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Abstract  30 

Metagenomics enables the study of complex microbial communities from myriad sources, 31 

including the remains of oral and gut microbiota preserved in archaeological dental calculus and 32 

paleofeces, respectively. While accurate taxonomic assignment is essential to this process, DNA 33 

damage, characteristic to ancient samples (e.g. reduction in fragment size), may reduce the 34 

accuracy of read taxonomic assignment. Using a set of in silico-generated metagenomic datasets 35 

we investigated how the addition of ancient DNA (aDNA) damage patterns influences microbial 36 

taxonomic assignment by five widely-used profilers: QIIME/UCLUST, MetaPhlAn2, MIDAS, 37 

CLARK-S, and MALT (BLAST-X-mode). In silico-generated datasets were designed to mimic 38 

dental plaque, consisting of 40, 100, and 200 microbial species/strains, both with and without 39 

simulated aDNA damage patterns. Following taxonomic assignment, the profiles were evaluated 40 

for species presence/absence, relative abundance, alpha-diversity, beta-diversity, and specific 41 

taxonomic assignment biases. Unifrac metrics indicated that both MIDAS and MetaPhlAn2 42 

provided the most accurate community structure reconstruction. QIIME/UCLUST, CLARK-S, 43 

and MALT had the highest number of inaccurate taxonomic assignments; however, filtering out 44 

species present at <0.1% abundance greatly increased the accuracy of CLARK-S and MALT. All 45 

programs except CLARK-S failed to detect some species from the input file that were in their 46 

databases. Ancient DNA damage resulted in minimal differences in species detection and relative 47 

abundance between simulated ancient and modern datasets for most programs. In conclusion, 48 

taxonomic profiling biases are program-specific rather than damage-dependent, and the choice of 49 

taxonomic classification program to use should be tailored to the research question. 50 

  51 

Importance  52 

Ancient biomolecules from oral and gut microbiome samples have been shown to preserve 53 

in the archaeological record. Studying ancient microbiome communities using metagenomic 54 

techniques offer a unique opportunity to reconstruct the evolutionary trajectories of microbial 55 

communities through time. DNA accumulates specific damage over time, which could potentially 56 

affect taxonomic classification and our ability to reconstruct community assemblages accurately. 57 

It is therefore necessary to assess whether ancient DNA (aDNA) damage patterns affect 58 

metagenomic taxonomic profiling. Here, we assessed biases in community structure, diversity, 59 

species detection, and relative abundance estimates by five popular metagenomic taxonomic 60 
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classification programs using in silico-generated datasets with aDNA damage. Age-related damage 61 

patterns had minimal impact on the taxonomic profiles produced by each program, and biases were 62 

intrinsic to each program. Therefore, an appropriate classification program should be chosen that 63 

minimizes the biases related to the questions being addressed.  64 

  65 
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Introduction 66 

Ancient microbiome research offers the possibility of tracing the evolution of the complex 67 

microbial communities that play an integral role in shaping population health and disease. 68 

Palaeomicrobiology uses archaeological material to trace the emergence and spread of 69 

microorganisms throughout history and prehistory. Archaeological dental calculus and palaeofeces 70 

are promising substrates for ancient human microbiome studies, as they have been shown to 71 

preserve DNA (1), proteins (1, 2), and small molecule metabolites (3) from the resident microbes 72 

and the host. During life, these dense microbial communities contain hundreds of species, 73 

predominantly composed of bacteria (4), but also including archaea (4), viruses (5), fungi (6), and 74 

protists (7). Characterizing the microbial ecology of host-associated microbiota through time is a 75 

necessary step in understanding the function of these microbial communities, and further how they 76 

interact with the host. 77 

DNA in archaeological samples, including ancient microbial samples, acquires predictable 78 

age-related damage patterns, including short fragment lengths (typically <100 bp) (8) with break-79 

points coinciding with depurination, and accumulation of cytosine to thymine transitions at the 80 

ends of the molecules (8). The ubiquity and predictability of these damage patterns means that 81 

they are often used to authenticate ancient DNA and estimate modern DNA contamination (9, 10), 82 

and the short fragment lengths of ancient DNA negate the need for shearing during library 83 

construction for high throughput sequencing (HTS). These same properties, however, potentially 84 

affect taxonomic classification of microbial DNA sequence reads more difficult, or less accurate. 85 

Reads that are too short, for example, may not be specific enough for classification at the 86 

taxonomic level desired. Cytosine to thymine transitions may also cause misclassification or 87 

prevent classification, such that reads may be misleadingly assigned to unidentified taxa, thereby 88 

inflating diversity estimates. Additionally, although 16S rRNA gene amplicon sequencing is 89 

popular for profiling complex microbial communities, taxon-specific length polymorphisms in this 90 

gene combined with the relatively long lengths of the hypervariable regions (>150 bp), make it 91 

problematic for sequencing degraded DNA from ancient microbial communities (8). Instead, 92 

shotgun metagenomic sequencing, which is highly compatible with short DNA fragments, is the 93 

preferred analytical approach for ancient microbiome samples (1, 11). 94 

Community profiling by DNA shotgun sequencing is currently the most comprehensive 95 

method used to assess microbiome community composition, and a variety of computational tools 96 
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are available to reconstruct the species present from the millions of short sequences that comprise 97 

HTS datasets. There are several methods for taxonomic assignment available. Popular methods 98 

include matching reads to 16S rRNA gene sequences (QIIME (12), Mothur (13), or to single-copy 99 

gene panels (MetaPhlAn2 (14, 15), MIDAS (16), PhyloSift (17)), k-mer-based whole-genome 100 

matching (Kraken (18), CLARK (19, 20), and hybrid k-mer-based matching and alignment 101 

extension (MALT (21, 22)). While there are several publications comparing the accuracy, 102 

specificity, and precision of various metagenomic classification programs for modern samples 103 

(e.g., (23-25)), no study has yet compared the performance of these approaches on ancient DNA. 104 

In order to assess the performance of metagenomic classification systems on ancient DNA, 105 

we performed a comparison of the community profile of six metagenomic classification programs 106 

that use different taxonomic assignment methods (QIIME, DADA2 (26), MetaPhlAn2, MIDAS, 107 

CLARK-S and MALT in BLAST-X-mode). We used in silico-generated ancient and modern 108 

metagenome samples to estimate the accuracy of these programs. Our results indicate that the 109 

effect of DNA damage patterns on taxonomic assignments is variable across programs. We show, 110 

however, that most of the programs tested here are robust to misassignment due to DNA damage. 111 

Overall, our results indicate that taxonomic assignment biases are similar between modern and 112 

ancient simulated metagenomic samples. 113 

  114 

Results 115 

 116 

Description of the datasets 117 

         A total of 39 in silico generated metagenomic community samples were generated by 118 

independent runs of gargammel (27) (Supplemental Table S1). Three overlapping sets of 119 

genomes were used as input: one set had 40 genomes, the second had 100 genomes, and the third 120 

had 200 genomes. All genomes in the 40 genome set were included in the 100 genome set, and 121 

all genomes in the 100 set were included in the 200 set. Each genome was represented in equal 122 

abundance, where in the 40, 100, and 200 genome datasets each genome comprises 2.5%, 1%, 123 

and 0.5% of the total DNA, respectively. There were 13 independent samples for each set of 124 

genomes, where ten replicates had simulated aDNA damage patterns (ancient dataset) and three 125 

replicates did not have aDNA damage patterns (modern dataset). The estimated copy number of 126 

each genome in each dataset is presented in Supplemental Table S1. We additionally filtered the 127 
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output profiles to remove species present at <0.1% abundance to understand how filtering low-128 

abundance, often false-positive, taxa affected diversity metrics. The cut-off of 0.1% was 129 

arbitrarily selected based on (23).  130 

 131 

Community structure is consistent between ancient and modern simulated datasets 132 

We first sought to determine if any of the taxonomic classification programs produced a 133 

community structure that closely resembled the true input files by measuring beta-diversity. We 134 

used both weighted UniFrac (phylogenetic relatedness accounting for relative abundance of 135 

organisms) and unweighted UniFrac metrics (phylogenetic relatedness without accounting for 136 

relative abundance of organisms) on full and filtered (>0.1% abundance) tables. Principal 137 

coordinates analysis (PCoA) of the beta-diversity metrics were plotted to visualize relatedness 138 

between community structure of the input files and community structure as determined by each of 139 

the 5 programs tested (Fig. 1A, B), and demonstrated that classification of replicate samples was 140 

highly consistent by each program, although QIIME showed the greatest variance between 141 

replicates. Filtering low-abundance species did not affect the weighted UniFrac distance, as this 142 

metric accounts for relative abundance of species, and therefore removing low-abundance species 143 

minimally affects the final score. Additionally, there was very little difference in the scores of the 144 

ancient and modern datasets for all programs, although QIIME/UCLUST demonstrated the 145 

greatest age-related difference in beta-diversity. MIDAS-determined community structure 146 

calculated by weighted UniFrac distance was most similar to the input files for 40 and 100-genome 147 

datasets (Fig. 1A). CLARK-S and MALT community structures were more similar to each other 148 

than to any of the other programs for all datasets, while the community structures reconstructed 149 

using QIIME/UCLUST and MetaPhlAn2 were each distinct from the other programs and did not 150 

plot near any other programs in the PCoA (Fig. 1A). Using the non-phylogenetic abundance-151 

weighted Bray-Curtis distance we observed similar PCoA plotting patterns by each group, relative 152 

to the true input, at the species and genus levels (Figs. S2-S4). 153 

Plots of beta-diversity by the standard (unweighted) UniFrac metric, which accounts for 154 

species presence/absence but not abundance, were distinct from the weighted UniFrac plots, 155 

demonstrating differences in the ability of the five programs to accurately reflect the species 156 

composition vs composition plus abundance (Fig. 1B). Filtering out species present at <0.1% 157 

abundance noticeably altered the relationship of the programs to each other in the PCoA plots. 158 
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CLARK-S and QIIME/UCLUST exhibited substantial differences in community structure 159 

between ancient and modern datasets. Filtering removed this difference only for CLARK-S, while 160 

