
ar
X

iv
:1

70
9.

04
85

4v
1

 [
cs

.G
T

]
 1

4
Se

p
20

17

Synthesizing Optimally Resilient Controllers⋆

Daniel Neider1, Alexander Weinert2 and Martin Zimmermann2

1 Max Planck Institute for Software Systems, 67663 Kaiserslautern, Germany
neider@mpi-sws.org

2 Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
{weinert,zimmermann}@react.uni-saarland.de

Abstract. Recently, Dallal, Neider, and Tabuada studied a generalization of the classical game-
theoretic model used in program synthesis, which additionally accounts for unmodeled intermittent
disturbances. In this extended framework, one is interested in computing optimally resilient strate-
gies, i.e., strategies that are resilient against as many disturbances as possible. Dallal, Neider, and
Tabuada showed how to compute such strategies for safety specifications.
In this work, we compute optimally resilient strategies for a much wider range of winning conditions
and show that they do not require more memory than winning strategies in the classical model.
Our algorithms only have a polynomial overhead in comparison to the ones computing winning
strategies. In particular, for parity conditions optimally resilient strategies are positional and can
be computed in quasipolynomial time.

1 Introduction

Reactive synthesis is an exciting and promising approach to solving a crucial problem, whose importance
is ever-increasing due to ubiquitous deployment of embedded systems: obtaining correct and verified
controllers for safety-critical systems. Instead of an engineer programming a controller by hand and
then verifying it against a formal specification, synthesis automatically constructs a correct-by-design
controller from the given specification (or reports that no such controller exists).

Typically, reactive synthesis is modeled as a two-player zero-sum game on a finite graph that is played
between the system, which seeks to satisfy the specification, and its environment, which seeks to violate it.
Although this model is well understood, there are still multiple obstacles to overcome before synthesis can
be realistically applied in practice. These obstacles include not only the high computational complexity
of the problem, but also more fundamental ones. Among the most prohibitive issues in this regard is
the need for a complete model of the interaction between the system and its environment, including an
accurate model of the environment, the actions available to both antagonists, as well as the effects of
these actions.

This modeling task often places an insurmountable burden on engineers as the environments in
which real-life controllers are intended to operate tend to be highly complex or not fully known at
design time. Moreover, when a controller is deployed in the real world, a common source of errors is a
mismatch between the controller’s intended result of an action and the result that actually manifests.
Such situations arise, for instance, in the presence of disturbances, when the effect of an action is not
precisely known, or when the intended control action of the controller cannot be executed, e.g., when
an actuator malfunctions. By a slight abuse of notation from control theory, we subsume all such errors
under the generic term disturbance.

To obtain controllers that can handle disturbances, one has to yield control over their occurrence
to the environment. However, due to the antagonistic setting of the two-player zero-sum game, this
would allow the environment to violate the specification by causing disturbances at will. Overcoming
this requires the engineer to develop a realistic disturbance model, which is a highly complex task, as
such disturbances are assumed to be rare events. Also, incorporating such a model into the game leads to
a severe blowup in the size of the game, which can lead to intractability due to the high computational
complexity of synthesis.

To overcome these difficulties, Dallal, Neider, and Tabuada [9] proposed a conceptually simple, yet
powerful extension of infinite games termed “games with unmodeled intermittent disturbances”. Such

⋆ Supported by the project “TriCS” (ZI 1516/1-1) of the German Research Foundation (DFG).

http://arxiv.org/abs/1709.04854v1

A

B

C

v6/1

v4/1

v5/0v3/1

v2/2v1/1

v7/0 v8/1

v9/0 v10/0

Fig. 1: A (max-) parity game with disturbances. Disturbance edges are drawn as dashed arrows. Vertices
are labeled with both a name and a color. Vertices under control of Player 0 are drawn as circles, while
vertices under control of Player 0 are drawn as rectangles.

games are played similarly to classical infinite games: two players, called Player 0 and Player 1, move a
token through a finite graph, whose vertices are partitioned into vertices under the control of Player 0
and Player 1, respectively; the winner is declared based on the resulting play. In contrast to classical
games, however, the graph is augmented with additional disturbance edges that originate in vertices of
Player 0 and may lead to any other vertex. Moreover, the mechanics of how Player 0 moves is modified:
whenever Player 0 moves the token, her move might be overridden, and the token instead moves along
a disturbance edge. This change in outcome implicitly models the occurrence of a disturbance—the
intended result of the controller and the actual result differ—, but it is not considered to be antagonistic.
Instead, the occurrence of a disturbance is treated as a rare event without any assumptions on frequency,
distribution, etc.

This non-antagonistic nature of disturbances is different from existing approaches in the literature
and causes many interesting phenomena that do not occur in the classical theory of infinite games. Some
of these already manifest in the parity game shown in Figure 1, in which vertices are labeled with non-
negative integers, so-called colors, and Player 0 wins if the highest color seen infinitely often is even.
Consider, for instance, vertex v2. In the classical setting without disturbances, Player 0 wins every play
reaching v2 by simply looping in this vertex forever (since the highest color seen infinitely often is even).
However, this is no longer true in the presence of disturbances: a disturbance in v2 causes a play to
proceed to vertex v1, from which Player 0 can no longer win. In vertex v7, Player 0 is in a similar, yet
less severe situation: she wins every play with finitely many disturbances but loses if infinitely many
disturbances occur. Finally, vertex v9 falls into a third category: from this vertex, Player 0 wins every
play even if infinitely many disturbances occur. In fact, disturbances partition the set of vertices from
which Player 0 can guarantee to win into three disjoint regions (indicated as shaded boxes in Figure 1):
(A) vertices from which she can win if at most a fixed finite number of disturbance occur, (B) vertices
from which she can win if any finite number of disturbances occurs but not if infinitely many occur, and
(C) vertices from which she can win even if infinitely many disturbances occur.

The observation above gives rise to a question that is both theoretically interesting and practically
important: if Player 0 can tolerate different numbers of disturbances from different vertices, how should
she play to be resilient3 to as many disturbances as possible, i.e., to tolerate as many disturbances as
possible while still winning? Put slightly differently, disturbances induce an order on the space of winning
strategies (“a winning strategy is better if it is more resilient”), and the natural problem is to compute
optimally resilient winning strategies, yielding optimally resilient controllers. Note that this is in stark
contrast to the classical theory of infinite games, where the space of winning strategies is unstructured.

Dallal, Neider, and Tabuada [9] have already solved the problem of computing optimally resilient win-
ning strategies for safety games. Their approach exploits the existence of maximally permissive winning
strategies in safety games, which allows Player 0 to avoid “harmful” disturbance edges during a play.
In games with more expressive winning conditions, however, this is no longer possible, as witnessed by
vertex v4 in the example of Figure 1: although Player 0 can avoid a disturbance edge by looping in v4
forever, she needs to move to v2 eventually in order to see an even color (otherwise she looses), thereby

3 We have deliberately chosen the term resilience so as to avoid confusion with the already highly ambiguous
notions of robustness and fault tolerance.

2

potentially risking to lose if a disturbance occurs. In fact, the problem of constructing optimally resilient
winning strategies for games other than safety is still open.

In this paper, we solve this problem for an extensive class of infinite games, including parity games
and Muller games. In particular, our contributions are as follows:

– We introduce a novel concept, termed resilience, which captures for each vertex how many distur-
bances need to occur for Player 0 to lose. This concept generalizes the notion of determinacy and
allows us to derive optimally resilient winning strategies.

– We present an algorithm for computing the resilience of vertices and optimally resilient winning
strategies. Our algorithm uses solvers for the underlying game without disturbances as a subroutine,
which it invokes a linear number of times on various subgames. For many winning conditions, the
time complexity of our algorithm thus falls into the same complexity class as solving the original
game without disturbances. In particular, we obtain an quasipolynomial algorithm for parity games
with disturbances, which matches the currently best known upper bound for classical parity games.

– In addition to natural assumptions on the winning condition, e.g., that games are determined and
effectively solvable, our algorithm requires the winning condition to be prefix-independent. However,
we show that the classical notion of game reduction carries over to the setting of games with dis-
turbances. As a consequence, our algorithm can be applied to an extensive class of infinite games
(using a reduction from prefix-dependent games to prefix-independent ones if necessary), including
all ω-regular games.

– Finally, we discuss various further phenomena that arise in the presence of disturbances. Amongst
others, we illustrate how the additional goal of avoiding disturbances whenever possible affects the
memory requirements of strategies. Moreover, we raise the question of how benevolent disturbances
can be leveraged to recover from losing a play. However, an in-depth investigation of these phenomena
is outside the scope of this paper and left for future work.

This paper is structured as follows: after setting up definitions and notations in Section 2, we present
our algorithm for computing optimally resilient strategies in Section 3. In Section 4, we discuss the
necessary assumptions on the winning condition in detail and show that the notion of game reduction
carries over to games with disturbances. In Section 5, we identify further interesting research questions
arising in the context of disturbances. Finally, we discuss related work in Section 6.

2 Preliminaries

For notational convenience, we employ some ordinal notation à la von Neumann: the non-negative integers
are defined inductively as 0 = ∅ and n+1 = n∪{n}. Now, the first limit ordinal is ω = {0, 1, 2, . . .}, the set
of the non-negative integers. The next two successor ordinals are ω+1 = ω∪{ω} and ω+2 = ω+1∪{ω+1}.
These ordinals are ordered by set inclusion, i.e., we have 0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2. For
convenience of notation, we also denote the cardinality of ω by ω.

