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Efficient multi-dimensional template placement is crucial in computationally intensive matched-
filtering searches for Gravitational Waves (GWs). Here, we implement the Neighboring Cell Algo-
rithm (NCA) to improve the detection volume of an existing Compact Binary Coalescence (CBC)
template bank. This algorithm has already been successfully applied for a binary millisecond pulsar
search in data from the Fermi satellite. It repositions templates from over-dense regions to under-
dense regions and reduces the number of templates that would have been required by a stochastic
method to achieve the same detection volume. Our method is readily generalizable to other CBC
parameter spaces. Here we apply this method to the aligned—single-spin neutron-star—black-hole
binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the
template nudging algorithm can attain the equivalent effectualness of the stochastic method with

12% fewer templates.

I. INTRODUCTION

Compact binary coalescence systems consisting of
neutron-stars and/or black-holes are key targets for the
present generation of gravitational wave detectors such
as Advanced LIGO [1] and Advanced Virgo [2]. The
LIGO and Virgo detectors have observed a number of
binary black-hole coalescence events [3-7] and recently a
binary neutron-star coalescence event [8]. The detection
of a coalescence of a neutron-star—black-hole binary has
yet to be seen, but is increasingly likely to be observed
in the future. The searches for compact binaries a priori
cover a wide range of masses and spin magnitudes. A key
ingredient in these searches is a suitable template bank,
i.e. a collection of model gravitational wave signals which
cover the desired parameter space.

For searches based on matched filtering with mod-
eled waveforms, the traditional method of constructing
a template bank was to use the parameter space met-
ric [9, 10] for determining the spacing between adjacent
templates. This method was successfully demonstrated
for non-spinning systems [11, 12] and aligned-spin sys-
tems [13, 14]. In situations where the parameter space
structure is not sufficiently well understood, stochastic
methods are used [15-17].

Stochastic methods place templates at random points
in the parameter space which are drawn from an ini-
tially chosen distribution. The chosen template is then
compared with previously accepted templates, and ac-
cepted only if it is sufficiently far away each of the pre-
viously accepted templates. The procedure terminates
when a certain coverage (the ratio of rejected templates
over the total number of template candidates) has been
achieved resulting in a final saturated template bank.
These stochastic methods are more generally applicable
but they are typically less efficient than the geometric
methods, i.e. they require more templates than a geo-
metric bank to achieve the same effectualness over the

same parameter space. Furthermore, the construction of
a stochastic template bank can be computationally de-
manding since, in principle, each new proposed template
needs to be compared with previously chosen templates.
This problem becomes particularly acute the closer the
bank gets to saturation. The computational problem
also becomes especially demanding when precession ef-
fects are considered as these additional degrees of free-
dom require a large number of templates [18, 19]. It is
therefore important to consider methods of optimizing a
template bank, specifically finding ways of improving ef-
fectualness for a given number of templates and reducing
the computational cost.

In this paper we shall meet this computational chal-
lenge and show how stochastic methods can be improved
by employing the nearest neighbor cell algorithm (NCA)
[20, 21] and repositioning templates to maximize the ef-
fectualness and detection volume. It was shown in [20]
that for the Fermi ~-ray pulsar search, using these meth-
ods leads to a reduction in the number of distance compu-
tations in three dimensions by about five orders of mag-
nitude compared to other standard stochastic template
bank algorithms. Here we shall apply these ideas to the
Gravitational Wave (GW) Compact Binary Coalescence
(CBC) problem. Specifically, we shall focus on neutron-
star—black-hole (NSBH) systems since they make up 60%
of the templates placed in the last LIGO-Virgo observa-
tion period [22, 23]. We expect that our method would
apply to other source systems as well. We consider NSBH
binaries with a black-hole of mass Mgy and a neutron-
star mass of Mygs such that 2Mg < Mpy < 16Mg,
and 1Mg < Mys < 3Mg. We use the inspiral-merger-
ringdown-phenomenological waveform model (IMRPhe-
nomD) [24-26] to approximate the underlying coales-
cence NSBH gravitational wave signal.

