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Abstract. In event-driven programming frameworks, such as Android,
the client and the framework interact using callins (framework methods
that the client invokes) and callbacks (client methods that the framework
invokes). The protocols for interacting with these frameworks can often
be described by finite-state machines we dub asynchronous typestates.
Asynchronous typestates are akin to classical typestates, with the key
difference that their outputs (callbacks) are produced asynchronously.
We present an algorithm to infer asynchronous typestates for Android
framework classes. It is based on the L™ algorithm that uses member-
ship and equivalence queries. We show how to implement these queries
for Android classes. Membership queries are implemented using testing.
Under realistic assumptions, equivalence queries can be implemented us-
ing membership queries. We provide an improved algorithm for equiva-
lence queries that is better suited for our application than the algorithms
from literature. Instead of using a bound on the size of the typestate to
be learned, our algorithm uses a distinguisher bound. The distinguisher
bound quantifies how two states in the typestate are locally different.
‘We implement our approach and evaluate it empirically. We use our tool,
STARLING, to learn asynchronous typestates for Android classes both for
cases where one is already provided by the documentation, and for cases
where the documentation is unclear. The results show that STARLING
learns asynchronous typestates accurately and efficiently. Additionally,
in several cases, the synthesized asynchronous typestates uncovered sur-
prising and undocumented behaviors.

1 Introduction

Event-driven programming frameworks interact with client code using callins and
callbacks. Callins are framework methods that the client invokes and callbacks
are client methods that the framework invokes. The client-framework interaction
is often governed by a protocol that can be described by a finite-state machine.

For example, consider a typical interaction between a client application and
the framework when the client wants to use a particular service. The client
asks for the service to be started by invoking a startService() callin. Af-
ter the framework receives the callin, it asynchronously starts initializing the



service. When the service is started and ready to be used, the framework no-
tifies the client by invoking a onServiceStarted() callback. The client can
then use the service. After the client finishes using the service, it invokes a
shutdownService() callin to ask the framework to stop the service.

The protocol for the interaction in the example can be described by a finite-
state machine we call asynchronous typestate. Typestates [32] were introduced to
describe synchronous interfaces that specify order of method calls. As they are
synchronous, typestates involve only callins (which can return output values).
In contrast, asynchronous typestates have both inputs (corresponding to callins)
and outputs (corresponding to callbacks). In automata theory, asynchronous
typestates can be seen as interface automata. Interface automata [12] are a well-
studied model of automata that can receive outputs asynchronously w.r.t. inputs.
We choose to use the name asynchronous typestates to emphasize that they are
a generalization of typestates as used in the programming languages literature.

Problem. We consider the problem of inferring asynchronous typestates from
framework code, in particular in the Android framework. Asynchronous types-
tates are useful in a number of ways. First, asynchronous typestates are a form of
documentation. They tell client application programmers in what order to invoke
callins and which callback to expect. Some Android framework documentation
already uses pictures very similar to asynchronous typestates (Figure 1). Sec-
ond, asynchronous typestates are also useful in verification of client code. They
enable checking that a client uses the framework correctly. Third, even though
we infer the asynchronous typestates from framework code, they can be used for
certain forms of framework verification. For instance, one can infer typestates
for different versions of the framework, and check if the interface has changed.

Method. We present a method for inferring typestates for Android classes.
However, our method is equally applicable in other contexts. The core algorithm
is based on Angluin’s L* algorithm [5] adapted to Mealy machines [28]. a learner
tries to learn a finite-state machine — in our case an asynchronous typestate
— by asking a teacher membership and equivalence queries. We note that the
teacher does not need to know the solution, but only how to answer the queries.

Membership and equivalence oracles. The key question we answer is how to
implement oracles for the membership and equivalence queries. The membership
query asks whether a given sequence of callins is legal, i.e., it does not raise an
exception when invoked on the class C, and, if so, what sequence of callbacks
C generates in response. We implement the membership oracle by testing. The
equivalence query asks whether the current hypothesis H is a typestate for C'. If
not, the teacher provides a counterexample: a sequence of callins and callbacks
allowed by H which does not arise when a client interacts with C, or vice versa.
Answering the equivalence query requires checking language inclusion for two
programs (C' and H). This is an undecidable problem in general.

However, under realistic assumptions, the equivalence oracle can be im-
plemented on top of the membership oracle. This follows from an automata-
theoretic result on the length of the longest minimal counterexample for equiv-
alence of two automata. The equivalence oracle uses the following boundedness



assumption: if C' has an asynchronous typestate, then its number of states is
less than a constant k. Unfortunately, the equivalence check implemented in
this way (as is done in previous algorithms [10,14] for conformance testing) is
exponential in k. Therefore, we introduce the notion of a distinguisher bound.
A distinguisher bound limits the size of a witness word that differentiates two
states. Intuitively, a distinguisher bound quantifies how states are locally differ-
ent. The distinguisher bound is always smaller than the state bound; for Android
classes, we found empirically that the distinguisher bound is significantly smaller
than the state bound. The largest asynchronous typestates of an Android class
we found have at most 10 states and a distinguisher bound of 2.

Implementing membership oracle on Android. We implement the mem-
bership oracle using testing. Concretely, we run the sequence of callins, and log
exceptions, errors, and callbacks that occur. Since testing might not expose all
the framework’s behaviors, the oracle can return incorrect results. We explain in
detail the assumptions under which we learn the correct typestate in Section 3.2
and how our implementation deals with them in Section 5.

Empirical evaluation. We implemented our approach in a tool called STAR-
LING. We use STARLING to synthesize asynchronous typestates for Android
framework classes. The results show that STARLING learns asynchronous type-
states accurately and efficiently. This is confirmed by documentation, code in-
spection, and manual comparison to simple Android applications. The small
bound hypothesis is also confirmed. Furthermore, by inspecting our typestates,
we uncovered corner cases with surprising behavior that are undocumented and
might even be considered as bugs. Section 6 presents our results in more detail.

Contributions. The contributions of this paper are: (a) We introduce the notion
of asynchronous typestates and develop an approach, based on the L* algorithm,
to infer them. (b) We show how to implement efficiently membership and equiv-
alence oracles required by the L* algorithm. (¢) We evaluate our approach on
examples from the Android framework, and show its accuracy and effectiveness.

2 Illustrative Example

Let us consider the asynchronous typestate in Figure 1, taken from the docu-
mentation for the Android class called MediaPlayer. Callins are represented by
single arrows and callbacks by double arrows. Let us look at one part of the pro-
tocol that governs the client-framework interaction. The client first invokes the
callin setDataSource (), and the protocol transitions to the Initialized state.
In this state, the client can invoke the callin prepareAsync (), and the protocol
transitions to the Preparing state. In the Preparing state, the client cannot
invoke any callins, but the framework can invoke the onPrepared() callback,
and then the protocol transitions to the Prepared state. Only at this point, the
client can invoke the start () callin, and the media starts playing.