2.1 Infinite Games with Disturbances

An arena (with unmodeled disturbances) A = (V, V0, V1, E,D) consists of a finite directed graph (V,E),
a partition {V0, V1} of V into the set of vertices V0 of Player 0 (denoted by circles) and the set of vertices
of Player 1 (denoted by squares), and a set D ⊆ V0×V of disturbance edges (denoted by dashed arrows).
Note that only vertices of Player 0 have outgoing disturbance edges. We require that every vertex v ∈ V
has a successor v′ with (v, v′) ∈ E to avoid finite plays.

A play in A is an infinite sequence ρ = (v0, b0)(v1, b1)(v2, b2) · · · ∈ (V ×{0, 1})ω such that b0 = 0 and
for all j > 0: bj = 0 implies (vj−1, vj) ∈ E, and bj = 1 implies (vj−1, vj) ∈ D. Hence, the additional
bits bj for j > 0 denote whether a standard or a disturbance edge has been taken to move from vj−1 to
vj . We say ρ starts in v0. A play prefix (v0, b0) · · · (vj , bj) is defined similarly and ends in vj . The number
of disturbances in a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is defined as #D(ρ) = |{j ∈ ω | bj = 1}|, which
is either some k ∈ ω (if there are finitely many disturbances, namely k) or it is equal to ω (if there are
infinitely many). A play ρ is disturbance-free, if #D(ρ) = 0.

A game (with unmodeled disturbances) G = (A,Win) consists of an arena A = (V, V0, V1, E,D)
and a winning condition Win ⊆ V ω. A play ρ = (v0, b0)(v1, b1)(v2, b2) · · · is winning for Player 0, if

3

v0v1v2 · · · ∈ Win, otherwise it is winning for Player 1. Hence, winning is oblivious to occurrences of
disturbances. A winning condition Win is prefix-independent if for all ρ ∈ V ω and all w ∈ V ∗ we have
ρ ∈ Win if and only if wρ ∈ Win.

In examples, we often use the parity condition, the canonical ω-regular winning condition. LetΩ : V →
ω be a coloring of a set V of vertices. The (max-) parity condition

Parity(Ω) = {v0v1v2 · · · ∈ V ω | lim supΩ(v0)Ω(v1)Ω(v2) · · · is even}

requires the maximal color occurring infinitely often during a play to be even. A game (A,Win) is a
parity game, if Win = Parity(Ω) for some coloring Ω of the vertices of A. In figures, we label vertices of
a parity game by a pair v/c where v is the name of the vertex and c its color.

Furthermore, in our proofs we make use of the safety condition

Safety(U) = {v0v1v2 · · · ∈ V ω | vj /∈ U for every j ∈ ω}

for a given set U ⊆ V of unsafe vertices. It requires Player 0 to only visit safe vertices, i.e., Player 1 wins
a play if it visits at least one unsafe vertex.

A strategy for Player i ∈ {0, 1} is a function σ : V ∗Vi → V such that (vj , σ(v0 · · · vj)) ∈ E for every
v0 · · · vj ∈ V ∗Vi. A play (v0, b0)(v1, b1)(v2, b2) · · · is consistent with σ, if vj+1 = σ(v0 · · · vj) for every j
with vj ∈ Vi and bj+1 = 0, i.e., the next vertex is the one prescribed by the strategy unless a disturbance
edge is used. A strategy σ is positional, if σ(v0 · · · vj) = σ(vj) for all v0 · · · vj ∈ V ∗Vi.

Remark 1. Note that a strategy σ does not have access to the bits indicating whether a disturbance
occurred or not. However, this is not a restriction: let (v0, b0)(v1, b1)(v2, b2) · · · be a play with bj = 1
for some j > 0. We say that this disturbance is consequential (w.r.t. σ), if vj 6= σ(v0 · · · vj−1), i.e.,
if the disturbance transition (vj−1, vj) traversed by the play did not lead to the vertex the strategy
prescribed. Such consequential disturbances can be detected by comparing the actual vertex vj to σ’s
output σ(v0 · · · vj−1). On the other hand, inconsequential disturbances will just be ignored. In particular,
the number of consequential disturbances is always at most the number of disturbances.

2.2 Infinite Games without Disturbances

We characterize the classical notion of infinite games, i.e., those without disturbances, (see, e.g., [15]) as
a special case of games with disturbances. Let G be a game with vertex set V . A strategy σ for Player i
in G is said to be a winning strategy for her from v ∈ V , if every disturbance-free play that starts in v
and that is consistent with σ is winning for Player i.

The winning region Wi(G) of Player i in G contains those vertices v ∈ V such that Player i has a
winning strategy from v. Thus, the winning regions of G are independent of the disturbance edges, i.e.,
we obtain the classical notion of infinite games. We say that Player i wins G from v, if v ∈ Wi(G). Solving
a game amounts to determining its winning regions. Note that every game has disjoint winning regions.
In contrast, a game is determined, if every vertex is in either winning region.

2.3 Resilient Strategies

Let G be a game with vertex set V and let α ∈ ω + 2. A strategy σ for Player 0 in G is α-resilient
from v ∈ V if every play ρ that starts in v, that is consistent with σ, and with #D(ρ) < α, is winning
for Player 0. Thus, a k-resilient strategy with k ∈ ω is winning even under at most k − 1 disturbances,
an ω-resilient strategy is winning even under any finite number of disturbances, and an (ω + 1)-resilient
strategy is winning even under infinitely many disturbances. Note that every strategy is 0-resilient, as
no play has strictly less than zero disturbances. Furthermore, a strategy is 1-resilient from v if and only
if it is winning for Player 0 from v.

We define the resilience of a vertex v of G as

rG(v) = sup{α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v}.

Note that the definition is not antagonistic, i.e., it is not defined via strategies of Player 1. Nevertheless,
due to the remarks above, resilient strategies generalize winning strategies.

4

Remark 2. Let G be a determined game. Then, rG(v) > 0 if and only if v ∈ W0(G).

A strategy σ is optimally resilient, if it is rG(v)-resilient from every vertex v. Every such strategy
is a uniform winning strategy for Player 0, i.e., a strategy that is winning from every vertex in her
winning region. Hence, positional optimally resilient strategies can only exist in games which have uniform
positional winning strategies for Player 0.

Our goal is to determine the mapping rG and to compute an optimally resilient strategy.

3 Computing Optimally Resilient Strategies

To compute optimally resilient strategies, we first characterize the vertices of finite resilience in Subsec-
tion 3.1. All other vertices either have resilience ω or ω + 1. To distinguish between these possibilities,
we show how to determine the vertices with resilience ω + 1 in Subsection 3.2. In Subsection 3.3, we
show how to compute optimally resilient strategies using the results of the first two subsections. We only
consider prefix-independent winning conditions in Subsections 3.1 and 3.3. In Section 4, we show how to
overcome this restriction.

3.1 Characterizing Vertices of Finite Resilience

Our goal in this subsection is to characterize vertices with finite resilience in a game with prefix-
independent winning condition, i.e., those vertices from which Player 0 can win even under k− 1 distur-
bances, but not under k disturbances, for some k ∈ ω. To illustrate our approach, consider the parity
game in Figure 1 (on Page 2). The winning region of Player 1 only contains the vertex v1. Thus, by
Remark 2, v1 is the only vertex with resilience zero, every other vertex has a larger resilience.

Now, consider the vertex v2, which has a disturbance edge leading into the winning region of Player 1.
Due to this edge, v2 has resilience one. From v1, a disturbance-free play violating the winning condition
starts that is consistent with every strategy for Player 0. Due to prefix-independence, prepending the
disturbance edge does not change the winner and consistency with every strategy for her. Hence, this
play witnesses that v2 has resilience at most one, while v2 being in Player 0’s winning region yields the
matching lower bound.

However, v2 is the only vertex to which this reasoning applies. Now, consider v3: from here, Player 1
can force a play to visit v2 using a standard edge. From this property, one can argue that v3 has resilience
one as well. Again, this is the only vertex to which this reasoning is applicable.

In particular, from v4 Player 0 can avoid reaching the vertices for which we have determined the
resilience by using the self loop. However, this comes at a steep price for her: doing so results in a losing
play, as the color of v4 is odd. Thus, if she wants to have a chance at winning, she has to take a risk by
moving to v2, from which she has a 1-resilient strategy that is winning, if no more disturbances occur.
For this reason, v4 has resilience one as well. The same reasoning applies to v6: Player 1 can force the
play to v4 and from there Player 0 has to take a risk by moving to v2.

The vertices v3, v4, and v6 share the property that Player 1 can either enforce a play violating the
winning condition or to reach a vertex with already determined finite resilience. These three vertices are
the only ones currently satisfying this property. They all have resilience one since Player 1 can enforce
to reach a vertex of resilience one, but he cannot enforce to reach a vertex of resilience zero. Now, we
can also determine the resilience of v5. The disturbance edge from v5 to v3 witnesses that it is two.

Afterwards, these two arguments no longer apply to new vertices: no disturbance edge leads from a
v ∈ {v7, . . . , v10} to a vertex whose resilience is already determined and Player 0 has a winning strategy
from each of these vertices that additionally avoids vertices whose resilience is already determined. Thus,
our reasoning cannot determine their resilience. This is consistent with our goal, as all four vertices have
non-finite resilience, i.e., v7 and v8 have resilience ω and v9 and v10 have resilience ω + 1. Note that our
reasoning here cannot distinguish these two values. We solve this problem in Subsection 3.2.