The plan for the paper is as follows. Sec. II briefly
summarizes the necessary background material and in-
troduces notation that will be used later. In particular we
defines the mazimal mismatch, effectualness and detec-



tion volume associated with a template bank. It also de-
scribes the template nudging algorithm. Sec. II1 B applies
this to NSBH aligned spin templates. It first introduces
the chirp time coordinates and calculate the template
isosurfaces at some selected points in parameter space
in the absence of a metric (as opposed to the method
in [20, 21] which requires an analytic expression for the
metric). Sec. III applies the optimization scheme to the
aligned spin template bank and finally Sec. IV presents
our results which are followed by concluding remarks.

II. BACKGROUND
A. Matched filtering

Matched filtering is a methodology used to determine
if time series data x(t) (where ¢ denotes time), contains
some signal with parameters p; of known form, h(pr|t),
or only instrumental noise n(t). Thus, in the absence of
a signal,

x(t) = n(t), (1)
and in the presence of a signal
z(t) = hiprt) +n(t). (2)

If the noise is stationary, we can characterize it by the
single-sided power-spectral-density (PSD) S, (f) accord-
ing to

@A) = 555G~ F) . ®)

Here the brackets (-) denote an average expectation value
over many realizations of the noise, and n(f) denotes the
Fourier transform of n(t).

The PSD is used to define the inner product between
two time-series x(t) and y(¢):

(z|ly) = 4Re /000 Wdf (4)

This inner product is used to define the norm of a time
series z(t) and a normalized time series & in the usual
way:
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For Gaussian noise, the likelihood function A is |

The idealized procedure to search for a signal with un-
known parameters is to compute log A for all points (suit-
ably discretized) in a given parameter space and to find
the point where log A is maximum. The likelihood can
be analytically maximized for certain parameters (such
as the initial phase ¢y and an overall constant amplitude)

or by a Fast-Fourier transform (such as the time of ar-
rival to) (see e.g. [29]), while other parameters must be
explicitly maximized over. These parameters we denote
as \;. ‘

A template bank is a collection of waveforms {h(p7)}
with parameters {p/.}, labeled by the index i. Given a
template bank, we would like to know how effective it
is in recovering a given signal h;. This is quantified in
terms of a number, namely the fitting-factor (FF) defined
as

FF(h(pr),{h(p})}) = max u(h(ph), h(pr)),  (T)
where

u(h(py), h(pr)) = max(h(pp) [h(pr) (o, 0))  (8)

to,P0

is the match between h(p’.) and h(pr). w(h(ph), h(pr))
represents the fraction of the optimal signal-to-noise ratio
(SNR) of signal h(p}) captured by the template h(py).
As matter of notational convenience, we define the mis-
match as

mm(h(py), h(pr)) = 1 — p(h(py), h(pr))  (9)

which represents the fraction of the optimal SNR of sig-
nal h(ps) not captured by the template h(p7.). The fit-
ting factor depends on a particular template bank and
a particular signal h;. Since we will compute this for a
fixed template bank, for notational convenience we usu-
ally drop its dependence on {h(ps)} and write F'F'(hy).
The loss in SNR can be quantified by the match be-
tween a signal and the nearest template and can be for-
mulated geometrically [9, 30]. The match between nearby
points in parameter space can be approximated as

w(h(A), A+ dX\)) = 1 — gi;d\'dN + ... (10)
with the metric

| (ﬁ(A), h(x/))
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This metric' is useful in quantifying the density of tem-
plates. The higher the metric determinant, the higher
the required template density is for a given allowed SNR
loss (which corresponds to a given mazimal mismatch).
In the case of the parameter space considered in Sec-
tion IIIB 1, we shall see that the methods presented in
[20, 21] must be generalized to deal with the challenge of
a priori not having an explicit expression for a metric.

! For Gaussian stationary noise, one can show that the metric 9ij

is equivalent to constructing the scalar product ( g[\hv %)
P J

2

and projecting out the parameters to and ¢q.



For aligned waveforms, there is an analytic expres-
sion for the inspiral-only metric for the NSBH parameter
space [13, 14]. However there is no known analytic ex-
pression for the metric of the inspiral-merger-ringdown
(IMR) NSBH precessing parameter space [31] . Numeri-
cal approximations to the metric can be ill-conditioned in
curved regions of the parameter space. Therefore, a ro-
bust method for repositioning, nudging, templates must
depend on numerical mismatch calculations.