Our approach follows the structure of the L* algorithm. A learner asks mem-
bership queries, until she can form a hypothesis automaton and ask an equiva-
lence query. If a counterexample is returned, the algorithm learns from it. This
process repeats until the hypothesis is correct. For the MediaPlayer, the first set



of membership queries each invoke a different callin. Of these, only the query con-
taining setDataSource () succeeds. The testing-based membership oracle raises
an exception on all the other callins. The learner continues with longer mem-
bership queries while building the hypothesis automaton. For instance, it learns
that prepareAsync() and prepare() cannot lead to the same state: it is pos-
sible to invoke the start() after prepare(), but not after prepareAsync().
Once the client receives the callback onPrepared(), start() may be called.
The learner thus hypothesizes a transition from the Preparing to the Prepared
on onPrepared(). Once the hypothesis is complete, the learner asks the equiv-
alence query. In this example, the solution is found after 5 equivalence queries.
Assuming small typestates it be-
comes possible to implement the
equivalence check using testing. How-
selDataSource( ever, equivalence queries are still ex-
pensive and to make them practical

we present an new optimization based
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Fig. 1: Part of MediaPlayer’s asyn- & specific function and an associated
chronous  typestate  from  https: set of callins and callbacks. In au-
//developer.android.com/reference/ tomata terms, the alphabet is roughly
android/media/MediaPlayer.html the same size as the number of states

and the states have only a few transi-
tions. Therefore, two states are easy to distinguish. In Section 4.3, we explain
how we use the distinguisher bound to implement equivalence queries and discuss
why distinguisher bounds are small in practice.

3 The Asynchronous Typestate Learning Problem

We introduce models of interfaces, define the asynchronous typestate learning
problem, and present an impossibility result about learning typestates.

3.1 Definitions and Problem Statement
Asynchronous interfaces. Let Y; and X, be the set of callins and callbacks

of an asynchronous interface. We abstract away parameter and return values
of callins and callbacks, and model a behavior of the interface as a trace 7; =



0g...0n € (X; U X,)*. The interface | is given by (X;, X,, II;) where II; C
{X; U X,}* is the prefix-closed set of all feasible traces of the interface.

Interface automata. We use interface automata [12] to represent asynchronous
interfaces. An interface automaton A is given by (Q, q,, X;, X, Aa) where: (a) Q
is a finite set of states, (b) g, € Q is the initial state, (c) X; and X, are finite sets of
input and output symbols, and (d) Aa C Qx{X;UX,} xQ are a set of transitions.
A trace T, of Ais given by oo ... 0, 1 30 . .. Gny1 : g0 = @ AVE(qi, 04, Giv1) € An.
We denote by Traces(A) the set of all traces of A.

Problem statement. Given an interface | = (X;, X, II;), the asynchronous
typestate learning problem is to learn an interface automaton A such that II; =
Traces(A). We allow the learner to ask a membership oracle MOracle[l] member-
ship queries. For a membership query, the learner picks mQuery = igiy .. .4, € XF
and the membership oracle MOracle[l] returns either: (a) a trace 7, € II; whose
sequence of callins is exactly mQuery, or (b) L if no such trace exists.

3.2 The Theory and Practice of Learning Typestates

In general, it is impossible to learn asynchronous typestates using only member-
ship queries; no finite set of membership queries fixes a unique interface automa-
ton (see Appendix B for a formal statement). However, asynchronous typestates
can be effectively learned given extra assumptions. Below, we analyze the causes
behind the impossibility and highlight the assumption necessary to overcome it.

Unbounded asynchrony. Membership queries alone do not tell us if the inter-
face will emit more outputs (callbacks) at any point in time. Hence, we assume:
Assumption 1: Quiescence is observable.

This assumption is commonly used in ioco-testing frameworks [33]. In our set-
ting, we add an input wait and an output quiet, where quiet is returned after a
wait only if there are no other pending callbacks. In practice, quiet can be im-
plemented using timeouts, i.e., pending callbacks are assumed to arrive within a
fixed amount of time. If no callbacks are seen within the timeout, quiet is output.

Ezample 1. Using wait and quiet, in the MediaPlayer example, we have that
setDataSource() -prepareAsync() -onPrepared() -wait -quiet is a valid
trace, but setDataSource() -prepareAsync() -wait -quiet is not.

Behavior unboundedness. For any set of membership queries, let k& be
the length of the longest query. It is not possible to find out if the in-
terface exhibits significantly different behavior for input sequences much
longer than k. While this is a theoretical limitation, it is not a problem
in practice as most asynchronous typestates are rather small (< 10 states).
Assumption 2: An upper bound on the size of
the typestate being learned is known.

Non-determinism. We need to be able to observe the systems’ behaviors to

learn them and non-determinism can prevent that. Therefore, we assume:
Assumption 3: The interface is deterministic.

We assume that for every trace 7, of the interface, there is at most one output o €



X, such that 7, - 0 € II;. In practice, the non-determinism problem is somewhat
alleviated due to the nature of asynchronous typestates (see Section 5). See [1]
for a detailed theoretical discussion of how non-determinism affects learnability.

Ezample 2. Consider an interface with traces given by (input - (outl | out2))*.
All membership queries are a sequence of input’s; however, it is possible that
the membership oracle never returns any trace containing out2. In that case, no
learner will be able to learn the interface exactly.

4 Learning Asynchronous Typestates using L*

Given Assumption 1 and Assumption 3, we first build a “synchronous clo-
sure” of an asynchronous interface (Section 4.1). Then, we show how to learn
the synchronous closure effectively given Assumption 2 (Section 4.2 and 4.3).

4.1 From Asynchronous to Synchronous Interfaces

Using Assumption 1 and 3, we build a synchronous version of an interface
in which inputs and outputs strictly alternate following [1]. For synchronous
interfaces, we can draw learning techniques from existing work [5,1,22,28].

Define ¥; = X; U {wait} and X, = X, U {quiet, €, err}. The purpose of the
additional inputs and outputs is discussed below. For any 7, € (21- . f]o)*, we
define async(7s) = 7, € (X; U X,)* where 7, is obtained from 75 by erasing all
occurrences of wait, quiet, €, and err.

Synchronous closures. The synchronous closure l5 of an asynchronous inter-
face | = (X;, X,, IT;) is given by (f]i, ., IT,) where Y, and X, are as above, and
II, C (%;- X,)* is defined as the smallest set satisfying the following:

async(rs)-i € II; = 15-i-e € Il

async(7y) -0 € II; = 7, -wait-o € II;
(EEHS)/\/\TSEHS async(7y) i € II; = 74-i-err € I

Yo € X, : async(7s) -0 & II; —> 7 -wait-quiet € II;
Ts ends in err = 7-i-err € Il

Informally, in Is: (a) Each input is immediately followed by a dummy output
¢; (b) Each output is immediately preceded by a wait input wait; (c) Any call
to an input disabled in | is immediately followed by an err. Further, all outputs
after an err are err’s. (d) Any call to wait in a quiescent state is followed by quiet.

Given MOracle[l] and Assumption 1, it is easy to construct the membership
MOracle[l;]. Note that due to Assumption 3, there is exactly one possible reply
MOracle[l;](mQuery) for each query mQuery. Further, by the construction of the
synchronous closure, the inputs and outputs in MOracle[l;](mQuery) alternate.

Mealy machines. We model synchronous interfaces using the simpler formalism
of Mealy machines rather than interface automata. A Mealy machine M is a
tuple (Q, q,, 2, X, 8, Out) where: (a) Q, q,, X;, and %, are states, initial state,
inputs and outputs, respectively, (b) § : Q X Y, — Q is a transition function,
and (c¢) Out : @ x Y, — X, is an output function. We abuse notation and
write Out(q,ig...%,) = 01...0, and 6(q,ip...1y) = ¢ if Iq0,..-,Gnt1 : G0 =
A Gne1 = ¢ AY0 < i < n:6(q,4) = qiv1 A Out(g;,i;) = 0;. A sequence



1000 - - - inon € (2;- X,)* is a trace of M if Out(q,,ig...%n) = 0p . ..0n. We often
abuse notation and write M(ig .. .4,) instead of Out(q,, . ..%,). We denote by
Traces(M) the set of all traces of M.

