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Abstract
Harmonic oscillator in noncommutative two-dimensional lattice is investigated. Using the properties of non-differential
calculus and its applications to quantum mechanics, we provide the eigenvalues and eigenfunctions of the corresponding
Hamiltonian. First, we consider the case of ordinary quantum mechanics, and we point out the thermodynamic properties of
the model. Then we consider the same question when both coordinates and momenta are noncommutative.

Keywords Harmonic oscillator in noncommutative · Lattice theory · Perturbation theory

1 Introduction

Several experiments and theoretical results show that the
continuous space time, in the description of modern physics,
should need revision at the scale where quantum theory and
gravitation can be conciliated [1–3]. The discrete spacetime
has become a tool of choice for the investigation of physics
around this scale. It may be considered as an alternative
way to prove the existence of a minimum length (for
example lp ≈ 1.6 · 10−35meters required by string theory).
The idea of a discrete structure of spacetime was first
suggested by Wheeler [4] and well after by Wilson [5].
The lattice formulation in a quantum field theory (QFT)
is considered as a way of discretizing the path integral
in order to make it well-defined. On a lattice, a QFT
becomes a quantum system whose degrees of freedom
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consist of one field variable φ(xi) at each lattice point
xi ∈ Zd . Thereby, the lattice is a way to regularize in the
ultraviolet a QFT. The lattice structure does not violate the
quantum-mechanical structure of the theory, but does not
preserve the spacetime symmetries ( such as translations
and rotations). The numerical simulations of quantum field
theories on Euclidean lattices have proven to be a very
successful tool for studying nonperturbative phenomena.
Consequently, a lot of effort has been put into the lattice
formulation of quantum and field theories (see [6–27, 38–
42] and references therein). Hence, the discrete structure of
spacetime is inherent in many models of quantum gravity,
such as loop quantum gravity, noncommutative (NC) field
theory, spin foam, black hole physics, and random tensors
models.

Recent results obtained in the framework of nonpertur-
bative string theory and quantum Hall effect have boosted
interest in a deeper understanding of the role played by NC
geometry in different sectors of theoretical physics [10–13].
In physics, the most important achievement of NC geom-
etry was to overcome the distinction between continuous
and discrete spaces, in the same way that quantum mechan-
ics unified the concepts of waves and particles. However,
a NC space is an intriguing and revolutionary possibility
that could have important consequences in our conception
of the quantum structure of nature. The description of non-
commutativity in quantum and field theory can be achieved
by replacing the ordinary product of functions in classi-
cal theory by the so called Moyal star product. This can
also be realized by defining the field theory on a coor-
dinates operators space that are intrinsically NC, which
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satisfy the commutation relation [X̂ρ, X̂σ ] = iθρσ . The
simplest case corresponds to where θρσ is a constant skew-
symmetric matrix. In the present investigation, we wish to
define the noncommutativity of quantum theory, in which
both coordinates and momenta are NC [28, 29], i.e.,

[X̂ρ, X̂σ ] = iθρσ ,

[X̂ρ, P̂ σ ] = i�eff δρσ ,

[P̂ ρ, P̂ σ ] = iθ̄ρσ . (1)

The case θρσ = 0 = θ̄ ρσ corresponds to ordinary quantum
mechanics, for which �eff = � (the Planck constant).
In the general possible representations, one obtained, from
standard Bopp-shifts in the conventional canonical variables
x̂ρ , p̂ρ , with nonvanishing commutators [x̂ρ, p̂σ ] = i�δρσ ,
X̂ρ = a x̂ρ + b p̂ρ, P̂ ρ = c x̂ρ + d p̂ρ, where a, b,
c, and d are constants. With these transformations, all
Hamiltonians dynamics in NC space correspond to others
problems in ordinary quantum space. As a motivating
example, one could mention that the harmonic oscillator in
NC space corresponds to the Landau problem in ordinary
quantum space [54–61]. It would therefore be interesting
to investigate the harmonic oscillator in the NC discrete
space in which the continuous variables X̂ρ and P̂ ρ become
discrete with a spacing ε. It turns out that this question
is not trivial, but may be solved in the perturbation to
ε. It is important to point out that the Landau problem
on lattices has been extensively studied in the literature
see [37–42] and references therein. However, due to the
infinite order derivatives which appear in the Schrödinger
equation, numerical solutions are the most developed. The
very promising analytic approach proposed in [37] proves to
have several defects that we will explain in Section 3. In this
paper, the perturbative method is implemented to improve
these results.

Let us recall very briefly known facts about the lattice
oscillator in classical and quantum mechanics. Lattice
oscillator systems are the standard model for the vibrational
degrees of freedom, known as phonons, in crystal lattices
[23–27]. These phonons interact with the other degrees of
freedom, such as spins and electrons, in ways that often
significantly modify their behavior. The lattice quantum
theory is based on the non-differential calculus with
discrete derivatives and integrals, which has been studied
by several mathematicians and physicists [17–21], and
continues to be of interest for scientists nowadays. A
few of its applications can be seen for instance in the
study of non-local or time-dependent processes, as well
as to model phenomena involving coarsegrained, fractal
spaces and fractional systems as well as more simple
systems such as harmonic oscillator [20, 21]. Most of
the models of interacting quantum oscillators are related
with solids such as ionic crystals containing localized

light particles oscillating in the field created by heavy
ionic complexes. The energy spectrum is obtained by the
ladder operators method, similar to the quantum harmonic
oscillator problem. A lattice at a nonzero temperature has
an energy that is not constant, but fluctuates randomly
around some mean value. The thermodynamic properties
and the quantum radiation maybe also examined closely (for
a recent reviews, see [66, 67]). Henceforth, the study of the
oscillator in the lattice is a key to understand physics beyond
continuous limit. We note that, several points of view
have been developed and represented as the generalizations
of the Heisenberg algebra to a discrete space. There are
many lattice models which are reduced, classically to the
same continuum theory in the zero lattice spacing, and this
includes the q-deformations and those extensions [30–43].