B. Template bank Effectualness

An optimally placed template bank minimizes the
number of templates for a given volume and maximizes
the detection volume for a given prior distribution of
sources. We consider the prior distribution of NSBH
binaries selected from a uniform component mass and
aligned BH spin distribution. This distribution allows
us to quantify the effectualness of recovering a range
of NSBH injections independent of the underlying astro-
physical distribution.

We quantify the effectualness of the template bank
by determining the minimum recovered fitting factors of
99.9% of a population of an injection set. To quantify
the relative improvement of two or more CBC template
banks, we calculate the relative improvement in detec-
tion volume [32]. The detection volume, V), is assumed
to be proportional to the sum of the cube of the product
of the optimal SNR of the injections, p;, with the fitting
factor, F'F;, obtained from attempting to recover a set of
injected NSBH signals,

Vo) (FFipi)®. (12)

By taking the ratio of the detection volumes of two tem-
plate banks, Vo vs V; , we obtain the relative detection
volume quantifying which template bank will perform
better in a search.

C. Template nudging algorithm

A stochastic placement algorithm is unlikely to place
templates optimally and will place more templates than
are necessary to achieve the same effectualness [17]. We
therefore employ an algorithm (see Figure 1) to move
templates slightly, templates nudging, facilitating the re-
arrangement of templates in a template bank into a con-
figuration that improves the template bank’s effectual-
ness and detection volume without the addition of more
templates.

In Section III we apply the template nudging algorithm
to the CBC parameter space by adapting a version of
the Neighboring Cell Algorithm (NCA) method [20] that
does not require an analytic expression of the metric and
will work in parameter spaces where numeric approxi-
mations of the generalized metric are ill-conditioned. In

our application of the method, the three dimensional re-
gions covered by individual templates, template isosur-
faces, within a pre-specified maximal mismatch (i.e. 3%)
must be determined numerically.

The following list outlines the procedure for nudging a
template bank in the absence of a metric.

1. Select a template T'.

2. Find a set of points that are uniformly distributed
distributed on the boundary of T"s isosurface.

3. Check whether each of these points is inside a
neighboring template’s isosurface. If there is
overlap, the considered boundary point gets zero
weight. If not, it gets unit weight (i.e. the template
will not be nudged toward the adjacent overlapping
template isosurface).

4. If a boundary point is outside of the considered
parameter space this point also gets zero weight.

5. The boundary points are averaged together using
these weights into a barycenter.

6. The template is nudged (i.e. coordinates are per-
turbed) in a direction determined by the barycenter
offset relative to the unweighted barycenter of the
boundary points and a maximum relative amount,
e (the pre-specified template nudge factor, the frac-
tional distance between the original template cen-
ter and the closest isosurface point beyond which
templates cannot be repositioned).

This algorithm can be applied to any under-covered
bank regardless of the method used to create that tem-
plate bank (e.g. geometric, stochastic, or hybrid tem-
plate bank placement methods which place templates
with geometric and stochastic methods) and will improve
the effectualness and detection volume. This provides a
convenient way of enhancing any existing template bank
construction method.

1. Neighboring cell algorithm

In order to efficiently cover the parameter space with
non-overlapping cells, the cells should be approximately
the same size as the area of the chirp time volume covered
by an individual template, as determined by the desired
maximal mismatch between neighboring templates (3%).
In the simplest example these can be hyper spheres with a
regular stacking in any choice of coordinates. To produce
a list of the nearest neighboring templates we implement
the following procedure.

1. Each cell is uniquely indexed.

2. Given a cell index, the indices of neighboring cells
can be computed easily or can be stored in a table.
Two cells are neighboring if at least one point exists
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FIG. 1. Flowchart of the template nudging algorithm procedure. Preparation steps are listed in the frame on the left and the
template nudging procedure is listed in the frame on the right. In Section IV we set “N” = 100 for the termination condition

shown in the diamond on the lower right.

that has maximal mismatch of < 3% to each of the
two cell regions.

