (Cheng et al. 2014),
consistent with the notion that sub-TAD structures are highly cor-

related with CTCF binding (Phillips-Cremins et al. 2013). In addi-
tion, although the resolution of the Hi-C data set is not high
enough to distinguish most of the CTCF-associated ‘loop’ signals
as in Rao et al. (2014), we noticed that ∼45% of domains at this
scale have at least one CTCF peak at both boundaries
(Supplemental Fig. S1d). Of the CTCF-delimited domains, howev-
er, only 35%had convergentCTCF sites (compared to 98%of ‘loop

Figure 1. Schematic description of reciprocal insulation and the domain-calling algorithm. (A) Schematic representation of reciprocal insulation (RI) be-
tween two fictitious domains A and B in Hi-C data. (B) The CaTCH algorithm merges two adjacent domains if their reciprocal insulation is smaller than a
given threshold. (C) (Left three panels) Examples of sets of domains defined in mouse ESCs Hi-C data (20-kb binning) imposing different threshold on RI.
(Right) Number of domains detected in ESC as a function of RI. (D) Sub-TAD contact domains (left), directionality index-based TADs (middle), and A/B com-
partments (right) are identified at different RI values. (E) Fraction of boundaries of diTAD (left) and compartments (right) overlapping with boundaries of
domains identified by CaTCH as a function of RI. (F) (Left) Number of domains detected by CaTCH as a function of RI in the real genome (black line), or in
computationally generated contact maps with zero (blue), one (red), or two preferential folding levels (green). The corresponding heat maps are shown in
the four right panels. Numbers of domains were normalized to the initial step (0% insulation) to allow comparison.
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domains,’ defined as contact domains with strong interaction be-
tween boundaries in Rao et al. 2014). This is largely due to the fact
that the domains identified in the latter study are a subset of do-
mains detected byCaTCH at 55% reciprocal insulation (see below);
however, a direct comparison between the two domain sets is not
possible, due to the lack of ESCs Hi-C data sets in the study by Rao
et al. (2014).

To determine the actual overlap between domains identified
by CaTCH and contact domains described in Rao et al. (2014), we
analyzed the 10-kb-resolution Hi-C data that were obtained in
CH12 cells in the same study. Maximal overlap between the two
domain sets occurred at 62% reciprocal insulation in CH12
(Supplemental Fig. S1e), where 78% of boundaries of previously
identified contact domains are also detected by CaTCH. However,
CaTCH detects more domains than those identified in Rao et al.
(2014) (Supplemental Fig. S1f), which explains the lower propor-
tion of domains delimited by convergent CTCF sites in our data
set. Thus, sub-TAD contact domains are detected by CaTCH as rel-
atively lowly insulated regions.

We next sought to identify the scale in the folding hierarchy
where domains detected by CaTCH most closely resemble TADs.
Since directionality index analysis (Dixon et al. 2012) has been
used to define TAD boundaries in a number of previous studies,
here we adopted this benchmark definition of TADs and refer to
these domains as ‘diTADs’ (directionality index TADs). It is impor-
tant to point out that the set of diTADs identified in a Hi-C exper-
iment depends on the value of two tunable parameters, one setting
a limit to the maximal genomic distance over which Hi-C interac-
tions are evaluated (Supplemental Fig. S1g) and the other defining
theminimum acceptable size of domains.We set these parameters
to 2 Mb and 80 kb, respectively, as used previously (Dixon et al.
2012), to build a reference set of diTADs. This resulted in the iden-
tification of 2220 diTADswith amedian size of 840 kb, compatible
with earlier analyses inmouse ES cells (Dixon et al. 2012). The best
overlap between hierarchical domains detected by CaTCH and
diTADs occurred at around 69% reciprocal insulation (Fig. 1D, cen-
ter), where ∼70% of diTAD boundaries coincide with hierarchical
domain boundaries (Fig. 1E, left) and their size distributions are
very similar (Supplemental Fig. S1h). Domains detected by our al-
gorithmat this scale are slightly (althoughnot significantly) small-
er than diTADs (median size 760 kb vs. 840 kb) (Supplemental Fig.
S1h,i). Most (74%) CaTCH boundaries not corresponding to TADs
indeed divide diTADs in smaller domains (Supplemental Fig. S1j).
Thus, diTADs are detected by CaTCH as domains that are more ro-
bustly insulated than contact domains.

At evenhigher reciprocal insulation, hierarchical domains de-
tected by CaTCH correspond to regions of increasingly longer-
range associations between TADs, in the range of meta-TADs de-
scribed in Fraser et al. (2015), themselves contained into even larg-
er domains occurring at very high insulation (around 85%) (Fig.
1D, right). These domains largely overlapwith consecutive stretch-
es of genomic sequence belonging to either the ‘A’ or ‘B’ compart-
ments (Lieberman-Aiden et al. 2009), as detected by eigenvector
analysis (Imakaev et al. 2012) on the same ESCs Hi-C data set
(Fig. 1D, right, 1E, right). Consistent with the notion that A/B
compartments represent predominantly active/inactive chroma-
tin, using publicly available ChIP-seq data sets in ESCs (Supple-
mental Table S1), we found that the difference in histone
modification patternswithin vs. across domain boundaries ismax-
imized at this scale (Supplemental Fig. S1k).