QIIME/UCLUST modern and ancient datasets remained distinctly plotted, suggesting that 161 

QIIME/UCLUST reported several taxa not in the input files at higher abundance than the cut-off 162 

of 0.1%. In contrast to the weighted UniFrac PCoA plots, MetaPhlAn2 community structure was 163 

most similar to truth for 40-, 100-, and 200-genome datasets, filtered and full tables, followed by 164 

MIDAS. Filtering output tables reduced the community structure similarity between MIDAS and 165 

the true input, and makes the community structure of CLARK-S and MALT more similar to each 166 

other, suggesting the most abundant species are detected in similar proportions by CLARK-S and 167 

MALT. Using the non-phylogenetic Jaccard distance we observed similar PCoA plotting patterns 168 

by each program, relative to the true input, at the species and genus levels (Figs. S2-S4). 169 

 170 

Community diversity is program-dependent 171 

To understand the differences in community structure we observed in beta-diversity 172 

analyses, we assessed the alpha-diversity of the communities produced by the five taxonomic 173 

classification programs, using several metrics to account for different components of community 174 

diversity. Faith’s phylogenetic distance (PD), which determines the community diversity based on 175 

the phylogenetic relatedness of the species present, was estimated to be much lower than the true 176 

PD by all of the programs for the 40-, 100-, and 200-genome datasets, full and filtered tables, 177 

ancient and modern simulations (Figs. 2A, S5A, S6A). QIIME/UCLUST generated the lowest PD, 178 

while MetaPhlAn2 and CLARK-S were both slightly higher than MIDAS and MALT. CLARK-S 179 

was the only program with a slight difference in PD between ancient and modern simulated 180 

datasets, but when the table was filtered the modern and ancient sample diversity was equivalent. 181 

The Shannon index, which accounts for species presence/absence and evenness, showed 182 

little difference between ancient and modern simulated datasets per program and was unaffected 183 

by filtering (Figs. 2B, S5B, S6B). As the number of genomes in the input files (truth) increased, 184 

the Shannon index values for each program decrease relative to true value (i.e., in the 40-genome 185 

set QIIME/UCLUST, MIDAS, and CLARK-S are above true value, and in the 200-genome set all 186 

program values are below the true value). This may be caused by the fact that the Shannon index 187 

of communities with dominant species is expected to be lower than those with even abundance 188 

across species, even if the former communities is more species rich. 189 
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The observed species is the total number of species/subspecies detected by each program 190 

(except QIIME/UCLUST which included all OTUs because it poorly resolves species-level 191 

differences). QIIME/UCLUST, MIDAS, CLARK-S, and MALT always overestimate the total 192 

number of species in the samples (by 1X-150X), and the number of estimated species/subspecies 193 

in ancient simulated samples is much higher than in modern simulated samples for 194 

QIIME/UCLUST and CLARK-S, and to a lesser extent MIDAS (Figs. 2C, S5C, S6C). Filtering 195 

reduced the number of observed species by CLARK-S substantially, by MALT and MIDAS 196 

slightly, and by QIIME/UCLUST minimally. In contrast to the other programs, MetaPhlAn2 197 

slightly underestimates the total number of species in all of the datasets, and is consistently closest 198 

to the true number. Chao1 diversity metrics, which include an estimation of undetected species in 199 

the sample, exhibited very similar patterns to observed species for all programs (Figs. 2D, S5D, 200 

S6D). 201 

 202 

Individual program performance and biases 203 

We next assessed how well each program detected the presence and abundance of species 204 

present in both modern and ancient simulated datasets. To do so, we calculated the true and inferred 205 

relative abundance of each input genome for each of the five programs, and determined the percent 206 

over- or under- assignment (Fig. 3, S7-S8). Given the limited species-level resolution afforded by 207 

QIIME/UCLUST, we limited our analysis to genus-level assignments for this program. 208 

MetaPhlAn2 is does not distinguish between several species (i.e. Streptococcus mitis and S. oralis) 209 

because their marker genes are indistinguishable, and the relative abundance of these in the input 210 

files was likewise combined for calculations. Generally, the species detected/not detected are 211 

consistent between ancient/modern simulated datasets, as is the percent and direction of 212 

over/under-estimation. We have additionally presented as bar charts (Fig. 4, S9-S18) the relative 213 

abundance of each species in the input (labeled If, “Input fastq/a”, and 16f “Input 16S rRNA gene-214 

identified read fastq/a”) and output profiles from each program. The first output profile bar (labeled 215 

Id, “Input species detected”) excludes the false-positive species not in the input files (grouped 216 

together as “other” assignments). The second output profile bar (labeled Ad, “All species 217 

detected”) includes the “other” assignments to visualize how skewed the proportions of input 218 

species are by assignments to taxa not in the input. Assessment of each of the programs is included 219 

in the program-specific sections below. 220 
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  221 

QIIME/UCLUST 222 

QIIME is a highly popular metagenomics analysis program that was developed to analyze 223 

reads generated by 16S rRNA gene amplicon sequencing rather than full metagenome shotgun 224 

sequencing data (12). To accommodate this, we used bowtie2 to select the reads from our in silico 225 

communities that matched 16S rRNA genes in the GreenGenes v13.8 database and created new 226 

input fastq files containing only those reads, a protocol that has been previously used to enable 227 

QIIME analysis of ancient metagenomic sequences (8). The taxonomic proportions of the 16S 228 

rRNA gene input files were initially skewed by the bowtie2 identification such that some taxa were 229 

over-represented while others were under-represented relative to the full genome proportions (Fig. 230 

4, S9-S10, bars If vs. 16f, Supplemental Table S3). As the 16S rRNA gene does not provide 231 

species-level resolution for many species, we assessed the accuracy of assignments at the genus 232 

level. QIIME/UCLUST failed to identify 2, 17, and 19 input taxa in the 40-, 100-, and 200-genome 233 

simulated datasets (22 total input taxa comprising 16 genera) (Fig. 3, S7-S8, Supplemental Table 234 

S4), despite the presence of reads derived from these 22 genomes in the bowtie2 16S rRNA gene-235 

identified reads files. Of the missing taxa, 11 are not included in the GreenGenes v.13.8 database 236 

at the species or genus level. 237 

QIIME/UCLUST identified the highest proportion of false-positive taxonomic 238 

assignments (Fig. 4, S9-S10) (“other” in barchart figure), and the proportion of false-positive taxa 239 

was higher in ancient than modern simulated datasets, suggesting that damage patterns decrease 240 

the accuracy of taxonomic identification by this program. Because of the large number of false-241 

positive taxa identified, as well as the several taxa remaining unidentified, many of the input taxa 242 

were under-represented in the OTU tables produced by QIIME (Fig. 3, 4, S7-S8). Circular trees 243 

generated in metacodeR representing the taxonomy of the OTUs identified in the 40-genome 244 

ancient dataset full and filtered table taxonomic assignments (Fig. 5, S19) show that 245 

QIIME/UCLUST tends to overestimate each phylum in proportion to the original input, except for 246 

poorly characterized taxa such as Candidate divisions TM7 (Candidatus Saccharibacterium) and 247 

SR1, Spirochaetes, and archaea, and there is a slight bias toward over-assignment of 248 

Proteobacteria. 249 

We identified several genus-level false-positive taxa with particularly high assignments in 250 

the 40-, 100-, and 200-genome datasets individually, as well as 7 that were shared by all 3 datasets 251 
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(Supplemental Table S4). Three of the 7 genera, Bacteriodes, Coprococcus, and Enterococcus, 252 

had high numbers of assignments only in the ancient simulated datasets, while Achromobacter, 253 

Actinobacillus, Enterobacter, and Erwinia were highly represented in both ancient and modern 254 

simulated datasets. The genomes from which the reads assigned to each of these 7 false-positive 255 

taxa originated were identified (Supplemental Table S4), and we tested if these assignment biases 256 

hold true in real datasets. All reads assigned to the 7 false-positive genera in set of historic calculus 257 

samples from the Radcliffe Infirmary burial ground (ca. 1770-1855; Oxford, England) (3) were 258 

searched against the NCBI nt database using BLASTn to identify the likely species of origin for 259 

the reads. Many of the biases in read assignment observed in the in silico datasets were also 260 

observed in the real calculus samples (Table S4), i.e., in silico-generated reads assigned to 261 