3. Template parameters are mapped to cell indices by
a cell table. The parameters of each template lie in
the region of the corresponding cell.

4. Given a position of a template, the index of a cell
can easily be computed by any kind of hash algo-
rithm or a binary search. In Euclidean space and
with a hyper-cubic cell lattice this can be achieved
by using rounding or truncating operations on the
position values of the templates.

5. A second table stores template indices and tem-
plate parameters in memory.

6. Given a template, one finds all templates in the
vicinity by collecting the templates in the corre-
sponding cell and all neighboring cells. There-
fore relatively few mismatches have to be com-

puted when placing a template as opposed to other
stochastic placement algorithms.

IIT. APPLICATION TO THE CBC
ALIGNED-SPIN NSBH TEMPLATE BANK

A. Aligned-spin binaries

The parameter space of aligned-single-spin NSBH
gravitational wave signals considered in this paper
can be represented with three physical dimensions
{Mpn,Mngs,Spg - L}, i.e. the masses of the black hole
Mpy and neutron star Mg, and the component of the
black hole spin Sy along the orbital angular momen-
tum L of the binary (L is the unit vector along L). We
require further that —M3%,, < Spr-L < M3, consistent
with a Kerr black hole in general relativity. The BH spin
representation can also be expressed in a dimensionless



form

Spu - L

SBH (13)
Mgy

XBH =

We only consider binary systems with quasi-circular or-
bits and we ignore any parameters associated with the in-
ternal structure of the neutron-star. We ignore neutron-
star spins since they are expected to be small, but the
black-hole spin will be allowed to take any magnitude
which is meaningful in the Kerr metric and aligned /anti-
aligned to the orbital angular momentum [33].? For com-
putational simplicity, we transform these three physical
parameters into the Post Newtonian [PN] “chirp time”
[341] coordinates, {70,72,73}. In these coordinates the
underlying mismatch metric is approximately flat at low
frequencies.

B. Isosurface geometry in chirp time coordinates

Template placement efficiency is largely dependent on
the geometry of the regions covered by individual tem-
plates, (i.e. the template isosurfaces). Using the physical
parameters of the aligned-spin NSBH parameter space
{Mpu,Mns,xBH}, these template isosurfaces are non-
uniform. An ideal coordinate system for template place-
ment would yield isosurfaces that are uniformly spherical
at any point in the proposal distribution. Isosurfaces that
have curved or sharp edges are computationally challeng-
ing to model and tend to create holes, insufficiently pop-
ulated regions in the template bank.

Since we were unable a priori to determine an ideal
coordinate system for the placement of NSBH IMRPhe-
nomD templates, we choose three chirp time coordinates
{70, 72,73} [35, 36] that have been demonstrated to flat-
ten out the TaylorF2 template bank [13, 32]. These chirp
times are defined with the following conventions where fy
denotes a reference frequency, here chosen as 30Hz:

2 It is possible to approximate the effect of multiple spins by
representing the spins as one effective spin term. Gravita-
tional waveforms like IMRPhenomD use single-effective-one-
body-spins to model CBC binaries with two spinning component
masses: {Mppg,Spu},{Mns,Sns}. This effective spin is ex-
pressed as a single component mass weighted term, Sppr =
(MpuSBH + MNsSNns) /(Mpr + Mys).
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FIG. 2. Template isosurface corresponding to {Mpy =

10Mo, Mns = 1.4Mg, xBa = 0.5} plotted in chirp time co-
ordinates {70, 72, 73}. The isosurface gets truncated as it hits
the border of the physically allowable region of the parameter
space.
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1.  Template isosurfaces

In these three chirp time coordinates, {79, 72,73}, the
regions of the parameter space covered by individual tem-
plates are non-ellipsoidal, thin, and therefore difficult to
model analytically (see Figure 2 and 3).

However, the IMRPhenomD waveform is least sensi-
tive to perturbations in the 7o degree of freedom. We
found that individual cross-sections of these isosurfaces
in the remaining two degrees of freedom can be modeled
by two dimensional ellipsoids. We compensate for the
lack of a three dimensional isosurface metric by model-
ing the three dimensional isosurface at a select number
of cross-sections where the two dimensional projection of
the isosurface is easier to model.

