Supporting Information for # Influence of Steam on a Vanadyl Pyrophosphate # **Catalyst During Propane Oxidation** Maria Heenemann,¹ Christian Heine,¹ Michael Hävecker,² Annette Trunschke,*,¹ and Robert Schlögl^{1,2} ¹ Fritz-Haber-Institut der Max-Planck-Gesellschaft Department of Inorganic Chemistry Faradayweg 4-6, 14195 Berlin (Germany) Max-Planck-Institut für Chemische Energiekonversion Department Heterogeneous Reactions Stiftstr. 34-36, 45470 Mülheim an der Ruhr (Germany) #### *Corresponding author: Annette Trunschke Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany) Phone: +49 30 8413 4457 E-mail: trunschke@fhi-berlin.mpg.de ### X-ray powder diffraction of VPP The X-ray powder diffraction (XRPD) measurements were performed in Bragg-Brentano geometry on a Bruker AXS D8 Advance II theta/theta diffractometer with Ni filtered Cu K α radiation. A position sensitive energy dispersive LynxEye silicon strip detector was used. Figure S1 shows the XRPD pattern before and after the operando microwave conductivity experiment. **Figure S1.** XRPD pattern of polycrystalline VPP before and after use in propane oxidation at 400 °C under the various feed compositions specified in the main text. ## Operando microwave conductivity of VPP **Figure S2.** Catalytic performance under dry (3 vol% C3, 6 vol% O_2 , inert) and wet (3 vol% C3, 6 vol% O_2 , 5 vol% steam, inert) feed conditions at 400 °C measured in the MCPT setup; X describes the conversion of propane; S describes the selectivity to propylene (PP), acrylic acid (AA), acetic acid (AcA), CO and CO₂. The hatched sections stand for wet conditions. **Figure S3.** Microwave conductivity σ of VPP under dry (6 vol% O₂, inert) and wet (6 vol% O₂, 5 vol% steam, inert) feed conditions at 400 °C. ### Near-ambient pressure X-ray photoelectron spectroscopy **Figure S4.** Schematic changes of energetic conditions at a p-type semiconductor interface for flat band, surface dipole, and band bending situations. Further, E_{vac} is the vacuum level, E_C is the conduction band (CB) edge, E_F is the Fermi level, E_V is the valence band (VB) edge, E_{core} is the core level, $E_{cut\text{-off}}$ is the secondary electron cutoff edge, χ is the electron affinity, and Φ is the work function. The changes of surface dipole modification shifts $\Delta\chi$. The term eV_{bb} considers band bending. **Table S1.** V2p_{3/2} fit parameters (see Figure 4 in in the main article) where FWHM is the full width at half maximum and GL is the Gaussian-Lorentzian ratio as defined in CasaXPS² | Species | V2p _{3/2} V ⁴⁺ | V2p _{3/2} V ⁵⁺ (I) | V2p _{3/2} V ⁵⁺ (II) | |--------------------|------------------------------------|--|---| | FWHM | 1.72 - 1.66 | 1.58 - 1.61 | 1.58 - 1.61 | | Peak position / eV | 516.9 | 518.0 | 517.8 | | Line shape | GL(45) | GL(45) | GL(45) | **Figure S5.** The XPS core level peak assignment of the survey spectra of VPP for the 1st dry feed **(a)**, and XP survey spectra (E_{ph} of 860 eV) of VPP for all applied gas feeds **(b)**. **Figure S6.** PTR-MS trace of propylene (top, protonated mass m/z = 43) and acrylic acid (bottom, protonated mass m/z = 73) under the various feed compositions as indicated on the abscissa. #### References - (1) Aruchamy, A., *Photoelectrochemistry and Photovoltaics of Layered Semiconductors*. Springer Science & Business Media: 2013; Vol. 14. - (2) Schwab, G. M., Boundary-Layer Catalysis. *Angewandte Chemie International Edition in English* **1967**, *6*, 375-375.