Our aim in the present work is to solve the quantum
dynamics in the general NC discrete space and deter-
mine the eigenvalue problem of the corresponding oscil-
lator Hamiltonian. The paper is organized as follows: In
Section 2, we briefly review some definitions and prop-
erties concerning the discrete differential calculus and its
application to quantum mechanics. Next, we introduce the
noncommutativity in this discrete space and show how the
Heisenberg uncertainly relations are modified. Section 3 is
devoted to the study of the 2d lattice harmonic oscillator
in both commutative and NC quantum space. The corre-
sponding eigenvalue problems are solved (i.e., in these two
different cases). In this section, we also deal with the ther-
modynamic behavior. In Section 4, we make some remarks
and conclude on our work. The direct computation of the
states and energies of the oscillator in ordinary quantum
space, performed using the Ladder operator method which
appears in [37], is also discussed.

2 Discrete Differential Calculus and Lattice
QuantumMechanics

In this section, we review some basis properties of the
differential calculus on a 2d lattice (in particular, we
consider the case where d = 1). It is based on the work
in [3]. For more details, one could also read [1, 2] and
the references therein. A lattice is a subset � = ([0, 	] ×
[0, 	]) ∩ Z2) of the plane R2 endowed with the discrete
points Mn,m := M(xn, ym) such that the coordinates {xn}n
and {ym}m, n,m ∈ N are spacing by ε << 1 and ε have
the dimension of Planck length: [[ε]] ≡ [[lp]]. We write
xn = nε and ym = mε (see Fig. 1). We simplify the notation
by setting xn := x and ym := y. Note that the discretization
of space variables leads to a breaking of both translational
and rotational invariances, which are restored at the limit
ε → 0. It is also possible to define the discrete translation
as x′

n = xn ± kε, y′
n = yn ± kε, k ∈ Z and such that
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Fig. 1 Two-dimensional lattice and the representation of the subset 

which gives the interactions of the point Mi,j with his neighbors

the translation symmetry on the lattice is preserved. The
same procedure can be done in the case of space rotation. In
conclusion, instead of continuous Lorentz, translation, and
rotation symmetry, we have the discrete symmetries of the
lattice. This need not be a problem, since we can recover the
continuous symmetries at low energies.

The most obvious choice to discretize the continuous
derivatives is to use the discrete symmetric derivative:
Naturally, the derivatives ∂x := ∂

∂x
and ∂y := ∂

∂y
are

replaced by the forward and backward difference operators
d+

j and d−
j , j = x, y, also called the left and right non-

differential operators acting on the two variables dependent
function f (x, y) as

d+
x f (x, y) = 1

ε
[f (x + ε, y) − f (x, y)] , (2)

d−
x f (x, y) = 1

ε
[f (x, y) − f (x − ε, y)] , (3)

d+
y f (x, y) = 1

ε
[f (x, y + ε) − f (x, y)] , (4)

d−
y f (x, y) = 1

ε
[f (x, y) − f (x, y − ε)] . (5)

Observe that, at the limit ε → 0, d+
x = d−

x = ∂x and
d+

y = d−
y = ∂y . All the computations performed here can

be generalized to arbitrary dimensions d > 1. The operators
d+

x , d−
x , d

+
y , d−

y are related to the translation operators in
the x and y directions denoted by τ ε

x and τ ε
y with group

parameter ε as

τ ε
x = eε∂x , τ ε

y = eε∂y , (6)

and such that τ ε
x f (x, y) = f (x + ε, y) and τ ε

y f (x, y) =
f (x, y + ε). We get the followings identities, for j = x, y:

The following generalized Leibnitz rules hold:

d+
j (fg) = 1

ε

(
τ ε
j f τ ε

j g − fg
)

= gd+
j f + fd+

j g + εd+
j fd+

j g, (8)

d−
j (fg) = 1

ε

(
fg − τ−ε

j f τ−ε
j g

)

= gd−
j f + fd−

j g − εd−
j fd−

j g, (9)

and they are reduced to usual Leibnitz rules as ε → 0. One
can also define the discrete Laplacian as

d2 = d+
x d

−
x + d+

y d
−
y

= 2

ε2

[
cosh(ε∂x) + cosh(ε∂y) − 2

]
. (10)

This quantity plays an important role when defining the
kinetic part of the Hamiltonian both in the classical and
quantum description of dynamic systems on the 2d lattice
i.e. Ĥ = −
d2 + V̂ (x, y), 
 ∈ R where V̂ (x, y) is the
interaction potential.

We are now ready to define the relation between non
differential geometry and quantum mechanics on the lattice
(for more details, see [1–3]). Let us consider the Hilbert
space H endowed with the Hermitian structure

〈f |g〉 = ε2
∑
x,y

f ∗(x, y)g(x, y). (11)

Consider the subsetH⊗ ofH in which the states f (x, y) can
be decomposed into f1(x)⊗f2(y). ThenH⊗ = Hx ⊗Hy ≡
L2(R, dx)

⊗
L2(R, dx) and the tensors product operators

d+ = d+
x ⊗ d+

y and d− = d−
x ⊗ d−

y acting on H⊗ are

not Hermitian. We find that
(
id+)† = id−. However the

operators d−d+ = d+d−, which corresponds to the fact
that the laplacian (10) is Hermitian. Now let us consider the
positions and momenta operators x̂ε and ŷε, defined by the
eigen-equations
(
x̂εf

)
(x, y) = xf (x, y),

(
ŷεf

)
(x, y) = yf (x, y) (12)

and the momentum p̂ε
x and p̂ε

y as

(
p̂ε

xf
)
(x, y) = − i�

2

(
d+

x + d−
x

)
f (x, y)

= − i�

ε
sinh(ε∂x)f (x, y), (13)

(
p̂ε

yf
)

(x, y) = − i�

2

(
d+

y + d−
y

)
f (x, y)

= − i�

ε
sinh(ε∂y)f (x, y). (14)
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The operators (13) and (14) are Hermitian and have the
nonvanish commutation relations:
[
x̂ε, p̂ε

x

] = i� cosh (ε∂x) ,
[
ŷε, p̂ε

y

]
= i� cosh

(
ε∂y

)
. (15)

Observe that in the Eqs. 13, 14, and 15 we have used the
following definitions:

cosh(ε∂j ) = e
ε∂j +e

−ε∂j

2 , sinh(ε∂j ) := e
ε∂j −e

−ε∂j

2 ,

j = x, y.