Thus, CaTCH identifies a continuous spectrum of nested
self-interacting chromosome domains, stratified as contiguous

genomic regions with differential reciprocal insulation levels.
Previously described chromosomal structures such as sub-TAD
contact domains, TADs, and groups of TADs emerge at different
scales within the nested folding hierarchy and are characterized
by increasing reciprocal insulation levels.

A continuous nested hierarchy of topological associating

structures

We then sought to determine whether one or more privileged re-
ciprocal insulation levels exist among the folding hierarchy and
correspond to any of the previously reported folding layers. If
such level(s) existed, some simple fundamental quantities, such
as the number or size of domains detected by the CaTCH algo-
rithm, would have a discontinuous behavior as a function of the
reciprocal insulation parameter. To exemplify this concept, we
computationally generated simplified control contact maps by ar-
tificially imposing the presence of zero, one, or two scales of do-
mains, separated by sharp transitions in contact probabilities
between consecutive layers (see Methods section; Fig. 1F). For
these controls, CaTCH detected a number of plateaus in the size
(or number) of domains equal to the number of distinct hierarchi-
cal levels (Fig. 1F, left), irrespective of the genomic size of the do-
mains (Supplemental Fig. S1l). Compared to these controls, the
ESC genome does not exhibit any structurally privileged scale, at
least for domains defined using reciprocal insulation as a measure
(black line in Fig. 1F), irrespective of whether the entire genome is
considered or select regions that belong to either the A (active) or B
(inactive) compartment (Supplemental Fig. S1b). A similar trend
can be observed in NPCs and CH12 cells (Supplemental Fig.
S1b), suggesting that no obvious privileged structural scale exists
in ESCs and differentiated cell types. As a notable consequence,
TADs do not appear as a natural intrinsic structural scale in the
nested hierarchy of domains. This prompted us to investigate
whether functional properties that have been previously attribut-
ed to TADs specifically emerge at the TAD scale or are rather wide-
spread among the folding hierarchy.

Enrichment in active histone marks is maximized at the scale

of TADs

TAD boundaries have been shown to be enriched in histone mod-
ifications associated with active transcription (Dixon et al. 2012).
We therefore analyzed publicly available ChIP-seq data sets in
ESCs (Supplemental Table S1) and computed the enrichment for
distinct histone marks at the boundaries of the domains across
all the scales in the folding hierarchy.Marks associated with active
transcription showed a steady increase in enrichment as a function
of reciprocal insulation and reached a plateau at the level of
diTADs (∼69%) (Supplemental Fig. S2a). Thus, although active his-
tonemarks showwidespread enrichment across the folding hierar-
chy, they are maximally enriched at the scale of TADs and TAD
aggregates (meta-TADs and compartments). Consistentwith previ-
ous results (Dixon et al. 2012), the H3K9me3 repressive mark was
found depleted at many levels in the folding hierarchy and nota-
bly at the level of diTADs (Supplemental Fig. S2a).

CTCF clustering at boundaries is maximized at the scale of TADs

Consistent with its putative role in establishing and/or maintain-
ing chromosomal structure, CTCF is enriched at boundaries of
contact domains (Berlivet et al. 2013; Phillips-Cremins et al.
2013; Rao et al. 2014), TADs (Dixon et al. 2012), and meta-TAD
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trees (Fraser et al. 2015).We therefore computed the enrichment in
the number of CTCF ChIP-seq peaks (Cheng et al. 2014) at domain
boundaries at all folding scales. As expected, CTCF binding is
enriched at boundaries of every level across the folding hierarchy;
however, CTCF enrichment ismaximized at the scale of TADs, and
in particular at ∼65% reciprocal insulation (Fig. 2A) corresponding
to domains that are slightly less insulated than diTADs detected
using standard directionality index parameters. Identical results
were found by using the input-normalized CTCF ChIP-seq signal
per boundary, rather than the number of ChIP-seq peaks
(Supplemental Fig. S2b). We noticed that maximal CTCF enrich-
ment is due to both a maximal number of boundaries containing
at least one CTCF peak and a maximal average number (∼1.9) of
CTCF peaks per boundary (Supplemental Fig. S2c), which are
mostly found within the 40 kb upstream of or downstream from
the boundary (Supplemental Fig. S2d).