Enterococcus by QIIME were from taxa in the order Lactobacialles, and historic calculus reads 262 

assigned to Enterococcus by QIIME also had best BLAST hits to the order Lactobacialles. 263 

  264 

DADA2 265 

DADA2 (26) and deblur (28) are new methods for taxonomic assignment of 16S rRNA 266 

gene reads that have been implemented in QIIME v2.0. Rather than using a percent similarity cut-267 

off for assignment of a read to an operational taxonomic unit, these programs use exact sequence 268 

matches, and rely on Illumina sequencing error models to determine if single nucleotide 269 

polymorphisms in a read are true sequence variation or the product of sequencing error. The 270 

implementation of these programs requires multiple copies of each sequence, which while 271 

common in 16S rRNA gene amplicon datasets, are not likely to occur in a set of ancient reads that 272 

are selected out of a shotgun sequenced metagenomic dataset, such as we performed, due to 273 

insufficient coverage. As a result, we were unable to run DADA2 through to taxonomic assignment 274 

of our 16S rRNA gene-identified reads because each read was represented only once in each of 275 

our datasets. Because 16S rRNA gene amplification from ancient DNA samples has been shown 276 

to produce strong taxonomic biases (8), and because DADA2 is unable to classify the low coverage 277 

reads typical of shotgun metagenomic datasets, we recommend against using QIIME v2.0 for 278 

taxonomic characterization of ancient microbial samples, and any low-coverage non-amplicon 279 

data. 280 

  281 
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MetaPhlAn2 282 

MetaPhlAn2 is a fast program that assigns taxonomy based on single-copy marker genes 283 

that are unique to each species in the MetaPhlAn2 database (14, 15). It was shown to be highly 284 

accurate for assigning taxonomy in modern metagenomic samples, and it is implemented in 285 

metaBIT (29), a user-friendly wrapper program that is targeted to ancient metagenomics 286 

researchers. MetaPhlAn2 identified the smallest number of false-positive taxa of the programs 287 

tested (Supplemental Table S5), but had exceptionally skewed proportions of 2 identified taxa, 288 

which may explain why weighted UniFrac distance community structures were so different from 289 

truth, while unweighted UniFrac distance community structures were highly similar to truth, where 290 

truth represents the percent of DNA from a genome rather than the cell count. Circular taxonomic 291 

assignment trees of the ancient dataset demonstrate that MetaPhlan2 does not report high numbers 292 

of false-positive taxa in any phylum (Fig. 5, S19), and although there are 3 more Proteobacteria 293 

reported than in the input files, they were identified at low-abundance and removed during 294 

filtering. The only phylum not represented in the MetaPhlAn2 output dataset is Candidate division 295 

SR1, which is not in its database. 296 

Candidatus Saccharibacterium TM7b was represented at 1500-2000% higher relative 297 

abundance in the output files than the abundance of DNA in the input files in 40-, 100-, and 200-298 

genome datasets, both ancient and modern (Fig. 3, 4, S7-S8, S11-S12). This may be the result of 299 

the MetaPhlAn2 normalization method, which calculates the proportion of cells from each species 300 

based on single-copy marker genes, rather than reporting the relative abundance of all DNA from 301 

each species detected (14). The TM7 genome is much smaller than the genomes of the other 302 

species we included in our dataset, 0.1 Mb vs. 2.5-3.5 Mb, and because our datasets have the same 303 

number of reads from each species, there must be more copies of the small genome-cells in the 304 

datasets to achieve the same proportion of DNA. We calculated that our datasets have 305 

approximately 7.8 copies of the TM7 genome but on average 0.36 copies of all other species 306 

genomes, which is a difference of ~2000% (Supplemental Table S1). Desulfobulbus sp. oral taxon 307 

041 was identified at 200-300% higher relative abundance in all output files, and Prevotella sp. 308 

oral taxon 299, present only in the 200-genome datasets, was identified at 200-300% higher 309 

relative abundance in the output files (Figs. 3, 4, S11-S12). Both of these organisms have small 310 

genomes, ~0.7 Mb, and like TM7b they have more cell copies per dataset than the average (1.2 vs. 311 

0.36), which is a difference of ~340%. 312 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/260042doi: bioRxiv preprint first posted online Feb. 5, 2018; 

http://dx.doi.org/10.1101/260042
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

Twenty-three input taxa were not specifically identified in any of the simulated datasets, 313 

and all were missing from the MetaPhlAn2 database or not present at the appropriate taxonomic 314 

level (Supplemental Table S5). Nine of the missing 22 taxa are subspecies, including four of 315 

Fusobacterium nucleatum, one of Mycobacterium avium, and 4 of Salmonella enterica subsp. 316 

Enterica (Supplemental Table S5), and these were identified to the species level (or in the case of 317 

Salmonella enterica to subspecies) but not lower. Several species are indistinguishable by the 318 

marker genes used by MetaPhlAn2, and are grouped together, including Streptococcus 319 

mitis/oralis, Bordetella bronchiseptica/parapertussis, and Mycobacterium tuberculosis complex 320 

(tuberculosis/bovis/canetti/africanum). If a user wishes to specifically identify any of these 321 

species, other programs will need to be used. The 40-genome dataset had 7 false-positive taxa, the 322 

100-genome dataset had 12, and the 200-genome dataset had 14, yet all were low abundance, 323 

suggesting that MetaPhlAn2 may be slightly less accurate making assignments in samples with 324 

higher diversity, and may minimally inflate that diversity. Only one false-positive taxon, 325 

Streptococcus tigurinus, was common to the 40-, 100-, and 200-genome datasets, and this may be 326 

because of inconsistencies in naming this Streptococcus species, where some NCBI entries use 327 

tigurinus as an independent species and others use it as a subspecies of S. oralis. The reads assigned 328 

to S. tigurinus may be from S. oralis subp. tigurinis, which was one of the input genomes we used. 329 

  330 

MIDAS 331 

MIDAS is another fast program that uses a panel of 15 single-copy marker genes present 332 

in all of the species included in its database to perform taxonomic classification (16). It also has 333 

the ability to determine differences in gene presence/absence and detect single nucleotide 334 

polymorphisms (SNPs), although these were not tested in this study. MIDAS has a substantial 335 

database (~31000 genomes) in which related species are grouped together under a single species 336 

identifier number (5952 total identifiers), which we found introduces biases in the species reported 337 

in the output tables. A majority of the species detected in each dataset were found only in ancient 338 

samples (82%, 72%, 64% in the 40-, 100-, and 200-genome datasets, respectively), yet these had 339 

a relative abundance of <0.1%, suggesting that aDNA damage patterns do lead to false assignments 340 

in MIDAS, but only of a small number of reads. Streptococcus species were the most common 341 

low-abundance false-positive taxa, and likely indicate a database bias. Biases in reporting 342 

Firmicutes and Proteobacteria, and to a lesser extent Actinobacteria, in ancient datasets can be 343 
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seen in the circular taxonomic assignment trees (Fig. 5, S19). Filtering low abundance hits removes 344 

many of the false-positive taxa in these phyla, yet several lower-abundance (darker 345 

nodes/branches) false-positive taxa remain in each. MIDAS did not report any archaea, despite 346 

having the input species in the database, nor does it detect Candidate divisions TM7 and SR1, 347 

which are not in the database. 348 

In total, MIDAS failed to identify 28 input taxa, the highest number missed of all the 349 

programs we tested, and only 3 of these missed taxa were not in the database (Supplemental Table 350 

6, Figs. 3, S7-S8). Despite missing so many species, MIDAS maintained relative proportions of 351 

the input taxa in even species distribution, and the proportion of false-positive taxa detected was 352 

slightly lower in ancient simulated datasets than modern (Fig. 4, S13-S14). To understand why we 353 

saw certain abundant false-positive taxa, we investigated the origin of the reads assigned to five 354 

false-positive taxa that were highly abundant in the 40-, 100-, and 200-genome datasets. We 355 

determined which, if any, additional species shared the same MIDAS-specific species identifier 356 

number, and the origin of the reads being assigned to these false-positive taxa (Supplemental Table 357 

S6). Reads from several taxa not reported by MIDAS were assigned to false-positive taxa, 358 

explaining both why certain taxa were missed and the high abundance of these false-positive taxa. 359 

This phenomenon highlights how grouping related species under a single species identifier 360 

and presenting only one of those species in the output table can result in curious species profiles 361 

from MIDAS. For example, Phocaeicola abscessus, which had high abundance in 100 and 200-362 

genome datasets but was not part of the input files, shares an identifier number with Bacteriodetes 363 

oral taxon 272, which was in the input files but was absent from the final species tables MIDAS 364 

produced. By checking the alignment files that MIDAS generates, we determined that the reads 365 

from Bacteriodetes oral taxon 272 were assigned to the species identifier shared by these two 366 

organisms. The same was true for other false-positive taxa/missing taxa pairs including 367 