Using the Taylor expansion of these two operators
functions, the commutation relations (15), which are a
consequence of the definitions (12), (13), and (14), are
nothing but the sum of polynomial operators depending on
the ordinary momenta p̂x = −i�∂x and p̂y = −i�∂y ,
such that the limit as ε → 0 is well given as canonical
commutation relations between coordinates and momenta
(see relations (20) for more details.)

As a quantum system the space of states of a physical

model defined with the Hamiltonian H = |p̂ε |2
2m + V (|x̂ε|)

should then provide a linear representation space of the
generalized Heisenberg algebra, equipped with the Hermi-
tian inner product (11) for which these two operators be
self-adjoint. The uncertainly relation is now generalized as

�x̂ε�p̂ε
x ≥ �

2

∣∣∣∣∣
∞∑

n=0

(−1)n

(2n)!
( ε

�

)2n 〈p̂2n
x 〉

∣∣∣∣∣ , (16)

�ŷε�p̂ε
y ≥ �

2

∣∣∣∣∣
∞∑

n=0

(−1)n

(2n)!
( ε

�

)2n 〈p̂2n
y 〉

∣∣∣∣∣ (17)

where p̂x = −i�∂x , p̂y = −i�∂y correspond to the
momentum operators in ordinary quantum mechanics, the
first order expansion of the relations (16) gives

�x̂ε�p̂ε
x ≥= �

2

(
1 + ε2

2�2
|〈p̂2

x〉| + O(ε2)

)
, (18)

�ŷε�p̂ε
y ≥= �

2

(
1 + ε2

2�2
|〈p̂2

y〉| + O(ε2)

)
. (19)

The relations (18) and (19) correspond to the uncertainty
relations predicted by string theory as a correction of the
usual uncertainty relations between coordinates and momenta.
It is probably one of the greatest interests in the study of
the minimum length quantum theory [47–53], (see also [14,
15]). This implies the following commutation relation

[x̂ε, p̂ε
x] = i�

(
1 + ε2

2�2
(p̂ε

x)
2 + O(ε2)

)
,

[ŷε, p̂ε
y] = i�

(
1 + ε2

2�2
(p̂ε

y)
2 + O(ε2)

)
. (20)

The parameter ε is chosen such that the corresponding
uncertainty relations (18) and (19) imply a finite minimal
uncertainty �x̂ε

0 > 0 and �ŷε
0 > 0.

Recall that we are interested in investigating the behavior
of the oscillator model in noncommutative space. For this
purpose, we have to determine the energy spectrum of
the Hamiltonian for the small value of the spacing ε.
We use the “capital” notation to specify the NC quantum
operators, such as coordinates and momenta. Suppose that
the NC variables are related to the commutative coordinates
operators by the relations:

X̂ε = x̂ε − θ

2�
p̂ε

y, Ŷ ε = ŷε + θ

2�
p̂ε

x (21)

P̂ ε
x = p̂ε

x + θ̄

2�
ŷε, P̂ ε

y = p̂ε
y − θ̄

2�
x̂ε (22)

The commutation relations between coordinates and
momenta are then taken to be:
[
X̂ε, Ŷ ε

]
= iθ Î ε

0 ,
[
P̂ ε

x , P̂ ε
y

]
= iθ̄ Î ε

0 ,
[
X̂ε, P̂ ε

x

]
= i�Î ε

1 ,
[
Ŷ ε, P̂ ε

y

]
= i�Î ε

2 , (23)

where the operators Î ε
0 , Î ε

1 , Î ε
2 are given by

Î ε
0 = 1

2

[
cosh (ε∂x) + cosh

(
ε∂y

)]
, (24)

Î ε
1 = cosh (ε∂x) + θ θ̄

4�2
cosh

(
ε∂y

)
, (25)

Î ε
2 = cosh

(
ε∂y

) + θ θ̄

4�2
cosh (ε∂x) . (26)

The followings uncertainly relations are well satisfied:

�X̂ε�Ŷ ε ≥ θ

4

∣∣∣∣∣
∞∑

n=0

ε2n

(2n)!
(
〈∂2nx 〉 + 〈∂2ny 〉

)∣∣∣∣∣ , (27)

�P̂ ε
x �P̂ ε

y ≥ θ̄

4

∣∣∣∣∣
∞∑

n=0

ε2n

(2n)!
(
〈∂2nx 〉 + 〈∂2ny 〉

)∣∣∣∣∣ (28)

�X̂ε�P̂ ε
x ≥ �

2

∣∣∣∣∣
∞∑

n=0

ε2n

(2n)!
(

〈∂2nx 〉 + θ θ̄

4�2
〈∂2ny 〉

)∣∣∣∣∣ , (29)

�Ŷ ε�P̂ ε
y ≥ �

2

∣∣∣∣∣
∞∑

n=0

ε2n

(2n)!
(

θ θ̄

4�2
〈∂2nx 〉 + 〈∂2ny 〉

)∣∣∣∣∣ (30)

The first order perturbation gives

�X̂ε�Ŷ ε ≥ θ

4

[
1 − ε2

2�2
(p2

x + p2
y)

]
, (31)

�P̂ ε
x �P̂ ε

y ≥ θ̄

4

[
1 − ε2

2�2
(p2

x + p2
y)

]
(32)

�X̂ε�P̂ ε
x ≥ �

2

[
1 + θ θ̄

4�2
− ε2

2�2

(
p2

x + θ θ̄

4�2
p2

y

)]
, (33)

�Ŷ ε�P̂ ε
y ≥ �

2

[
1 + θ θ̄

4�2
− ε2

2�2

(
p2

y + θ θ̄

4�2
p2

x

)]
(34)
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which corresponds to the generalization of the uncertainty
relation for physics at the Planck scale predicted by the
string theory and given in Eqs. 18 and 19. Let us mention

that for a sufficiently small constant ε2

2�2 , the correction
term in the uncertainty relations are negligible at present
day experimentally accessible scales. By choosing this
parameter appropriately, we obtain a cutoff at the string
or at the Planck scales. This type of ultraviolet cutoff was
introduced into quantum field theory in [45] and then into
inflationary cosmology in [46]. As readily checked, this
implies a minimal uncertainly in the positions �X̂ε and
�Ŷ ε namely �X̂ε

0 and �Ŷ ε
0 which are given by

�X̂ε
0 = �Ŷ ε

0 ∝ ε ≡ lp. (35)

However, we have a maximal dispersion for the momenta

�P̂ ε
x0 = �P̂ ε

y0 ∝ 1

ε
√

ε
, (36)

which is infinite in the continuum limit. One can also
remark that the noncommutativity of the coordinates
operators X̂ε and Ŷ ε will not be necessary for the
appearance of a finite minimal uncertainty �X̂ε

0 and �Ŷ ε
0 :

See [44–48] for more details.