Domains at 65% reciprocal insulation are 20% smaller com-
pared to ‘standard’ diTADs (600 kb vs. 840 kb median size) (Fig.
2B) and frequently originate from the splitting of one diTAD
into two or more smaller domains (Supplemental Fig. S2e). The
majority (∼70%) of these ‘new’ boundaries have at least one occu-
pied CTCF site, which explains the slightly higher enrichment in
CTCF compared to standard diTADs. However, by systematically
varying the values of parameters in the directionality index algo-
rithm, we identified alternative sets of diTADs where CTCF enrich-
ment is higher than standard diTADs and comparable to (although
slightly lower than) 65% RI domains (Supplemental Fig. S2f).

Importantly, these alternative directionality index domains corre-
spond to domains detected by CaTCH in the 65%–70% reciprocal
insulation range (Supplemental Fig. S2f, arrows). This confirms
that the TAD scale is characterized by maximal CTCF enrichment
at boundaries compared to other folding levels. We will hereafter
refer to domains identified by CaTCH at 65% minimal reciprocal
insulation simply as TADs, since they constitute the set of domains
with maximal CTCF enrichment.

Reciprocal orientation of CTCF binding sites has been shown
to be highly predictive of strong long-range ‘looping’ interactions
(Rao et al. 2014; de Wit et al. 2015; Guo et al. 2015; Vietri Rudan
et al. 2015). We therefore assessed the orientation of the two most
internal CTCF motifs on either side of each domain and found
that, at the scale of TADs, the fraction of domains where CTCF
motifs were convergent was maximal (Supplemental Fig. S2g,
left), with ∼22% of domains possessing convergent binding sites.
Thus, both CTCF clustering and head-to-head orientation of the
most internal CTCF motifs are maximized at the scale of TADs.
Using available CTCF ChIP-Seq data sets (Phillips-Cremins et al.
2013; Cheng et al. 2014), we found that, in both NPCs and
CH12 cells, CTCF enrichment at boundaries showed a similar
trend as in ESCs, with a peak around 58% and 82% reciprocal in-
sulation in NPCs and CH12, respectively (Fig. 2C). The fraction of
domains with convergent CTCF motifs peaked at the same RI
values (Supplemental Fig. S2g). Importantly, despite the differ-
ence in absolute reciprocal insulation values, the number and
size of domains at maximal CTCF enrichment were extremely

Figure 2. CTCF clustering at domain boundaries is maximal at the scale of TADs. (A) CTCF enrichment at domain boundaries is widespread among the
folding hierarchy inmouse ES cells. However,maximal enrichment occurs at 65% RI, where it is slightly higher compared to TADs identified by directionality
index analysis (diTADs). (B) Domains at 65% are slightly smaller than diTADs identified on the same data set. (C) CTCF enrichment at domain boundaries in
NPCs and CH12 cells shows a similar trend as in ESCs, withmaxima located at 58% and 82% RI in NPCs and CH12, respectively. (D) The number and size of
domains defined by maximal CTCF enrichment at boundaries are similar in ESCs, NPCs, and CH12 cells.
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similar across the three cell types (Fig. 2D). In addition, conserva-
tion of boundaries across the three cell types was also found to be
maximal at the same scale, with ∼70% of boundaries conserved
between any two cell types (Supplemental Fig. S2h). Thus, the
scale of TADs appears in the entire folding hierarchy not only as
the domain scale that maximizes CTCF enrichment at boundar-
ies, but also as the scale where domains are most conserved across
cell types.

We next sought to determine any confounding effect on the
determination of the optimal RI value due to experimental factors,
such as different sequencing depth of Hi-C libraries or different
versions of the Hi-C protocol. To study the effect of sequencing
coverage, we performed CaTCH and CTCF enrichment analysis
on a down-sampled ESC Hi-C data set obtained by reducing by
half the total number of sequenced reads. CTCF enrichment at
domain boundaries was maximized at very similar reciprocal
insulation value as in the full data set (67% vs. 65%) (Supplemen-
tal Fig. S2i), largely corresponding to the same set of domains (Sup-
plemental Fig. S2k). Thus, sequencing depth is not likely to have a
strong impact on the reciprocal insulation values where TADs ap-
pear. Next, to understand the impact of using Hi-C data sets ob-
tained using different experimental protocols, we performed a
comparative analysis of two data sets obtained in mouse fetal liver
cells (Nagano et al. 2015) using either the ‘dilution’ (Lieberman-
Aiden et al. 2009; Belton et al. 2012) or the ‘in situ’ ligation proto-
cols (Nagano et al. 2013; Rao et al. 2014). Using a published CTCF
data set (Cheng et al. 2014), we found that maximal CTCF enrich-
ment occurred at different reciprocal insulation values (Supple-
mental Fig. S2j,k), with the dilution protocol leading to smaller
values compared to the in situ protocol (70% vs. 77%). This is con-
sistent with the lower insulation values where TADs appear in NPC
and ESC (where Hi-C was performed with the dilution protocol
[Giorgetti et al. 2016]) compared to CH12 cells (in situ protocol)
and is compatible with the previous observation that the in situ
protocol leads to sharper TAD boundaries (Nagano et al. 2015).
These results point atHi-C protocol variants as amain determinant
of reciprocal insulation and suggest that the scale of TADs occurs in
the 58%–70% range (64%± 6%) in dilution Hi-C data sets and in
the 77%–82% range (80%± 3%) in the in situ experiments that
were analyzed.

