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Techniques of effective field theory assist in finding previously unknown terms in the
radiation-reaction effective action and self-force. We employ such methods to the analysis
of gravitational waves emitted by and reacting on a binary system, in analogy to simpler
systems. We present results for general dimensions to leading and +1PN, and discuss
non-linear interactions.
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1. Introduction

This work describes methods developed during PhD research
1
about the gravita-

tional waves (GW) emitted by and affecting the evolution of a gravitational binary

system, including both published results
2–6

as well as ongoing efforts. These join

in an analytic development of an effective field theory (EFT) for radiation-reaction

(RR) in general relativity (GR).

In a spacetime of general dimension d, the Einstein-Hilbert action which couples

the gravitational field gμν with the matter stress-energy tensor T μν
can be given as

S =
1

16πGd

∫ √−g Rddx − 1

2

∫
hμνT

μνddx , (1)

with R the Ricci scalar, hμν = gμν − ημν the metric perturbation, the (linearized)

source satisfying ∇μT
μν

= 0, and under the usual convention c = 1, but keeping

explicitly the gravitational constant in d dimensions, marked Gd, chosen with the

normalization of the gravitational action so that the Newtonian potential is always

ΦG = −GdM/rd̂ where d̂ = d− 3. Other conventions follow Ref. 5.

When trying to calculate the radiation from the system and the back-reaction of

the radiation on the system, we encounter several issues. First, there are numerous

degrees of freedom in the metric, and in fact their number change with the dimen-

sionality. These fields are coupled to one another, yet they have different properties,

even mixing physical fields with pure gauge degrees of freedom. In addition, there

are different symmetries relevant to the different zones where these fields are to

considered, namely the system zone and the radiation zone. The dynamics itself

is part conservative and part dissipative, losing energy to the radiation. Finally,

the solution is sensitive to new effects as well as to increasing the order of different

expansion parameters.
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Fig. 1. Zone separation: system zone and ra-
diation zone

Fig. 2. Analogous system: a mass on a
spring, attached to discrete set of 1d strings

2. Procedure Outline

We separate the problem to two zones (Fig. 1): the internal System Zone, defined

by the length scale R of the orbital separation between bodies, and the Radiation

Zone, with characteristics lengths given by the wavelengths λ. Under the regime

of low velocities v 
 c (post-Newtonian), λ ∼ R
v  R. While the system zone is

taken to be stationary, in the radiation zone time derivatives are of the order of the

radial derivatives, but the symmetry is approximately (hyper-)spherical. Therefore

we choose to describe the system zone using NRG fields
8
, and the radiation zone by

(hyper-)spherical waves, and in particular by gauge-invariant (G.I.) combinations

of spherical fields, which will serve as the Master fields hS , hV , hT (Scalar, Vector,

Tensor). We match the Master fields to Master sources defined in the system

zone, denoted TS , TV , TT respectively. We then derive Master Actions and Master

equations for the outgoing waves from the system.

This procedure reduces the d-dimensional system to a discrete set of 1+1 dimen-

sional (radial+time/frequency) radiation modes, coupled to corresponding point

sources at the origin. This is analogous to a classical system of a mass at the origin,

driven for example by a spring, and attached to a discrete set of outwards extending

strings (Fig. 2); as the mass oscillates it radiates away waves along the strings to

infinity
3
. We use Field Doubling to incorporate this radiation loss and its backre-

action on the system in a Radiation-Reaction Effective Action - and derive various

results from this effective action.

3. Details for GR in General Dimension

We start by decomposing the metric perturbation to Fourier basis in time, and to a

basis of (hyper-)spherical harmonics in multi-index notation for the spatial coordi-

nates
5
. We especially note the three distinct tensorial behaviours and their Young-

tableux representations, Scalar ( · · · ), Vector (
· · ·

) and Tensor(
· · ·

)
7
.

hαβ =

∫∑
L,ω

⎛⎝httnL htrnL ht∂ΩnL+htV ℵn
L
ℵΩ

· · · hrrnL hr∂ΩnL+hrV ℵn
L
ℵΩ

· · · · · · hSn
L
ΩΩ′

+h̃Sñ
L
ΩΩ′

+hV ℵn
L
ℵΩΩ′

+hTℵ�n
L
ℵ�ΩΩ′

⎞⎠e−iωt , (2)

We find the combinations forming gauge-invariant Master Fields. We start with the

tensor Master fields,

hTℵ� = r−(�+2)hTℵ� . (3)
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Using 1 algebraic equation we also find the vector Master fields

hV ℵ = − �(�+ d̂+ 1)

4 r�

(
ω2 − ĉs

r2

)
−1 (

2htV ℵ + iωhV ℵ

r2

)
′

. (4)

Next we use 3 algebraic equations to find the scalars Φ := htt + 2iωht − ω2h̃S ,

canonically transformed to Φ̃ with F
[
Φ,Φ∗, Φ̃, Φ̃∗

]
= −ĉsr

d̂−1

2

(
Φ̃
∗

Φ+ Φ̃Φ
∗

)
, and

finally the scalar Master field (more details in Ref. 5)

hS = − d̂(� + d̂+ 1)

2�
r−(�+ d̂+1

2
)
Φ̃ . (5)

The Master Action for these three Master Field families (for ε ∈ {S, V, T }) is

Sε
=

1

2

∫∑
L,ω

∫
dr

[
N�,d̂

GdRε
�,d̂

r2�+d̂+1h∗εLhε − (h∗εT ε
+ c.c.)