3 PerturbationMethod for the Harmonic
Oscillator on a Lattice

In this section, the low energy approximation is given for the
harmonic oscillator. First, we examinate the case of ordinary
quantum space defined with the commutation relation (15).
The next part is devoted to the same computation where
we have to consider noncommutativity in general case
given in Eq. 23.

3.1 Harmonic Oscillator in the Ordinary Quantum
Space Lattice

Consider the subset 
 of the lattice given in Fig. 1, in
which the point Mk,j interact with the four neighbors
Mk+1,j , Mk−1,j , Mk,j+1, Mk,j−1. These interactions are
supposed to be harmonic and the Hamiltonian becomes

Ĥε,kj = 1

2m

[(
p̂ε

xk

)2 +
(
p̂ε

yj

)2]+ mω2

2

[(
x̂ε
k

)2 +
(
ŷε
j

)2]
.

(37)

The total Hamiltonian that describes the oscillation of all
points of the lattice is

Ĥε =
∑
{k,j}

Ĥε,kj ∈ L(H⊗), (38)

where L(H⊗) is the set of linear operators on the Hilbert
space H⊗. For simplicity, the sum in expression (38) will

not be written. Then, using Eqs. 13 and 14, expression (38)
becomes

Ĥε = − �
2

2mε2

[
sinh2(ε∂x) + sinh2(ε∂y)

]

+mω2

2

[
(x̂ε)2 + (ŷε)2

]
(39)

Let us turn now to the solution of the eigenvalues problem
by using the corresponding partial differential equation,
which is explicitly given in [37]:

Ĥεφn(x, y) = Enφn(x, y). (40)

Now, we consider the wave function in the Fourier space.
The coordinates and momenta operators are given by

p̂ε
x = �

ε
sin(εkx), p̂ε

y = �

ε
sin(εky), (41)

x̂ε = i
∂

∂kx

, ŷε = i
∂

∂ky

(42)

where kx, ky , taken on the Brillouin zone ]−π
ε
, π

ε
] are called

the quasi-momenta.

3.1.1 Discussion About the Difficulties to Provide Algebraic
Solution

In this subsection, we give in detail the set of difficulties that
come in trying to determine the spectrum of the Hamiltonian
(39) or in the search of the solution of Eq. 40. It is based
on the work given in reference [37] from which the author
provide one alternative way to solve (40). We will show
the non-consistency of this method and propose to use
perturbative solution. Let us define the lattice analogue
of the harmonic oscillator “annihilation and creation”
operators as

âx = 1√
2�mω

(mωx̂ε + ip̂ε
x), (43)

â†x = 1√
2�mω

(mωx̂ε − ip̂ε
x) (44)

ây = 1√
2�mω

(mωŷε + ip̂ε
y), (45)

â†y = 1√
2�mω

(mωŷε − ip̂ε
y), (46)

which are supposed to diagonalize the Hamiltonian Hε =
Hx,ε + Hy,ε only in the continuous limit ε → 0, with

Hx,ε = (p̂ε
x)

2

2m
+ mω2(x̂ε)2

2
, (47)

Hy,ε = (p̂ε
y)

2

2m
+ mω2(ŷε)2

2
. (48)

Before we start our discussion to elucidate the problems
that arise when we want to solve the eigenvalue problem of
the Hamiltonian (47) and (48), and why we need to provide
new method, let us remark that the so called annihilation
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and creation operators given in Eqs. 43–46 do not satisfy the
usual canonical commutation relation due to the presence
of the lattice spacing ε. We get [âx, â

†
x] = cos(kxε) and

[ây, â
†
y] = cos(kyε), such that the limit ε → 0 leads to

. The operators âx, â
†
x

and ây, â
†
y are therefore not the Ladder operators. Now

let us use the following approximation ε → 0, and from
which we can consider the operators (43)–(46) as the Ladder
operators. Let φ0 = φ0x ⊗ φ0y be the fundamental eigen-
state such that âx ⊗ ây(φ0x ⊗ φ0y) = âxφ0x ⊗ âyφ0y = 0.
It leads to the solution

φ0x = Cx exp

[
�

mωε2
cos(εkx)

]
, (49)

φ0y = Cy exp

[
�

mωε2
cos(εky)

]
, (50)

where the constants Cx and Cy , are given, using the
normalization condition
∫ +π/ε

−π/ε

dkx φ2
0x =

∫ +π/ε

−π/ε

dky φ2
0y = 1,

Cx = Cy =
[
2πJ0

(
2i�

mωε2

)]− 1
2

, (51)

such that

φ0(kx, ky) =
[
2πJ0

(
2i�

mωε2

)]−1

exp

[
�

mωε2
cos(εkx)

]

⊗ exp

[
�

mωε2
cos(εky)

]
(52)

where J0 stands for the first kind Bessel function. Remark
that in our solution (52), the limit ε → 0 is not well defined
(i.e., limε→0 φ0(kx, ky) = ∞). The same pathology appears
in the reference [37] after computing the normalization
constant. Replacing the solution (52) in the eigenvalue (40),
the fundamental energy becomes

E0(kx, ky) = �ω

2
(cos(εkx) + cos(εky)). (53)

