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Mind and environment evolve in tandem—almost a platitude. Much of judgment and
decision making research, however, has compared cognition to standard statistical
models, rather than to how well it is adapted to its environment. The author argues
two points. First, cognitive algorithms are tuned to certain information formats, most
likely to those that humans have encountered during their evolutionary history. In par-
ticular, Bayesian computations are simpler when the information is in a frequency
format than when it is in a probability format. The author investigates whether fre-
quency formats can make physicians reason more often the Bayesian way. Second,
cognitive algorithms need to operate under constraints of limited time, knowledge, and
computational power, and they need to exploit the structures of their environments.
The author describes a fast and frugal algorithm, Take The Best, that violates standard
principles of rational inference but can be as accurate as sophisticated “optimal” mod-
els for diagnostic inference. Key words: Bayes' theorem; bounded rationality; infor-
mation format; probabilistic reasoning; satisficing; training; medical education. (Med

Decis Making 1996;16:273—-280)

Cognition should not be divorced from its environ-
ment, argued Egon Brunswik,' comparing the two
to a married couple who have to come to terms with
one another by mutual adaptation. Judgment and
decision making, however, has often been studied
as if it were divorced from its environment: by com-
paring judgment with some statistical rules, and
nothing but these rules. On this basis, some re-
searchers have concluded that judgment systemati-
cally deviates from statistical rules such as Bayes’
rule, emphasizing “cognitive illusions’ (e.g., Tversky
and Kahneman®. To use Brunswik's metaphor,
these studies look only at one partner in the couple
and try to understand its behavior with respect to a
rule, rather than to its partner. The limitations of
this approach have recently been documented,™*
stirring up a controversy.*® In this paper, I illustrate
by two examples how the study of this Brunswikian
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“couple” can be achieved, and what new light it
sheds on diagnostic inference.

I use the term “environment” as shorthand for
the structure and format of the information in an
environment. Redundancy, nonlinearity, and stabil-
ity are examples of structural characteristics of in-
formation, and these are indispensable for deciding
whether or not some statistical rule is a good norm
of sound reasoning. For instance, if one has reason
to assume that the environment is not stable but is
changing (e.g., a company has been reorganized),
and an extreme outcome (e.g., profit) has been ob-
served, then regression to the mean may not be a
good norm to predict the next outcome.” My first
example is the format of information and how it af-
fects Bayesian reasoning; the second is the power
of simple, “satisficing” algorithms that exploit the
structure of information to make good inferences
under constraints of limited time and knowledge.

The Format of Information

In a seminal study of how physicians process in-
formation about the results of mammography, Eddy”
gave 100 physicians the following information*:

*For ease of presentation, I use values of 80% and 10% for the
sensitivity and false positive rate, respectively, in the study de-
scribed below. Eddy used slightly different values of 79.2% and
9.6%, respectively.
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The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%
(hit rate or sensitivity).

If the patient has a benign lesion (no breast can-
cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues® have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from “cognitive illusions.” From these
studies, many have concluded that the human mind
lacks something important: “People do not appear
to follow the calculus of chance or the statistical the-
ory of prediction” "***"; "It appears that people lack
the correct programs for many important judgmen-
tal tasks”"’; or more bluntly, "“Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of
probability.” *?*° If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON
INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes' rule is ob-
served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as ‘‘representativeness’’). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-
signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter
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FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left). p(H) = prior probability
of hypothesis. H (breast cancer), p(D|H) = probability of data D
(positive test) given H, and p(D| —H) = probability of D given —H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.