]
, (6)

with

N�,d̂=
Γ(1 + d̂/2)

2� Γ(1 + α)
=

d̂!!

(2�+ d̂)!!
, α = �+

d̂

2
, M�,d̂ =

π

22α+1N�,d̂ Γ
2(α+1)

, (7)

RS
�,d̂

=
d̂(�+d̂+1)(�+d̂)

(�−1) �
, RV

�,d̂
=

(d̂+1)(�+d̂+1)�

2(�−1)(�+d̂)
, RT

�,d̂
=

8(d̂+1)

d̂2cs(cs−d̂)
. (8)

As the Actions are of the same form, so are the derived Master Wave Equations

0 =
δS

δhLω∗
ε

=
N�,d̂

GdRε
�,d̂

r2�+d̂+1

(
ω2

+ ∂2

r +
2�+ d̂+ 1

r
∂r

)
hεLω − T ε

Lω . (9)

To treat the dissipation of radiation, we double the fields h → ĥ and the sources

Q → Q̂ =
δQ
δx x̂9,10

. The doubled sources reflect directed propagation (outwards),

and may be interpreted as radiation “sinks”. The doubled action is then given by

Ŝ
[
h, ĥ; Q, Q̂

]
=

∫ [
δS

δh
ĥ+

δS

δQ
Q̂

]
=

∫
ĥ∗ε

[
N�,d̂

GdRε
�,d̂

r2�+d̂+1

(
ω2

+∂2

r+
2�+d̂+1

r
∂r

)
hε −Qε

]
. (10)

We use this action to read off the Feynman Rules. The homogeneous part defines

a wave operator, whose inversion gives the directed Feynman propagator

L
r

r′

= Gε
ret(r

′, r) = −i Gω2�+d̂M�,d̂R
ε
�,d̂

j̃α(ωr<) h̃
+

α (ωr>)δLL′ (11)

in terms of the normalized Bessel functions

j̃α := Γ(α+ 1)2
α jα(x)

xα
=

∞∑
p=0

(−)
p
(2α)!!

(2p)!!(2p+ 2α)!!
x2p

= 1− x2

2(2α+ 2)
+ · · · , (12)

h̃α := Γ(α+ 1)2
αhα(x)

xα
. (13)
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The inhomogeneous part of the action gives the source and “sink” verteces, where

the doubled vertical lines represent word-lines of the system zone components:

= −Qε
Lω , = −Q̂ε∗

Lω. (14)

Together these make up the Radiation-Reaction Effective Action,

Ŝ = =

∑(
Q̂GQ

)
, (15)

which can then be variationally differentiated to produce the radiation-reaction on

the system, namely the Self-Force F =
δŜ
δx̂ .

4. Results

The system-zone interactions are packed into the verteces of the radiation zone

diagrams. Matching the terms that couple to the various hεLω modes, we gather the

source multipoles order-by-order in PN. For n masses mA, the first few are:

• Mass quadrupole Qij
S =

∑n
A=1

mA

(
xixj − 1

D δijx2
)
A

,

• Current quadrupole QL2

M = Qij
M = 2

∑n
A=1

[
m

(
�r ∧ �J

)
(ixj)

]
A

,

• Mass octupole

QL3

S = Qijk
S =

∑n
A=1

mA

[
xixjxk − 1

D+2

(
δijxk

+ δikxj
+ δjkxi

)
x2

]
A

.

We assemble the RR effective action from these verteces and the propagator,

Ŝlinear =

hS

+

hM

+

hT

=

∫
dt
∑
�

Gd (−)
�+d̂

(
�+d̂+1

)
d̂!!(2�+d̂)!! (�−1)

⎡⎣ d̂
(
�+d̂

)
�

Q̂L
(E)

∂2�+d̂
t Q

(E)

L

+

(
d̂+1

)
�

2

(
�+d̂

) Q̂L
(M)

∂2�+d̂
t Q

(M)

L +#(T )

⎤⎦. (16)
In particular, we record the leading order (LO) (compare Ref. 11&12),

SLO
eff = (−)

d̂+1

2 Gd

∫
dt
d̂(d̂+ 2)(d̂+ 3)

2 d̂!! (d̂+ 4)!!
Q̂L2

S ∂d+1

t QL2

S , (17)
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and the next-to-leading order (NLO),

SNLO
eff =(−)

d̂+1

2 Gd

∫
dt

[
d̂(d̂+2)(d̂+3)

2d̂!!(d̂ + 4)!!