In this subsection, we formalize the reasoning described above: starting from the vertices in Player 1’s
winning region having resilience zero, we use a disturbance update and a risk update to determine all
vertices of finite resilience. To simplify our proofs, we describe both as monotone operators updating
partial rankings mapping vertices to ω, which might update already defined values. We show that alter-
natingly applying these updates eventually yields a stable ranking that indeed characterizes the vertices
of finite resilience.

5

Throughout this section, we fix a game G = (A,Win) with A = (V, V0, V1, E,D) and with prefix-
independent Win ⊆ V ω satisfying the following condition: the game (A,Win ∩ Safety(U)) is determined
for every U ⊆ V . We discuss this requirement in Section 4.

A ranking for G is a partial mapping r : V → ω. The domain of r is denoted by dom(r), its image by
im(r). Let r and r′ be two rankings. We say that r′ refines r if dom(r′) ⊇ dom(r) and r′(v) ≤ r(v) for
all v ∈ dom(r). A ranking r is sound, if we have r(v) = 0 if and only if v ∈ W1(G) (cf. Remark 2).

Let r be a ranking for G. We define the ranking r′ as

r′(v) = min ({r(v)} ∪ {r(v′) + 1 | v′ ∈ dom(r) and (v, v′) ∈ D}) ,

with {r(v)} = ∅, if r(v) /∈ dom(r). We call r′ the disturbance update of r.

Lemma 1. The disturbance update r′ of a sound ranking r is sound and refines r.

Proof. As the minimization defining r′(v) ranges over a superset of {r(v)}, we have r′(v) ≤ r(v) for every
v ∈ dom(r). This immediately implies refinement. From this inequality, we also obtain r′(v) = 0 for every
v ∈ W1(G), due to soundness of r. Finally, consider some v ∈ W0(G). Then, r(v) > 0 by soundness of
r. Thus, r′(v) > 0 as well, as both r(v) and r(v′) + 1 are greater than zero. Altogether, r′ is sound as
well. ⊓⊔

Again, let r be a ranking for G. For every k ∈ im(r) let

Ak = W1(A,Win ∩ Safety({v ∈ dom(r) | r(v) ≤ k}))

the winning region of Player 1 in the game where he either wins by reaching a vertex v with r(v) ≤ k or
by violating the winning condition. Now, define r′(v) = min{k | v ∈ Ak}, where r′(v) is undefined if v is
in none of the Ak. We call r′ the risk update of r.

Lemma 2. The risk update r′ of a sound ranking r is sound and refines r.

Proof. We will show r′(v) ≤ r(v) for every v ∈ dom(r), which implies both refinement and r′(v) = 0 for
every v ∈ W1(G), as argued in the proof of Lemma 1.

Thus, let v ∈ dom(r). Trivially, v ∈ {v′ ∈ dom(r) | r(v′) ≤ r(v)}. Thus, Player 1 wins the game
(A,Win ∩ Safety({v′ ∈ dom(r) | r(v′) ≤ r(v)})) from v by violating the safety condition right away.
Hence, v ∈ Ar(v) and thus r′(v) ≤ r(v).

To complete the proof of soundness of r′, we just have to show r′(v) > 0 for every v ∈ W0(G). Towards
a contradiction, assume r′(v) = 0, i.e., v ∈ A0. Thus, Player 1 has a strategy τ from v that ensures that
either the winning condition is violated or that a vertex v′ with r(v′) = 0 is reached, i.e., v′ ∈ W1(G) by
soundness of r. Hence, Player 1 has a winning strategy τv′ for G from v′. This implies that he also has
a winning strategy from v: play according to τ until a vertex v′ with r(v′) = 0 is reached. From there,
mimic τv′ when starting from v′. Every resulting disturbance-free play has a suffix that violates Win.
Thus, by prefix-independence, the whole play violates Win as well, i.e., it is winning for Player 1. Thus,
v ∈ W1(G), which yields the desired contradiction, as winning regions are always disjoint. ⊓⊔

Let r0 be the unique sound ranking with domainW1(G), i.e., r0 maps exactly the vertices in Player 1’s
winning region to zero. Starting with r0, we inductively define a sequence of rankings (rj)j∈ω such that
rj for an odd (even) j > 0 is the disturbance update (the risk update) of rj−1, i.e., we alternate between
disturbance and risk updates.

Due to refinement, the rj eventually stabilize, i.e., there is some j0 such that rj = rj0 for all j ≥ j0.
Define r∗ = rj0 . Due to r0 being sound and by Lemma 1 and Lemma 2, each rj , and r

∗ in particular, is
sound. If v ∈ dom(r∗), let jv be the minimal j with v ∈ dom(rj); otherwise, jv is undefined.

Lemma 3. If v ∈ dom(r∗), then rjv (v) = rj(v) for all j ≥ jv.

Proof. We show the following stronger result for every v ∈ dom(r∗):

– If jv is odd, then rj(v) =
jv+1
2 for every j ≥ jv.

– If jv is even, then rj(v) =
jv
2 for every j ≥ jv.

6

The disturbance update increases the maximal rank by at most one and the risk update does not
increase the maximal rank at all. Furthermore, due to refinement, the rank of v is set and then only
decreases. Hence, we obtain rj(v) ≤ jv+1

2 and rj(v) ≤ jv
2 for odd and even jv, respectively. In the

remainder of the proof, we show a matching lower bound.
We say that a vertex v is updated to k ∈ ω in rj if rj(v) = k and either v /∈ dom(rj−1) or both v ∈

dom(rj−1) and rj−1(v) 6= k (here, r−1 is the unique ranking with empty domain). Now, we show the
following by induction over j, which implies the matching lower bound.

– If j is odd, then no v is updated in rj to some k < j+1
2 .

– If j is even, then no v is updated in rj to some k < j
2 .

For j = 0, we have j
2 = 0, and clearly, no vertex is assigned a negative rank by r0. For j = 1 and j′ = 2,

we obtain j+1
2 = j′

2 = 1. As r0, r1, and r2 are sound, neither r1 nor r2 update some v to zero.
Now let j > 2 and first consider the case where j is odd. Towards a contradiction, assume that v ∈ V

is updated in rj to some value less than j+1
2 . Since j is odd, rj is the disturbance update of rj−1. Further,

as v is updated in rj , there exists some disturbance edge (v, v′) ∈ D such that rj(v) = rj−1(v
′)+1. Thus,

rj−1(v
′) < rj(v) <

j+1
2 , i.e., rj−1(v

′) ≤ j+1
2 − 2 = j−3

2 . First, we show rj−3(v
′) = rj−2(v

′) = rj−1(v
′),

i.e., the rank of v′ is stable during the last two updates.
First assume towards a contradiction rj−2(v

′) 6= rj−1(v
′). Then, v′ is updated in rj−1 to some rank

of at most j−3
2 , which is in turn smaller than j−1

2 , violating the induction hypothesis for j − 1. Hence,
rj−2(v

′) = rj−1(v
′). The same reasoning yields a contradiction to the assumption rj−3(v

′) 6= rj−2(v
′).

Thus, we indeed obtain rj−3(v
′) = rj−2(v

′) = rj−1(v
′).

Since rj−2 is the disturbance update of rj−3, we obtain rj−2(v) ≤ rj−3(v
′)+ 1 = rj−1(v

′)+ 1 = rj(v).
Due to refinement, we obtain rj−2(v) ≥ rj(v), i.e., altogether rj−2(v) = rj−1(v) = rj(v). The latter
equality contradicts our initial assumption, namely v being updated in rj to rj(v).

Now consider the case where j is even. Again, assume towards a contradiction that v ∈ V is updated
in rj to some value less than j

2 . Since j is even, rj is the risk update of rj−1. Further, as v is updated in
rj , Player 1 wins the game (A,Win∩Safety(U)) from v, where U = {v′ ∈ dom(rj−1) | rj−1(v

′) ≤ rj(v)}.
Hence, he has a strategy τ such that every play starting in v and consistent with τ either violates Win
or eventually visits some vertex v′ with rj−1(v

′) ≤ rj(v). We claim rj−2(v
′) = rj−1(v

′) for all v′ ∈ U .
Towards a contradiction, assume rj−2(v

′) 6= rj−1(v
′) for some v′ ∈ U . Note that we have rj−1(v

′) ≤
rj(v) <

j
2 . Thus, v

′ is updated in rj−1 to some value strictly less than j
2 , which contradicts the induction

hypothesis for j − 1. Hence, we indeed obtain rj−2(v
′) = rj−1(v

′) for all v′ ∈ U .
Thus, there are two types of vertices v′ in U : those for which rj−3(v

′) is defined, which implies rj−3(v
′) =

rj−1(v
′) due to the induction hypothesis and refinement, and those where rj−3(v

′) is undefined, which
implies rj−2(v

′) = rj−1(v
′) due to the claim above.

We claim that Player 1 wins (A,Win ∩ Safety({v′′ ∈ dom(rj−3) | rj−3(v
′′) ≤ rj(v)})) from v, which

implies rj−2(v) = rj(v). This contradicts v being updated in rj , our initial assumption.
To this end, we construct a strategy τ ′ from v that either violates Win or reaches a vertex v′′ with

rj−3(v
′′) ≤ rj(v) as follows. From v, τ ′ mimics τ until a vertex v′ in U is reached (if it is at all). If v′ is

of the first type, then we have rj−3(v
′) = rj−1(v

′) ≤ rj(v). If v
′ is of the second type, then v′ is updated

in rj−2 to some rank rj−2(v
′) = rj−1(v

′) ≤ rj(v). As rj−2 is the risk update of rj−3, Player 1 has a
strategy τv′ from v′ that either violates Win or reaches a vertex v′′ with rj−3(v

′′) ≤ rj−2(v
′) ≤ rj(v).