The others states may be determined order by order using
the creation operators âx ⊗ ây . Let us now comment this
result. First of all, recall that the limit ε → 0 is not well
defined using Eq. 52. Also, the energy E0(kx, ky) depends
on kx and ky , which means that after the inverse Fourier
transformation we get

E0(x, y) = 1

(2π)2

∣∣∣∣∣
∫ π

ε

− π
ε

ei(kxx+kyy)E0(kx, ky)dkxdky

∣∣∣∣∣

= �ω

2π2
|κ(x, y) + κ(y, x)| , (54)

where

κ(x, y) = x sin(πx/ε) sin(πy/ε)

y(ε2 − x2)
,

which depends on the coordinates functions x and y. It
should also be noted that the continuous limit is given by

lim
ε→0

E0(x, y) = �ωδ(x)δ(y), (55)

which is also not well defined at the ground state energy of
the harmonic oscillator, owing to the presence of the Dirac
delta function. All these pathologies are a consequence of
the treatment we have done with the definition of lattice
analogue of the annihilation and creation operators (43)–
(46). In attempting to fill these gaps, we will consider the
perturbation method to derived the eigenvalue (40).

3.1.2 Perturbation Method and Solution

Considering the Taylor expansion of sinh2(ε∂x) + sinh2

(ε∂y), the first order expansion to ε2 of the Hamiltonian Hε

takes the form

Ĥε = − �
2

2m

(
∂2x + ∂2y

)
+ mω2

2

[(
x̂ε

)2 + (
ŷε

)2]

−ε2�2

6m

(
∂4x + ∂4y

)
+ O(ε2)

= Ĥ0 + ε2Ŵ + O(ε2). (56)

Ĥ0 corresponds to the harmonic oscillator Hamiltonian in
ordinary space and Ŵ is considered to be the perturbation
term. Thus, we can introduce the new annihilation and
creation operators defined in the limit ε = 0 as:

b̂x = 1√
2�mω

(
ip̂x + mωx̂ε

) = lim
ε→0

âx, (57)

b̂†x = 1√
2�mω

(−ip̂x + mωx̂ε
) = lim

ε→0
â†x, (58)

b̂y = 1√
2�mω

(
ip̂y + mωŷε

) = lim
ε→0

ây, (59)

b̂†y = 1√
2�mω

(−ip̂y + mωŷε
) = lim

ε→0
â†y, (60)

such that the canonical commutation relation

is well satisfied, and in these new coordi-
nates Ĥ0 and Ŵ take the form

Ĥ0 = �ω
(
b̂x b̂

†
x + b̂y b̂

†
y − 1

)
, (61)

Ŵ = −mω2

24

(
(b̂x − b̂†x)

4 + (b̂y − b̂†y)
4
)
. (62)

One constructs the Fock states as {|nx, ny; 0〉 = |nx〉 ⊗
|ny〉 ∈ H, nx, ny ∈ N} such that the followings relations
hold:

b̂x ⊗ b̂y |nx, ny; 0〉 = √
nxny |nx − 1, ny − 1; 0〉, (63)

b̂†x ⊗b̂†y |nx, ny; 0〉=
√

(nx + 1)(ny + 1)|nx + 1, ny + 1; 0〉.
(64)
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and such that b̂x ⊗ b̂y |0, 0; 0〉 = 0. The eigen-equation
Ĥ0|nx, ny; 0〉 = E0

nx,ny
|nx, ny; 0〉, gives nx + ny + 1

degenerate states such that E0
nx,ny

= �ω(nx + ny + 1). We

denote these degenerate states as |nx, ny; 0〉j , such that for
n = nx + ny :

|nx, ny; 0〉j = {|n − j, j ; 0〉; j = 0, 1, 2, · · · , n} . (65)

Consider now the vector |N〉 = ∑n
j=0 cj |nx, ny; 0〉j +

ε2|nx, ny; 1〉 + O(ε2) and the energy Eε,nx,ny = E0
nx,ny

+
ε2E1

nx,ny
+O(ε2), which solve the eigen-problem Ĥε|N〉 =

Eε,nx,ny |N〉, and cj ∈ C, j = 0, 1, · · · , n. We have the
orthogonality relation

∑n
j=0 cj

k〈0; nx, ny〉nx, ny; 0j =
δjk and the first order correction of the energy, i.e., E1

nx,ny

is determined by the following linear homogeneous system
n∑

j=0

cj
k
〈
0; nx, ny

∣∣ Ŵ ∣∣nx, ny; 0
〉j = E1

nx,ny
ck . (66)

While the above system is completely determine by the
matrix G such that detG = 0

G :
{

Gkk = k〈0; nx, ny |Ŵ |nx, ny; 0〉k − E1
nx,ny

Gkj = k〈0; nx, ny |Ŵ |nx, ny; 0〉j for k �= j
(67)

A few computation shows that G is diagonal matrix and the
diagonal elements Gkk are given by

Gkk = −mω2

4

(
n(n + 1) − 2kn + 2k2 + 1

)
− E1

n (68)

where E1
n = E1

nx,ny
, satisfies the following equation

n∏
k=0

[
−mω2

4

(
n2 + n(1 − 2k) + 2k2 + 1

)
− E1k

n

]
= 0.

(69)

The index “k” in E1k
n is used to specify the degeneracy, such

that

Ek
ε,n = �ω (n + 1) − mω2ε2

4

[
n2 + n(1 − 2k) + 2k2 + 1

]

+O(ε2). (70)

|nx, ny; 1〉 can be computed in the same manner. Let D =
{n − j ; 0 ≤ j ≤ n} and D′ = {j ; 0 ≤ j ≤ n}, we get

|nx, ny; 1〉=−
n∑

j=0

∑
mx,my

mx /∈D
my /∈D′

cj 〈Ŵ 〉jmn

E0
mx,my

−E0
nx,ny

|mx, my; 0〉 = 0.