The format of information is a feature of the de-
cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy's mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages—as in the above
mammography problem—because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.>"* So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I
argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.
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This evolutionary speculation combines with an
important result: Bayesian computations are sim-
pler with absolute frequencies than with probabili-
ties or percentages, as illustrated in figure 1."*'* On
the left side, the information is represented in terms
of probabilities, as by Eddy® and Casscells et al.,’ and
as in most medical and statistical textbooks. The for-
mula on the left side (Bayes’ rule) shows the mental
computations needed to estimate the probability of
breast cancer after positive mammography. On the
right side, in contrast, information is represented in
absolute frequencies, as actually learned through
experience. Imagine a physician in an illiterate so-
ciety. She has no books or statistical surveys and
must rely solely on her own experience. Her people
have been afflicted by a previously unknown disease,
and she was lucky to discover a symptom that sig-
nals the disease, although this symptom is not a cer-
tain predictor. She has seen 1,000 people, 10 of
whom had the disease. Of those, eight showed the
symptom. Of the 990 not afflicted, 99 also showed
the symptom. Now a new patient appears. He has
the symptom. What is the probability that he has the
disease? The physician does not need a pocket cal-
culator to find the Bayesian estimate. All she needs
to do is to relate the number of cases that had both
the symptom and the disease (8) to the number of
symptom cases (99 + 8). The chances are 8 out of
107, or roughly 8%. Whatever the exact number is,
our physician cannot be as easily fooled as her con-
temporary colleagues into believing that the proba-
bility is around 75%.

The formula on the right side (Bayes’ rule) is com-
putationally simpler than the one needed for prob-
ability information, that is, a smaller number of cog-
nitive operations need to be performed. Henceforth,
I use the term ‘frequency format”’ to refer to ab-
solute frequencies as defined by the tree in figure 1.
Notice that Bayesian computations are not facilitated
by all kinds of frequencies (e.g., normalized fre-
quencies such as 10 of 1,000, 800 of 1,000, and 100
of 1,000 would not work), only by absolute frequen-
cies as they would be actually experienced by “nat-
ural sampling” (that is, without normalizing'®). Fig-
ure 1 illustrates two related results: only two pieces
of information, the symptom-and-disease frequen-
cies and the symptom-and-no-disease frequencies
(the two bold circles in figure 1) need to be attended
to in frequency formats, and as a consequence, the
base-rate frequency (10 out of 1,000) can be ignored.

HOW TO IMPROVE BAYESIAN REASONING

Thus we have an interesting result: It is easier to
reason the Bayesian way with frequency formats.
Does this stand up to an empirical test? Ulrich Hof-
frage and I have investigated whether students un-
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familiar with Bayes' theorem can be made to reason
the Bayesian way by using frequency formats. In 15
different inferential problems, including the mam-
mography problem, Bayesian reasoning went up
from 16% in the probability format to 46% and 50%
in two versions of the frequency format. No instruc-
tion or feedback was given; the information format
by itself improved Bayesian reasoning. Similar re-
sults were obtained by Christensen-Szalanski and
Beach' and Cosmides and Tooby."”

Frequency formats can also be used in instruc-
tion: as tools in the classroom or in textbooks to
communicate information in a more effective way
than traditional probability formats. For instance,
Peter Sedlmeier and I have designed a computer-
ized tutorial program that instructs people to trans-
late probabilities into frequency formats.” Com-
pared with the conventional method of teaching
people how to insert probabilities into Bayes' theo-
rem (for control, this method was also taught by a
computerized tutorial system), the median perfor-
mance was doubled when frequency formats were
taught. Equally important, performance showed no
loss after a five-week interval, whereas conventional
teaching showed the typical steep decay curve in
students’ performances. The frequency-format tu-
torial took less than two hours.

HOW TO IMPROVE BAYESIAN REASONING
IN PHYSICIANS

When I was invited to speak to the Society for
Medical Decision Making (the lecture on which this
article is based), I thought I should do some home-
work. I decided to test whether these findings ap-
plied to physicians. Can we improve Bayesian rea-
soning in physicians by communicating information
in frequencies instead of probabilities? One might
suspect that this method works only with students
without experience in diagnostic inference, but not
with physicians, who make diagnostic inferences
every day. On the other hand, medical textbooks typ-
ically present information about sensitivity, specific-
ity, and priors in probability formats (as in figure 1,
left side). Physicians may be stuck—Ilike my pocket
calculator—fed with numerals for which their
minds were not designed.