Thus, starting in v′, τ ′ mimics τv′ from v′ until such a vertex is reached (if it is reached at all). Thus,
every play that starts in v and is consistent with τ ′ either violates Win or reaches a vertex v′′ with
rj−3(v

′′) ≤ rj(v), which proves our claim. ⊓⊔

From the proof of Lemma 3, we obtain an upper bound on the maximal rank of r∗. This in turn
implies that the rj stabilize quickly, as rj = rj+1 = rj+2 implies rj = r∗.

Corollary 1.

1. We have im(r∗) = {0, 1, . . . , n} for some n < |V |.
2. We have r∗ = r2|V |.

Lemma 3 also shows that an algorithm computing the rj does not need to implement the definition
of the two updates as presented above, but can be optimized by taking into account that a rank is never
updated once set.

The main result of this section shows that r∗ characterizes the resilience of vertices of finite resilience.

7

Lemma 4. Let r∗ be defined for G as described above, and let v ∈ V .

1. If v ∈ dom(r∗), then rG(v) = r∗(v).
2. If v /∈ dom(r∗), then rG(v) ∈ {ω, ω + 1}.

Proof. 1.) Let v ∈ dom(r∗). We prove rG(v) ≤ r∗(v) and rG(v) ≥ r∗(v).
“rG(v) ≤ r

∗(v)”: An α-resilient strategy from v is also α′-resilient from v for every α′ ≤ α. Thus,
to prove

rG(v) = sup{α ∈ ω + 2 | Player 0 has an α-resilient strategy for G from v} ≤ r∗(v)

we just have to show that Player 0 has no (r∗(v) + 1)-resilient strategy from v. By definition, for every
strategy σ for Player 0, we have to show that there is a play ρ starting in v and consistent with σ that
has at most r∗(v) disturbances and is winning for Player 1. So, fix an arbitrary strategy σ.

We define a play with the desired properties by constructing longer and longer finite prefixes before
finally appending an infinite suffix. During the construction, we ensure that each such prefix ends in
dom(r∗) in order to be able to proceed with our construction.

The first prefix just contains the starting vertex (v, 0), i.e., the prefix does indeed end in dom(r∗).
Now, assume we have produced a prefix w(v′, b′) ending in some vertex v′ ∈ dom(r∗), which implies that
jv′ is defined. We consider three cases:

– If jv′ = 0, then v′ ∈ W1(G) by definition of r0, i.e., Player 1 has a winning strategy τ from v. Thus,
we extend w(v′, b′) by the unique disturbance-free play that starts in v′ and is consistent with σ and
τ , without its first vertex. In that case, the construction of the infinite play is complete.

– If jv′ > 0 is odd, then v′ received its rank r∗(v′) during a disturbance update. Hence, there is some v′′

such that (v′, v′′) ∈ D with r∗(v′)− 1 = r∗(v′′). In this case, we extend w(v′, b′) by such a vertex v′′

to obtain the new prefix w(v′, b′)(v′′, 1), which satisfies the invariant, as v′′ is in dom(r∗). Further, we
have jv′′ < jv′ as the rank of v′′ had to be defined in order to be considered during the disturbance
update assigning a rank to v′.

– If jv′ > 0 is even, then v′ received its rank r∗(v′) during a risk update. We claim that Player 1 has a
strategy τv′ that guarantees one of the following outcomes from v′: either the resulting play violates
Win or it encounters a vertex v′′ 6= v′ that satisfies r∗(v′′) ≤ r∗(v′) and jv′′ < jv′ .
In that case, consider the unique disturbance-free play ρ′ that starts in v′ and is consistent with
σ and the strategy τv′ as above. If ρ′ violates Win, then we extend w(v′, b′) by ρ′ without its first
vertex. In that case, the construction of the infinite play is complete.
If ρ′ does not violate Win, then we extend w(v′, b′) by the prefix of ρ′ without its first vertex and up
to (and including) the first occurrence of a vertex v′′ in ρ′ satisfying the properties described above.
Note that this again satisfies the invariant.
It remains to argue our claim: v′ was assigned its rank r∗(v′) = rj

v′
(v′) because it is in Player 1’s

winning region in the game with winning condition Win ∩ Safety(U), for

U = {v′′ ∈ dom(rj
v′

−1) | rj
v′

−1(v
′′) ≤ rj

v′
(v′)}.

Hence, from v′, Player 1 has a strategy to either violate the winning condition or to reach U . Thus,
rj

v′
−1(v

′′) = r∗(v′′) for every v′′ ∈ dom(rj
v′

−1) yields r
∗(v′′) ≤ r∗(v′). Finally, we have jv′′ < jv′ , as

the rank of v′ was assigned due to the vertices in U already having ranks.

Note that only in two cases, we extend the prefix to an infinite play. In the other two cases, we just
extend the prefix to a longer finite one. Thus, we first show that this construction always results in an
infinite play. To this end, let w0(v0, b0) and w1(v1, b1) two of the prefixes constructed above such that
w1(v1, b1) is an extension of w0(v0, b0). A simple induction proves jv1 < jv0 . Hence, as the value can only
decrease finitely often, at some point an infinite suffix is added. Thus, we indeed construct an infinite
play.

Finally, we have to show that the resulting play has the desired properties: by construction, the
play starts in v and is consistent with σ. Furthermore, by construction, it has a disturbance-free suffix
that violates Win. Thus, by prefix-independence, the whole play also violates Win. It remains to show
that it has at most r∗(v) disturbances. To this end, let w0(v0, b0) and w1(v1, b1) two of the prefixes
such that w1(v1, b1) is obtained by extending w0(v0, b0) once. If the extension consists of taking the

8

disturbance edge (v0, v1) ∈ D, then we have r∗(v1) = r∗(v0) + 1. The only other possibility is the
extension consisting of a finite play prefix that is consistent with the strategy τv0 . Then, by construction,
we obtain r∗(v1) ≤ r∗(v0).

Thus, there are at most r∗(v) many disturbances in the play, as the current rank decreases with every
disturbance edge and does not increase with the other type of extension, but is always non-negative.

“rG(v) ≥ r
∗(v)”: Here, we construct a strategy σf for Player 0 that is r∗(v)-resilient from every

v ∈ dom(r∗), i.e., from v, σf has to be winning even under r∗(v) − 1 disturbances. As every strategy is
0-resilient, we only have to consider those v with r∗(v) > 0.

The proof is based on the fact that r∗ is both stable under the disturbance and under the risk update,
i.e., the disturbance update and the risk update of r∗ are r∗, which yields the following properties. Let
(v, v′) ∈ D be a disturbance edge such that r∗(v) > 0. Then, we have r∗(v′) ≥ r∗(v) − 1. Also, for
every v ∈ dom(r∗) with r∗(v) > 0, Player 0 has a winning strategy σv from v for the game Gv =
(A,Win ∩ Safety({v′ ∈ dom(r∗) | r∗(v′) < r∗(v)})) (note the strict inequality). Here, we apply the
determinacy of the game Gv, as the risk update is formulated in terms of Player 1’s winning region.

Now, we define σf as follows: it always mimics a strategy σvcur for some vcur ∈ dom(r∗), which
is initialized by the starting vertex. The strategy σvcur is mimicked until a consequential (w.r.t. σvcur)
disturbance edge is taken, say by reaching the vertex v′. In that case, the strategy σf discards the history
of the play constructed so far, updates vcur to v

′, and begins mimicking σv′ . This is repeated ad infinitum.
Now, consider a play that starts in dom(r∗), is consistent with σf , and has less than r∗(v) disturbances.

The part up to the first consequential disturbance edge (if it exists at all) is consistent with σv. Now,
let (v0, v

′
0) be the corresponding disturbance edge. Then, we have r∗(v0) ≥ r∗(v), as σv being a winning

strategy for the safety condition never visits vertices with a rank smaller than r∗(v). Thus, we conclude
r∗(v′0) ≥ r∗(v0)− 1 ≥ r∗(v)− 1. Similarly, the part between the first and the second consequential distur-
bance edge (if it exists at all) is consistent with σv′

0
. Again, if (v1, v

′
1) is the corresponding disturbance

edge, then we have r∗(v′1) ≥ r∗(v1)− 1 ≥ r∗(v)− 2. Continuing this reasoning shows that less than r∗(v)
(consequential) disturbance edge lead to a vertex v′ with r∗(v′) > 0, as the rank is decreased by at most
one for every disturbance edge. The suffix starting in this vertex is disturbance-free and consistent with
σv′ . Hence, the suffix satisfies Win, i.e., by prefix-independence, the whole play satisfies Win as well.
Thus, σf is indeed r∗(v)-resilient from every v ∈ dom(r∗).

2.) Let X = V \ dom(r∗). The disturbance update of r∗ being r∗ implies that every disturbance
edge starting in X leads back to X . Similarly, the risk update of r∗ being r∗ implies X = W0(GX) for
GX = (A,Win ∩ Safety(V \ X)). Thus, from every v ∈ X , Player 0 has a strategy σv such that every
disturbance-free play that starts in v and is consistent with σv satisfies the winning condition Win and
never leaves X . Using these properties, we construct a strategy σω that is ω-resilient from every v ∈ X ,
which implies rG(v) ∈ {ω, ω + 1}.