A further computational challenge is determining the
scope of individual ellipsoid isosurface cross-section in
the fewest computations possible. These ellipsoids are
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FIG. 3. Examples of template isosurfaces (dark green)
within the borders of the physical allowable regions of
the CBC single-spin NSBH parameter space. The top
panel is plotted in chirp time coordinates {70,72,73} (the
gray mesh) and the bottom panel in physical coordinates
{MpH,Mns,xBr}. The template isosurface corresponding
to {Mpu = 10Mg, Mns = 1.4Mo,xpr = 0.5} plotted in
Figure 2 is highlighted in red.

often very stretched out in these coordinates, therefore
we implement the following method to select points.

The three dimensional mismatch isosurface can be ob-
tained by computing the mismatch isosurface of individ-
ual cross-sections by keeping 7o constant for each cross-
section. The isosurface is hence a ring on the two dimen-
sional sub-manifold parametrized by 7 and 73. In the
first step we find the point on this plane which has the
smallest mismatch with our considered template by ap-
plying a simplex amoeba gradient-free-downhill method
[37]. The routine starts by finding a point on the sub-
manifold which is in the allowed parameter space. The
downhill method starts from there. Since the template
volume ranges in the 7o direction from one end to the
other we always find a set of points on our considered
plane which have mismatches with our template smaller
than the allowed critical mismatch of 3%. These points

are enveloped by the template isosurface and are de-
scribed by:

P = {pi|mm (pi, ) < 3%}, (17)

where t is the vector of the template in the parameter
space. Usually we find 12 to 25 points by using the
simplex amoeba gradient-free-downhill method. We use
these “inside” points to obtain a local approximation of
the metric on this surface describing the distance between
the point of the maximal mismatch to the points found
by the simplex method. The description by a metric is
not quite correct since the mismatch of the minimal point
is much smaller than 3% but not zero. If this mismatch
becomes significantly larger, then one might think about
adding a constant to Eq. 18. However, for deriving the
isosurfaces the following method works sufficiently well.
We expand the metric starting with quadratic terms:

p=2i1>i

p
’yp(il,iQ,"' 7ip)Hdla (18)
=1

'27;;)

D is the dimension of our manifold, in our case D = 2
and d; are the components of the distance vectors. In the
following we restrict ourselves to the second order expan-
sion. For each point in the set, P has a real mismatch
my, and the mismatch is approximated by the metric .
We choose the metric components ~,(%, j) such that the
quantity x* = >, (my — 1g)” is minimized.

The component dj, is the ith component of the kth dis-
tance vector towards our minimal point pg on the plane.
We minimize the x? with respect to the metric compo-
nents:

O S, (19)

O2(0p) 4
D
Z Yo (i1, d2)d} df | dl;d]; (20)
i1 >12
—0. (21)

This set of equations can be described by

DyD§ DDy DED5 Y\ [ 72(1,1)
=Y | DID§ DD} DDS | | 2(2.1) | (22)
w \ DiDE DEDEF DEDE |\ 12(2,2)
=D
Dy
=> my | DF |, (23)
k Dk

where DF = (d¥)?~%(d5)". We invert D and obtain the
second order expansion values for the metric y2(i,5) .
This procedure can be expanded to arbitrarily high or-
ders of the metric expansion. We can now approximate
the metric in a quadratic form:

_ 72(171) %72(271)
9= (%72(271) '72(272) ) . (24)



We compute eigenvalues v; and eigenvectors €; of this
metric and compute a set of N points approximately
in the vicinity of the isosurface. I = p; with p; =
sin(27i/N)é11/0.03 /vy + cos(2mi/N)ez4/0.03/vs. These
points are not equidistant but sufficiently well distributed
for our purposes.

We shift the points in the radial direction with respect
to the center point such that the points have a mismatch
of exactly 3% using the Newton-Raphson method.

We compute the barycenter of our shifted set of points
and repeat the metric approximation method and the
shifting to get an even better set of points.

The scheme is applied for all distinct 75 planes.