4.2 L*: Learning Mealy Machines

For the sake of completeness, we describe the classical L* learning algorithm by
Angluin [5] as adapted to Mealy machines in [28]. A reader familiar with the
literature on inference of finite-state machines may safely skip this subsection.

Fix an asynchronous interfaces | and its synchronous closure |l,. In the L* al-
gorithm, in addition to a membership oracle MOracle]l;], the learner has access
to an equivalence oracle EOracle[ly]. For an equivalence query, the learner passes
a Mealy machine M to EOracle[l;], and is in turn returned: (a) A counterezam-
ple input cex = ig...4, such that M(cex) = og...0, and MOracle[l;](cex) #
1000 - . . in0n, or (b) Correct if no such cex exists.

The full L* algorithm is in Algorithm 1. In Algorithm 1, the learner maintains:
(a) aset Sqg C X7 of state-representatives (initially set to {e}), (b) aset E C X*
of experiments (initially set to X;), and (c) an observation table T : (Sg U
So-%i) = (E — ). The observation table maps each prefix w; and suffix e to
T'(w;)(e), where T'(w;)(e) is the suffix of the output sequence of MOracle(w; - €)
of length |e|. The entries are computed by the sub-procedure FillTable.

Intuitively, Sg represent Myhill-Nerode equivalence classes of the Mealy ma-
chine the learner is constructing, and E distinguish between the different classes.
For Sg to form valid set of Myhill-Nerode classes, each state representative ex-
tended with an input, should be equivalent to some state representative. Hence,
the algorithm checks if each w; -i € Sg - %; is equivalent to some w/ € Sg (line 3)
under F, and if not, adds w; -¢ to Sg. If no such wj; - ¢ exists, the learner con-
structs a Mealy machine M using the Myhill-Nerode equivalence classes, and
queries the equivalence oracle (line 5). If the equivalence oracle returns a coun-
terexample, the learner adds a suffix of the counterexample to E; otherwise, it
returns M. For the full description of the choice of suffix, see [26,28].

Theorem 1 ([28]). Let there exist a Mealy machine M with n states such that
Traces(M) is the set of traces of ls. Then, given MOracle[ls] and EOracle[l,],
Algorithm 1 returns M making at most |2;|>n + |Xs|n*m membership and n
equivalence queries, where m is the maximum length of counterexamples returned
by EOracle[ls]. If EOracle[ly] returns minimal counterezamples, m < O(n).

4.3 An Equivalence Oracle using Membership Queries

Given a black-box interface in practice, it is not feasible to directly implement
the equivalence oracle required for the L* algorithm. Here, we demonstrate a
method of implementing an equivalence oracle using the membership oracle using
the boundedness assumption (Assumption 2). As before fix an asynchronous
interface | and its synchronous closure |;. Further, fix a target Mealy machine
M* such that Traces(M*) is the set of traces of I;.

State bounds. A state bound of Bsiate implies that the target Mealy machine
M* has at most Bs,te States. Given a state bound, we can replace an equivalence
check with a number of membership queries using the following theorem.



Algorithm 1 L* for Mealy machines
Input: Membership oracle MOracle, Equivalence oracle EOracle
Output: Mealy machine M
1: Sg < {€}; E + %;; T « FillTable(So, X4, E, T)
2: while True do
3: while Jw; € Sg,i € X; : Aw| € Sq : T(w; -i) = T(w}) do
Sq « Sg U {w; -i}; FillTable(Sq, X:, E,T)
M « BuildMM(Sg, %, T); cex < EOracle(M)
if cex = Correct then return M
E + E U AnalyzeCex(cex, M); FillTable(Sq, %:, E, T)
. function BuildMM(Sg,%;,%,,T)
Q <« {lwi] |wi € Sot; ¢ < [d]
10: Yws, i §([wi], ) < [wi] if T(w;-i) = T(wy)
11: Vwi, t : Out([ws],3) <— o if T(ws)(i) =0

12: return (Q, q., X, 20,57Out)
13: function AnalyzeCex(M,cex)

R B A

14: for all 0 <1 <|cex| and w?, w; such that w!-wj = cex A |w?| =1 do
15: w? — M(w?); [w?'] < 5([¢], w?)

16: wy + last |w]| output symbols of MOracIe(wf, ~wy)

17: if w?-w; # output symbols of MOracle(cex) then return w;

18: procedure FiIITabIe(SQ,i'Z;,E,T)
19: for all w; € S U Sg -2, e € E do
20: T'(w;)(e) + Suffix of output sequence of MOracle(w; - €) of length |e]

Theorem 2. Let M and M’ be Mealy machines having k and k" states, respec-
tively, such that Jw; € X7 : M(w;) # M'(w}). Then, there exists an input word
w} of length at most k + k" — 1 such that M(w}) # M'(w}).

The proof is similar to the proof of the bound k + k' — 2 for finite automata
(see [29, Theorem 3.10.5]). We can check equivalence of M* and any given M by
testing that they have equal outputs on all inputs of length at most ky+ Bstate—1,
i.e., using O(|Z;|Ps==T+=1) membership queries. While this simple algorithm
is easy to implement, it is inefficient and the number of required membership
queries make it infeasible to implement in practice. Other algorithms based on
state bounds have a similar problems with efficiency (see Remark 2). Further,
the algorithm does not take advantage of the structure of M. The following
discussion and algorithm rectifies these short-comings.

Distinguisher bounds. A distinguisher bound of Bpix € N implies that for
each pair of states ¢f,¢5 in the target Mealy machine M* can be distinguished
by an input word w; of length at most Bpi, i.e., Out™ (¢}, w;) # Out™ (¢}, w;).
Intuitively, a small distinguisher bound implies that each state is “locally” dif-
ferent, i.e., can be distinguished from others using small inputs. The following
theorem shows that a state bound implies a comparable distinguisher bound.

Theorem 3. A state bound of k implies a distinguisher bound of k — 1.

Small distinguisher bound. In practice, distinguishers are much smaller than
the bound implied by the state bound. For the media-player, the number of



states is 10, but only distinguishers of length 1 are required. This pattern tends
to hold in general due to the following principles of good interface design:

— Clear separation of the interface functions. Fach state in the interface has
a specific function and a specific set of callins and callbacks. There is little
reuse of names across state. The typestate’s alphabet is roughly the same
size as the number of states.

— Fuil-fast. Incorrect usage of the interface is not silently ignored but reported
as soon as possible. This makes it easier to distinguish states as unexpected
callins directly leads to errors.

— No buffering. More than just fail-fast, a good interface is interactive and
the effect of callins must be immediately visible rather than hidden. A good
interface is not a combination lock that requires a long sequence on input that
get stored and only at the end of the sequence the result is communicated.

Equivalence algorithm. Algorithm 2 is an equivalence oracle for Mealy ma-
chines using the membership oracle, given a distinguisher bound. First, it com-
putes state representatives R : Q — X7*: for each ¢ € Q, §(q,, R(¢q)) = ¢ (line 1).
Then, for each transition in M, the algorithm first checks whether the output
symbol is correct (line 4). Then, the algorithm checks the “fidelity” of the tran-
sition up to the distinguisher bound, i.e., whether the representative of the pre-
vious state followed by the transition input, and the representative of the next
state can be distinguished using a suffix of length at most Bp;s. If so, the al-
gorithm returns a counterexample. If no transition shows a different result, the
algorithm returns Correct.