Actinobaculum sp. and Actinobaculum sp. oral taxon 183, Bordetella bronchiseptica and B. 368 

pertussis/B. parapertussis, Synergistetes bacterium and Fretibacterium fastidiosum, 369 

Fusobacterium nucleatum CC53 and Fusobacterium nucleatum subsp. vincentii, and Candidatus 370 

Prevotella and Prevotella oral taxon 317 (Supplemental Table S6). Most of these biases are against 371 

oral taxa, which is not surprising for a program developed using non-oral microbiome sources. 372 

MIDAS also has difficulty making assignments to the genera Neisseria, Fusobacterium, and 373 
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Salmonella (Supplemental Table S6), and slightly overestimates M. tuberculosis and Y. pestis 374 

(Figs. S7-S8), suggesting a slight bias for potentially human pathogenic organisms. 375 

  376 

CLARK-S 377 

CLARK-S, a version of the CLARK sequence classification system (19, 20), uses spaced 378 

k-mers to match reads to whole genomes in a database, and was developed specifically to classify 379 

reads in metagenomics samples. It performs similarly to Kraken (18), makes assignments only at 380 

the taxonomic level designated by the user (default species), and cannot report strains or sub-381 

species. As the database size for CLARK-S increases, the amount of memory required to generate 382 

and load the hash table increases substantially, and our database of 16855 genomes required 1TB 383 

of memory (necessitating use of a high-performance computing cluster), yet the program classified 384 

each sample in a few hours. CLARK-S was the only program that detected all of the species in the 385 

input files that were in the database (Supplemental Table S7) (all of the genomes used to create 386 

the input files were deliberately included in the CLARK-S custom database); however, it also 387 

reported the highest number of false-positive taxa (~6000 in each 40-, 100-, and 200-genome 388 

dataset). 389 

A majority of the species detected were present only in ancient simulated datasets (80%, 390 

75%, and 69% of species in 40-, 100-, and 200-genome datasets, respectively), and the 391 

overwhelming majority were present at <0.1% abundance. As filtering all species with relative 392 

abundance <0.1% removed most of the low-abundance false-positive taxa but only 1-2% of the 393 

total assigned reads, we recommend filtering all tables generated by CLARK-S. There was no clear 394 

distinction between high and low abundance false-positive taxa, unlike in several other programs 395 

we tested. Instead there was a steady decrease in the abundance of false-positive taxa, with a very 396 

long tail of very low abundance species. 397 

Circular taxonomic assignment trees of the CLARK-S unfiltered tables show slight biases 398 

for Actinobacteria, but mostly overestimate each phylum in proportion to the original input (Fig. 399 

5, S19). A substantial number of viruses were reported, but were all reported at <0.1% abundance 400 

and removed by filtering. Most of the input species were detected by CLARK-S at proportions 401 

close to those of the input files for 40-, 100-, and 200-genome datasets, both ancient and modern 402 

(Fig. 4, S15-S16), but it was poorly able to detect the genera Bordetella, Burkholderia, 403 

Mycobacterium, and Yersinia (Fig. 3, S7-S8). Generally, species overestimation was lower in the 404 
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modern than ancient samples, but underestimation was not consistently different between ancient 405 

and modern sample sets (Fig. 3, S7-S8). 406 

  407 

MALT 408 

Like CLARK-S, MALT (21) uses spaced hashes to classify reads to the genomes in a 409 

database, and it is the only program we tested that can align reads to a protein database, done 410 

through BLASTx, which also allows functional characterization of the microbial community. We 411 

ran MALT in BLASTx-mode (22) to assess how translating the ancient simulated metagenomic 412 

reads affected taxonomic profiles, using a database consisting of NCBI RefSeq non-redundant 413 

bacteria, viral, archaeal, and plasmid protein sequences (57435 species/strains). The amount of 414 

memory required to load the hash table into memory was >1TB (again necessitating use of a high-415 

performance computing cluster), and the program classified samples more slowly than CLARK-416 

S, requiring several hours longer per sample than CLARK-S. The output files were uploaded to 417 

MEGAN6 (30, 31) and read count and relative abundance tables of only species-level assignments 418 

were exported, although MALT does place reads higher up on the taxonomic tree if they cannot 419 

be assigned to a species with high confidence. Fourteen input taxa were missing from the output 420 

files, 9 of which were not in the database (Supplemental Table S8). However, reads from each of 421 

these taxa were assigned to higher taxonomic levels, and in low numbers to closely-related species 422 

that were not in the input files. 423 

MALT overestimated the number of species in all datasets, but the difference in the total 424 

number of assignments between ancient and modern datasets was much smaller than CLARK-S 425 

(Fig. 2C, S5C-S6C). Circular taxonomic assignment trees show a bias for Proteobacteria that 426 

remains after filtering (Fig. 5, S19). In the ancient simulated datasets there were 54, 86, and 75 427 

species detected in the 40-, 100-, and 200-genome datasets, respectively, that were not reported in 428 

the modern datasets. The over/underestimation of the relative abundance of each input species was 429 

consistent between modern and ancient samples (Fig. 3, 4, S7-S8, S17-S18). The 40-, 100-, and 430 

200-genome datasets each had 5 had false-positive taxa present at >0.1% abundance, while two of 431 

these false-positive taxa were reported in the all 3 genome datasets. We observed that MALT 432 

assigned a low number of reads to a particularly high number of Neisseria and Prevotella species 433 

that were not in the input files. In the 40-, 100-, and 200-genome datasets, MALT identified 32, 434 

19, and 17 false-positive Neisseria species, respectively, and 22, 37, and 34 false-positive 435 
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Prevotella species, respectively, although all of these species were present at <0.1% abundance. 436 

This may be because the number of species in the database from these genera is higher than for 437 

other species in the input files (such as Actinobacteria and Fusobacteria). 438 

One unusual false-positive taxon that was consistent with MIDAS was Phocaeicola 439 

abscessus in the 100 and 200-genome datasets, both ancient and modern, at a relative abundance 440 

of 0.4-0.9%. The reads assigned to P. abscessus were all from the Bacteroides sp. oral taxon 272 441 

genome, and Bacteroides sp. oral taxon 272 was identified at approximately 10% lower relative 442 

abundance than P. abscessus in all samples. Candidatus Saccharibacterium oral taxon TM7x had 443 

high numbers of reads assigned to it despite not being in the input file, but it was the only 444 

Candidatus Saccharibacterium TM7 species in the database and the reads assigned to it were from 445 

the TM7 genomes included in the input files. MALT classified a very small number of reads per 446 

sample to viruses (<50), but the assignments were not to species level, and were not included in 447 

the output files we analyzed. 448 

  449 

Discussion 450 

Reconstructing microbial community composition and structure from short sequencing 451 

reads is challenging (32), especially from highly damaged ancient DNA data-sets. Here we show 452 

that biases inherent to specific taxonomic assignment programs are more pronounced than biases 453 

arising from ancient DNA damage patterns. Each program we tested has intrinsic, and at times 454 

non-intuitive, assignment biases, and an appreciation of these biases is needed to aid interpretation 455 

and limit inappropriate conclusions. 456 

Our study does  not show that one program clearly outperforms others, but rather each has 457 

unique advantages and disadvantages. For example, for accurate interpretation of community 458 

structure, MIDAS is an appropriate choice if species relative abundance is critical (ie, by weighted 459 

UniFrac distance), while MetaPhlAn2 is more appropriate if relative abundance is not critical (ie, 460 

by standard UniFrac distance). However, taxonomic accuracy in MIDAS is hampered by the way 461 

that the species are reported. For example, while MIDAS reduces potential assignments from tens 462 

of thousands of genomes in its full database to a more manageable 5952 ID clusters that are 463 

actually used at the taxonomic assignment step, and it reports as the identified species for each 464 

query sequence only one representative species per ID cluster, resulting in inappropriate species 465 

profiles despite reads being assigned to an appropriate genome. It may be possible to correct this 466 
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effect by altering the program to preferentially select a different representative species appropriate 467 

for the sample type under analysis, but this would require alteration of the source code or 468 

substantial reanalysis of the output files. 469 

One major difference between the different programs test here lies in the way these 470 

compute relative abundance. By using a set of single-copy marker genes, both MetaPhlAn2 and 471 

MIDAS attempt to report the proportion of cells of each species detected in a sample. This is in 472 

contrast to k-mer-based methods such as CLARK-S and MALT, which report the proportion of 473 

total DNA assigned to each species. This difference may explain why the community structures 474 

(beta-diversity) reported by MetaPhlAn2 and MIDAS were closest to the simulated values. 475 

Genome size can vary substantially between bacterial species, and those with larger genomes may 476 

appear more abundant in a sample because a higher proportion of DNA is from those species, even 477 

though the number of cells may not be higher. Species relative abundance reported by k-mer-based 478 

identification methods can be normalized by predicted genome size in order to approximate cell 479 

copy number even when the exact strain is not known, as genome size is largely consistent within 480 

species. The distinction between the relative abundance reported by cell copy-normalizing 481 

(MetaPhlAn2 and MIDAS) and non-normalizing (CLARK-S, MALT, QIIME) metagenomic 482 

profilers should be kept in mind when considering metagenomic community profiles. 483 