2. Cell Structure

In order to apply the NCA method, we provide an
appropriate cell structure with the following properties:

e the cells are sufficiently small

e templates within a cell can reach the neighboring
cells, but not next-nearest neighboring cells

e a cell index can be easily and quickly computed
knowing the template parameter space points.

Since each template spans the entire parameter space in
the 7 direction, splitting the parameter space in this
direction is not possible. On the other hand, the tem-
plates have a very small size in the 7y direction so we
can safely split the parameter space in this direction.
We split the parameter space in the 7y direction into
300 slices. We mapped the 7y coordinates into a unit
length parameter space © = (19 — 4)/50. The tem-
plates are curved in the 73 direction, thus further split-
ting is not directly feasible. To get the templates in
a compact form we applied an ad hoc transformation
y = ((r3/72 — 20 + 2.5/79) 79 — 480)/2500. The new coor-
dinate y is normalized and ranges from 0 to 1. We split
the parameter space into 40 slices in this direction and
obtained a rectangular grid in the x-y plane with 12,000
cells.

We tested this setup with a set of randomly distributed
points. In the limit of having only one cell we compute
all mismatches smaller than 3% correctly. If the cells
become too small some of mismatches smaller than 3%
will not be detected. This happens if the cells are so small
that overlapping templates are not in neighboring cells
anymore, but, for instance, in next-nearest neighboring
cells.

IV. RESULTS

To test the template nudging algorithm we seeded it
with a geometric lattice TF2 template bank containing
174,000 templates. Both the initial seed bank and the
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FIG. 4. The improvement in template bank effectualness from
applying the template nudging algorithm to a TaylorF2 (TF2)
geometric lattice. This used 20,000 IMRPhenomD injections
drawn from a uniform component mass and aligned BH spin
distribution. The maximum fitting factors of the lowest 0.1%
of injections improved from approximately 0.93 to 0.96.

nudged bank were then tested against a set of 20,000
random IMRPhenomD injections. For the nudged bank
only 3% of injections had a fitting factor less than 97%,
compared to 10% for the original seed geometric bank
(see Figure 4). For comparison, building a stochastic
bank targeting 97% minimal match (i.e. 1—maximal mis-
match), required 220,000 templates, with only 0.1% of
templates having a fitting factor less than 97% for the
same injection set.

For this comparison matches were calculated between
30 — 1024Hz using a PSD [38] built from the harmonic
mean of the Hanford and Livingston PSDs taken within
a few days of GW150914 and thus comparable to what
shown in [3]. The stochastic bank was generated using
lalapps_cbc_sbank [23, ], using with a convergence
criteria of rejecting 97% trial templates. The stochastic
algorithm is able to use IMRPhenomD templates directly
to calculate matches. The TaylorF2 lattice was gener-
ated using pycbc_geom_aligned bank [13, 23, 39, 41],
constructed with a two dimensional lattice such that each
lattice point had a maximal mismatch no larger than 3%.
As can be seen in Figure 4, this target was not attained
for the IMRPhenomD test signals. A known metric is re-
quired to determine the geometric lattice. Since no met-
ric is known for the IMRPhenomD templates we used
TaylorF2 3.5PN waveforms [12—14] for which an analyt-
ical metric can be calculated. Although the lattice lo-
cations were calculated using TaylorF2 waveforms, these
were subsequently swapped out with IMRPhenomD tem-
plates when testing the effectualness and this results in
a loss of effectualness.

The template nudging algorithm was applied for 100
iterations using one cross-section with at least 16 surface
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FIG. 5. The relative detection volume of the nudged bank
versus the stochastic bank, 100% * Viudged/Vstochastic, Was
tracked every five iterations of the template nudging algo-
rithm using the same set of 20,000 injections drawn from a
uniform component mass and aligned BH spin distribution.
The improvement settles to a constant value after approxi-
mately 40 iterations.
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FIG. 6. The relative detection volume improvement of the
nudged bank versus the original TaylorF2 (TF2) geometric
lattice bank, 100% * (Viudged/Voriginat — 1), was tracked every
five iterations of the template nudging algorithm using the
same 20, 000 injections drawn from a uniform component mass
and aligned BH spin distribution.

points to approximate individual template isosurfaces for
the nudging calculations. The effectualness and improve-
ment in the relative detection volume between successive
intermediate nudges was quantified by recovering a set of
20,000 IMRPhenomD injections drawn from a uniform
component mass and BH spin distribution (see Figures 5
and 6).