Two optimizations further reduce the number of membership queries: (a) Qui-
escence transitions. Transitions with input wait and output quiet need not be
checked at line 6; it is a no-op at the interface level. (b) Error transitions. Sim-
ilarly, transition with the output err need not be checked as any extension of an
error trace can only have error outputs.

Remark 1. Note that if Algorithm 2 is being called from Algorithm 1, the state
representatives from L* can be used instead of recomputing R in line 1. Similarly,
the counterexample analysis stage can be skipped in the L* algorithm, and the
relevant suffix can be directly returned (suffix in lines 9 and 10; and ¢ in line 4).

Theorem 4. Assuming the distinguisher bound of Bpist for the target Mealy
machine M*, either (a) Algorithm 2 returns Correct and Yw; € XF : M(w;) =
M*(w;), or (b) Algorithm 2 returns a counterexample cex and M(cex) # M*(cex).
Further, it performs at most |Q|-|2;|Po=t1 membership queries.

Remark 2 (Relation to conformance testing algorithms). Note that the problem
being addressed here, i.e., testing the equivalence of a given finite-state machine
and a system whose behavior can be observed, is equivalent to the conformance
testing problem from the model-based testing literature. However, several points
make the existing conformance testing algorithms unsuitable in our setting.
Popular conformance testing algorithms, like the W-method [10] and the W ,-
method [14], are based on state bounds and have an unavoidable O(|%;|Psut)



Algorithm 2 Equivalence oracle with distinguisher bound

Input: Mealy machine M = (Q,q., Xi, 2o, d, Out), Distinguisher bound Bpi:, and
Membership oracle MOracle
Output: Correct if M = M*, and cex € X} such that M(cex) # M*(cex) otherwise
1: for all ¢ € Q do R(q) < w; | 6(¢q., wi) = g such that length of w; is minimal
2: for all g€ Q,i € E@' do
3: w; <+ R(q) i

4: if Out(q,i) # last output symbol of MOracle(w; - i) then return R(q) -i
5 ¢« 0(q,1); wi «+ R(q)

6: suffix < check(w;, w})

7 if suffix # Correct then

8: if M(R(q) - i - suffix) # output symbols of MOracle(R(q) - i - suffix) then
9: return R(q) - i - suffix

10: else return R(q') - suffix

11: return Correct
12: function check(w;, w})

13: for all suffix € =0 do

14: w, 4 output symbols of MOracle(w; - suffix)

15: w,, < output symbols of MOracle(w) - suffix)

16: if the last |suffix| symbols of w, and w,, differ then return suffix
17: return Correct

factor in the complexity. In our experiments, the largest typestate had 10 states
and 7 inputs. The O(|X;|Pset) factor leads to an infeasible (i.e., > 10%) number of
membership queries. However, since distinguisher bounds are often much smaller
than state bounds, O(|¥;|PP=) membership queries are feasible (i.e., 10%). The
W- and W,,-methods cannot be directly adapted to use distinguisher bounds.

The other common algorithm, the D-method [19,17], does not apply in our
setting either. The D-method is based on building a distinguishing sequence, i.e.,
an input sequence which produces a different sequence of outputs from every sin-
gle state in the machine. However, for asynchronous typestates, such single dis-
tinguishing sequences do not exist in practice. For similar reasons, conformance
testing algorithms such as the UIO-method [27] do not apply either.

In this light, we believe that Algorithm 2 is a novel conformance testing
algorithm useful in specific settings where resets are inexpensive and implemen-
tations are designed to have small distinguisher bounds.

4.4 Putting it all together

We now present the full solution to the asynchronous typestate learning problem.

Theorem 5. Given a deterministic interface | with observable quiescence and
the membership oracle MOracle[l]. Assume there exists an interface automaton A
with n states with distinguisher bound Bpist modeling the typestate of |. Interface
automaton A can be learned with O(| ;| -n3 + n - | 2;|Post) membership queries.

Proof sketch. Starting with an asynchronous interface | and a membership
oracle MOracle[l], using Assumption 1 and Assumption 3 we can construct



the membership oracle MOracle[l;] for the synchronous closure I of I. Given the
distinguisher bound (or a state bound using Assumption 2 and Theorem 3),
we can construct an equivalence oracle EOracle[ls] using Algorithm 2. Oracles
MOracle[ls] and EOracle[ls] can then be used to learn a Mealy machine M with
the same set of traces as |;. This Mealy machine can be converted into the
interface automata representing the asynchronous typestate of | by: (a) Deleting
all transitions with output err and all self-loop transitions with output quiet, and
(b) Replacing all transitions with input wait with the output of the transition.

5 Applying Active Learning to Android

We implemented our method in a tool called STARLING. In this section we de-
scribe how it works, the practical challenges we faced when working with An-
droid, and our solutions to overcome them. STARLING is implemented as an
Android application and learns asynchronous typestates from within Android.

5.1 Designing an Experiment

To learn a typestate, a STARLING user creates an experiment. An experiment is a

small code harness that covers the usual inputs of an active learning algorithm,

as well as the inputs specific to learning on Android. The main components are:

Class of Study. STARLING learns the typestate of Java classes. The user speci-
fies this class of study and provides a constructor and optionally a destructor
which are used to reset the environment and isolate membership queries

Distinguisher Bound. If known, the distinguisher bound can be provided di-
rectly. Otherwise, it can be obtained from Assumption 2 by Theorem 3.

Instrumented Alphabet. The instrumented alphabet specifies an abstract al-
phabet for the learning algorithm and translation between the abstract al-
phabet and concrete callins/callbacks of the class of study.

Query Filter. The user can restict the sequence of symbols in the alphabet
with a filter for sequences already known to be illegal or uninteresting. The
Query Filter and the Instrumented Alphabet together comprise a Learning
Purpose [1], i.e., a predefined automata that constrains the behavior to learn.

Platform Specific Parameters. Several more options are available for ad-
justing the learning. The most important is the quiescence timeout which
specifies the duration before a state is considered as quiescent. The choice
of this timeout corresponds to Assumption 1.

5.2 Observing Asynchronous Callbacks

In our approach we assume bounded asynchrony (Assumption 1) and, therefore,
we can observe when the interface does not produce any new output (quiescence).
We enforce this assumption on a real system with timeouts: the membership
query algorithm waits for a new output for a fixed amount of time tyax, assuming
that quiescence is reached when this time is elapsed. However, Android does not
provide any worst case execution time for the asynchronous operations and we
rely on the user to choose a large enough tma.x. The membership query also
assumes the existence of a minimum time tq;, before a callback occurs. This
ensures that we can issue a membership query with two consecutive callins (so,



without a wait input in between), i.e., we have the time to execute the second
callin before the output of the first callin.

Consider the MediaPlayer example from Section 2. The membership
query setDataSource(URL) -wait -prepareAsync() -wait may not return the
onPrepared () if t,x is violated, i.e., if the callback does not arrive before the
timeout. On the other hand, while testing, it is possible that the prepareAsync ()
-start () might not return an error as expected if the lower bound tp;, is vio-
lated. To avoid such issues we try to reliably control the execution environment
and parameters to ensure that callbacks occurred between tp,;, and tyax. For the
MediaPlayer case, we need to pick the right media source file.

5.3 Checking and Enforcing our Assumptions

The simplest experiment to learn a class’s asynchronous typestate ties a single
input symbol to each of its callins and a single output symbol to each of its
callbacks. However, many Android classes have behaviors which cause this simple
experiment to fail and require more detailed experiments to succeed.