Transcriptional coregulation during differentiation is maximal

at the scale of TADs

Motivated by the finding that CTCF and active histone marks en-
richment at boundaries is maximal at the scale of TADs, we set out
to determine whether domains at this scale encompass maximally
coregulated genes, which is a further important functional attri-
bute proposed for TADs (Nora et al. 2012; Le Dily et al. 2014).
For this, we performed strand-specific RNA-seq on total RNA
from the ESC and NPC lines in which the Hi-C had been per-
formed (Giorgetti et al. 2016). Strand specificity allowed us to un-
ambiguously assign up- or down-regulated transcripts in the case
of two overlapping transcriptional units. For all levels in the fold-
ing hierarchy, we then set out to determine how many domains
are transcriptionally coregulated during the differentiation from
ESCs to NPCs.

Wedefined a domain to be down- (up-) coregulated at the em-
pirical P≤ 0.05 level if the number of down- (up-) coregulated
genes in the domain is larger than in 95% of cyclically permutated
genomes (see Methods section). For each insulation level and the
corresponding domain set, we then calculated a Z-score as the dif-

ference between the number of coregulated domains that were ob-
served in the real genome and the mean number of coregulated
domains detected in 2000 randomizations of the genome (Fig.
3A; see Supplemental Methods), weighted by its standard devia-
tion. Interestingly, at all insulation levels, the subset of domains
that we detected to be up- or down-regulated at the level of P≤
0.05 show maximal transcriptional changes during development
(Fig. 3B; Supplemental Fig. S3a). Thus, domains with a high level
of transcriptional coregulation largely overlap with those where
the most dramatic changes in gene expression occur during
differentiation.

At the level of TADs in ESC (65% insulation), we detected
114 coregulated domains, accounting for ∼4% of the total num-
ber of TADs and ∼10% of those exhibiting expression changes
during differentiation (≥2 up- or down-regulated genes). This rep-
resents a >2.5-fold enrichment relative to the values expected in
randomized genomes. Moreover, the number of coregulated
TADs (65% reciprocal insulation) is very similar to that observed
at the level of TADs in the context of the acute transcriptional re-
sponse to progesterone in a human breast cancer cell line (Le Dily
et al. 2014).

For genes that are down-regulated during differentiation, the
Z-score is maximum at the scale of TADs (Fig. 3C). To check the
robustness of the analysis against stochastic fluctuation of expres-
sion changes, we studied the behavior of Z-scores upon randomly
reshuffling (n = 1000) 10% of genes. For 66% of these partially re-
shuffled genomes, the maximum Z-score was found to be located
within a 4% interval around 65% reciprocal insulation (63%–66%)
(Supplemental Fig. S3b), supporting the robustness of the result.
This analysis suggests that TADs in ESCs constitute a functionally
privileged scale, maximizing the coregulation of genes that are
down-regulated during the differentiation into neural precursor
stem cells.

The behavior of up-regulated genes was remarkably different,
with low (if any) enrichment in transcriptional coregulation with-
in domains below75% reciprocal insulation (Fig. 3D) andmaximal
enrichment at the scale of A/B compartments (>80%). We rea-
soned that this could be due to the fact that not all TADs identified
in ESCs are predictive for transcriptional coregulation of genes that
become activated during differentiation. We thus performed the
same analysis on domains identified in NPCs and found that cor-
egulation of both down- and up-regulated genes is maximized
within domains defined inNPCs around 58% reciprocal insulation
(Fig. 3E,F). This is the set of TADs defined in NPCs by maximal
CTCF clustering at their boundaries (see Fig. 2C). We verified
that these results are not affected by the presence of an inactive
X chromosome in NPCs, as maximal coregulation was observed
at the scale of TADs even when expression changes of X-linked
genes (excluding genes that escape X inactivation in this clone
[Giorgetti et al. 2016]) were corrected to account for their monoal-
lelic expression in NPCs (Supplemental Fig. S3c; Supplemental
Methods).