Within each iteration, templates were nudged in paral-
lel for the purposes of reducing computation time. Study-
ing the effect of the template nudge factor on the con-
vergence of the method revealed that a template nudge
factor of 5% produced the largest improvements in the
template bank’s effectualness in the first iteration rela-
tive to template nudge factor of 1% or .05%. However,
in later iterations the variance of the improvement of the
recovered fitting factors was also higher and a poorer fit-
ting factor was recovered in the anti-aligned high mass
regions of the bank relative to those produced by tem-
plate nudge factor of 1%. We used a composite approach
to improve the convergence of the method, wedding the
advantages of using a bigger template nudge factor in
the first iterations to the advantages of the greater preci-
sion of smaller template nudge factors in later iterations.
Hence, we applied the template nudge algorithm in two
batches of 50 iterations per template nudge factors: 5%
and 1%. After 100 nudging iterations, the coverage had
improved by 3% and the relative detection volume had
increased by 0.69%.

In order to extract an additional 1% of coverage and an
additional 0.80% relative detection volume beyond what
is achieved with the nudging, we polished the nudged
template bank by adding 20,000 templates via a final
stochastic placement to fill in any remaining holes. This
produced a bank with overall fitting factors compara-
ble to the stochastic bank, but with only 194,000 tem-
plates compared to the 220,000 templates required via
the lalapps_cbc_sbank algorithm. Therefore it is pos-
sible to achieve equivalent template bank effectualness
and detection volume with 26,000 fewer templates than
would be required by the purely stochastic method.

Figure 7 compares the result of injecting 40,000 IMR-
PhenomD signals into the nudged TF2 geometric lattice
and the original TF2 geometric lattice. The nudged TF2
geometric lattice has a more even distribution of recov-
ered fitting factors. The template nudging algorithm im-
proves regions with poor fitting factors by repositioning
templates from over-covered regions. In principle this al-
lows the attainment of a desired minimum fitting factor
across the entire parameter space with fewer templates.
However, the template nudging algorithm as currently
conceived does not remove templates from the bank. In
some cases the nudging can result in templates from over-
covered regions being nudged to nearby boundaries and
piling up there. An example of this is shown in the lower
right panel of Figure 7. This highly anti-aligned spin
region of the NSBH parameter space, indicated by the
yellow boxes in the other panels, is over-covered by the
original TF2 geometric lattice, obtaining recovered fit-
ting factors close to ~ 100%. In this region the excess
templates are nudged to the boundaries and build up
there, without reducing the fitting factors.
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FIG. 7. Comparison of fitting factors for the template nudging algorithm. Coordinates are the chirp times given in Section 11 B.
The top row shows the fitting factors for the nudged TF2 geometric lattice (left) and the original TF2 geometric lattice (right).
The fitting factors are seen to be more uniform across the nudged bank. The difference in fitting factor is displayed in the bottom
left panel. The regions of improvement (in red) are seen to correspond largely with the regions of insufficient fitting factor in
the original geometric lattice. The lower right panel shows the template locations for three different template distributions in
the highly anti-aligned spin region denoted by the yellow box in the other panels. In this region the nudging pushes templates
to nearby boundaries and does not reduce the number of templates in a region that is over-covered by the geometric lattice.

V. CONCLUSIONS

We have shown how the number of gravitational wave
templates needed to search a region of parameter space
can be reduced by repositioning templates. In par-
ticular, we successfully implemented a method to re-
duce the number of templates required by the algorithm
lalapps_cbc_sbank to cover an NSBH single-aligned
spin parameter space. This resulted in a 12% reduction
in the number of templates. For comparison, the hybrid
method (utilized to build the O1 bank [22] and the O2
bank [23]) required 5% fewer templates than the stochas-
tic method when used to build a binary-black-hole bank
[41]. Given that 60% of the templates in the O2 CBC
template bank are in the NSBH mass range considered
in this paper, applying the template nudging algorithm

in this subspace alone would already reduce the size of
the bank placed on the entire mass range by 7% without
sacrificing effectualness. Assuming that the percentage
reduction in the number of templates is uniform across
the parameter space, then we could expect an overall
reduction of approximately 50,000 templates from the
400,000 template O2 bank.