The definition of the strategy σω here is similar to the one above yielding the lower bound on the
resilience. Again, σω always mimics a strategy σvcur for some vcur ∈ X , which is initialized by the starting
vertex. The strategy σvcur is mimicked until a consequential (w.r.t. σvcur) disturbance edge is taken, say
by reaching the vertex v′. In that case, the strategy σω discards the history of the play constructed so
far, updates vcur to v

′, and begins mimicking σv′ . This is repeated ad infinitum.
Due to the properties of the disturbance edges and the strategies σv, such a play never leaves X , even

if disturbances occur. Furthermore, if only finitely many disturbances occur, then the resulting play has
a disturbance-free suffix that starts in some v′ ∈ X and is consistent with σv′ . As σv′ is winning from v′

in GX , this suffix satisfies Win. Hence, by prefix-independence of Win, the whole play also satisfies Win.
Thus, σω is indeed an ω-resilient strategy from every v ∈ X . ⊓⊔

Combining Corollary 1 and Lemma 4, we obtain an upper bound on the resilience of vertices with
finite resilience.

Corollary 2. We have rG(V) ∩ ω = {0, 1, . . . , n} for some n < |V |.

3.2 Characterizing Vertices of Resilience ω + 1

Our goal in this subsection is to determine the vertices of resilience ω+1, i.e., those from which Player 0
can win even under an infinite number of disturbances. Intuitively, in this setting, we give Player 1 control
over the occurrence of disturbances, as he cannot execute more than infinitely many disturbances during

9

a play. To this end, consider again the parity game in Figure 1 (on Page 2). From v9 Player 0 wins even
if Player 1 controls whether the disturbance edge is taken from v9, as both v9 and v10 have color zero.
On the other hand, giving Player 1 control over the disturbance edges implies that he wins from v7, as
he can use the one incident to v7 infinitely often to move to v8, which has color one.

W1

W0

v6/1

v4/1v4/1

v5/0

v5/0

v3/1

v2/2

v2/2

v1/1

v7/0 v7/0 v8/1

v9/0 v9/0 v10/0

Fig. 2: The rigged game induced by the game shown in Figure 1 (on Page 2).

In the following, we prove this intuition to be correct. To this end, we transform the arena of the game
so that at a Player 0 vertex, first Player 1 gets to chose whether he wants to take one of the disturbance
edges and, if not, gives control to Player 0, who is then able to use a standard edge. Figure 2 depicts
the game corresponding to the one from Figure 1. And indeed, Player 0 wins this so-called rigged game,
which still has a parity condition, from v9 and v10, but not from any other vertex. These are the only
vertices of resilience ω + 1 in the original game.

Given a game G = (A,Win) with A = (V, V0, V1, E,D), define the rigged game Grig = (A′,Win′) with
A′ = (V ′, V ′

0 , V
′
1 , E

′, D′) such that V ′ = V ′
0 ∪ V ′

1 with V ′
0 = {v | v ∈ V0} and V ′

1 = V and D′ = ∅. The
set E′ of edges is the union of the following sets:

– D: Player 1 uses a disturbance edge.
– {(v, v) | v ∈ V0}: Player 1 does not use a disturbance edge and yields control to Player 0.
– {(v, v′) | (v, v′) ∈ E and v ∈ V0}: Player 0 has control and picks a standard edge.
– {(v, v′) | (v, v′) ∈ E and v ∈ V1}: Player 1 takes a standard edge.

Furthermore, Win′ = {ρ ∈ (V ′)ω | h(ρ) ∈ Win} where h is the homomorphism induced by defining
h(v) = v and h(v) = ε for every v ∈ V .

We now show that W0(Grig) characterizes the vertices of resilience ω + 1 in G. Note that we have no
assumptions on G here.

Lemma 5. Let v be a vertex of a game G. Then, v ∈ W0(Grig) if and only if rG(v) = ω + 1.

Proof. “⇒”: Let Player 0 win Grig from v, say with winning strategy σ′. We inductively translate play
prefixes w in G into play prefixes t′(w) in Grig satisfying the following invariant: t′((v0, b0) · · · (vj , bj))
starts in v0 and ends in vj .

For the induction start, we define t′(v0, b0) = (v0, 0); to define t′((v0, b0) · · · (vj , bj)(vj+1, bj+1)), we
consider several cases:

– If bj+1 = 1, then (vj , vj+1) ∈ D, i.e., the play traverses the disturbance edge (vj , vj+1). This move is
mimicked by defining t′((v0, b0) · · · (vj , bj)(vj+1, bj+1)) = t′((v0, b0) · · · (vj , bj)) · (vj+1, 0).

– If bj+1 = 0, i.e., (vj , vj+1) ∈ E, and vj ∈ V0, then the play did not traverse a disturbance edge and
instead allowed Player 0 to pick a standard edge (vj , vj+1) to traverse. This move is mimicked by
defining t′((v0, b0) · · · (vj , bj)(vj+1, bj+1)) = t′((v0, b0) · · · (vj , bj)) · (vj , 0) · (vj+1, 0).

– If bj+1 = 0, i.e., (vj , vj+1) ∈ E, and vj ∈ V1, then the play traversed the standard edge (vj , vj+1).
This move is mimicked by defining t′((v0, b0) · · · (vj , bj)(vj+1, bj+1)) = t′((v0, b0) · · · (vj , bj)) · (vj+1, 0).

Note that our invariant is satisfied in any case. Also, we lift t′ to infinite plays by taking limits as usual.
Using this translation, we define a strategy σ for Player 0 in G via

σ(v0 · · · vj) = σ′(t′((v0, b0) · · · (vj , bj)) · vj),

10

where b0 = 0 and where for every j′ > 0, bj′ = 1 if and only if vj′ 6= σ(v0 · · · vj′−1), i.e., we re-
construct the consequential disturbances. A straightforward induction shows that for every play ρ =
(v0, b0)(v1, b1)(v2, b2) · · · in G that is consistent with σ, the play t′(ρ) is consistent with σ′. Hence,
t′(ρ) ∈ Win′ for every ρ starting in v. Furthermore, we have h(t′(ρ)) = v0v1v2 · · · ∈ Win, as t′(ρ) ∈ Win′.
Thus, ρ = (v0, b0)(v1, b1)(v2, b2) · · · is winning for Player 0. As we have no restriction on the number of
disturbances in ρ, σ is (ω + 1)-resilient from v. Thus, rG(v) = ω + 1.

“⇐”: Now, let rG(v) = ω+1, i.e., Player 0 has an (ω+1)-resilient strategy σ from v in G. This time,
we inductively define a translation t of play prefixes in Grig into play prefixes in G. Here, it suffices to
consider those prefixes that start and end in V ′

1 . For these, we satisfy the following invariant: if w starts
in v0 and ends in vj , then t(w) starts in v0 and ends in vj as well. Note that Grig has no disturbance
edges. Hence, thus the bits indicating whether such an edge has been traversed are always zero in plays
of Grig. Thus, we define t(v0, 0) = (v0, 0) and consider several cases for the inductive step:

– First, assume we have a prefix of the form (v0, 0) · · · (vj , 0)(vj+1, 0) for some vj ∈ V0, i.e., Player 1’s
move simulates the disturbance edge (vj , vj+1) ∈ D. Then, we define t((v0, 0) · · · (vj , 0)(vj+1, 0)) =
t((v0, 0) · · · (vj , 0)) · (vj+1, 1).

– Next, assume we have a prefix of the form (v0, 0) · · · (vj , 0)(vj+1, 0) for some vj ∈ V1, i.e., Player 1’s
move simulates the standard edge (vj , vj+1) ∈ E. Then, we define t((v0, 0) · · · (vj , 0)(vj+1, 0)) =
t((v0, 0) · · · (vj , 0)) · (vj+1, 0).

– Finally, the last case is a prefix of the form (v0, 0) · · · (vj , 0)(vj , 0)(vj+1, 0) for some vj ∈ V0, i.e.,
Player 0’s move simulates the standard edge (vj , vj+1) ∈ E. Then, we define t((v0, 0) · · · (vj , 0)(vj , 0)(vj+1, 0)) =
t((v0, 0) · · · (vj , 0)) · (vj+1, 0).

The invariant is satisfied in any case. Also, we can again lift t to infinite plays via limits.

Now, we define a strategy σ′ for Player 0 in Grig via

σ′(v0 · · · vjvj) = σ(t(v0 · · · vj)).

A straightforward induction shows that for every play ρ that is consistent with σ′, the play t(ρ) is
consistent with σ. Hence, t(ρ) satisfies the winning condition, if ρ starts in v, as σ is (ω+1)-resilient from
v. Let t(ρ) = (v0, b0)(v1, b1)(v2, b2) · · · . Then, v0v1v2 · · ·Win. Now, h(ρ) = v0v1v2 · · · implies ρ ∈ Win′.
Thus, σ′ is a winning strategy for Player 0 from v. ⊓⊔

Consider the first implication proved above. If σ is positional, then σ′ is positional as well. Thus,
applying both implications yields the following corollary.

Corollary 3. Assume Player 0 has a positional winning strategy for Grig from v. Then, Player 0 has an
(ω + 1)-resilient positional strategy from v.