The main challenges when designing an experiment are (a) Non-deterministic
behaviors, i.e., the state of the device and external events may influence an
application. These elements are inherently non-deterministic; however, non-
determinism violates Assumption 3. (b) The parameter space required to drive
concrete test cases to witness a membership query is potentially infinite. Though
we have ignored callin parameters till now, they are a crucial issue for testing.
(c) The implementation of the protocol we are learning may not be a regular
language. Note that this is a violation of Assumption 2.

Non-Deterministic Behavior. Non-deterministic behavior is disallowed by
our Assumption 3. However, to make this assumption reasonable we must make
non-determinism straightforward to eliminate when it arises. We explain two
primary classes of non-deterministic behaviors and strategies to eliminate these
behaviors. The first class is related to the state of the environment before a callin
and the second is environment changes during an asynchronous computation.

Because the learning algorithm cannot learn from non-deterministic systems,
STARLING will terminate if a non-deterministic behavior is detected. In such case,
STARLING reports the causing input sequence and disagreeing output sequences.
It detects this behavior by caching all membership queries as input/output se-
quence pairs. When a new trace is explored, STARLING checks that the trace
prefixes are compatible with the previously seen traces.

In the first case, the state of the environment prior to a callin influences
the output. We resolve this non-determinism by manually modeling how the
environment may affect the callbacks and create a finer input alphabet that ex-
plicate the previously hidden state of the environment. For example, in the
class SQLiteOpenHelper, the getReadableDatabase() may either trigger a
onCreate() callback or not, depending on the parameter value to a previous
callin (constructor)was the name of an existing database file. Hence, the be-
havior of the callin is non-deterministic, depending on the status of the database
on disk. In the SQLiteOpenHelper example, we split the constructor callin into
constructor/fileExists and constructor/noFileExists and pass the right



parameter values in each case. With this extra modeling we can learn the in-
terface automaton, since the execution getReadableDatabase() ends in two
different states of the automaton (see Figure 2).
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Fig. 2: Eliminating non-determinism in SQLiteOpenHelper

The second class is the effect of the environment on asynchronous computa-
tions. Such effects, by definition, cannot be controlled or made explicit prior to
the call. We choose to ignore this non-determinism by merging different outputs,
considering them to be the same. This is the dual of the previous solution.

An example is the SpeechRecognizer, for which calling startListening()
produces different callbacks depending on the environment. As the environment
cannot be reasonably controlled, we merge outputs to go to the same state. If
outputs are erroneously merged, the non-determinism will propagate and con-
tinue to manifest. Therefore, there is no risk when merging outputs.

Handling Callin Parameters. While parameter-less callins such as start ()
and stop() are common in Android classes, many parameterized callins exist.
Because input symbols need to be listed in the experiment definition, the full
range of parameter values cannot be explored. In practice, we found that pa-
rameters often have little effect on the typestate automaton. In cases where they
do affect the automaton, multiple input symbols can be defined to represent the
same method called with several different parameters. This solution is similar to
splitting on environmental effects when dealing with non-determinism.

Learning from Non-Regular Languages. An intrinsic limitation of L* is
that it learns only regular languages. However, some classes expose non-regular
protocols. Common cases include situations where a request callin may be called
an unbounded number of times, and a response callback is called exactly the
same number of times. For example, in the SpellCheckerSession class, callin
getSuggestion() and callback onGetSuggestions() follow this pattern.

However, even in such cases, it can be useful to build a regular approximation
of the typestate. For example, restricting the typestate to behaviors where there
is at most one pending request (a regular subset) provides all the information a
programmer would need. Hence, in such cases, we use the technique of learning
purposes [1] to learn a regular approximations of the infinite typestate.

6 Empirical Evaluation

Implementation. We implemented the typestate learning algorithm, along
with the membership oracle for the Android framework, in a tool called STAR-
LING. STARLING is implemented in Java and can be run on both emulators and
physical devices. We run the experiments on a LG Nexus 5 running the Android
framework version 23. The major challenge during the development of STAR-



Class name states| Time (s) MQ|EQ|MQ per EQ|Bpist (needed)
AsyncTask 5 49 372 (94) 1 356 (0) 2 (1)
CountDownTimer 3 134 232 (61)| 1 224 (0) 2 (1)
FileObserver 6 104| 743 (189)| 2 351 (8) 2 (1)
MediaCodec 8 371 1354 (871)| 1| 973 (482) 2 (1)
MediaPlayer 10| 4262[13553 (2372)| 5| 2545 (384) 2 (1)
MediaRecorder 8 248| 1512 (721)| 1| 1280 (545) 2 (1)
MediaScannerConnection 4 200| 403 (161)| 2 163 (57) 2 (1)
SpeechRecognizer 7| 3460| 1968 (203)| 3| 646 (35) 2 (1)
SpellCheckerSession 6 133] 798 (213)| 4 374 (8) 2 (1)
SQLiteOpenHelper 8 43| 1364 (228)| 2 665 (6) 2(2)

Table 1: STARLING experimental results.

LING was not in the implementation of the learning algorithm, but instead in
interfacing the algorithm, specifically the membership oracle, with Android.

Goals. Our experiments were designed to empirically evaluate the following:

Question 1. Does our technique learn typestates efficiently?

Question 2. What is the size of distinguisher bounds that occur in practice?
Does they support the small distinguisher bound hypothesis?

Question 3. Do the asynchronous typestates learned reveal interesting or unin-
tended behavior in the interfaces?

Methodology. We sampled 10 classes from the Android framework and ran
STARLING on it. For each class, the relevant callins and callbacks were identified
manually, and a test harness was written to connect inputs and outputs symbols
to the corresponding callins and callbacks of the class. Each test harness con-
sisted of 100 — 200 lines of, mostly boiler-plate, Java code. In addition, for some
classes, we provided a query filter to restrict the learning purpose (see Section 5).

To evaluate efficiency, we measure the overall time taken for learning, as
well as the number of membership (MQ) and equivalence queries (EQ). The
number of queries is likely a better measure of performance than running time:
the running time depends on external factors. For example, in the media player
the running time depends on play-length of the media file chosen during testing.

We validate the accuracy of learned asynchronous typestates using two ap-
proaches. First, for classes whose documentation contains a picture or a descrip-
tion of what effectively is an asynchronous typestate, we compare our result to
the documentation. Second, for all the other classes we perform manual code
inspection and run test apps to evaluate correctness of the produced typestates.

We used a distinguisher bound of 2 for our experiments; further, we manually
examined the learned typestate and recorded the actual distinguisher bound. For
our third question, i.e., does the learned asynchronous typestate reveal interest-
ing behaviors, we manually examined the learned typestate, compared it against
the official Android documentation, and recorded discrepancies.

Results. We discuss the results (in Table 1) with respect to our three questions.
Question 1: Efficiency. The table shows that the learning algorithm runs reason-
ably fast: most typestates learned within a few minutes. The longest one takes 71
minutes, still applicable to nightly testing. The numbers for membership queries



are reported as X (Y)—X is the number of membership queries asked by the
algorithm, while Y is the number actually executed by the membership oracle.
This number is lower as the same query may be asked multiple times, but is
executed only once and the result is cached. For each benchmark, the accuracy
validation showed that the produced typestate matched the actual behavior.
Question 2: Distinguisher Bounds. As mentioned before, we used a distinguisher
bound of 2 for all experiments. However, a manual examination of the learned
asynchronous typestates showed that a distinguisher bound of 1 would be suffi-
cient in all cases except the SQLiteOpenHelper where a bound of 2 is necessary.
This supports our conjecture that, in practice, interfaces are designed with each
state having a unique functionality (see Section 4.3).