The template nudging is seen to be most effective
at repositioning templates from over-covered regions to
under-covered regions. This is less effective in regions
very close to boundaries of the desired parameter space.
In some cases the shifted templates can accumulate near
the boundaries as seen in the lower right panel of Figure
7. Once a template is nudged such that one or more of
its isosurface points exceeds the border of the bank, there
is currently no mechanism to nudge the template away



from that border or to remove it entirely.

For the nudging the template bank is split into two-
dimensional planes and the nudging takes place within
each plane. The algorithm does not nudge templates
between the planes and thus if there is a hole in one
of the planes the method is not able to fill it with excess
templates from another plane. Such banks may require
additional templates after nudging in order to match the
effectualness and detection volume that can be produced
by a stochastic method. In our example, this would occur
specifically when these holes are in regions of the bank
which require nudging the 7 coordinate since this version
of the template nudging algorithm only nudges templates
on the 79 — 73 plane. It is non-trivial to remove this
restriction since the template isosurface cross-sections in
the 79 — 72 and the 7 — 73 planes are non-ellipsoidal and
would require modifying how the algorithm samples the
isosurface boundary points.

Further work is needed to adapt this method to the
entire aligned-spin CBC parameter space. Currently the
algorithm only places templates in the NSBH and Binary
Neutron Star (BNS) mass range. Extending this region
would require readdressing the following two points: 1)
defining the borders of the targeted chirp-time param-
eter space and 2) obtaining a uniform transformation
across the targeted chirp-time parameter space to the
two dimensional grid needed to apply our modified NCA
method. In this paper, these two issues were solved ad
hoc, but we believe the method is readily adaptable to
other parameter regions.

An additional computational challenge is scaling the
algorithm to nudge template banks with millions of tem-
plates. The preliminary application of the template
nudging algorithm to the aligned-spin CBC parameter
space required the use of a high-throughput comput-
ing cluster. Generating the template isosurface cross-
sections in the absence of a general mismatch metric
(analytic or otherwise) is particularly computationally
expensive. The template nudging algorithm is consid-
erably faster if there is a reliable (and computationally
efficient) way to calculate the metric. By nudging purely
BNS banks (where there is a known analytic expression
of the metric), we were able to nudge an under-saturated
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stochastic bank on a single Lenovo Thinkpad T450s Ul-
trabook laptop. Similarly, the template banks used for
Fermi ~-ray binary pulsar searches in [21] (which con-
tained tens of millions of templates) could be constructed
by the NCA method in a few hours on one HUAWEI
RH1288 v3 Server with two 14 core CPUs since there
is an analytic expression for the metric. Therefore, it is
highly desirable to obtain a computationally efficient way
to calculate the metric in order to apply the template
nudging algorithm to larger CBC parameter spaces, or
detectors with improved sensitivities.

The so-called 6 coordinates produce a computationally
efficient method for calculating the numeric approxima-
tion of the CBC mismatch metric [10, 45]. These coor-
dinates are only dependent on the masses and effective
spin and may produce more uniform template isosurfaces,
better suited to the template nudging algorithm. Run-
ning the template nudging algorithm with these flatter
coordinates may lower the computational cost and fur-
ther reduce the final number of required templates for
the CBC template bank.

While our current implementations of the metric ag-
nostic template nudging algorithm are computationally
inefficient, they are still a lot more flexible than the orig-
inal metric dependent NCA method [20]. As long as there
is a coordinate system in which cross-sections of indi-
vidual template isosurfaces can be reduced to a collec-
tion of two dimensional ellipsoids, this bootstrap metric
construction method is completely generalizable to any
current or future CBC template bank parameter space.
This makes it a potentially versatile option for building
higher dimensional template banks that include the ef-
fects of precession, tidal deformation, eccentric orbits,
and higher order modes.
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