3.3 Computing Optimally Resilient Strategies

This subsection is concerned with computing the resilience and optimally resilient strategies. Recall that
in the proof of Lemma 4, we have constructed strategies σf and σω such that σf (σω) is rG(v)-resilient
from every v with rG(v) ∈ ω (with rG(v) = ω). However, even if the strategies σv used to construct
them are positional, the strategies σf and σω are in general not positional, as they have to store the
vertex vcur to simulate the strategy σvcur . In the following, we show how to combine such positional
strategies σv and a positional one for Grig into a single positional optimally resilient strategy. To this end,
we refine the following standard technique that combines positional winning strategies for games with
prefix-independent winning conditions.

Assume we have a positional strategy σv for every vertex v in some setW ⊆ V such that σv is winning
from v. Furthermore, let Rv be the set of vertices visited by plays that start in v and are consistent with
σv. Furthermore, let m(v) = min≺{v′ ∈ V | v ∈ Rv′} for some strict total ordering ≺ of W . Then, the
positional strategy σ defined by σ(v) = σm(v)(v) is winning from each v ∈ W , as along every play that
starts in some v ∈ W and is consistent with σ, the value of the function m only decreases. Thus, after it
has stabilized, the remaining suffix is consistent with some strategy σv. Hence, the suffix is winning for
Player 0 and prefix-independence implies that the whole play is winning for her as well.

11

Here, we have to adapt this reasoning to respect the resilience of the vertices and to handle disturbance
edges. In particular, we have to pay attention to vertices of resilience ω + 1, as plays starting in such
vertices have to be winning under infinitely many disturbances.

Recall the requirements from Subsection 3.1 for a game (A,Win): Win is prefix-independent and the
game GU is determined for every U ⊆ V , where we write GU for the game (A,Win ∩ Safety(U)) for
some U ⊆ V . To prove the results of this subsection, we need to impose some additional effectiveness
requirements: we require that each game GU and the rigged game Grig can be effectively solved. Also, we
first assume that Player 0 has positional winning strategies for each of these games, which have to be
effectively computable as well. We discuss the severity of these requirements in Section 4.

Theorem 1. Let G satisfy all the above requirements. Then, the resilience of G’s vertices and a positional
optimally resilient strategy can be effectively computed.

Proof. The effective computability of the resilience follows from the effectiveness requirements on G: to
compute the ranking r∗, it suffices to compute the disturbance and risk updates. The former are trivially
effective while the effectiveness of the latter ones follows from our assumption. Lemma 4 shows that r∗

correctly determines the resilience of all vertices with finite resilience. Finally by solving the rigged game,
we also correctly determine the resilience of the remaining vertices (Lemma 5). Again, this game can be
solved by our assumption.

Thus, it remains to show how to compute a positional optimally resilient strategy. To this end we
compute a positional strategy σv for every v satisfying the following properties.

– For every v ∈ V with rG(v) ∈ ω \ {0}, the strategy σv is winning for Player 0 from v for the
game (A,Win∩ Safety({v′ ∈ V | rG(v

′) < rG(v)})). The existence of such a strategy has been shown
in the proof of Item 1 of Lemma 4.

– For every v ∈ V with rG(v) = ω, the strategy σv is winning for Player 0 from v for the game (A,Win∩
Safety({v′ ∈ V | rG(v′) ∈ ω})). The existence of such a strategy has been shown in the proof of Item 2
of Lemma 4.

– For every v ∈ V with rG(v) = ω+1, the strategy σv is (ω+1)-resilient from v. The existence of such
a strategy follows from Corollary 3, as we assume Player 0 to win Grig with positional strategies.

– Finally, for every v ∈ V with rG(v) = 0, we fix an arbitrary positional strategy σv for Player 0.

Furthermore, we fix a strict linear order ≺ on V such that v ≺ v′ implies rG(v) ≤ rG(v
′), i.e., we

order the vertices by ascending resilience. For a vertex v with rG(v) 6= ω+1, let Rv be the set of vertices
reachable via disturbance-free plays that start in v and are consistent with σv. On the other hand, for a
vertex v with with rG(v) = ω + 1, let Rv be the set of vertices reachable via plays with arbitrarily many
disturbances that start in v and are consistent with σv.

We claim Rv ⊆ {v′ ∈ V | rG(v′) ≥ rG(v)} for every v ∈ V (∗). For v with rG(v) 6= ω + 1 this follows
immediately from the choice of σv. Thus, let us argue the claim for v with rG(v) = ω + 1. Assume σv
reaches a vertex v′ of resilience rG(v

′) 6= ω+1. Then, there exists a play ρ′ starting in v′ that is consistent
with σv, has less than rG(v

′) many disturbances and is losing for Player 0. Thus the play obtained by
first taking the play prefix to v′ and then appending ρ′ without its first vertex yields a play starting in
v, consistent with σv, but losing for Player 0. This play implies that σv is not (ω + 1)-resilient from v,
which yields the desired contradiction.

Let m : V → V be given as m(v) = min≺{v′ ∈ V | v ∈ Rv′} and define the positional strategy σ
as σ(v) = σm(v)(v). By our assumptions, σ can be effectively computed. It remains to show that it is
optimally resilient.

To this end, we apply the following two properties of edges (v, v′) that may appear during a play that
is consistent with σ, i.e., we either have v ∈ V0 and σ(v) = v′ (which implies (v, v′) ∈ E), or v ∈ V1 and
(v, v′) ∈ E, or v ∈ V0 and (v, v′) ∈ D:

1. If (v, v′) ∈ E, then we have rG(v) ≤ rG(v
′) and m(v) ≥ m(v′). The first property follows from

minimality of m(v) and (∗) while the second one follows from the definition of Rv.
2. If (v, v′) ∈ D, then we have to distinguish several subcases, which all follow immediately from the

definition of resilience:
– If rG(v) ∈ ω, then rG(v

′) ≥ rG(v)− 1.
– If rG(v) = ω, then rG(v

′) = ω, and

12

– If rG(v) = ω + 1, then rG(v
′) = ω + 1 and m(v) ≥ m(v′) (here, the second property follows from

the definition of Rv for v with rG(v) = ω + 1, which takes disturbance edges into account).

Now, consider a play ρ = (v0, b0)(v1, b1)(v2, b2) · · · that is consistent with σ. If rG(v0) = 0 then we
have nothing to show, as every strategy is 0-resilient from v.

Now, assume rG(v0) ∈ ω \ {0}. We have to show that if ρ has less than rG(v0) disturbances, then
it is winning for Player 0. An inductive application of the above properties shows that in that case the
last disturbance edge leads to a vertex of non-zero resilience. Furthermore, as the values m(vj) are only
decreasing afterwards, they have to stabilize at some later point. Hence, there is some suffix of ρ that
starts in some v′ with non-zero resilience and that is consistent with the strategy σv′ . Thus, the suffix
is winning for Player 0 by the choice of σv′ and prefix-independence implies that ρ is winning for her as
well.

Next, assume rG(v0) = ω. We have to show that if ρ has a finite number of disturbances, then it is
winning for Player 0. Again, an inductive application of the above properties shows that in that case the
last disturbance edge leads to a vertex of resilience ω or ω + 1. Afterwards, the values m(vj) stabilize
again. Hence, there is some suffix of ρ that starts in some v′ with non-zero resilience and that is consistent
with the strategy σv′ . Thus, the suffix is winning for Player 0 by the choice of σv′ and prefix-independence
implies that ρ is winning for her as well.

Finally, assume rG(v0) = ω + 1. Then, the above properties imply that ρ only visits vertices with
resilience ω + 1 and that the values m(vj) eventually stabilize. Hence, there is a suffix of ρ that is
consistent with some (ω + 1)-resilient strategy σv′ , where v′ is the first vertex of the suffix. Hence, the
suffix is winning for Player 0, no matter how many disturbances occurred. This again implies that ρ is
winning for her as well. ⊓⊔

Next, we analyze the complexity of the algorithm sketched above in some more detail. The inductive
definition of the rj can be turned into an algorithm computing r∗ (using the results of Lemma 3 to
optimize the naive implementation), which has to solve O(|V |) many games (and compute winning
strategies for some of them) with winning condition Win ∩ Safety(U). Furthermore, the rigged game,
which is of size O(|V |), has to be solved and winning strategies have to be determined. Thus, the overall
complexity is in general dominated by the complexity of solving these tasks. We explicitly state one
complexity result for the important case of parity games, using the fact that each of these games is then
a parity game as well. Also, we use one of the recently presented quasipolynomial time algorithms for
solving parity games [6,12,17] to solve the GU and Grig.

Theorem 2. Optimally resilient strategies in parity games are positional and can be computed in quasipoly-
nomial time.

Using similar arguments, one can also analyze games where positional strategies do not suffice. As
above, assume G satisfies the same determinacy and effectiveness assumptions, but only require that
Player 0 has finite-state winning strategies4 for each game with winning condition (A,Win ∩ Safety(U))
and for the rigged game Grig. Then, one can show that she has a finite-state optimally resilient strategy.
In fact, by reusing memory states, one can construct an optimally resilient strategy that it is not larger
than any constituent strategy.

4 Discussion

In this section, we discuss the assumptions required to be able to compute (positional) optimally resilient
strategies with the algorithm presented in Section 3. To this end, fix a game G = (A,Win) with vertex
set V and recall that Grig is the corresponding rigged game and that we defined GU = (A,Win∩Safety(U))
for every U ⊆ V . Now, the assumptions on G for Theorem 1 to hold are as follows:5

1. Every game GU is determined.
2. Player 0 has a positional winning strategy from every vertex in her winning regions in the games GU

and in the rigged game Grig.

4 A finite state strategy is implemented by a finite automaton that processes play prefixes and outputs vertices
to move to. See Section 4 for a formal definition.