For maximizing the number of assigned reads or determining the relative abundance of all 484 

DNA fragments CLARK-S is best (if, for example, one wants to attempt genome assembly from 485 

all reads assigned to a species). Detecting genuine low-abundance species, however, especially 486 

viruses and bacteriophages, cannot be achieved with CLARK-S due to a high rate of false-positive 487 

identification with abundance lower than 0.1%. MALT is unique in that it can provide functional 488 

classification of reads as well as taxonomic classification, but it has difficulty making assignments 489 

when the database used has a high number of closely-related species (discussed below). In 490 

addition, similarly to CLARK-S, MALT has a high rate of false-positive assignment at low 491 

abundance. QIIME/UCLUST provides the least accurate method, which included many false 492 

positives even when low-abundance taxa were filtered out. In addition, our results indicate that it 493 

is the only program whose performance was distinctly different between ancient and modern 494 

samples, and the differences could not be resolved by removing low-abundance taxa. 495 

Most of the program-specific biases we observed were due to the database each program 496 

used. Familiarity with the taxa present in modern samples is important to ensure appropriate 497 
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species representation in the database being used, and to customize the databases when possible. 498 

This will be much more straightforward for relatively well-characterized human body sites such 499 

as the mouth (4), and to a lesser extent the gut (33), but will be more nuanced for poorly 500 

characterized communities such as those from non-model organisms (34-36). For example, the 501 

default RefSeq bacteria database downloaded by CLARK-S does not include any species of 502 

Actinomyces, and has very few species of Prevotella, both of which are prevalent and highly-503 

abundant oral genera, and the latter of which is major taxon in the gut microbiota of traditional 504 

societies (37). Restricting the database to RefSeq genomes alone, such as we did for MALT, limits 505 

the genomes to those that have been quality-checked and curated, and most sequenced genomes 506 

have not met these criteria, nor have metagenome-assembled genomes. Finally, the GreenGenes 507 

taxonomy has not been updated since 2013 and contains now-obsolete taxonomic classification 508 

for some organisms, which can confuse results, and more recently updated taxonomic 509 

classification systems (38) should be used. 510 

Although ancient dental calculus is highly resistant to taphonomic processes and 511 

infiltration of environmental contaminants, it is not immune from these processes, and palaeofeces 512 

and other non-calcified archaeological specimens (39) are particularly susceptible to 513 

environmental contamination and degradation. Environmental microbes, particularly from soil 514 

burial matrix and skin of individuals handling the samples, may remain associated with 515 

archaeological samples after cleaning and sterilization and contribute to the metagenomic profile 516 

generated by sequencing. Distinguishing environmental signatures from endogenous signatures 517 

will be critical for ensuring accurate reconstruction of host-associated microbial profiles. Although 518 

outside the scope of this discussion, most microbial databases are heavily dominated by human-519 

associated bacteria, and this may bias the assignment of soil and environmental species. 520 

Approaches for limiting false identification of environmental microbial species as host-associated 521 

species are discussed in Warinner, et al. (11). 522 

The simulated ancient metagenomic datasets we generated were modeled after data 523 

generated from archaeological dental calculus (3), and we selected 5M reads for the in silico 524 

samples because this was the lowest read count in these samples. However, McIntyre, et al. 2017 525 

(25) have shown that as read depth increases the performance of metagenomic classifier tools 526 

changes, and this should be kept in mind for studies with higher sequencing depth. We chose not 527 

to normalize the output from each program to a consistent taxonomic level, such as genus, because 528 
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we wanted to work with data that was as close to the default output as possible. This allowed us to 529 

see the resolution limit of the programs with respect to known species, subspecies, and strains, as 530 

well as the strengths and weaknesses of that resolution. While higher taxonomic classification may 531 

demonstrate broad community level changes, the immense genetic variation in strains of a single 532 

bacterial species, for example Streptococcus mutans (40), prevents accurate prediction of changes 533 

in metabolic functional capacity from higher order taxonomy. 534 

It is important to note, however, that while community resolution is lost when reads are 535 

assigned to higher levels of taxonomy, this technique may ultimately retain more information. 536 

Community structure may be better estimated at levels of taxonomy higher than species because 537 

reads that do not have species-level resolution can be classified at higher taxonomic levels with 538 

greater confidence. Using an LCA (lowest common ancestor) algorithm, MALT assigns reads to 539 

higher taxonomic levels if they cannot be distinguished between two nearly-genetically identical 540 

species. For example, some species within the genera Yersinia (Y. pestis and Y. 541 

pseudotuberculosis) and Bordetella (B. pertussis, B. parapertussis, B. bronchiseptica) are highly 542 

genetically similar, and reads that map equally well to multiple species in those genera are usually 543 

assigned at the genus level by the LCA algorithm in MALT. Similarly, QIIME/UCLUST  will 544 

classify reads to deeper nodes in the tree by if they cannot be assigned to lower taxonomic levels. 545 

For example, the percent of reads in our dataset assigned to different taxonomic levels were: 546 

species – 17%, genus – 65%, family – 13%, order – 2.4%, and class – 0.7%. Users should be aware 547 

of this behavior in specific programs, and be aware of the node at which reads from those taxa tend 548 

to assign, as this can substantially affect analyses performed only at the species level. 549 

Assigning taxonomy to reads below species level is desirable to understand the functional 550 

capacity of the microbial community, but the programs we tested performed this task poorly. The 551 

ability of MIDAS to discriminate strains or subspecies varies considerably by organism. For 552 

example, the 12 strains of Porphyromonas gingivalis in the database share the same species ID, 553 

while the 31 strains of Streptococcus mitis each have a unique species ID. This resulted in the 554 

MIDAS-produced species profiles containing one strain of P. gingivalis in the 100 and 200-555 

genome datasets (despite there being two and four, respectively), and 29-30 strains of S. mitis 556 

across each 40-, 100-, and 200-genome dataset (albeit all very low abundance), despite there being 557 

only one species in all three datasets. To avoid biases of strain-level identification by this program, 558 

we combined all strain-level assignments of the same species into one species-level assignment 559 
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for all analyses If identifying subspecies or strains present in a sample is desired, programs 560 

specifically designed to perform this function, such as StrainPhlAn (41), Sigma (42), or Platypus 561 

Conquistador (43), are recommended instead. Furthermore, special care should be taken to ensure 562 

results are not false positives or derived from modern environmental contamination by following 563 

guidelines suggested by Warinner et al. (11) and Key, et al. (44). 564 

High proportions of the fecal-associated genera Coprococcus, Enterococcus, and 565 

Enterobacter were identified by QIIME/UCLUST in our in silico generated dataset, but they were 566 

not in the input files. Rather, a high number of reads of consistent taxonomy were assigned to these 567 

genera, which we confirmed occurs in real datasets, indicating that these assignments are more 568 

likely an artifact of the taxonomic classification process than an indication of poor hygiene. This 569 

demonstrates how interpreting taxonomic assignment results without understanding the biases and 570 

limitations of the program used could lead to erroneous conclusions about microbial community 571 

profiles, and ultimately human activity. 572 

Identifying bacteriophage in ancient metagenomic samples is challenging and new 573 

methods are needed. MetaPhlAn2, CLARK-S, and MALT all detected phages in very low 574 

abundance, below levels of suggested filtering to remove spurious assignments. Active 575 

bacteriophage replication in the oral biofilm is associated with altered host health status (5, 45), 576 

and monitoring phage activity may offer insight into biofilm pathogenicity in oral (45, 46) and gut 577 

(47) sites. Therefore, reliably detecting bacteriophage in host-associated ancient metagenomic 578 

samples may allow us to study phage-mediated biofilm changes and evolution relating to human 579 

disease. While it is unlikely that we will be able to determine if phage-identified sequencing reads 580 

are from viral particles or host-integrated prophages, proteomic characterization of ancient 581 

microbiomes (1) may be able to detect viral proteins indicating free phage particles. 582 

Recently, McIntyre, et al. (25) assessed performance of a wide selection of metagenomic 583 

taxonomic classification programs built upon a variety of techniques. They reported that the 584 

precision of taxonomic assignment can be improved by combining results of certain programs that 585 

use different assignment methods, including MetaPhlAn2 and CLARK-S. Combining the results 586 

of these taxonomic assignment programs for ancient metagenomics samples may then increase 587 

reliability and confidence in historic community structure and composition, and should be 588 

examined further with in silico-generated datasets. Confirming species presence/absence by 589 
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detection with two independent taxonomic classifiers will assist with ensuring specific program 590 

biases are not reported as true results. 591 

There are several factors that we did not test that may influence taxonomic profiling of 592 

ancient DNA. These include environmental contamination (11) (discussed above) sample location- 593 

and age-specific differences in damage patterns (48), and species-specific differential preservation 594 

of bacterial DNA (8). Additional in silico dataset testing, such as by using mapDamage profiles 595 

modeled after older archaeological samples, samples from different locations, or based on reads 596 

mapped to different or multiple species, may be warranted to determine if and how strongly these 597 

factors affect taxonomic profiling. Based on our results that age-related damage patterns minimally 598 

affect read taxonomic assignment, however, we do not expect these variables to substantially alter 599 

taxonomic profiles. Nevertheless, location- and age-related biases should be considered in studies 600 

that compare samples across geographic locations and/or time. 601 

We have demonstrated that the damage patterns characteristic of ancient DNA do not 602 

substantially affect taxonomic profiling by the five programs we tested. Instead the biases we 603 

detected are inherent to the programs themselves and the database each program uses. This is 604 

promising for comparing ancient microbiome samples with modern samples when using the same 605 

taxonomic classifier, as biases will be shared by both. Our results highlight the importance of 606 

knowing the limitations of the metagenomic classifier being used, and investigating any unusual 607 

results, such as the presence of unexpected taxa and the absence of expected taxa, to ensure 608 

appropriate interpretation of taxonomic profiles. 609 

  610 

Materials and Methods 611 

Simulated ancient and modern metagenomics samples 612 

Simulated ancient and modern metagenomics fastq files were generated with gargammel 613 