(71)

where 〈Ŵ 〉jmn = 〈0; mx, my |Ŵ |nx, ny; 0〉j .
Let us now deal with the thermodynamic behavior of the

oscillator model. First let us recall that the thermodynamic
behavior of the harmonic oscillator is extensively studied in
the literature. In the case of the NC space, see [62–67] for

the recent works. The useful ingredient for this study in the
partition function Zk(T , ε) depending with the degeneracy
index k as

Zk(T , ε) =
∞∑

n=0

(n + 1)e−βEk
ε,n , β = 1

kBT
, (72)

kB is the Boltzmann constant. The full partition function
is the sum under all degeneracies terms as Z(T , ε) =∑n

k=0 Zk(T , ε). From statistical mechanics point of view,
the probability p(i, j) of finding a system in a state |i, j 〉 is
given by the Boltzmann formula [68]:

p(i, j) = e−βEk
ε,n(i,j)

Z(T , ε)
. (73)

Thereby the others thermodynamic quantities such as the
free enery F = − 1

β
logZ(T , ε), the entropy S = − ∂F

∂T
, the

internal energy U = − ∂ lnZ
∂β

, the heat capacity Cv = ∂U
∂T

are
given in the table built in Fig. 2.

We give the asymptotic behavior of the various functions
at low temperatures T << �ω. First, let us remark that if T

is very small and goes to absolute 0, we get

1

sinh
(

β�ω
2

) → 0,
β coth2

(
β�ω
2

)

sinh
(

β�ω
2

) ≈ β

e
β�ω
2

→ 0. (74)

Then the partition function Z(T , ε) goes to zero. This result
is identical to what we obtain in the continuous space. On
the other hand, for very high temperature and for a small
value of the parameter ε, Z(T , ε) > Z(T , 0). The variation
�Z = Z(T , ε) − Z(T , 0) characterize the correction due
to the discretization of the space. As an example, let fix the
constants m, ω, and � to the unit. then for T = 105K and
ε = 10−11meter, we get �Z = 0.05.

The free energy and the internal energy is reduced to

F(T << �ω, ε) = U(T << �ω, ε) ≈ �ω − mω2ε2

4
. (75)

Remark that in the thermodynamic equilibrium applied to
the harmonic oscillator, the free energy and internal energy
are given by

F(T , 0) = 2

β
log

[
2 sinh

(
β�ω

2

)]
, (76)

U(T , 0) = �ω coth

(
β�ω

2

)
. (77)

The limit T << �ω of these two quantities are reduced
to F(0, 0) = �ω and U(0, 0) = �ω, which corresponds to
the ground state energy of 2D quantum harmonic oscillator
and is in adequacy with thermodynamic equilibrium energy
[62–67]. Therefore, the result (75) is very close to what
is obtained in thermodynamic quantum mechanics of the
harmonic oscillator for the small value of ε due to the fact
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Fig. 2 The thermodynamic quantities of the lattice oscillator

that mω2ε2

4 remains small. The contribution mω2ε2

4 appears
as the first order correction of the lattice. On the other hand,
a divergence appears at high temperatures T >> �ω. This
behavior is illustrated in Figs. 3 and 4. The same analysis
can be performed for the entropy S and the heat capacityCv .

3.2 Harmonic Oscillator in aNoncommutative Lattice

In this subsection, we consider the case where both
momenta and coordinates are noncommutative, as presented
in Eq. 23. We will show that in particular case where θ̄ =
−m2ω2θ , the eigenvalue problem can be determined as in
the previous section. One of the most ambiguous aspects,
namely in the case where θ̄ �= −m2ω2θ , is also considered
and studied. The Hamiltonian of the oscillator

Ĥε = 1

2

[
(P̂ ε

x )2 + (P̂ ε
x )2

]
+ 1

2

[
(X̂ε)2, (Ŷ ε)2

]
, (78)

in the first order of ε2 is split into:

Ĥε = Ĥ0 + ε2Ŵ + O(ε2) (79)

Z(T,0.01)
Z(T,0.001)
Z(T,0)

20 40 60 80 100
T

20

40

60

80

100

Z(T, )

Fig. 3 Plot of the partition function for different values of the lattice
spacing ε

where Ĥ0 is assumed to be the nonperturbative Hamiltonian
and Ŵ stands for the perturbation:

Ĥ0 = 
2

2m
(p̂2

x + p̂2
y) + mω2
̄2

2

(
(x̂ε)2 + (ŷε)2

)

+ 
̃

m
(ŷεp̂x − x̂εp̂y), (80)

Ŵ = − 1

6m�2

[

2(p̂4

x + p̂4
y) + 
̃(ŷεp̂3

x − x̂εp̂3
y)

]
. (81)
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F(T,0)

20 40 60 80 100
T

- 1000

- 800

- 600

- 400

- 200

F(T, )

U(T,0.01)
U(T,0.001)
U(T,0)

20 40 60 80 100
T

- 100

- 50

50

100

150

200

U(T, )

Fig. 4 Plot of the free energy and the internal energy for different
values of the lattice spacing ε. We find that for low temperatures, ∀ε

small the thermodynamic quantities coincide with the expected values
when ε = 0 (the continuum limit). The divergence appears for the high
temperatures as we can easily see on these figures
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The parameters 
, 
̄, 
̃ are given by


2 = 1 + m2ω2θ2

4�2
, (82)


̄2 = 1 + θ̄2

4m2�2ω2
, (83)


̃ = θ̄

2�
+ m2ω2θ

2�
. (84)

The more general result concerning the eigenvalues problem
of the Hamiltonian (80) can be obtained essentially by using
the method described in the previous section. We construct
the annihilation and creation operators (b̂ and b̂†) as follows:

b̂x = 1√
2

̄�mω

(
i
p̂x + mω
̄x̂ε

)
, (85)

b̂†x = 1√
2

̄�mω

(−i
p̂x + mω
̄x̂ε
)

(86)

b̂y = 1√
2

̄�mω

(
i
p̂y + mω
̄ŷε

)
, (87)

b̂†y = 1√
2

̄�mω

(−i
p̂y + mω
̄ŷε
)
. (88)

They satisfy the canonical commutation relation

, and according to which the
Hamiltonian Ĥ0 can be factorized as follows:

which corresponds to the Hamiltonian of two-dimensional
Landau problem in the symmetric gauge on NC space.
Equivalently, the presence of magnetic fields in this
relation also suggest a NC structure for the spacetime. The
perturbation term is

Ŵ = − 
̄ω

24


[


̄mω

(
(b̂x − b̂†x)

4 + (b̂y − b̂†y)
4
)

+ i
̃(b̂y +b̂†y)(b̂x −b̂†x)
3 − i
̃(b̂x + b̂†x)(b̂y −b̂†y)

3
]
.