Ulrich Hoffrage and I conducted a study to look
at this question.” We used four medical-diagnosis
problems: inferring the chances of breast cancer
from a mammography result (as in Eddy’s work),
inferring Bechterev's disease on the basis of HL an-
tigen B 27, inferring phenylketonuria from a Guthrie
test result, and inferring colon cancer on the basis
of a Hemoccult test result. We consulted experts to
determine the best statistical information available
for the base rates, sensitivity, and specificity. There
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Table 1 e Frequency Format and Probability Format of the Mammography Problem

To facilitate early detection of breast cancer, women are encouraged from a particular age on to participate at regular intervals in
routine screening, even if they have no obvious symptoms. Imagine you conduct in a certain region such a breast cancer screening
using mammography. For symptom-free women aged 40 to 50 who participate in screening using mammography, the following
information is available for this region:

{Probability format)

The probability that one of these women has breast cancer is 1%. If a woman has breast cancer, the probability is 80% that she will
have a positive mammography test. If a woman does not have breast cancer, the probability is 10% that she will still have a positive
mammography test. Imagine a woman (aged 40 to 50, no symptoms) who has a positive mammography test in your breast cancer
screening. What is the probability that she actuaily has breast cancer? %

[Frequency format]

Ten out of every 1,000 women have breast cancer. Of these 10 women with breast cancer, 8 will have a positive mammography test.
Of the remaining 990 women without breast cancer, 99 will still have a positive mammography test. Imagine a sample of women
(aged 40 to 50, no symptoms) who have positive mammography tests in your breast cancer screening. How many of these women

do actually have breast cancer? out of

were two versions for each of the four diagnostic
problems: a probability format and a frequency for-
mat. Table 1 shows the two versions of the mam-
mography problem.

I had never studied physicians before, and it was
an experience. For instance, an ear, nose, and throat
specialist who was also a university professor was
completely beside himself and simply refused to give
any numerical estimates: *‘On such a basis one can't
make a diagnosis. Statistical information is one big
lie.”

We convinced 48 physicians in Munich to partic-
ipate in the study and provide estimates. Their mean
age was 42 years, and the average professional ex-
perience was 14 years. Each physician worked on all
four problems, two in the probability format and
two in the frequency format. Each problem was on
one sheet, followed by a separate sheet where the
physician was asked to make notes, calculations, or
drawings. I describe first the performance of Dr. A,
who represents in several respects the average re-
sult.

Dr. A. is 59 years old, director of a university
clinic, and a dermatologist by training. He spent 30
minutes on the four problems and another 15
minutes discussing the results with the interviewer.
Like many physicians, he became visibly nervous
when working on the problems, but only when
faced with the probability formats. Dr. A. first re-
fused to write notes, later agreeing to do so, but only
on his own piece of paper, not on the questionnaire,
and he did not let the interviewer see his notes.

Dr. A. first got the mammography problem in the
probability format (table 1) and commented, "1
never inform my patients about statistical data. I
would tell the patient that mammography is not so
exact, and I would in any case perform a biopsy.”
He estimated the probability of breast cancer aiter

a positive mammography result to be 80% + 10% =
90%. That is, he added the sensitivity to the false-
positive rate (this is an unusual strategy). Nervously,
he remarked: ‘Oh, what nonsense. I can’t do it. You
should test my daughter, she studies medicine.”
Dr. A. was as helpless with the second problem,
Bechterev's disease, in a probability format. Here he
estimated the posterior probability by multiplying
the base rate by the sensitivity (a common strategy
of statistically naive students™).

After Dr. A. had seen the first problem in a fre-
quency format, his nervousness subsided. “That's so
easy,” he remarked with relief, and came up with
the Bayesian answer, as he did with the other prob-
lem in the frequency format. Dr. A’s reasoning
turned Bayesian when information was in frequen-
cies, despite the fact, as he told us, that he did not
know Bayes' theorem.

Incidentally, Dr. A. was not the only one who, in
despair, referred to his daughter or son. In one case,
the daughter was actually nearby and took the test,
too. Her father, a 49-year-old private practitioner,
had worked for 30 minutes on the four problems
and failed on all. “Statistics is alien to everyday con-
cerns and of little use for judging individual per-
sons,” he declared. He derived his numerical esti-
mates from one of two strategies: base-rate only, or
sensitivity only (again, strategies used by statistically
naive students'). His 18-year-old daughter solved all
four problems by constructing Bayesian trees (as in
figure 1). When she learned about her father’s strat-
egies, she glanced at him and said: “Daddy, look,
the frequency problem is not hard. You couldn’t do
this either?”’ For him, even frequency formats didn't
help. In contrast, a 38-year-old gynecologist faced
with the mammography problem in the frequency
format exclaimed: “A first grader could do that.
Wow, if someone couldn'’t solve this. .. !”
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GENERAL RESULTS