(
Q̂L2

S ∂d+1
t δ1QL2

S +δ1Q̂L2

S ∂d+1
t QL2

S

)
− d̂(d̂+4)(d̂+3)

6 d̂!!(d̂+6)!!
Q̂L3

S ∂d+3
t QL3

S +
2 d̂ (d̂+3)

3 d̂!! (d̂+4)!!
Q̂L2

M ∂d+1
t QL2

M

]
. (18)

This NLO result for general dimension goes beyond any previous results; it may be

compared to previous results in 4d using the specialization

Ŝ
(d=4)

LO+NLO = Gd

∫
dt

[
−1

5
Q̂ij

E ∂5

tQ
ij
E − 4

45
Q̂ij

M ∂5

tQ
ij
M +

1

189
Q̂ijk

E ∂7

tQ
ijk
E

]
. (19)

5. Higher Order Interactions

5.1. In System Zone: Quadrupole Moments (LO, NLO)

The first non-linear effect is the correction to the Mass Quadrupole δ1Qij
E from the

gravitating potential energy, of order ∼ −GmAmB

rd̂
(which is +1PN), given by

= δ1QL2

S =

n∑
A=1

mA

⎡⎣⎛⎝ d̂+2

2 d̂
v2A −

∑
B �=A

GdmB

‖�xA−�xB‖d̂

⎞⎠ xL2

A

−2(d̂+1)

d̂(d̂+2)
∂t

(
�xA ·�vA xL2

A

)
+

(
d̂2+6d̂+4

)
2d̂(d̂+2)(d̂+6)

∂2

t

(
r2A xL2

A

)⎤⎦. (20)

Higher orders of course include higher scalar and vector multipoles (Octupoles,

hexadecapoles, etc.), as well as tensorial quadrupoles and higher. Similar (and

higher) non-linear corrections also exist for those.

5.2. Background interactions in Radiation Zone

Having simplified the problem first by splitting between the system and radiation

zones, then by defining the master fields in the radiation zone, we may incorpo-

rate new effects in a simple manner. While radiation modes may in fact interact

with each-other, the leading interactions in the radiation zone are between indi-

vidual radiation modes and the background curvature. The first of these is the

scattering of a Scalar radiation mode off of the constant cosmological curvature of

the background, represented by Λ, the Cosmological Constant. Λ is expected to

be very small, but need not be zero - and so these diagrams are suppressed by

a factor Λ with respect to the leading quadrupolar radiation. The leading Scalar

quadrupole mode can also scatter off of the long-range (radiation-zone) curvature

of the total mass of the system. To leading order, this is equivalent to taking the

background to be static Schwarzschild rather than flat, with the mass M the total
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mass of the source system, and calculating the leading correction to the radiation-

zone propagator on this background. As this interaction is in the radiation zone

where r ∼ λ ∼ ω−1 ∼ R
v , the strength of gravitational potential is ΦG ∼ GdM

λd̂
, and

thus this interaction is suppressed w.r.t the leading quadrupole by a factor of order

GdM

Rd̂

(
R
λ

)d̂
, i.e +(1 +

d̂
2
)PN order. A similar interaction exists between the total

mass curvature and the leading Vector quadrupole radiation mode, which enters at

+(2 +
d̂
2
)PN order. The contributions of these three interactions to the effective

action are represented by the diagrams in Fig. 3. Not shown are +(2+
d̂
2
)PN order

contributions from next-to-leading Scalar modes (octupole and corrections to the

quadrupole, as described above).

hS hS hV

Fig. 3. Possible interactions of the radiation fields with the background: Scalar / Cosmological
Constant Λ (left), Scalar / Total Mass Curvature (center), Vector / Total Mass Curvature (right).

5.3. Spin effects

The discussion above has not yet included the effects of spin. While in d = 4 the

first spin-orbit couplings can enter at +1.5PN and spin-spin effects at +2PN , as

the dimension increases spin becomes more and more important. At d = 5 spin-

orbit and spin-couplings can both enter at +1PN , and in higher dimensions the

spin-spin coupling enters at lower PN order than spin-orbit, which itself comes in

below +1PN , and these thus become the next-to-leading terms. The following

table sums the PN orders of various spin terms, for the cases of co-rotation and of

maximal spin.

co-rotation maximal-spin

Spin-Orbit 1 + 2/d̂ 1/2 + 1/d̂

Spin-Spin 4/d̂ 2/d̂

6. Summary & Future

The method and formalism developed allows for a joint analytical Action formula-

tion of radiation & reaction. Such a formalism manifestly incorporates the symme-

tries of the problem and the relations and conservation laws between the system and

the outgoing radiation. The action formalism, using Feynman diagrams, also econo-

mizes traditional computations. As the method reduces the dimension of spacetime
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to a simpler 1 + 1d problem, it is equally useful in any dimension. It has produced

for the first time the Leading Order and Next-to-leading Order action, energy dis-

sipation, and self-force for the GR 2-body problem in any dimension, as well as

treatments of non-linear effects (separately for system and radiation zones). It is

beginning to serve for analysis of some higher order effects in any dimension, and

is a ready platform for other effects as well.
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