(90)

For some purposes, it is useful to point out that the states
of the form |nx, ny; 0〉 defined in Eq. 65 may diagonalyze
the Hamiltonian (89). Aiming at including the perturbation
term Ŵ in our diagonalization procedure, let us consider the
new operators:

b̂+ = 1√
2

(
b̂x + ib̂y

)
, b̂

†
+ = 1√

2

(
b̂†x − ib̂†y

)
, (91)

b̂− = 1√
2

(
b̂x − ib̂y

)
, b̂

†
− = 1√

2

(
b̂†x + ib̂†y

)
. (92)

Here also, the canonical commutation relation is well satis-

fied, i.e., . Then the Hamiltonian
Ĥ0 and Ŵ become

Ŵ = − 
̄ω

96


[


̄mω

(
A4 + B4

)
+ 
̃

(
AC3 + BD3

)]
,

(94)

where

A= b̂+−b̂
†
+ + b̂− − b̂

†
−, B = b̂+ + b̂

†
+ − b̂− − b̂

†
− (95)

C = b̂+ − b̂
†
+ − b̂− + b̂

†
−, D= b̂+ + b̂

†
+ + b̂− + b̂

†
− (96)

and N̂+ = b̂
†
+b̂+ and N̂− = b̂

†
−b̂− are the number

operators. Let {|n+, n−; 0〉 = |n+〉 ⊗ |n−〉, n−, n+ ∈ N} be
a set of Fock vectors such that

b̂
†
+|n+, n−; 0〉 = √

n+ + 1|n+ + 1, n−; 0〉, (97)

b̂
†
−|n+, n−; 0〉 = √

n− + 1|n+, n− + 1; 0〉 (98)

Then we get

N̂+|n+, n−; 0〉 = n+|n+, n−; 0〉,
and

N̂−|n+, n−; 0〉 = n−|n+, n−; 0〉.
The states |n+, n−; 0〉 solve the eigenvalue problem
Ĥ0|n+, n−; 0〉 = E0,n+,n−|n+, n−; 0〉 (99)

with corresponding energies

E0,n+,n− = 

̄�ω (n+ + n− + 1) − 
̃�

m
(n− − n+)

= 

̄�ω (n + 1) − 
̃�

m
j . (100)

where n = n+ + n− and j = n− − n+. Concerning the
perturbation Ŵ, it seems that the states |n+, n−; 0〉 form
a diagonalyzed basis, in the case where θ̄ = −m2ω2θ ,
which refers to the solvable condition of the harmonic
oscillator in noncommutative space when both momentum
and coordinates are suppose to satisfy the nonvanish
commutation relations. The Hamiltonian Ĥ0 and Ŵ become

Ĥ0 = 
2Ĥ0, Ŵ = 
2Ŵ (101)

where Ĥ and Ŵ are defined in Eq. 56. Then, we find that
the eigen-energy of Ĥ is

Ek
ε,n = 
2

[
Ē0n − mω2ε2

4

(
n2 + n(1 − 2k) + 2k2 + 1

)]
.

(102)

with Ē0n = �ω(n + 1) and k = 0, 1, ..., n are the order
of degeneracy. Let us note that all the thermodynamic
properties derived in the last subsection can also be
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performed using the spectrum (102) and we arrive at the
same conclusion.

Nowwe will focus on the case of arbitrary positive values
of the parameters θ and θ̄ . The first order correction energy
E1k

n+,n− is obtained by the following system

∑
j=0
j �=k

n
cj

k〈Ŵ〉j + ck

(
k〈Ŵ〉k − E1k

n+,n−

)
= 0, (103)

where the matrix elements k〈Ŵ〉j := k〈0; n+, n− |Ŵ|
n+, n−; 0〉j are explicitly given by

k〈Ŵ〉j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 
̄2mω2

8

(
(n + 1)(n + 2) + 2kn − 2k2

) − 
̃
̄ω
8
 (n + 1)(n − 2k), j = k,

− 
̄2mω2

8

√
k(k − 1)(n − k + 1)(n − k + 2), j = k − 2,

− 
̄2mω2

8

√
(k + 1)(k + 2)(n − k − 1)(n − k), j = k + 2,

0 otherwise

(104)

Our interest is the determinant of the matrix (G) similar to
expression (67):

(G) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gk,k = − 
̄2mω2

8

(
(n + 1)(n + 2) + 2kn − 2k2

) − 
̃
̄ω
8
 (n + 1)(n − 2k) − E1k

n ,

Gk,k−2 = − 
̄2mω2

8

√
k(k − 1)(n − k + 1)(n − k + 2),

Gk,k+2 = − 
̄2mω2

8

√
(k + 1)(k + 2)(n − k − 1)(n − k),

0 otherwise

(105)

The matrix G is not diagonal but symmetric, i.e., Gk,k+2 =
Gk+2,k . The solution of equation detG = 0 can no longer
be obtained by direct calculation for arbitrary value of the
integer n. We provide here this solution order by order to
this quantum number n. So the first order corrections of the
energy spectrum become

n = 0 : E10
0 = − 
̄2mω2

4
(106)

n = 1 :
{
E11
1 = − 3
̄2mω2

4 + 
̃
̄ω
4


E10
1 = − 3
̄2mω2

4 − 
̃
̄ω
4


(107)

n=2 :