The 48 physicians worked on the four problems
about a half hour on average. When the information
was presented in a probability format, the physi-
cians reasoned the Bayesian way in only 10% of the
cases. When the information was presented in a fre-
quency format, this number increased to 46%. The
physicians spent about 25% more time on the prob-
ability problems, which reflects that they found
these more difficult to solve. As the case of Dr. A.
illustrated, physicians often reacted—cognitively,
emotionally, and physiologically—differently to prob-
ability and frequency formats. The physicians were
more often nervous when information was pre-
sented in probabilities, and they were less skeptical
of the relevance of statistical information to medical
diagnosis when the information was in frequencies.
As the various references to daughters and sons in-
dicated, Bayesian responses were age-correlated:
The older half of the physicians (more than 40 years
old) contributed only 37% of the Bayesian solutions,
the younger 63%.

Physicians are often reported to get uneasy or
even angry when asked for statistical information,*
and to believe that their patients do not understand,
or do not want to understand, the uncertainties in-
herent in diagnosis and therapy.' 1 imagine that
frequency formats might help improve the commu-
nication between patients and physicians® and pro-
vide a tool for helping the patient to become a more
apt decision maker.

Reasoning the Fast and Frugal Way

So far, I have dealt with a specific diagnostic sit-
uation with only one piece of data (e.g., a positive
mammography result). However, when there are
multiple pieces of information (e.g., the results of a
series of tests) that are not independent but redun-
dant, Bayes' rule and other ‘rational”’ algorithms,
such as weighted linear models, quickly become
mathematically complex and computationally in-
tractable—at least for a human mind. One way to
deal with such situations is to design sophisticated
diagnostic systems that combine all available infor-
mation in some ‘‘optimal’ fashion. These models
can require extensive computational equipment be-
yond the human mind. The fiction is that of a “La-
placean demon”—a computationally omnipotent
and almost omniscient being, with unlimited time,
knowledge, and computational power. Theories of
mind are populated with variants of this fiction:
multiple regression, Bayesian models, neural net-
works, and others.” Every bit of information is taken
into account and integrated in some ‘“‘optimal” fash-
ion. Brunswik and neo-Brunswikians have often
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Ficure 2. Ilustration of the Take The Best algorithm. The val-
ues of the five ecological predictors are positive (+), negative (—),
or unknown (?). Predictors are ordered according to their valid-
ities (except for recognition). To infer whether a > b, the Take
The Best algorithm looks up only the information in the lighter-
shaded spaces; to infer whether b > ¢, the search is bounded
to the darker-shaded spaces. The other predictor values are not
looked up.

subscribed to this view, too, choosing multiple lin-
ear regression as a first approximation of how peo-
ple, including clinical judges, infer properties of
their environments.” "** But beginning in Brunswik’s
own writings, one can sense concern about the psy-
chological reality of linear multiple regression.*”
Must humans try to turn into Laplacean demons,
or else be doomed to make bad inferences and de-
cisions? I do not believe that the choice is between
“optimal,” computationally expensive statistical pro-
cedures on one hand and "irrational” heuristics and
biases on the other. There is a third way to under-
stand judgment, most prominently represented by
Herbert Simon’s* notion of “satisficing.” A satisfic-
ing algorithm is not "optimal’ in the sense that it
searches for all information and integrates it in
some optimal way; it is a psychologically plausible
strategy that actually can be performed with the lim-
ited time, knowledge, and computational strength
that real physicians have. Properly designed, a sa-
tisficing algorithm can exploit the structure of an
environment and perform reasonably well. In what
follows, I describe a satisficing algorithm for choice.

TAKE THE BEST

Consider a treatment allocation problem: A choice
has to be made between treating one of two patients
(or potential patients). The criterion is some benefit
to the patient, and there are a number of predictors,
such as test results and the patient’s age. Take The
Best is a satisficing algorithm designed for problems
of this kind, that is, situations in which inferences
have to be made quickly about which of two objects
(patients, alternatives) scores higher on some crite-
rion.”” The general situation is illustrated in figure
2. There are a number of objects (a, b, ¢, .. .) and a
number of predictors that have binary values (the
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situation can be generalized to continuous predic-
tors).