(27). Samples of 5 million reads, 99% bacterial and 1% human were generated with 40-genomes, 614 

100-genomes, or 200-genomes, with even genome distribution (equivalent numbers of reads from 615 

each input genome), and both with and without simulated ancient DNA damage patterns, and 616 

sequencing errors were based on Illumina HiSeq2500 150bp paired-end chemistry and default 617 

Illumina adapters. Thirty-nine total metagenomes were simulated as follows: 40-genome even 618 

distribution ancient (10) and modern (3), 100-genome even distribution ancient (10) and modern 619 

(3), and 200-genome even distribution ancient (10) and modern (3). Genomes are listed in 620 
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Supplemental Table S1, and were selected to resemble dental plaque bacterial communities based 621 

on the species listed in the Human Oral Microbiome Database (homd.org), and relative abundance 622 

was roughly based on dental plaque-derived biofilm composition (Velsko & Shaddox, in review). 623 

Select non-oral bacterial species were added to assess biases in detecting specific “pathogenic” 624 

species. Although the genomes are represented with equal proportions of DNA in each dataset, the 625 

number of cells from each organism is unevenly distributed because of differences in genome size 626 

(Supplemental Table S1). 627 

Age-related damage patterns were simulated based on mapDamage (9, 10) base 628 

composition file and misincorporation file generated on analysis of real historic dental calculus 629 

metagenomic samples sequenced on an Illumina HiSeq2500 with 150bp paired-end chemistry, 630 

with bacterial genome damage patterns based on reads mapped to the Tannerella forsythia 92A2 631 

genome (assembly GCA_000238215.1) (Fig. S1) and human genome damage patterns based on 632 

reads mapped to the human genome (assembly GCA_000001405.26) (Fig. S1), while the fragment 633 

length distribution was based on all reads in sample CS21. Simulations for modern metagenomics 634 

samples did not include damage pattern input files. The command to simulate ancient 635 

metagenomic samples was: ./gargammel.pl --comp 0.99,0,0.01 -n 5000000 --misince 636 

dnacompCS32e.txt --misincb dnacompCS21b.txt -f fragmentlengthCS21.txt -mapdamagee 637 

misincorporationCS32.txt single -mapdamageb misincorporationCS21.txt single -rl 150 -ss HS25 638 

-o output/anc40e1 input/. The command to simulate modern metagenomic samples was: 639 

./gargammel.pl --comp 0.99,0,0.01 -n 5000000 -l 150 -rl 150 -ss HS25 -o output/mod40e1 input/. 640 

Damage profiles for human (CS21) and bacterial (CS32) reads came from different calculus 641 

samples because these had the highest number of reads to the human and T. forsythia genomes, 642 

respectively, which allows the most accurate assessment of damage profiles (11). Fragment length 643 

distribution for ancient simulated samples was based calculus sample CS21, while read length of 644 

150bp was specified for modern samples. The genome of origin for each read is included in the 645 

read name by a gargammel-generated code (listed in Supplemental Table S1), and the exact 646 

number of reads derived from each genome was determined by counting in each of the 78 input 647 

fastq files. 648 

  649 
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Read processing and 16S rRNA gene fragment filtering 650 

Reads were processed following a custom pipeline optimized for ancient DNA 651 

metagenomics samples. AdapterRemoval (49) was used to detect and remove consensus adapter 652 

sequences, quality-trim reads at Q30 and collapse paired reads. Singleton files were discarded and 653 

reads with residual adapters were detected with bowtie2 (50) and filtered from the samples with 654 

filter_fasta.py in QIIME v1.9 (12). Four final files were generated: collapsed reads, pair 1 reads, 655 

pair2 reads, and truncated collapsed reads, and all 4 files were concatenated to generate a single 656 

input file for taxonomic classification. Reads mapping to the 16S rRNA gene were identified in 657 

the independent final files and collected in separate files for classification as follows. A bowtie2 658 

database was generated from the GreenGenes v13.8 database (51), and the cleaned and collapsed, 659 

pair1, pair2, and collapsed truncated fastq files were searched against this database with bowtie2. 660 

All reads that mapped to 16S rRNA gene reads were filtered from the full fastq files to a separate 661 

file using seqtk (https://github.com/lh3/seqtk). All 4 files matching the 16S rRNA gene (collapsed, 662 

pair1, pair2, and collapsed truncated) were concatenated for taxonomic classification 663 

(Supplemental Table S3). 664 

  665 

Taxonomic classification 666 

Reads in all simulated metagenomics samples were classified with 5 taxonomic 667 

identification programs (Supplemental Table S2): QIIME v1.9/UCLUST/GreenGenes v13.8 668 

database (12, 51, 52), MetaPhlAn2 (14, 15), MIDAS (16), CLARK-S (20), and MALT (21) run in 669 

BLAST-X mode (22). All options that differed from default are listed in Table S2. Each program 670 

uses a different classification method. QIIME v1.9 was used to bin reads matching the 16S rRNA 671 

gene using UCLUST (52) with pick_closed_reference_otus.py and to assign taxonomic 672 

classification with the GreenGenes v 13.8 database at 97% identity (202421 sequences, 99322 673 

OTUs). Samples were not rarefied to identical OTU counts prior to analysis, as this practice has 674 

been shown to be unnecessary (53). The output biom file was summarized at the species level, 675 

which included all assignment levels kingdom through species. MetaPhlAn2 and MIDAS used 676 

their respective default databases (16904 species/strains, 31007 genomes/5952 species groups, 677 

respectively), while CLARK-S was run against a custom database of 16855 genomes, and MALT 678 

was run in BLAST-X mode against a custom database of NCBI RefSeq non-redundant bacteria, 679 

viral, archaeal, and plasmid protein sequences (57435 species/strains). MetaPhlan2 and CLARK-680 
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S output were set to species level. The MALT output rma6 files were uploaded to MEGAN6 (31), 681 

and classification tables of species assignments only were exported. Output for each classification 682 

program is unique, with MetaPhlAn2 and MIDAS providing relative abundance on a scale of 0-683 

100 and 0-1, respectfully, QIIME and CLARK-S providing a read count table, and MALT 684 

providing both relative abundance and read counts. 685 

Outputs were normalized in 2 ways, generating 2 sets of tables: relative abundance of all 686 

assignments on a scale of 0-100 was calculated based on the number of reads assigned, if provided 687 

(QIIME, CLARK-S, MALT), and pseudo read counts were determined by multiplying the relative 688 

abundance by the total number of reads in the input files for MetaPhlan2 and MIDAS. The true 689 

input tables were also converted to biom format in count read and relative abundance formats. The 690 

NCBI taxonomy ID of each taxonomic assignment in each program was determined and used to 691 

create a single taxonomy file to assign taxonomy to biom files. All output tables, read counts and 692 

relative abundance, were converted to biom format in QIIME v1.9 and taxonomy based on NCBI 693 

taxonomy ID was added to each. To determine if removing very low abundance assignments 694 

improved the profiles, a second set of biom files was generated by removing all assignments 695 

present at less than 0.1% abundance (filtered tables). All biom files were summarized at the 696 

phylum, class, and genus levels in QIIME v1.9 using summarize_taxa.py, to allow assessment of 697 

classification biases at different taxonomic levels. Mapping data, including the simulated age of 698 

the sample (ancient or modern) and the taxonomic assignment program, were added to the biom 699 

files in QIIME v1.9. 700 

QIIME v1 is no longer being supported with the release of QIIME v2.0, and QIIME v2.0 701 

uses different taxonomic assignment programs from QIIME v1: (DADA2 (26) and deblur (28)). 702 

We also tried to include DADA2 in this assessment (Supplemental Table S2), using 16S rRNA 703 

gene-identified reads and the DADA2 R package as follows. AdapterRemoval was run on the 704 

simulated samples as before, but pair1 and pair2 reads were not collapsed. The reads matching 16S 705 

rRNA genes were identified using bowtie2 and the GreenGenes v13.8 database as before and 706 

filtered out of the pair1 and pair2 files. The pair1 and pair2 files of 16S rRNA gene-identified 707 

reads were used as input in DADA2. DADA2 was not able to merge sequences in any file because 708 

all were unique, and this prevented DADA2 from performing the sequence variant calling, and the 709 

program was unable to perform taxonomic assignment. Therefore, we were unable to proceed with 710 