Thus, TADs defined in the initial developmental stage (ESCs)
are the scale where transcriptional coregulation of down-regulated
genes ismaximal, whereas the set of domains that better favors the
coregulation of up-regulated genes corresponds to TADs defined in
the final state (NPCs). This can be largely explained by the fact
that, although most TAD boundaries (∼70%) are conserved be-
tween ESCs and NPCs, a significant fraction (∼30%) is not. In par-
ticular, although most up-regulated TADs are conserved and
detected in both ESCs and NPCs, we detected 20% more up-regu-
lated TADs in NPCs than in ESCs, corresponding to domains that
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were defined de novo during differentiation in parallel with a sig-
nificant increase in their genomic activity (Fig. 3G; Supplemental
Fig. S3d). This might suggest that TADs in NPCs are more predic-
tive of transcriptional coregulation of up-regulated genes because

domains that are transcriptionally active in the final state of differ-
entiation can only be precisely detected when they are active (i.e.,
in the final state) but do not appear as defined in the set of TADs in
the initial state. These domains represent extreme cases that

Figure 3. Transcriptional coregulation defines a functional privileged scale. (A) Schematic representation of the definition of statistical enrichment in the
number of coregulated domains. A domain is down- (up-) coregulated if its number of down- (up-) coregulated genes is larger than in 95% of cyclic per-
mutated genomes (empirical P≤ 0.05). A Z-score is calculated as the difference between the number of coregulated domains detected in the real genome
(Nobs) and the mean number of coregulated domains detected in 2000 randomized genomes (Nexp), weighted by its standard deviation σexp. (B)
Distribution of average fold changes in expression level for domains at different RI values. For each RI value, the number of domains that are either up-
or down-regulated during differentiation (at the P≤ 0.05 level) is also shown in the upper part of the graph. Box: 25%–75% range (black line: median).
(C) The statistical enrichment in the number of down-regulated domains is plotted as a function of the RI threshold. Transcriptional coregulation is signifi-
cant at any level below ∼70% RI but maximal at 65%. (D) Same as panel C for up-regulated domains. (E) Same analysis as in panel Cwhen using domains
based on Hi-C data in NPCs. (F ) Same as panel E for up-regulated domains. (G) Example of domains that were created de novo during differentiation and
detected only in the set of NPC TADs (58% RI).
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illustrate that increased genomic activity can be associatedwith in-
creased structural complexity, and in this case, with de novo for-
mation of local structures. This is reminiscent of what was
observed on the inactive X chromosome (Giorgetti et al. 2016),
where the presence of TAD-like structures is only observed in the
context of gene activation.

Enhancer-promoter communication is optimized at the scale

of TADs

The finding that TADs emerge as the folding scale that maximizes
transcriptional coregulation but are not an intrinsically defined
structural level (cf. Fig. 1) prompted us to ask whether TADs specif-
ically favor enhancer-promoter communication in ESCs. We ana-
lyzed available ChIP-seq data sets (Supplemental Table S1) to
identify enhancers based on H3K27ac, H3K4me1, and H3K4me3
patterns (see Supplemental Methods); active promoters were iden-
tified using the strand-specific total RNA-seq data sets generated in
this study.

To checkwhether the presence of domains at each level in the
hierarchy corresponds to gain (or loss) in interactions, we consid-
ered pairs of Hi-C bins containing enhancers and promoters. We
then calculated the ratio between their Hi-C counts vs. the geno-
mic average for loci separated by the same genomic distance (Fig.
4A). We observed substantial enrichment in interactions between
enhancers and promoters within the same (active) domain up to
∼65% reciprocal insulation (Fig. 4B, red curve). Thus, TADs appear
to be within the uppermost scales in the folding hierarchy where
enhancer-promoter contacts are maximally enriched within do-
mains. On the other hand, enhancer-promoter interactions are
also enriched across boundaries with the two neighboring do-
mains, until slightly below the scale of TADs (Fig. 4C, red curve).
This reflects the fact that domains up to TADs are detected as in-
creasingly bigger units, which are defined by the union of smaller
subdomains found at lower insulation values where enhancer-pro-
moter interactions are strongly enriched (cf. Fig. 4B). At higher re-

ciprocal insulation, interactions across boundaries are depleted.
CTCF-bond loci showed a similar pattern, with even higher levels
of enrichment within domains and lower enrichment across
domainboundaries (Fig. 4B,C, black curves). This result is obtained
irrespective of the reciprocal orientation of pairs of CTCF motifs,
although enrichments are globally higher for convergent CTCF
sites (Supplemental Fig. S4a). Importantly, when we considered
all pairs of loci within the same active domains where enhancers
and promoters were identified, or random interactions drawn
from the same distribution of distances as enhancer-promoter
pairs, we observed amuch lower increase in interactions inside do-
mains (Fig. 4B, green and blue curves). Moreover, interactions
across domains were also depleted at low insulation levels (Fig.
4C). We obtained very similar results in NPCs and the CH12 cell
line (Supplemental Fig. S4b,c).

Thus, TADs occur in the folding range where enhancer-pro-
moter communication might be ‘optimal,’ i.e., enhancer-promot-
er contacts aremaximally enrichedwithin domains but begin to be
depleted across domain boundaries.