5 The subsequent reasoning also holds true for games with finite-state strategies.

13

3. Each game GU and the game Grig can be effectively solved and positional winning strategies can be
effectively computed for each such game.

4. Win is prefix-independent.

First, consider the determinacy assumption. It is straightforward to show

W0(GU) = W0(A \W,Win ∩ (V \W)ω)

with W = W1(A, Safety(U)). Hence, one can first determine and then remove the winning region of
Player 1 in the safety game and only then solve the subgame of G played in Player 0’s winning region of
the safety game. Thus, all subgames of G being determined is a sufficient condition for our determinacy
requirement being satisfied. The winning conditions one typically studies, e.g., parity and in fact all Borel
ones [20], satisfy this property.

The next requirement concerns the existence of positional winning strategies for the games GU and
Grig. For the former games, this requirement is satisfied if Player 0 has positional winning strategies for
all subgames of G. As every positional optimally resilient strategy is also a winning strategy in a certain
subgame, this condition is necessary. Now, consider the rigged game, whose winning condition can be
written as Win = {v0v1v2 · · · ∈ (V ′)ω | v0v2v4 · · · ∈ Win}. The winning conditions one typically studies,
e.g., again the Borel ones, are closed under taking such supersequences. Thus, if G is from a class of
winning conditions that allows for positional winning strategies for Player 0, then this class typically also
contains Grig.

Also, the assumption on the effective solvability and computability of positional strategies is obviously
necessary, as we solve a more general problem here when determining optimally resilient strategies.

W0

v v′ Wink = {v0v1v2 · · · ∈ V ω | |{j | vj = v}| ≤ k}

Fig. 3: Counterexample to the correctness of the computation of resilience for games with prefix-dependent
winning conditions.

Finally, let us consider prefix-independence. If the winning condition is not prefix-independent, the
algorithm presented in Section 3 does not compute the resilience of vertices correctly anymore. As an
example, consider the family Gk = (A,Wink) of games shown in Figure 3. In Gk, it is Player 0’s goal
to avoid more than k visits to v. Such a visit only occurs via a disturbance or if the initial vertex is v.
Hence, we have rGk

(v) = k and rGk
(v′) = k + 1. Applying the algorithm from Section 3, however, the

initial ranking function r0 has an empty domain, since we have W1(Gk) = ∅. Thus, the computation of
the rj immediately stabilizes, yielding r∗ with empty domain. This is a counterexample to Lemma 4, if
the winning condition is prefix-dependent.

To conclude this section, we show that we can, however, still leverage the algorithm from Section 3
in order to compute the resilience of a wide range of games with prefix-dependent winning conditions.
To this end, we extend the framework of game reductions to games with disturbances.

Fix a game (A,Win) with A = (V, V0, V1, E,D). A memory structure for A is a triple M =
(M, Init,Upd) where M is a finite set of memory states, Init : V → M is the initialization function,
and Upd: M × V →M is the memory update function.

The update function can be extended to finite play prefixes: Upd+(v) = Init(v) and Upd+(wv) =
Upd(Upd+(w), v) for w ∈ V + and v ∈ V . A next-move function Nxt : Vi ×M → V for Player i has
to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi and all m ∈ M . It induces a strategy σ for Player i
with memory M via σ(v0 · · · vj) = Nxt(vj ,Upd

+(v0 · · · vj)). A strategy is called finite-state if it can be
implemented by a memory structure.

The arena A and M = (M, Init,Upd) induce the expanded arena A ×M = (V ×M,V0 ×M,V1 ×
M,E′, D′) where E′ is defined via ((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and Upd(m, v′) = m′.
The disturbance edges D′ are defined analogously, i.e., ((v,m), (v′,m′)) ∈ D′ if and only if (v, v′) ∈ D
and Upd(m, v′) = m′. Every play (v0, b0)(v1, b1)(v2, b2) · · · in A has a unique extended play ext(ρ) =
((v0,m0), b0)((v1,m1), b1)((v2,m2), b2) · · · in A×M defined bym0 = Init(v0) andmj+1 = Upd(mj , vj+1),
i.e., mj = Upd+(v0 · · · vj). Play prefixes are translated analogously.

14

Remark 3. Let ρ be a play in G. Then, #D(ρ) = #D(ext(ρ)).

A game G = (A,Win) is reducible to G′ = (A′,Win′) via M, written G ≤M G′, if A′ = A ×M and
every play ρ in G is won by the same player that wins ext(ρ) in G′.

Lemma 6. Let G ≤M G′. Then, rG(v) = rG′(v, Init(v)) for all vertices v of G.

Proof. We show that Player 0 has an α-resilient strategy σ′ for G′ from (v, Init(v)) if and only if she has
an α-resilient strategy σ for G from v, which implies our claim. The translation of the strategies is the
same as in the disturbance-free setting (see, e.g., [18]), but here we have to argue about resilience instead
of just winning.

“⇐”: Given a strategy σ for G, we define σ′ for G′ via σ′((v0,m0) · · · (vj ,mj)) = σ(v0 · · · vj). Consider
a play ρ′ = ((v0,m0), b0)((v1,m1), b1)((v2,m2), b2) · · · consistent with σ′. If m0 = Init(v0), then ρ′ =
ext(ρ) for ρ = (v0, b0)(v1, b1)(v2, b2) · · · , which is consistent with σ. Hence, ρ′ and ρ having the same
winner and the same number of faults implies that σ is α-resilient from a vertex v if and only if σ′ is
α-resilient from (v, Init(v)).

“⇒”: Given a strategy σ′ for G′, we define σ for G via σ(v0 · · · vj) = v, if σ′(ext(v0 · · · vj)) = (v,m)
for some m ∈M . A straightforward induction shows that a play in G is consistent with σ if and only if its
extended play in G′ is consistent with σ′. Thus, these plays having the same winner and the same number
of faults implies that σ is α-resilient from a vertex v if and only if σ′ is α-resilient from (v, Init(v)). ⊓⊔

As usual for game reductions, we obtain a finite-state strategy for G when starting with a positional
strategy in G′. To this end, consider the proof of the second implication above. If σ is positional, then
the strategy σ′ is implemented by M and the next-move function Nxt given by Nxt(v,m) = v′, if
σ(v,m) = (v′,m′) for some m′ ∈M .

A similar construction works in case σ′ is finite-state, say implemented byM′. Then, σ is implemented
by the product of M and M′, which is defined as expected (we refer to, e.g., [18] for a formal definition).
Altogether, we obtain the following result.

Corollary 4. Let G ≤M G′.

1. If Player 0 has an α-resilient positional strategy from (v, Init(v)) in G′, then she has an α-resilient
finite-state strategy from v in G, which is implemented by M.

2. If Player 0 has an α-resilient finite-state strategy from (v, Init(v)) in G′, say implemented by M′,
then she has an α-resilient finite-state strategy from v in G, which is implemented by the product of
M and M′.

Now, we can formulate the main theorem of this section, which shows that prefix-dependence is
not a restriction, as long as the game is reducible to a prefix-independent one. Note that this is in
particular true for every ω-regular winning condition (see, e.g., [15]): every such condition is recognized
by a deterministic parity automaton, which can be turned into a memory structure which allows to
reduce the original game to a parity game.

Theorem 3. Let G ≤M G′ so that G′ has a prefix-independent winning condition, can be effectively
computed from G, and satisfies the assumptions from Section 3 (with finite-state strategies).

Then, the resilience of G’s vertices and a finite-state optimally resilient strategy can be effectively
computed.

Proof. This is a direct consequence of Lemma 6 and Theorem 1. To obtain an optimally resilient strategy,
we apply Corollary 4 for finite-state strategies. ⊓⊔

Recall the family of games shown in Figure 3 in which Player 0 aims to prevent more than k visits to
the vertex v1 for some parameter k ∈ ω. Such a game can be reduced to a parity game using a memory
structure implementing a counter up to k+1. Thus, we obtain an optimally resilient strategy for Player 0
that is implemented by a memory structure with k + 1 states. While this strategy is indeed optimally
resilient, it is not minimal: in fact, the unique strategy for Player 0 is positional and optimally resilient.
Thus, the approach of computing optimally resilient strategies for games with prefix-dependent winning
conditions via reductions to prefix-independent winning conditions is not optimal in that sense, as it may

15

yield unnecessarily large optimally resilient strategies. In current research, we study how to synthesize
minimal optimally resilient strategies for games with prefix-dependent winning conditions.

Moreover, in the case of prefix-dependent winning conditions, the question arises whether or not
optimally resilient strategies may be necessarily larger than winning ones. It is easy to construct a game
in which Player 0 has a positional winning strategy, but an optimally resilient one requires an infinite
amount of memory. One example is a game with a single vertex with a self-loop, from which a disturbance
edge leads into a disturbance-free subgame in which Player 0 needs an infinite amount of memory to win.
Thus, it is an interesting question for further research whether a similar result to Theorem 1 holds true
for prefix-dependent games with positional winning strategies, e.g., weak parity games [7] or bounded
parity games [8].6

5 Outlook

In this work we have developed a fine-grained view on the quality of strategies: instead of evaluating
whether or not a given strategy is winning or not, we evaluate it according to its resilience against
intermittent disturbances. While this measure of quality enables the construction of “better” strategies
than the distinction between winning and losing strategies, there remain aspects of optimality that are
not captured in our notion of resilience. In this section we discuss these aspects and give examples of
games in which further analysis yields crucial differences between optimally resilient strategies. In further
research, we aim to synthesize optimal strategies with respect to these criteria.