Question 3: Interesting Learned Behavior. Of the three questions, our experi-
ments to examine the learned asynchronous typestate for interesting behavior
turned out to be the most fruitful, uncovering several discrepancies, including
corner cases, unintended behavior and likely bugs, in the Android framework.
These results reaffirm the utility of our main goal of automatically learning asyn-
chronous typestate, and suggest that learning typestate can serve valuable roles
in documentation and validation of asynchronous interfaces.

In 2 cases, the learned typestate and documented behavior differed in cer-

tain corner cases. We carefully examined the differences, by framework source
examination and manually writing test applications, and found that the learned
typestate was correct and the documentation was faulty. In 3 other cases, we
believe the implemented behavior is not the intended behavior, i.e., these are
likely bugs in the Android implementation. Further, in 1 additional case, we
found that the typestate learned on different versions of the Android framework
were different. These discrepancies mostly fall into two separate categories:
Incorrect documentation. In such cases, it turned out that the discrepancy is
minor and unlikely to cause erroneous behavior in client programs.
Race conditions. Several likely bugs were due to a specific category of race con-
ditions. These interfaces have (a) a callin to start an action and a corresponding
callback which is invoked when the action is successfully completed; (b) a callin
to cancel an already started action and a corresponding callback which is invoked
if the action is successfully cancelled. When the start action and cancel action
callins are called in sequence, the expectation is that exactly one of the two call-
backs are called. However, when the time between the two callins is small, we
were able to observe unexpected behaviors, including neither or both callbacks
being invoked, and even the interface showing arbitrary further behavior.

The second category indicates a common implementation issue, and suggests
potential avenues for introducing system or language features to avoid this issue.

Case studies. Of 10 benchmarks, we pick 3 and briefly explain them here. Full
details of all benchmarks are in the appendix.

MediaPlayer. This is the class from the example in Section 2. The learned
typestate differs from the existing documentation. The learned typestate: (a) has
the pause () callin enabled in the “playback completed” state, and (b) shows that



onPrepared() is invoked even after the synchronous callin prepare (). Though
undocumented, these behaviors are unlikely to cause any issues.

SpellCheckerSession. This class provides an interface to request
spelling suggestions on text fragments. A client requests suggestions
via getSentenceSuggestions() and the suggestions are delivered via
onGetSentenceSuggestions() unless cancel() or close() is called. The full
interface is non-regular; the number of callbacks is equal to the number of
callins. We used a query filter to restrict learning to the fragment with at
most one call to getSentenceSuggestions(). For this fragment, the resulting
typestate shows that calling cancel () does not prevent receiving callbacks with
results, potentially leading to errors in applications that rely on this guarantee.

MediaRecorder. The MediaRecorder class provides a single interface to record-
ing audio and video various sources such as the microphone, camera, and voice
calls. The learned typestate differs from the documentation in one aspect and
reveals a problematic behavior: calling start () followed immediately by stop ()
in the “prepared” state throws an exception. However, calling start (), waiting
for a short time (wait), followed by stop () is not an error. Note that the interface
does not perform any callback after start() (i.e., we get quiet on wait). This
behavior is not documented, and also, is completely unexpected, as the client
program has no indication of whether it is safe to call stop(). Apart from this
behavior, the typestate is equivalent to the one shown in the documentation.
The unexpected behavior could be fixed either by: (a) adding a callback
onStart () to inform the client that it is safe to call stop(), or (b) modifying
the implementation of start() to only return after the task is truly completed.

7 Related Work

Works which automatically synthesize specifications of the valid sequences of
method calls (e.g. [3,30,4,16]) typically ignore the asynchronous callbacks.

Static analysis has been successfully used to infer typestates specifications
(importantly, without callbacks) [3,20,30]. The work in [3] infers interfaces for
Java classes using L*. In contrast, our approach is based on testing. Therefore,
we avoid the practical problem of abstracting the framework code. On the other
hand, the use of testing makes our L* oracles sound only under assumptions.

Inferring the interface using execution traces of client programs using frame-
work is another common approach [4,36,2,11,15,34,37,25]. In contrast to dynamic
mining, we do not rely on the availability of client applications or a set of exe-
cution traces. The L* algorithm drives the testing.

The analysis of event-driven programming framework has recently gained a
lot of attention (e.g. [6,8,9,23]). However, none of the existing works provide an
automatic approach to synthesize interface specifications. Analyses of Android
applications mostly focus on either statically proving program correctness or se-
curity properties [6,8,18,35,13] or dynamically detecting race conditions [24,21,7].
These approaches manually hard-code the behavior of the framework to increase
the precision of the analysis. The asynchronous typestate specifications that we
synthesize can be used here, avoiding the manual specification process.



Our work builds on the seminal paper of Angluin [5] and the subsequent ex-
tensions and optimizations. In particular, we build on L* for I/O automata [1,28].
The optimizations we use include the counterexample suffix analysis from [26]
and the optimizations for prefix-closed languages from [22]. The relation to con-
formance testing methods [10,14,19,17,27] has been discussed in Remark 2.
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A Detailed Descriptions of the Results

AsyncTask. The AsyncTask class turns arbitrary computations into asyn-
chronous operations with progress tracking and results are delivered via
callbacks. For our experiment, the computation is a simple timer. A con-
structed AsyncTask object performs its task when it receives the execute()
callin, and then either returns the results when they are available with the
onPostExecute() callback, or returns an onCancelled() if cancel() is called
first. The object is single-use; after it has returned a callback it will accept no
further execute() commands.

In order to test this class, the get () input had to be dismissed (i.e., we did
not include get () in our learning purpose, see Section 5) because its results were
non-deterministic when called directly after the onPostExecute () callback. Our
experiment revealed an unexpected edge-case: if execute() is after cancel()
but before the onCancelled() callback is received, it will not throw an exception
but will never cause the asynchronous task to be run.

cancel()
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cancel()
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cancel()
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Fig. 3: Learned typestate of the AsyncTask class

SpeechRecognizer. The SpeechRecognizer is a simple interface to the speech-
to-text services provided in the Android framework, and is necessarily asyn-
chronous due to the time spent waiting for speech and communicating with
remote speech-to-text services over the network. An application constructs a
SpeechRecognizer with a listener for various errors and result callbacks. The
process is set off with a call to startListening(). The SpeechRecognizer calls
onReadyForSpeech() and then either returns the recognized speech results with
onResults() or one of several error cases with onError ().

Like the SQLiteOpenHelper, this class provides another case of environmen-
tal non-determinism. The particular callback that signals the end of the speech
session—either an onResults() or an onError ()—is determined by the envi-
ronment (in particular, the sound around the phone during the test). In this
case, to reduce the system to a deterministic one we can learn, we supposed that
the state after an onResults() or onError() is the same and merged the two




callbacks into a single onFinished() symbol. The determinism observed in the
resulting typestate confirmed this assumption.

Our results revealed two interesting corner cases for the ordering of inputs.
First, if an app calls cancel () between calling startListening() and receiving
the onReadyForSpeech() callback (represented by our “starting” output sym-
bol), calling startListening() again will have no effect until after a certain
amount of time, as shown by the wait transition from state “Cancelling” to
“Finished”. Delays in readiness like this can be generally considered bugs; if a
system will not be ready immediately for inputs it should provide a callback to
announce when the preparations are complete, so as not to invite race conditions.