The local complexity in chromosomal folding correlates with

transcriptional activity and CTCF binding

Wenext used the CaTCH algorithm to quantify local chromosome
folding complexity within each TAD and correlate it to the level of
local transcriptional activity. To this aim, we first computed the
number of hierarchical sublevels that can be identified within a
domain (see Methods) as a measure for local folding complexity.
We then used the RNA-seq profiles to assign transcripts to domains
based on the genomic position of their promoters.We did not lim-
it our analysis to the exonic signal (corresponding to mature
mRNA), but we also considered the intronic reads, the latter being
a more reliable measure of transcriptional activity (see Methods
section). We found that at the level of single TADs, a quantitative
correlation exists between the number of sublevels and both total
(exonic) and unspliced mRNA reads per domain (Fig. 5A,B;

Figure 4. TADs define a scale where promoter-enhancer communication is optimal in ESCs. (A) Schematics of contact enrichment analysis. For each pair
of loci, we calculated the ratio between observed Hi-C counts and the genome-wide average counts for loci located at the same genomic distance. (B)
Enrichment in interactions between pairs of loci belonging to the same domain, as a function of reciprocal insulation. Colors refer to random loci within
active TADs (blue), enhancer-promoter pairs (red), random loci with the same distance distribution as enhancer-promoter pairs (green), and CTCF-con-
taining loci (black). Median enrichment over all pairs of considered loci are plotted. Gray shaded area indicates the 63%–66% confidence interval where
maximal coregulation of genes occurs in partially reshuffled genomes (cf. Supplemental Fig. S3b). (C ) Enrichment (or depletion) in interactions between
pairs of loci, defined as in panel A but located across consecutive domains. Gray shaded area as in panel B.
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Supplemental Fig. S5a). The number of sublevels also correlates
with the mean transcriptional level per gene (Supplemental Fig.
S5b) and with the number of transcribed promoters in the domain
(Supplemental Fig. S5c). We also observed that smaller TADs tend
to be denser in actively transcribed genes (Fig. 5C) and are globally
more active than larger domains (Supplemental Fig. S5d). In addi-
tion, the number of sublevels correlates with the density of CTCF
ChIP-seq peaks within the domain (Fig. 5D).

These observations would predict that, during differentiation
from ESCs to NPCs, local changes in transcriptional activities
should correspond at least in part to changes in local folding com-
plexity. To verify this hypothesis, we considered the set of TADs
defined in ESCs and studied the changes in the number of sublev-
els in the same regions in NPCs. We found indeed that domains
where transcriptional activity increases during differentiation
tend to increase their internal structural complexity and vice versa,
as exemplified by the average change in the number of sublevels in
the most dynamic TADs (Fig. 5E; Supplemental Fig. S5e).

Finally, given that the local transcriptional activity and CTCF
occupancy modulate folding complexity within single domains,
we reasoned that sharp transitions in these quantities across
domain boundaries could also contribute to domain segregation.
By definition, each domain level in the folding hierarchy (includ-
ing TADs) is defined by theminimal reciprocal insulation of its con-

stituent domains. Thereby, each TAD in ESCs is insulated from its
neighbors by at least 65%. Interestingly, we found that, at the level
of single TADs, reciprocal insulation correlates with the difference
in transcriptional activity and CTCF occupancywithin vs. across its
borders (Supplemental Fig. S5f,g). Similar results were foundwhen
considering all other levels in the hierarchy, either at lower or
higher levels of insulation compared to TADs (Supplemental Fig.
S5f). Thus, sharper transitions in the genomic density of CTCF
binding sites and transcribed genes correspond to stronger bound-
aries between adjacent domains.

Discussion

Determining how enhancers exert their regulatory functions on
distal promoters critically depends upon our level of understand-
ing of the three-dimensional organization of chromatin. Several
studies have provided evidence on the fundamental role of com-
partmentalization into TADs to instruct enhancer-promoter com-
munication (Nora et al. 2012; Symmons et al. 2014; Lupiáñez et al.
2015; Franke et al. 2016), but they remain elusive on what makes
TADs ‘special’ compared to other chromosomal folding layers,
such as sub-TADs and notably contact domains or meta-TADs. In
this study, we present a new domain-calling algorithm that is
able to segment Hi-C interaction maps into nested sets of