I illustrate the logic of Take The Best with a dem-
ographic problem that we originally used to study
its performance: which of two cities has a larger
population? Here, a and b are two German cities,
say Bremen and Heidelberg, and examples for cues
that indicate higher population are soccer team
(whether or not a city has a team in the major soc-
cer league, the ''Bundesliga”) and state capital
(whether or not a city is a state capital). In addition
to these ecological cues, there is a knowledge cue,
recognition (whether or not the person has heard
of the city). Recognition plays a role only when it is
correlated with the criterion, as it is with population.
Their predictors are ordered according to their
(perceived) validities, with Predictor 1 at the top. The
ecological cue values can be positive (a city has a
soccer team, which indicates larger population),
negative (has no soccer team), or unknown (the per-
son has no information). The task is to infer which
city, a or b, has a larger population.

Models that are traditionally considered to lead to
“rational” inferences use all pieces of information
(predictor values) and integrate these in some way.
Take The Best violates both of these tenets. It op-
erates by limited search, that is, it searches only for
part of the information, and it does not integrate any
information. Its motto is “take the best, ignore the
rest.” In order to infer which of two cities has the
larger population, Take The Best searches through
the predictors, one by one, starting from the top,
until it finds the first predictor that discriminates,
that is, where one city has a positive predictor value
and the other has not. Then search is terminated
and the inference is made that the city with the pos-
itive value has the larger population. For instance,
comparing Bremen (a) with Heidelberg (b), Take The
Best looks up first the recognition values, which do
not discriminate, because both are positive. The top-
ranking ecological cue, the soccer-team cue (Predic-
tor 1), however, does discriminate. Bremen has a
soccer team in the major league, but Heidelberg
does not. Search in memory (for cue values) is ter-
minated, and the inference is made that Bremen has
the larger population. No other predictor value is
looked up. Thus, only four out of 12 values in figure
2 (shaded area) are looked up, and none is inte-
grated. Take The Best is noncompensatory: for in-
stance, the remaining positive values of object b in
figure 2 cannot reverse the decision made solely on
the basis of the higher-ranking Predictor 1. Take
The Best is also nonlinear: The predictor that deter-
mines the choice can vary from inference to infer-
ence. For instance, when comparing b and ¢, which
are both recognized, the algorithm looks up Predic-
tor 1 and finds that Heidelberg has no soccer team,
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and the value for ¢ is not known. Thus, the soccer
cue does not discriminate, because only the com-
bination of a positive value and a nonpositive value
(negative or unknown) terminates the search. The
values on Predictor 2 are now looked up; Heidelberg
has a positive value, and the other city has not. This
terminates the search, and the inference is made
that Heidelberg is larger. This time, six values had
to be looked up. Finally, comparing a and d, the
person has never heard of d, which terminates the
search, and the inference is made that a is larger.

Take The Best is a member of a larger family, the
PMM (“probabilistic mental models”) family of sat-
isficing algorithms, which are all nonlinear, non-
compensatory, and work with the principle we call
“one good reasoning,”’ that is, they base inferences
on only one predictor as opposed to an integration
of several ***

Although Take The Best seems to reflect what
people actually do in many situations under con-
straints of time and knowledge, its simplicity raises
the suspicion that it makes highly inaccurate infer-
ences. How could an inference based on only one
predictor be even approximately as good as one
based on an integration of all information available?
In order to test how accurate Take The Best is, Dan-
iel Goldstein and I set up a competition between
Take The Best and five integration algorithms, in-
cluding multiple regression.”® The task was to infer
which of two cities has the larger population, as de-
scribed above, but for all German cities with more
than 100,000 inhabitants (83 cities), with nine eco-
logical cues as predictors. In order to simulate lim-
ited knowledge, we created millions of hypothetical
subjects, each of whom had a different amount of
knowledge, by replacing actual cue values with un-
known values. For each of these subjects, the pro-
portion of correct inferences {e.g., whether Heidel-
berg is really larger than Bonn) in all possible tests
(83 X 82/2 pairs of cities) was determined using Take
The Best. Similarly, the proportion of correct infer-
ences was determined for the five linear integration
algorithms. The stunning result was that Take The
Best matched every one of the competing algorithms
in accuracy, including multiple regression, and per-
formed better than some. It was also faster (i.e., it
searched for less information in memory) than the
other algorithms.