⎧⎪⎨
⎪⎩

E12
2 =− 3
̄2mω2

2 + ω
̄
4


√
9
̃2+
2
̄2m2ω2

E11
2 =− 7
̄2mω2

4

E10
2 =− 3
̄2mω2

2 − ω
̄
4


√
9
̃2+
2
̄2m2ω2

(108)

n = 3 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E13
3 = 2
̄
̃ω−11

̄2mω2

4
 + 
̄ω
2


√
4
̃2 + 2

̄
̃mω + 
2
̄2m2ω2

E12
3 = − 2
̄
̃ω+11

̄2mω2

4
 + 
̄ω
2


√
4
̃2 − 2

̄
̃mω + 
2
̄2m2ω2

E11
3 = 2
̄
̃ω−11

̄2mω2

4
 − 
̄ω
2


√
4
̃2 + 2

̄
̃mω + 
2
̄2m2ω2

E10
3 = − 2
̄
̃ω+11

̄2mω2

4
 − 
̄ω
2


√
4
̃2 − 2

̄
̃mω + 
2
̄2m2ω2

(109)

For n ≥ 4 the computation of the determinant of G leads
to the mixing of real and complex values as solutions
of Eq. 103. The complex energies cannot be taking into
account in our analysis. Moreover, for the moment, we have

no method to classify these solutions. Then we consider
only the quantum numbers n = 0, 1, 2, 3 as given above.
The correction of the states |N〉 namely |n+, n−; 1〉 are
given using the first order perturbation equation:

|n+, n−; 1〉 = −
∑

	+,	−
	+ /∈D
	− /∈D′

n∑
j=0

cj

〈0; 	+, 	−|Ŵ|n+, n−; 0〉j
E0

	+,	− − E0
n+,n−

|	+, 	−; 0〉, (110)
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where D = {n+ + n− − j ; 0 ≤ j ≤ n+ + n−}, D′ =
{j ; 0 ≤ j ≤ n+ + n−}. Let 〈0; 	+, 	−|Ŵ|n+, n−; 0〉j :=

〈Ŵ〉j	n we can determine |n+, n−; 1〉 by replacing in Eq. 110
the following relation

〈Ŵ〉j	n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 
̄2mω2

8

√
j (j − 1)(n − j)(n − j − 1) 	− = j − 2; 	+ = n − j − 2

− 
̄2mω2

8

√
(j + 1)(j + 2)(n − j + 1)(n − j + 2) 	− = j + 2; 	+ = n − j + 2

( 
̃
̄ω
8
 (n − 2j) + 
̄2mω2

4 (n + 2))
√

(j + 1)(n − j + 1) 	− = j + 1; 	+ = n − j + 1

( 
̄2mω2

12 − 
̃
̄ω
24
 )

√
(j + 1)(j + 2)(j + 3)(n − j) 	− = j + 3; 	+ = n − j − 1

(− 
̃
̄ω
4
 j + ( 
̄2mω2

4 + 
̃
̄ω
8
 )n)

√
j (n − j) 	− = j − 1; 	+ = n − j − 1

( 
̄2mω2

12 − 
̃
̄ω
24
 )

√
j (j − 2)(j − 1)(n − j + 1) 	− = j − 3; 	+ = n − j + 1

( 
̄2mω2

12 + 
̃
̄ω
24
 )

√
(j + 1)(n − j)(n − j − 1)(n − j − 2) 	− = j + 1; 	+ = n − j − 3

( 
̄2mω2

12 + 
̃
̄ω
24
 )

√
j (n − j + 1)(n − j + 2)(n − j + 3) 	− = j − 1; 	+ = n − j + 3

(111)

For n = 0, we get

|0, 0; 1〉 = 1√
17

|2, 2; 0〉 − 4√
17

|1, 1; 0〉. (112)

For n = 1, we get

|n+, n−; 1〉 = c0

[

̄2m2ω2

8�(2

̄mω + 
̃n−)

√
3 |3, 2; 0〉 − 
̃
̄mω + 6

̄2m2ω2

16
�(

̄mω + 
̃n−)

√
2 |2, 1; 0〉

− 2

̄2m2ω2 + 
̃
̄mω

48
�(

̄mω + 
̃(n− − 2))

√
6 |0, 3; 0〉

]
+ c1

[

̄2m2ω2

8�(2

̄mω + 
̃(n− − 1))

√
3 |2, 3; 0〉

− −
̃
̄mω + 6

̄2m2ω2

16
�(

̄mω + 
̃(n− − 1))

√
2 |1, 2; 0〉 − 2

̄2m2ω2 + 
̃
̄mω

48
�(

̄mω + 
̃(n− + 1))

√
6 |3, 0; 0〉

]
(113)

where n+ = 1 and n− = 0 or n+ = 0 and n− = 1. The
constants c0 and c1 are determined using the normalization
conditions 〈1; 1, 0|1, 0; 1〉 = 1 and 〈1; 0, 1|0, 1; 1〉 = 1.

Let us now discuss the consistency of our result. First of
all, we show the difficulties around the direct computation
of the eigen-equation of the harmonic oscillator in 2D lattice
not only in ordinary space but also in NC space. These
difficulties come from the fact that the corresponding lattice
analogue of creation and annihilation operators are not
Ladder operators. We provide using perturbative method,
the solution of this complicate differential equation. Despite
this very promising result, the case of NC space need to
be revisited by defined the new basis which can help to
diagonalize the matrix (G) of expression (105) similar to
expression (67). Finally, the general solution, i.e., the case
where θ̄ �= −m2ω2θ , need to be also scrutinized.

4 Conclusion and Remarks

In this paper, we have solved the harmonic oscillator in the
2d lattice. First, we have considered the case of ordinary

quantum mechanics. We showed that the direct computa-
tion of the eigenvalues by using the analogue of Ladder
operator is not satisfactory as far as the physical rele-
vance is concerned, due to the appearance of coordinates
dependency in the energies. Also the continuous limit, i.e.,
ε = 0 is not well satisfied. The first-order approximation
of the lattice spacing ε has been considered and the per-
turbation computation of the energy spectrum given. The
statistical thermodynamic properties of the model have
also been given. On the other hand, the same question is
addressed for general noncommutativity between coordi-
nates and momenta. We have come to the conclusion that
the eigenvalue problem may be solved in the case where
θ̄ = −m2ω2θ . The more general case where this relation
is not satisfied has also been examined. We hope that it
will be possible to construct a new Fock states in which the
matrix Ŵ maybe diagonalizable. This question deserve to
be addressed and will be considered in forthcoming work.
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