Figure 5. Local (changes in) folding complexity correlate with transcriptional activity in ESCs and during differentiation. (A) Examples of regions with
different levels of local folding complexity and correlated transcriptional activities. (B) The number of sublevels in a domain correlates with the transcrip-
tional activity within the domain (shown for domains at 65% RI in ESC). P-value: Student’s t-test associated to Spearman’s correlation coefficient. (C)
Smaller domains tend to be denser in actively transcribed genes and therefore globally more active than larger domains (shown for domains at 65%
RI). (D) The number of sublevels in a domain correlates with the density of CTCF-bound sites within the domain (shown for domains at 65% RI). (E)
Local changes in transcriptional activities during differentiation from ESCs to NPCs correspond to changes in local hierarchical complexity (see
Methods). Differences in the number of hierarchical sublevels are shown for the 25% and 10% most up- or down-regulated domains identified at 65%
RI in ESC.
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topologically associating domains, based on their reciprocal phys-
ical insulation. Our approach to partition the genome into nested
sets of domains has twomain advantages over existing hierarchical
TAD callers (Filippova et al. 2014; Lévy-Leduc et al. 2014; Shin et
al. 2015;Weinreb and Raphael 2015; Chen et al. 2016; Shavit et al.
2016): (1) The CaTCH algorithm does not rely on any free param-
eters, except reciprocal insulation itself that is used to stratify the
domains; (2) Unlike other methods that identify hierarchies of do-
mains, where parameters have an unclear structural or biological
interpretation, reciprocal insulation estimates how well a domain
is segregated from its neighbors. CaTCH is fast and requires less
computing power: Identifying a whole hierarchy of domains on
a single 100-Mb chromosome takes <4 min on a single CPU, start-
ing frommouse Hi-C data at 20-kb resolution. We note that recip-
rocal insulation is conceptually similar to the ‘local contrast’
measure introduced in Van Bortle et al. (2014); here, however,
we used the parameter to define a full hierarchical tree of domains,
rather than employing it to characterize the strength of boundaries
of a given set of domains.

By applying CaTCH to published Hi-C data sets, we were able
to show that previously reported topological structures are detect-
ed by the algorithm as differentially insulated levels within a con-
tinuous hierarchy of nested folding layers (Fig. 1). This gave us the
possibility to compare all levels simultaneously in terms of their
structural and functional properties. Based on purely structural
characteristics of the domains detected over the entire mouse ge-
nome, we found that none of these sets constitutes an intrinsically
privileged scale. However, we observed that the scale of TADs
emerges as a privileged functional one, where fundamental prop-
erties previously associated with TADs and notably related to their
role in long-range transcriptional regulation are maximized.

CTCF clustering at domain boundaries has been repeatedly
reported as one of the hallmarks of topological domains across spe-
cies (Dixon et al. 2012; Sexton et al. 2012; Van Bortle et al. 2014;
Vietri Rudan et al. 2015). In agreement with that, we show that
maximal CTCF clustering at boundaries is highly predictive of
the set of domains with the most conserved boundaries across
cell types (Fig. 2). In fact, finding hierarchical levels with ∼3400
domains seems to provide a sufficient operational criterion to
identify the TAD scalewhenusingCaTCH (Fig. 2D), even in the ab-
sence of matched CTCF ChIP-seq data sets.

The resolution of our data set (20 kb) does not enable the de-
tecting of looping interactions between single CTCF sites that can
be found in very high-resolution Hi-C (Rao et al. 2014) or ChIA-
PET experiments (Tang et al. 2015), and it is therefore not possible
to assess the precise reciprocal orientation of CTCF site clusters
that occur within domain boundaries. However, between 15%
and 22% of the most internal CTCF site pairs at the boundaries
of TADs are convergent, which represents a maximum across the
entire folding hierarchy (Supplemental Fig. S2f).

Although boundary-associated CTCF might play an impor-
tant role in defining domains and in particular TADs, CTCF also
pervasively bindswithin domains.Within a given hierarchical lev-
el and TADs in particular, domains that aremore reciprocally insu-
lated tend to have a higher imbalance in the number of CTCF-
bound sites within vs. across their boundaries. Notably, regions
that are highly bound by CTCF and are flanked by low-occupancy
domains are highly insulated from the flanking regions (see, for ex-
ample, Supplemental Fig. S5g, right). In addition, the density of
CTCF-bound sites within a domain correlates with the hierarchical
complexity of topological domains at all scales, including TADs
(Fig. 5). Together with the fact that the hierarchical complexity

also correlates with the overall transcriptional activity of a domain,
this is in line with earlier findings that sub-TAD structures are
strongly associated with CTCF-bound sites and active regulatory
sequences (Phillips-Cremins et al. 2013). However, our results
also suggest that interactions mediated by CTCF (and possibly ad-
ditional factors associated with active regulatory sequences)within
transcriptionally active domains play an important role in modu-
lating the strength of boundaries between adjacent domains.
Strong asymmetry in CTCF occupancy and transcriptional activity
across boundaries can arise as a consequence of marked transitions
in gene density and/or number of regulatory sequences. In addi-
tion, asymmetry can occur corresponding to cell-type–specific
transitions in genomic activity between adjacent TADs (cf.
Supplemental Fig. S5g, right panel). This in turn might be driven
by transitions in the enrichment for cell-type–specific regulatory
sequences (such as binding sites for lineage-determining transcrip-
tion factors) across the boundary between the two TADs.