Our second corner case is where the app calls stopListening() as the very
first input on a fresh SpeechRecognizer. This will not throw an exception, but

calling startListening() at any point after will fail, making the object effec-
tively dead.
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Fig. 4: Learned typestate of the SpeechRecognizer class. The behavior inside the dotted
line is “normal” behavior, while everything outside is unusual or “exceptional” behavior.

While we performed all other tests on an Android 5.1.1 system, the
SpeechRecognizer’s callback behavior was so buggy—callbacks would repeat
themselves several times, sometimes interleaving with later callbacks—that we
could not learn a consistent automaton. We therefore performed this experiment
on an Android 6.0.1 system, where this behavior is fixed.

CountDownTimer. The CountDownTimer is an asynchronous timer that is
initialized with a period of time and then invokes the onFinish() callback when
the time is up, unless a cancel () method is called in the meantime.

This class is not a regular language; calling start() multiple times will
result in that same number of onFinish() callbacks. In order to learn a regular
language subset, we used the learning purpose approach to limit the number of
start () inputs in a valid query to one.

FileObserver. The FileObserver is a listener class that tracks changes to a file
or directory, making callbacks as they occur. The class itself has only two input



methods—startWatching() and stopWatching()—so for our experiment we
considered the environmental actions of modifying (and possibly creating) and
deleting the watched file as additional inputs. An onEvent () callback returns
with various event types; the ones we track are MODIFY and DELETE_SELF. One
interesting bit of behavior we correctly observe (which is in the documentation
for the class) is that if the file is deleted while being watched, no further callbacks
will be made even if it is recreated.

MediaPlayer. This is the class from the introductory example in Section 2.
There are two interesting aspects about the run of STARLING on MediaPlayer
and the learned typestate:

— The learned typestate has the pause() callin is enabled in the “paused”
state. Though undocumented, we do not believe this behavior is a bug.

— The class returns the onPrepared() callback even after the synchronous
prepare() callin — this callback is unnecessary as it is not necessary to
wait for it after calling prepare. However, this unnecessary callback leads
to STARLING generating many more states than necessary; every state after
prepare() is called has an “equivalent” duplicate there: one where the un-
necessary onPrepared() is pending, and one where it is not. In the table,
the number of states reported in brackets is the number including the du-
plicate states. We believe that these states can be eliminated automatically;
however, this is not implemented currently.

MediaCodec. The MediaCodec class provides an interface for decoding en-
coded media files (audio and video) in a continuous manner, i.e., audio and video
data is continuously passed into the interface, and the interface passes the re-
sults back as soon as they are ready. The interaction with this interface is done
fully asynchronously: the interface calls the onInputBufferAvailable() call-
back whenever it is ready to accept input, and onOutputBufferAvailable()
callback when results are ready. The interaction is started and stopped using
the start () and stop() callins; and further, the flush() callin invalidates all
available buffers. The typestate of MediaCodec is described with a high-level
diagram in the documentation: https://developer.android.com/reference/
android/media/MediaCodec.html. STARLING is able to learn the typestate of
the interface exactly in this case, and the learned typestate matches the descrip-
tion in the documentation.

MediaRecorder. The MediaRecorder class provides a single interface to
recording audio and video various sources such as the microphone, cam-
era, and voice calls. The typestate for this class is present in the docu-
mentation at https://developer.android.com/reference/android/media/
MediaRecorder.html. Of our benchmarks, the MediaRecorder is particularly
unique, as the interface has no callbacks related to starting or stopping, i.e., at
looks like a standard (not event-driven asynchronous) interface. The callbacks
which do exist are for receiving updates or exceptions during recording. However,
internally, the implementation of the class is asynchronous. This can be seen as
follows: calling start () followed immediately by stop() in the “prepared” state
throws an exception. However, calling start (), waiting for a short time (wait),



followed by stop() is not an error. Note that the interface does not perform any

callback on wait (i.e., we get quiet). This behavior is not documented, and also,

completely unexpected from the client programmer point of view. Other than

this behavior, the typestate is equivalent to the one shown in the documentation.
The unexpected behavior can be fixed in one of two ways:

(a) Expose the asynchronous nature of the class, i.e., add a callback onStart (),
and make calling stop() legal only after onStart () is called back.

(b) Modify the implementation of the start() callin to wait and only return
after the task is truly completed, i.e., do not let the asynchronous nature of
the implementation leak to the client.

- Started
- stop()
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wait ()

~

start ()

Part of the typestate for the MediaRecorder. If the class was truly synchronous, the
states “Starting” and “Started” would be the same, i.e., stop() would be enabled
immediately after start (). STARLING was able to discover this inconsistency
automatically.

Fig. 5: MediaRecorder

MediaScannerConnection. The MediaScannerConnection class implements
an interface that applications may use to inform the standard android media
services about new media files that the application has created. For example, an
application may download an image, and then scan it using MediaScannerCon-
nection: after the scan, the new image will be available through the standard
image handling services (for example, the media gallery).

The MediaScannerConnection interface itself is simple with 3 relevant callins:
connect (), disconnect (), and scanFile(). Further, it has 1 callback impor-
tant to the typestate: onMediaScannerConnected (). The protocol for using the
interface is as follows: (a) connect () is called to establish connection with the
media scanner service; (b) the onMediaScannerConnected() callback is called
by the interface to inform the client that the connection has been established;
(c) the client may scan any number of files through the scanFile () callin; and
(d) the client finally calls disconnect() to disconnect from the media scanner
service. STARLING was able to learn this typestate exactly. The only point of
note is that the onMediaScannerConnected() callback will be called even if
disconnect () is called immediately after connect () before the callback; how-
ever, the interface is in the disconnected state.

SpellCheckerSession. This class provides a high-level interface for apps to re-
quest spelling suggestions on text fragments. An app can request suggestions for



a particular sentence (via getSentenceSuggestions()) which will be delivered
via callback (onGetSentenceSuggestions()) unless a cancel() or close() is
called. The interface is asynchronous due to the computational intensity of the
text-processing involved.

The full interface is non-regular; the number of callbacks with results is
equal to the number of request callins. We therefore used the learning pur-
pose approach to restrict learning to the fragment with at most one call to
getSentenceSuggestions (). For this fragment, the resulting asynchronous
typestate showed that calling cancel () will not prevent receiving callback with
results. This might hurt applications that rely on a guarantee that the callback
does not arrive after cancel().

SQLiteOpenHelper. This class provides a more structured interface for apps
to open and set up SQLite databases. It has callbacks for different stages of
database initialization, allowing apps to perform setup operations only as they
are needed. When a database is opened with getWritableDatabase(), a call-
back onConfigure() is called, followed by an onCreate () if the database didn’t
exist yet or an onUpgrade () if the database had a lower version number than was
passed to the SQLiteOpenHelper constructor, all followed finally by an onOpen ()
when the database is ready for reading. The database can then be closed with a
close().

Our experiment observed the callbacks received when opening databases
in different states (normal, non-existent, and out of date) and performing the
close() operation at different points in the sequence. We found that once the
getWritableDatabase () method is called, calling close() will not prevent the
callbacks from being run.

B Impossibility result for the asynchronous typestate
learning problem from Section 3.2

We say that an interface automaton A is compatible with a membership query
mQuery and its result MOracle[l](mQuery) if: (a) MOracle[l](mQuery) is a trace of
A, or (b) MOracle[l](mQuery) = L and there is no trace of A whose sequence of
inputs is to mQuery. The following impossibility theorem shows that membership
queries are not sufficient to effectively learn typestates.