This result is an existence proof that fast and fru-
gal algorithms can be as accurate as computation-
ally expensive algorithms that use more knowledge
and time. What we do not yet understand very well
are the conditions under which Take The Best and
other satisficing algorithms perform as well as they
do. What we do know is that the success of Take
The Best is not due to the obvious reason one cue
would be as good as many: a high correlation be-
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tween cues. The pairwise correlations in the test en-
vironment were only in the low and moderate
range, with an average absolute correlation of 0.19,
and a range between —0.25 and 0.54. A challenge is
to find out what structures of information (e.g., non-
linearity, redundancy) Take The Best and other sat-
isficing algorithms exploit, and in which environ-
ments they will fail.

There is independent evidence that simple, se-
quential algorithms can perform as well as tradi-
tional statistical techniques. Breiman et al®' de-
scribed an algorithm that classifies heart attack
patients into “high-risk” and ‘low-risk” groups. As
in Take The Best, the predictors are ordered, the
values of the patients on these predictors are di-
chotomized, and the algorithm proceeds sequen-
tially. The first predictor is whether the minimum
systolic blood pressure over the initial 24-hour ob-
servation period was higher than 91 mmHg. If not,
then no other information is looked up and the
patient is classified as "high-risk.” If so, then in-
formation about a second predictor is searched,
namely whether the patient is more than 62.5 years
old. If not, then the search is stopped and the patient
is classified as “low-risk.” If so, then a third and last
predictor is looked up, and the classification ob-
tained. Breiman et al. report that this suspiciously
simple algorithm is more accurate than the consid-
erably more intricate standard statistical classifica-
tion methods. Like Take The Best—which is a
choice algorithm-—this classification algorithm does
not look up most of the predictors for classifying
heart attack patients (i.e., the 19 variables measured
during the first 24 hours at the San Diego Medical
Center, where this research was performed) and
does not integrate any information.

Summing Up

The two issues—the role of frequency formats
and that of fast and frugal algorithms in human
inference—sketched in this paper relate to a larger
theme: the opposition between the rational and the
psychological. What counts as rational is commonly
reduced to the domain of logic and probability the-
ory (Kenneth Hammond™ refers to this as the 'co-
herence” theory of truth) and psychological expla-
nations are called in when things go wrong. This
division of labor is the basis of much of research on
judgment and decision making. As one economist
from Princeton put it, “‘either reasoning is rational
or it's psychological.”? The insight that cognitive al-
gorithms are designed for specific information for-
mats is one step toward connecting the rational with
the psychological and ecological. Satisficing algo-
rithms take a more radical step and dispense with

Psychology of Good Judgment e 279

the tenets of classic rationality: no integration of pre-
dictors, no compensation between predictors, only
limited search, and the occasional violation of tran-
sitivity.?® Principles of classic rationality are replaced
by fast and frugal psychological principles. The fact
that these principles can lead to inferences as ac-
curately as standard ‘“rational” statistical models do
forces us to rethink the very nature of sound rea-
soning.

Satisficing algorithms such as Take The Best pro-
vide a new perspective of Brunswik’s lens model. In
a “one good reasoning’ lens,” the first discriminat-
ing cue that passes through inhibits any other rays
of information from passing through and deter-
mines judgment. Remember that multiple regres-
sion is not the only possible realization of the notion
of vicarious functioning (which Brunswik held to be
the most important cognitive principle), and that
Take The Best is consistent with Brunswik’s princi-
ple of cue substitution, although it dispenses with
his principle of cue integration. A “one good rea-
soning” lens can explain a puzzling observation. It
has been occasionally reported that physicians have
claimed to use several criteria to make a judgment
but that experimental tests have showed that they
used only one criterion. At first glance, this seems
to indicate that those physicians made outrageous
claims. But it need not be. If a physician's inference
works like Take The Best, then these physicians are
correct in saying that they use many predictors, but
each decision is made by using only one predictor
at any time.

If this paper can inspire some researchers in
medical decision making to look more deeply than
I could at the implications of the research described
here—the tuning of Bayesian reasoning to fre-
quency formats, and the power of satisficing algo-
rithms-—then it has fulfilled its purpose.

The author thanks Dan Goldstein, Ulrich Hoffrage, and Anita
Todd for their helpful comments about earlier versions of the
article.
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