DADA2, and have no results to present. 711 
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  712 

Diversity metrics 713 

Alpha-diversity was calculated in QIIME using the metrics Faith’s phylogenetic distance, 714 

Shannon index, observed species, and Chao1, using count read and pseudo-count read files, and 715 

graphs were generated using Prism v7. Beta-diversity was calculated on relative abundance biom 716 

files and plotted using the R package phyloseq (54) for the metrics UniFrac (55) (accounts for 717 

phylogenetic relatedness and presence/absence) and weighted UniFrac (56) (accounts for 718 

phylogenetic relatedness, presence/absence and abundance), Bray-Curtis (accounts for 719 

presence/absence and abundance) and binary Jaccard (accounts only for presence/absence). A 720 

newick-formatted phylogenetic tree was generated with phyloT (http://phylot.biobyte.de) 721 

including the NCBI taxonomy IDs of all assignments made by each program (9919 total IDs), 722 

using the Internal nodes-Expanded and Polytomy-Yes options. 723 

  724 

Program assignment biases 725 

All output text files were manually inspected for taxonomic assignment biases. When a 726 

species in the input files was not detected by a program, the database of that program was searched 727 

for that species to understand why it was missed. The percent over/under representation of each 728 

genome compared to the input file was calculated (relative abundance in output/relative abundance 729 

in input * 100) and plotted as a heat map with the R library gplots 730 

(http://www.rdocumentation.org/packages/gplots). The percent of each species in the input files 731 

detected by each program as well as the percent of all other species detected but not in the input 732 

file was plotted in R using ggplot2 (ggplot2.org). The R package metacodeR (57) was used to 733 

visualize phylogenetic tree assignment biases in the ancient datasets by each program. Each node 734 

is a taxonomic assignment starting with the root (yellow circle), then kingdoms, phyla, etc 735 

radiating off, to sub-species level at the tips. For programs that did not produce sub-species or 736 

strain-level taxonomic assignments, the species assignment was repeated, so maintain visual 737 

consistency between all trees. The input data for these trees is the species/subspecies level for all 738 

programs except QIIME/UCLUST (which included all levels), so the internal nodes sum the leaves 739 

moving from subspecies back towards the root. The colors and weight of nodes and branches 740 

represent the relative abundance of each taxonomic assignment, where lighter colors with thicker 741 

branches are more abundant (yellows and light blues) and darker, thinner branches are less 742 
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abundant. The relative abundance is the average of all 10 output files for each program. A ring 743 

circling each tree and color-coding each phylum was added in Inkscape. 744 

We tested whether a QIIME/UCLUST false-positive taxa read assignment bias was present 745 

in real ancient metagenomics samples by processing metagenomic data generated from 19th 746 

century dental calculus samples (3) through the same 16S rRNA gene selection and 747 

QIIME/UCLUST OTU-picking, and then filtering out all reads assigned to the designated “false-748 

positive” genera. These reads were searched against the NCBI nt database with BLAST using 749 

default parameters and the BLAST hits of the reads assigned to each “false-positive” genus were 750 

determined using MEGAN6 and compared to the origin genomes of the false-positive-taxa 751 

assigned reads from the simulated samples. 752 

 753 
Data sharing and availability 754 
All supplemental figures are available for download on figshare (as a single pdf): 755 
https://doi.org/10.6084/m9.figshare.5811285.v1 756 
 757 
All supplemental tables are available for download on figshare (seperate tabs in a single excel 758 
spreadsheet): https://doi.org/10.6084/m9.figshare.5817837.v1 759 
 760 
All gargammel-generated “raw” sequencing read files (forward and reverse) will be available for 761 
download when we find an appropriate site to host them. They’re big. We’re working on it. Please 762 
until then if you would like the files contact us and we’re happy to share.  763 
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  775 
Figure legends 776 
Fig. 1. Age-related damage patterns minimally influence reported phylogenetic-based community 777 
structure. (A) Principal coordinates analysis plots of abundance-weighted UniFrac beta-diversity 778 
for datasets made with 40, 100, and 200 genomes for full output tables and tables filtered to remove 779 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/260042doi: bioRxiv preprint first posted online Feb. 5, 2018; 

http://dx.doi.org/10.1101/260042
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

species present at < 0.1% abundance. (B) Principal coordinates analysis plots of UniFrac beta-780 
diversity for datasets made with 40, 100, and 200 genomes for full output tables and tables filtered 781 
to remove species present at < 0.1% abundance. 782 

  783 
Fig. 2. Age-related damage patterns slightly increase within-sample diversity. Alpha diversity of 784 
40-genome datasets calculated by (A) Faith’s phylogenetic distance, (B) Shannon index, (C) 785 
Observed species, and (D) Chao1 for full output tables and tables filtered to remove species present 786 
at < 0.1% abundance. MPA2 - MetaPhlAn2, anc – ancient simulated dataset, mod – modern 787 
simulated dataset. 788 

  789 
Fig. 3. Species detection and over/under-representation differ by program but not age-related 790 
damage. Heat-map showing for each program tested the species relative abundance under-791 
represented (blues), over-represented (yellows, oranges, reds), not detected (black), and accurately 792 
represented (white) relative to the true input files for modern and ancient 40-genome datasets. 793 
Where programs were unable to distinguish species, strains, or subspecies a single bar across those 794 
genomes is colored to represent the over/under-representation of the lowest identifiable taxonomic 795 
level. MPA2 - MetaPhlAn2, CLK-S - CLARK-S; A – ancient simulated dataset, M – modern 796 
simulated dataset. 797 

  798 
Fig. 4. Differences in species relative abundance are program-specific and minimally affected by 799 
age-related damage. Program-specific differences in species detection and relative abundance are 800 
consistent between ancient (top) and modern (bottom) 40-genome simulated datasets. Relative 801 
abundances of each bar represent: If - true input fasta file, Id - input species detected, and Ad - all 802 
species detected. Species other than those included in the input files are grouped together as ‘other’ 803 
in a gray stripe at the top of the Ad bar. QIIME/UCLUST bars represent genus-level assignments. 804 

  805 
Fig. 5. Biases in species detection across the phylogenetic tree are database-dependent. Species 806 
detected by each program represented in a radial phylogenetic tree with the nodes representing 807 
different taxonomic levels, where innermost node is root and the outermost nodes are strains. More 808 
highly represented taxa are lighter in color (yellow to light blue) and have thicker branches/nodes, 809 
while less abundant taxa are darker blues with thinner branches/nodes. The ring encircling each 810 
tree designates the major phyla (those in the input files, plus viruses when distinguishable) by 811 
color. For programs that did not report strains (QIIME/UCLUST, MetaPhlAn2, CLARK-S, 812 
MALT) the species was repeated as a strain to maintain consistency with MIDAS. 813 

 814 
Supplemental Tables and Figures 815 
Table S1. Details of input metagenomic samples generated in silico by gargammel.  816 
Table S2. Details of the 6 taxonomic classification programs used.  817 
Table S3. 16S rRNA gene-identified read input file read counts per sample.  818 
Table S4. QIIME/UCLUST-specific taxonomic assignment biases. 819 
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Table S5. MetaPhlAn2-specific taxonomic assignment biases. 820 
Table S6. MIDAS-specific taxonomic assignment biases. 821 
Table S7. CLARK-S-specific taxonomic assignment biases. 822 
Table S8. MALT-specific taxonomic assignment biases. 823 
  824 
Fig. S1. MapDamage plots showing damage patterns applied to bacterial reads (top panels, CS32 825 
Tannerella forsythia reads) and to human reads (bottom panels, CS21 human reads). MapDamage 826 
plots are from real ancient dental calculus samples from ref. (3). 827 
 828 
Fig. S2. Age-related damage patterns minimally influence reported non-phylogenetic-based 829 
community structure in 40-genome samples. Principal coordinates analysis plots of abundance-830 
weighted Bray-Curtis distance and un-weighted Jacccard distance beta-diversity for datasets made 831 
with 40-genomes at the species and genus levels for full output tables and tables filtered to remove 832 
species present at < 0.1% abundance. 833 

  834 
Fig. S3. Age-related damage patterns minimally influence reported non-phylogenetic-based 835 
community structure in 100-genome samples. Principal coordinates analysis plots of abundance-836 
weighted Bray-Curtis distance and un-weighted Jacccard distance beta-diversity for datasets made 837 
with 100-genomes at the species and genus levels for full output tables and tables filtered to remove 838 
species present at < 0.1% abundance. 839 

  840 
Fig. S4. Age-related damage patterns minimally influence reported non-phylogenetic-based 841 
community structure in 200-genome samples. Principal coordinates analysis plots of abundance-842 
weighted Bray-Curtis distance and un-weighted Jacccard distance beta-diversity for datasets made 843 
with 200-genomes at the species and genus levels for full output tables and tables filtered to remove 844 
species present at < 0.1% abundance. 845 