W1W0

v0/0 v1/1

v2/1

v′

2/1

v3/0

Fig. 4: Intuitively, moving from v1 to v3 is preferable for Player 0, as it allows her to possibly “recover”
from a first fault with the “help” of a second one.

As a first example, consider the parity game shown in Figure 4. Vertices v0 and v3 have resilience 1
and ω + 1, respectively, while vertices v1, v2, and v

′
2 have resilience 0. Player 0’s only choice consists of

choosing to move to v2 or to v′2 from v1. Let σ and σ′ be the unique positional strategies for Player 0 that
move to v2 and v′2 from v1, respectively. Both strategies are optimally resilient and thus, the algorithm
from Section 3 may yield either one, depending on the underlying parity game solver used. Intuitively,
however, σ′ is preferable for Player 0 over σ, as a play prefix ending in v′2 may proceed to her winning
region if a single disturbance occurs. All plays encountering v2 at some point, however, are losing for
her. Hence, another interesting avenue for further research is to study how to recover from losing,
i.e., how to construct strategies that leverage benevolent disturbances in order to recover from entering
Player 1’s winning region. For safety games, this has been addressed by Dallal, Neider, and Tabuada [9].

The previous example shows that Player 0 can still make “meaningful” choices even if the play has
moved outside her winning region. The game G shown in Figure 5 demonstrates that she can do so as
well when remaining in vertices of resilience ω. Every vertex in G has resilience ω, since every play with
finitely many disturbances eventually remains in vertices of color 0. Moreover, the only choice to be made
by Player 0 is whether to move to vertex v1 or to vertex v′1 from vertex v0. Let σ and σ′ be positional
strategies that implement the former and the latter choice, respectively.

First consider a scenario in which visiting an odd color models the occurrence of some undesirable
event, e.g., that a request has not been answered. In this case, Player 0 should aim to prevent visits to v′3
in G, the only vertex of odd color. Hence, the strategy σ should be more desirable for her, as it requires
two disturbances in direct succession in order to trigger a visit to v′3. When playing consistently with σ′,
however, a single disturbance suffices to make a visit to v′3 unavoidable.

6 For both of these conditions, monotonicity arguments allow to transform finite-state optimally resilient strate-
gies into positional ones (similar to the construction in [13, Section 5]).

16

W0

v0/0

v1/0 v2/0 v3/0

v′

1/0 v′

2/0 v′

3/1

Fig. 5: Taking the upper path from v0 allows Player 0 to minimize visits to odd colors, while taking the
lower path allows her to minimize the occurrence of disturbances.

On the other hand, consider a setting in which it is Player 0’s goal to avoid the occurrence of
disturbances. In that case, σ′ is preferable over σ, as it allows for fewer situations in which disturbances
may occur, since no disturbances are possible from vertices v2 and v3.

Note that the two goals of minimizing visits to vertices of odd color and minimizing the occurrence
of disturbances are not contradictory: if both events are undesirable, it may be optimal for Player 0 to
play according to a combination of strategies σ and σ′. In general, it is interesting to study how to how
to best brace for a finite number of disturbances.

W1 W0
v0/1 v1/0 v2/1

Fig. 6: Additional memory allows Player 0 to remain in the right-hand loop longer and longer, thus
decreasing the potential for disturbances.

Recall that, due to Theorem 2, optimally resilient strategies for parity games do not require memory.
In contrast, the game shown in Figure 6 demonstrates that additional memory can prove beneficial in
order to further improve such strategies. Any strategy for Player 0 that does not stay in v2 from some point
onwards is optimally resilient. However, every visit to v1 carries with it the possibility of a disturbance
occurring, which would lead the play into a losing sink for Player 0. Hence, it is in her best interest to
remain in vertex v2 for as long as possible in order to minimize the possibility for disturbances to occur.
This behavior does, however, require memory to implement, as Player 0 needs to track the number of
visits to v2 in order to not remain in that state ad infinitum. Thus, for each optimally resilient strategy σ
with finite memory there exists another optimally resilient strategy that uses more memory, but visits v1
more rarely than σ, reducing the possibilities for disturbances to occur. Hence, it is interesting to study
how to balance the avoidance of disturbances with the satisfaction of the winning condition.
We address all these problems in further research.

6 Related Work

The notion of unmodeled intermittent disturbances has recently been formulated by Dallal, Neider, and
Tabuada [9]. In this work, the authors also present an algorithm for computing optimally resilient strate-
gies for safety games with disturbances, which is an extension of the classical attractor computation [15].
Due to the relatively simple nature of such games, however, this algorithm cannot easily be extended to
handle more expressive winning conditions, and the approach presented in this work relies on fundamen-
tally different ideas.

Resilience is not a novel concept in the context of reactive systems synthesis. It appears, for instance,
in the work by Topcu et al. [22] as well as Ehlers and Topcu [11]. A notion of resilience that is very
similar to the one considered here has been proposed by Huang et al. [16], where the game graph
is augmented with so-called “error edges”. However, this setting differs from the one studied in this
work in various aspects. Firstly, Huang et al. work in the framework of concurrent games and model
errors as under the control of Player 1. This is in contrast to the setting considered here, in which the
players play in alternation and disturbances are seen as rare events rather than antagonistic to Player 0.
Secondly, Huang et al. restrict themselves to safety games, wheres we consider a much broader class of

17

infinite games. Finally, Huang et al. compute resilient strategies with respect to a fixed parameter k,
thus requiring to repeat the computation for various values of k to find optimal resilient strategies. By
contrast, our approach computes an optimal strategy in a single run.

Related to resilience are various notions of fault tolerance [1,10,14] and robustness [2,3,4,5,19,21]. In
fact, robustness in the area of reactive controller synthesis has attracted considerable interest in the recent
years, typically in setting with specifications of the form ϕ⇒ ψ stating that the controller needs to fulfill
the guarantee ψ if the environment satisfies the assumption ϕ. A prominent example of such work is that
of Bloem et al. [2], in which the authors understand robustness as the property that “if assumptions are
violated temporarily, the system is required to recover to normal operation with as few errors as possible”
and consider the synthesis of robust controllers for the GR(1) fragment of Linear Temporal Logic [5].
Other examples include quantitative synthesis [3], where robustness is defined in terms of payoffs, and
the synthesis of robust controllers for cyber-physical systems [19,21]. For a more in-depth discussion of
related notions of resilience and robustness in reactive synthesis, we refer the interested reader to Dallal,
Neider, and Tabuada’s section on related work [9, Section I]. Moreover, a survey of a large body of work
dealing with robustness in reactive synthesis has been presented by Bloem et al. [4].

References

1. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent programs. ACM Trans. Program.
Lang. Syst. 26(1), 125–185 (2004)

2. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann, B., Könighofer, B.,
Könighofer, R.: Synthesizing robust systems. Acta Inf. 51(3-4), 193–220 (2014)

3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative
objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer (2009)

4. Bloem, R., Ehlers, R., Jacobs, S., Könighofer, R.: How to handle assumptions in synthesis. In: Chatterjee,
K., Ehlers, R., Jha, S. (eds.) SYNT 2014. EPTCS, vol. 157, pp. 34–50 (2014)

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) designs. J. Comput.
Syst. Sci. 78(3), 911–938 (2012)

6. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time.
In: Hatami, H., McKenzie, P., King, V. (eds.) STOC 2017. pp. 252–263. ACM (2017)

7. Chatterjee, K.: Linear time algorithm for weak parity games. arXiv 0805.1391 (2008)
8. Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games. ACM Trans. Comput. Log.

11(1) (2009)
9. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmodeled intermittent distur-

bances. In: CDC 2016. pp. 7425–7430. IEEE (2016)
10. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a framework for automatic synthesis of fault-tolerance.

STTT 10(5), 455–471 (2008)
11. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive synthesis. In: Fränzle, M.,

Lygeros, J. (eds.) HSCC 2014. pp. 203–212. ACM (2014)
12. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach to solving parity games in

quasi polynomial time and quasi linear space. In: Erdogmus, H., Havelund, K. (eds.) SPIN 2017. pp. 112–121.
ACM (2017)

13. Fijalkow, N., Zimmermann, M.: Parity and streett games with costs. Logical Methods in Computer Science
10(2) (2014)

14. Girault, A., Rutten, É.: Automating the addition of fault tolerance with discrete controller synthesis. Formal
Methods in System Design 35(2), 190–225 (2009)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current
Research, LNCS, vol. 2500. Springer (2002)

16. Huang, C., Peled, D.A., Schewe, S., Wang, F.: A game-theoretic foundation for the maximum software
resilience against dense errors. IEEE Trans. Software Eng. 42(7), 605–622 (2016)

17. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In: LICS 2017. pp. 1–9. IEEE
Computer Society (2017)

18. Kaiser, L.: Logic and Games on Automatic Structures - Playing with Quantifiers and Decompositions, LNCS,
vol. 6810. Springer (2011)

19. Majumdar, R., Render, E., Tabuada, P.: A theory of robust omega-regular software synthesis. ACM Trans.
Embedded Comput. Syst. 13(3), 48:1–48:27 (2013)

20. Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
21. Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: Towards robustness for cyber-physical systems.

IEEE Trans. Automat. Contr. 59(12), 3151–3163 (2014)

18

22. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete controllers under modeling
uncertainty. In: Dang, T., Mitchell, I.M. (eds.) HSCC 2012. pp. 85–94. ACM (2012)

19

	Synthesizing Optimally Resilient Controllers