TADs appear in the uppermost layers in the folding hierarchy
where interactionswithin active domains specifically, and between
enhancers and promoters in particular, are strongly enriched com-
pared to the genome-wide average interactions (Fig. 4). On the oth-
er hand, interactions across the boundaries of active TADs start to
be depleted as compared to genome-wide averages. TADs thus ap-
pear to belong to the domain scale where a trade-off is established
between maximizing interactions within the interior of domains
and not enriching interactions across domain boundaries. In this
light, it is remarkable that TADs emerge as the set of domains
where the coregulation of genes during differentiation is maximal
(Fig. 4). Although the precise mechanisms that govern enhancer
action on promoters is still unknown, it is tempting to speculate
that rather than absolute interaction frequency, the balance be-
tween interactions within and across domains determines the ge-
nomic range of action of enhancers, and this could contribute at
least in part to establishing higher transcriptional coregulation at
the level of TADs.

Methods

Hi-C data sets

ESCs and NPCs Hi-C data sets were obtained from Giorgetti et al.
(2016). Reads from 129Sv andCast/EiJ alleles were combined to in-
crease coverage, and data were binned at 20-kb resolution. CH12
data are from Rao et al. (2014), binned at 10 kb. Mouse fetal liver
Hi-C data are from Nagano et al. (2015), binned at 25 kb. ESC,
NPC, and liver Hi-C were normalized with iterative correction
(Imakaev et al. 2012). CH12 data were normalized with the VC-
SQRT method (Rao et al. 2014).

The CaTCH algorithm

The algorithm takes a normalized Hi-C matrix as an input, binned
at an arbitrary resolution r. The genome is first partitioned into
domain seeds of size 2∗r, which are progressively merged into larg-
er domains. Reciprocal insulation (RI) is defined as in Eq. (1) in the
main text. Given a threshold on RI, two consecutive domains are
merged into one if their RI is smaller than the threshold.
Increasing the RI threshold from 0% to 100% in steps of 0.1% re-
sults in increasingly larger domains. To lose memory of the initial
partitioning of the genome into domain seeds, small shifts (two
genomic bins) in domain boundaries are allowed at each step.
Finally, to avoid that the discrete increase in RI threshold (0.1%
steps) results in a final domain tree that depends on the order of
mergings and is therefore not unique, we impose a rule onmerging
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order: A domain can be merged with either the one that precedes
or the one that follows it along the genome; the pair with lowest RI
is merged first (see Supplemental Methods).

Computationally generated contact maps with preferential

folding levels

Control contact maps with one or two folding levels were created
by generating a power lawdecreasing contactmap for each level, to
which Gaussian random noise is added (see Supplemental
Methods). The contact map with zero folding layers was generated
by replacing the actual Hi-C counts in the contact map for Chr 19
in ESCs with the average genome-wide counts for loci with the
same genomic distance and adding Gaussian noise.

Cell culture

Culture of the female mouse ES cell line F121.6 (129Sv-Cast/EiJ)
and NPC clone analyzed in Giorgetti et al. (2016) was performed
as previously described (Gendrel et al. 2014; Giorgetti et al.
2016). All cell lines used in this study were characterized for ab-
sence of mycoplasma contamination.

RNA-seq data and analysis and other analyses of genomic data

Strand-specific total RNA-seq libraries from two biological repli-
cates of ESCs and NPCs were prepared with the ScriptSeq v2 kit
(Illumina) and sequenced on an Illumina HiSeq 2000 for a total
of ∼30 million uniquely aligned reads per sample. Samples were
aligned to mouse mm9. For details on the RNA-seq and ChIP-seq
analysis, CTCF motif assignment, and enhancer calling, please re-
fer to Supplemental Methods.

Definition of hierarchical sublevels

A subregion within a domain at any scale in the folding hierarchy
was defined as a sublevel if it is detected as a domain over more
than >5% of the preceding reciprocal insulation thresholds. P-val-
ues in transcription and CTCF content vs. number of sublevels
(Fig. 5) were obtained using the function cor.test in R (Spearman
method) and represent the results of Student’s t-tests on the
Spearman’s correlation coefficient.

Analysis of structural reorganization during differentiation

We focused on TADs defined in ESCs and defined the number of
sublevels detected in NPCs in the corresponding regions, using
NPC domains below 58% since those are the domains that best
match domains at 65% in ESCs (see Supplemental Fig. S2g). We
estimated the local amount of structural reorganization as the
change in the number of sublevels between ESCs and NPCs.

Analysis of enhancer-promoter interactions

Genomic 20-kb (ESCs and NPCs) and 10-kb (CH12) bins were as-
signed to ‘enhancer,’ ‘promoter,’ or ‘CTCF’ categories if they con-
tain at least one of these elements (see SupplementalMethods). If a
bin showsmultiple classifications, it was assigned to all categories.
In the analysis for Figure 4, in order to avoid including under-
sampled interactions due to limited Hi-C coverage at large geno-
mic distances, we only considered pairs of loci separated by <2
Mb in ESCs and NPCs, and 1 Mb in CH12 cells. Cutoffs were cho-
sen to exclude genomic distances where average Hi-C counts are
dominated by experimental noise (Supplemental Fig. S4d).

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE84724. CaTCH is
provided as an R package at https://github.com/zhanyinx/
CaTCH_R. Source code can be found in Supplemental Methods.
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