  846 
Fig. S5. Age-related damage patterns slightly increase within-sample diversity. Alpha diversity of 847 
100-genome datasets calculated by (A) Faith’s phylogenetic distance, (B) Shannon index, (C) 848 
Observed species, and (D) Chao1 for full output tables and tables filtered to remove species present 849 
at < 0.1% abundance. MPA2 - MetaPhlAn2, anc – ancient simulated dataset, mod – modern 850 
simulated dataset. 851 

  852 
Fig. S6. Age-related damage patterns slightly increase within-sample diversity. Alpha diversity of 853 
200-genome datasets calculated by (A) Faith’s phylogenetic distance, (B) Shannon index, (C) 854 
Observed species, and (D) Chao1 for full output tables and tables filtered to remove species present 855 
at < 0.1% abundance. MPA2 - MetaPhlAn2, anc – ancient simulated dataset, mod – modern 856 
simulated dataset. 857 

  858 
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Fig. S7. Species detection and over/under-representation differ by program not age-related 859 
damage. Heat-map showing for each program tested the species relative abundance under-860 
represented (blues), over-represented (yellows, oranges, reds), not detected (black), and accurately 861 
represented (white) relative to the true input files for modern and ancient 100-genome datasets. 862 
Where programs were unable to distinguish species, strains, or sub-species a single bar across 863 
those genomes is colored to represent the over/under-representation of the lowest identifiable 864 
taxonomic level. MPA2 - MetaPhlAn2, CLK-S - CLARK-S; A – ancient simulated dataset, M – 865 
modern simulated dataset.  866 

  867 
Fig. S8. Species detection and over/under-representation differ by program not age-related 868 
damage. Heat-map showing for each program tested the species relative abundance under-869 
represented (blues), over-represented (yellows, oranges, reds), not detected (black), and accurately 870 
represented (white) relative to the true input files for modern and ancient 200-genome datasets. 871 
Where programs were unable to distinguish species, strains, or sub-species a single bar across 872 
those genomes is colored to represent the over/under-representation of the lowest identifiable 873 
taxonomic level. MPA2 - MetaPhlAn2, CLK-S - CLARK-S; A – ancient simulated dataset, M – 874 
modern simulated dataset.  875 

  876 
Fig. S9. QIME/UCLUST-specific differences in genus detection and relative abundance are 877 
consistent between ancient and modern 100-genome simulated datasets. Relative abundances of 878 
each bar represent: If - true input fasta file, 16f - 16S rRNA gene-identified read input fasta file 879 
(used for QIIME/UCLUST profiling), Id - input genera detected, and Ad - all genera detected. 880 
Genera other than those included in the input files are grouped together as ‘other’ in a stripe at the 881 
top of the Ad bar. 882 

  883 
Fig. S10. QIME/UCLUST-specific differences in genus detection and relative abundance are 884 
consistent between ancient and modern 200-genome simulated datasets. Relative abundances of 885 
each bar represent: If - true input fasta file, 16f - 16S rRNA gene-identified read input fasta file 886 
(used for QIIME/UCLUST profiling), Id - input genera detected, and Ad - all genera detected. 887 
Genera other than those included in the input files are grouped together as ‘other’ in a stripe at the 888 
top of the Ad bar. 889 

  890 
Fig. S11. MetaPhlAn2-specific differences in species detection and relative abundance are 891 
consistent between ancient and modern 100-genome simulated datasets. Relative abundances of 892 
each bar represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. 893 
Species other than those included in the input files are grouped together as ‘other’ in a stripe at the 894 
top of the Ad bar. 895 

  896 
Fig. S12. MetaPhlAn2-specific differences in species detection and relative abundance are 897 
consistent between ancient and modern 200-genome simulated datasets. Relative abundances of 898 
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each bar represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. 899 
Species other than those included in the input files are grouped together as ‘other’ in a stripe at the 900 
top of the Ad bar. 901 

  902 
Fig. S13. MIDAS-specific differences in species detection and relative abundance are consistent 903 
between ancient and modern 100-genome simulated datasets. Relative abundances of each bar 904 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 905 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 906 
the Ad bar. 907 

  908 
Fig. S14. MIDAS-specific differences in species detection and relative abundance are consistent 909 
between ancient and modern 200-genome simulated datasets. Relative abundances of each bar 910 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 911 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 912 
the Ad bar. 913 

  914 
Fig. S15. CLARK-S-specific differences in species detection and relative abundance are consistent 915 
between ancient and modern 100-genome simulated datasets. Relative abundances of each bar 916 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 917 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 918 
the Ad bar. 919 

  920 

Fig. S16. CLARK-S-specific differences in species detection and relative abundance are consistent 921 
between ancient and modern 200-genome simulated datasets. Relative abundances of each bar 922 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 923 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 924 
the Ad bar. 925 

  926 
Fig. S17. MALT-specific differences in species detection and relative abundance are consistent 927 
between ancient and modern 100-genome simulated datasets. Relative abundances of each bar 928 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 929 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 930 
the Ad bar. 931 

  932 
Fig. S18. MALT-specific differences in species detection and relative abundance are consistent 933 
between ancient and modern 100-genome simulated datasets. Relative abundances of each bar 934 
represent: If - true input fasta file, Id - input species detected, and Ad - all species detected. Species 935 
other than those included in the input files are grouped together as ‘other’ in a stripe at the top of 936 
the Ad bar. 937 

  938 
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Fig. S19. Biases in species detection across the phylogenetic tree are database-dependent. Figure 939 
is identical to Fig. 5, but with a black background to better visualize color gradient and branch/node 940 
sizes of the trees. Species detected by each program represented in a radial phylogenetic tree with 941 
the innermost node as root and the outermost nodes as strains. More highly represented taxa are 942 
lighter in color (yellow to light blue) and have thicker branches/nodes, while less abundant taxa 943 
are darker blues with thinner branches/nodes. The ring encircling each tree designates the major 944 
phyla (those in the input files, plus viruses when distinguishable) by color. For programs that did 945 
not report strains (QIIME/UCLUST, MetaPhlAn2, CLARK-S, MALT) the species was repeated 946 
as a strain to maintain consistency with MIDAS. 947 
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 1128 
 1129 
Figure 1. Age-related damage patterns minimally influence reported phylogenetic-based 1130 
community structure. (A) Principal coordinates analysis plots of abundance-weighted UniFrac 1131 
beta-diversity for datasets made with 40, 100, and 200 genomes for full output tables and tables 1132 
filtered to remove species present at < 0.1% abundance. (B) Principal coordinates analysis plots 1133 
of UniFrac beta-diversity for datasets made with 40, 100, and 200 genomes for full output tables 1134 
and tables filtered to remove species present at < 0.1% abundance. 1135 
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 1137 
 1138 
Figure 2. Age-related damage patterns slightly increase within-sample diversity. Alpha diversity 1139 
of 40-genome datasets calculated by (A) Faith’s phylogenetic distance, (B) Shannon index, (C) 1140 
Observed species, and (D) Chao1 for full output tables and tables filtered to remove species present 1141 
at < 0.1% abundance. MPA2 - MetaPhlAn2, anc – ancient simulated dataset, mod – modern 1142 
simulated dataset.  1143 
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 1144 
 1145 
Figure 3. Species detection and over/under-representation differ by program but not age-related 1146 
damage. Heat-map showing for each program tested the species relative abundance under-1147 
represented (blues), over-represented (yellows, oranges, reds), not detected (black), and accurately 1148 
represented (white) relative to the true input files for modern and ancient 40-genome datasets. 1149 
Where programs were unable to distinguish species, strains, or subspecies a single bar across those 1150 
genomes is colored to represent the over/under-representation of the lowest identifiable taxonomic 1151 
level. MPA2 - MetaPhlAn2, CLK-S - CLARK-S; A – ancient simulated dataset, M – modern 1152 
simulated dataset.  1153 
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 1154 
 1155 
Figure 4. Differences in species relative abundance are program-specific and minimally affected 1156 
by age-related damage. Program-specific differences in species detection and relative abundance 1157 
are consistent between ancient (top) and modern (bottom) 40-genome simulated datasets. Relative 1158 
abundances of each bar represent: If - true input fasta file, Id - input species detected, and Ad - all 1159 
species detected. Species other than those included in the input files are grouped together as ‘other’ 1160 
in a gray stripe at the top of the Ad bar. QIIME/UCLUST bars represent genus-level assignments.  1161 
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 1163 Figure 5. Biases in species detection across 
the phylogenetic tree are database-
dependent. Species detected by each 
program represented in a radial 
phylogenetic tree with the nodes 
representing different taxonomic levels, 
where innermost node is root and the 
outermost nodes are strains. More highly 
represented taxa are lighter in color (yellow 
to light blue) and have thicker 
branches/nodes, while less abundant taxa 
are darker blues with thinner 
branches/nodes. The ring encircling each 
tree designates the major phyla (those in the 
input files, plus viruses when 
distinguishable) by color. For programs that 
did not report strains (QIIME/UCLUST, 
MetaPhlAn2, CLARK-S, MALT) the 
species was repeated as a strain to maintain 
consistency with MIDAS. 
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