Theorem 6. There exists an interface | and an MOracle[l] such that:
— There exists an interface automaton A that models the typestate of |, and
— For every finite set of pairs (mQuery, MOracle[l|(mQuery)) of membership
queries and corresponding results, there exist interface automata A’ and A",
with different sets of traces, compatible with each pair.

C Proofs for theorems in Section 4

A run segment m of M is given by qq —>§,% —>Z’:L Gn+1 where VO < ¢ <
n : om(gi, %) = ¢i+1 N Out(q,i;) = o;. We use the following shorthands:
(a) 8(qo,ig...in) for gni1, and (b) Out(qo,io...in) for op...0n. If o = q,,
then we say that igog...i,0, is a trace of M. Further, if ¢ = gq,, we write



M(ig...%n) = 0g...0n. A Mealy machine M is the asynchronous typestate of |,
if every trace of M is a trace of I, and vice versa.

Proof of Theorem 2. Let M = (Q, qL,El,EO,é Out) and M’ =
(@', ¢, %, 5,,8,0ut’). Let Out : QU Q' x X; — %, (resp. 6 : QU Q' x X; —
Q U Q') be a unified output (resp. transition) function that applies either Out
or Out’ (resp. & or &) depending on if the first input is in @ or Q.

We first define a sequence of equivalence relations =,, on Q U @’ for each
m > 0. For each m, we say ¢ =, go if for all input words w; of length at most
m, we have that Out(qy;, w;) = Out(ga, w;). Note that each =, is a refinement
of =,,. As we have that M(w;) # M'(w;), we get q, Z,, ¢, for some m. Further,
we have that = is not universal, i.e., 3q1, g2 : ¢1 Z1 q2; otherwise, we will have
Out(qy, w;) = Out(ga,w;) for every w;, qi, and ¢, contradicting the premise of
the theorem statement.

Below, we show that q; %41 ¢2 if and only if ¢1 #m ¢o or i € %;

6(q1,%) Zm 6(q2,1). Hence, each =, is uniquely determined by =,, and J giv-

ing us that =,,==,,41 = =,+1==m+2. Further, since all =, are successive
refinements defined on a finite set, we can only have =,,,11#=,, for a finite num-
ber of m. Let m* be the least m such that =,,,« 11 #=,,~. By the two statements
above, we get that

S1F = F . FE g = =gl = S =

Hence, for every pair of states q; and gq, if Jw; : Out(qy, w;) # Out(ga, w;), then
there exists a word w; of length at most m™* such that Out(gy, w}) # Out(ga, w}).
Now, by the non-universality of =; and the fact that each =,, is a strict
refinement of the previous for m < m*, we have that m* can at most be |Q| +
|@Q'| — 1. This gives us the required result.
Now, to show that g1 #Z,.4+1 g2 if and only if ¢1 #,,, g2 or Ji € PO 3(@1, i) Em
5(QQ, Z) B _

— Assume ¢y %, g2 or 3i € Xy : 0(q1,1) Zm 6(q2, 7). If ¢1 Zm g2, we have that
Q Zm+1 G2 as each =,,11 is a refinement of =,,. Otherwise, assume Ji €
i :0(q1,%) #m 0(qa,1). Now, there exists a w; such that Out(8(q1,1), w;) #
Out(0(qga,4),w;). It is easy to show that Out(g,i-w;) and Out(ga,i-w;).
Further, |i-w;| is at most m + 1 giving us ¢1 Zm+1 Go.

— Assume ¢; #4+1 ¢2. There exists a word w; of length at most m + 1 such
that Out(qy, w;) # Out(qz,m) If |w;| < m, we get that q1 Z; ¢o-
Otherwise, let w; = i-w/. If Out(qy,i) # Out(qg, i), we have that ¢1 #1 go,
and hence, ¢ Z.,, go-

In the remaining case, we have that Out(q;,i) = Out(ge,i) and

Out(qy,i-w!) # Out(ge,i-w)). From these, it is easy to show that

Out(6(qy,1),w!) # Out(d(qa,i),w’). This gives us that §(qy,i) Zm 0(q2, ).
This completes the proof. O

Proof of Theorem 3. Let M* have |Q*| < Bsiate states. Define a series of equiva-
lence functions =,,, on @ such that g1 =,, ¢2 if and only if ¢; can be distinguished
from g2 by words of length > m. The remainder of the proof is exactly similar



to the proof of Theorem 2. Again, the final bound obtained on the length of dis-
tinguishers is one less than the size of the domain of the equivalence relations.
Here, the bound is |Q*| — 1 < k — 1, giving us the theorem. O

Proof of Theorem 4. The complexity bound is easy to show.

For part (a), assume towards a contradiction that Algorithm 2 returns
Correct, but there exists an input word cex = igi; ..., such that M(cex) #
M*(cex). Let pre(k) and suf(k) be the prefix of length k and suffix of length
n+1—k of cex.

Let o —% qi...qn —5 @ny1 be the run of M on cex. De-
fine the function P(k) for 0 < k < n + 1 as follows: P(k) =
00 -..0k—1-0ut™(6* (¢}, R(qr))),suf(k)). The value of P(k) is given by the first
k symbols of og...0, and concatenated with the last n + 1 — k symbols of
M*(R(gy) - suf(k)). Informally, we run pre(k) on M and suf(k) of M*, with R(qy)
acting as the link between the two machines.

As R(q,) = €, we can derive that P(0) = M*(cex) and P(n + 1) = M(cex).
Since, by assumption, P(0) # P(n + 1), we have 3k : P(k) # P(k + 1). Now,
denoting 6*(q;, R(qr)) as q;; and 6*(q;, R(qr+1)) as g, we have

01 ...0k—1-Out™(qf,suf(k)) # o1 ...0p—10k - Out”™ (gj, 1, suf(k + 1))
Out™ (g, suf(k)) # og - Out™(gj 41, suf(k + 1))
Out™(gy, ix - suf(k + 1)) # Out(qy, ix) - Out™ (g1, suf(k + 1))

The first symbol on the left is Out™(6*(¢f, R(qx)),%x) and on the right is
Out(gg, ix). If these were not equal, on line 4, the algorithm would have re-
turned a counterexample—giving us a contradiction. On the other hand, if they
were equal, removing the first symbol on both sides leaves us with:

Out™ (6" (g, k), suf(k + 1)) # Out™(gz 41, suf (k + 1))

Hence, 0%(qj,ir) and gj,, are distinguishable in M*. Therefore, there ex-
ists a suffix of length at most Bpit such that Out™(6*(qf,ix),suffix) #
Out™(qj 1, suffix). However, by definition of ¢ and ¢;,, the left and right
hand sides are equal to the output symbols of MOracle(R(gyx) - i - suffix) and
MOracle(R(0(qx, ix)) - suffix), respectively. Hence, when check was called at line 6
with the state ¢ and input iy, a counterexample would have been returned—this
leads to a contradiction again.

For part (b), assume that Algorithm 2 return a counterexample. If the coun-
terexample is returned at line 4, then it is easy to see that the last output
symbol of M(R(q) -¢) and M*(R(q)-4) differ. On the other hand, if the coun-
terexample is returned at lines 9 and 10, we have that M*(R(q) -4 - suffix) and
M*(R(q') - suffix) differ in the last |suffix| positions. However, M(R(q) - i - suffix)
and M(R(¢') -suffix) are equal in the last [suffix| positions. Hence, we can-
not have both M(R(q)-i-suffix) = M*(R(q)-i-suffix) and M(R(q) - suffix) =
M*(R(q") - suffix). This implies at least one of R(q)-i-suffix and R(q") - suffix is
a counterexample, which is returned. O



