
PACO 2017 Extended Abstract

Frequency Scaling and Energy Efficiency regarding the
Gauss-Jordan Elimination Scheme on OpenPower 8

Martin Köhler1 Jens Saak2

The Gauss-Jordan Elimination scheme is an alternative to the LU de-
composition for solving linear systems or computing the inverse of a
matrix. We develop a multi-GPU aware implementation of this algo-
rithm on an OpenPOWER 8 system with application to the Matrix Sign
Function. Thereby, we analyze the influence to the CPU clock frequency
scaling on the overall energy consumption. The results show possible
energy saving of 14.2% without a noteworthy increase of the runtime.

1 Introduction

Beside solving a general linear system Ax = b using the LU decomposition there are
a few applications, like Newton’s Method for computing the Matrix Sign Function [9,
4, 3, 2] or the Polar Decomposition [7], that require the explicit inverse A−1. In this
case, either the three step scheme implemented in LAPACK [1] or the Gauss-Jordan
Elimination [11] can be used to obtain A−1. The LAPACK approach first computes
the LU decomposition of the matrix A, then inverts the upper triangular matrix U ad
finally solves LA−1 = U−1. This procedure takes 2m3 flops if m is the order of the
matrix. Furthermore, this approach causes that three routines need to be regarded during
the optimization of the implementation. Moreover, the two steps working on triangular
matrices are complicated to parallelize by their nature. On the other hand, we have
the Gauss-Jordan Elimination computing the inverse A−1 by rearranging the three step
LAPACK scheme [11]. The resulting algorithm is free of any operations dealing with
triangular matrices and mainly consists of general matrix-matrix products. This makes
the algorithm preferable on massively parallel architectures, like multi-core or accelerator
based systems. Furthermore, one can show that the Gauss-Jordan Elimination reduces
the number of memory accesses [10] and by using general matrix-matrix multiplies the
data locality for the single operations of the algorithm is improved.

In our contribution, we focus on the efficient implementation of the Gauss-Jordan ma-
trix inversion on the OpenPOWER 8 platform. Besides two 10-core IBM POWER8
CPUs the test system is equipped with two Nvidia Tesla P100 accelerators with NVLink
interconnect and 256 GB DDR4 memory. The system can be seen as predecessor of the
compute nodes in the upcoming super computer “Summit” at Oak Ridge National Lab-
oratory3 that will use the IBM POWER9 platform together with the next generation of
Nvidia’s accelerators named “Volta”. The most important differences to previous GPU
accelerated systems and the named POWER8 system are:

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg ,
koehlerm@mpi-magdeburg.mpg.de

2Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg ,
saak@mpi-magdeburg.mpg.de

3https://www.olcf.ornl.gov/summit/ – Accessed March 20th, 2017

1

mailto:koehlerm@mpi-magdeburg.mpg.de
mailto:saak@mpi-magdeburg.mpg.de
https://www.olcf.ornl.gov/summit/

PACO 2017 Extended Abstract

• The usage of NVLink as interconnect between CPU and GPU. This increases the
transfer rate between their memories by a factor of 2 to 3 in comparison to the latest
PCI-Express bus. In this way, data transfers between the CPU and the GPU are
cheaper (with respect to runtime) than on older systems.

• The ratio of the peak performances between both CPUs and GPUs is a factor of
20. This is a increase by a factor of 5 if we compare it to an older system, like the
16 core Intel Xeon Haswell with two Nvidia K20 accelerators, where we have done
our previous work on [10].

• While keeping the energy consumption for the GPUs in the same order of magnitude
as for the old K20 GPUs the energy consumption of the POWER8 CPUs is much
higher in idle state, as well as in full operation mode, compared to the Intel Haswell
Xeon CPUs with a similar peak performance.

The last point makes the difference from the energy point of view. For this reason we want
to focus on reducing the power consumption of the CPUs by changing their clock frequency
and/or changing the CPU frequency governors that control the automatic adjustment of
the CPU clock frequency.

The contribution is organized as follows. First we recall the Gauss-Jordan Elimination
approach and its efficient implementation. Later on we use the Matrix Sign Function as
an application for our matrix inversion code. Finally, we show the influence of changing
the CPU’s clock frequency to the time-to-solution, the energy-to-solution and the Energy-
Delay-Product (EDP) [5, 8]. Thereby, the EDP can be used to decide whether it is worth
to save the energy or to save runtime from an economic point of view.

2 Gauss-Jordan Elimination

The Gauss-Jordan Elimination scheme can be interpreted as an alternative representation
of the LU decomposition with reordered operations [11]. Therefore, we will only recall
the basics to obtain a blocked algorithm here. First, we consider the Gauss-Transform
Gi ∈ Rm×m:

Gi =



1 −a1i
aii

. . .
...

1 −a(i−1)i

aii
1
aii

−a(i+1)i

aii
1

...
. . .

−ami

aii
1


, (1)

which introduces zeros in the i-th column of a matrix GiA and sets the i-th row in this
column to one. By applying Gi to a permuted matrix PiA, where Pi exchanges row i with
row k, k := argmaxk≥i |aki|, one can use pivoting as in the LU decomposition [6]. We use

G̃i := GiPi as pivoted Gauss-Transform (PGT). The application of m Gauss-Transforms
or pivoted Gauss-Transforms from the left to a matrix A ∈ Rm×m yields its inverse:

G̃m · · · G̃1︸ ︷︷ ︸
A−1

A = I. (2)

2

PACO 2017 Extended Abstract

Using the fact that G̃i eliminates the i-th column, except of the 1 on the diagonal, one
can store the i-th column of G̃i in the i-th column of A, after it is applied, to obtain
an in-place algorithm. The block algorithm (with a block size of NB) is obtained by
the following considerations. Without loss of generality, we neglect the pivoting matrix
Pi. The application of a Gauss-Transform Gi can be written as a rank-1 update with an
additional operation:

A← A− 1

aii

(
a1i, · · · , a(i−1)i, 0, a(i+1)i, . . . , ami

)T
Ai,·

Ai,· :=
1

aii
Ai,·. (3)

By partitioning the matrix A into

A←

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (4)

where A22 is of dimension NB × NB we obtain the block formulation of the rank-1 up-
date (3) as:

A←

 A11 0 A13

0 0 0
A31 0 A33

+

 −A12A
−1
22

A−122

−A32A
−1
22


︸ ︷︷ ︸

H

[
A21 INB

A23

]
. (5)

Thereby, the matrix Hk can be regarded as the (partial) inverse of the block column

B :=
[
AT

12 AT
22 AT

32

]T
and can be computed by applying Gauss-Transforms to B as

well.

In order to avoid a direct fallback from the rank-NB updates from (5) to the rank-1
updates from (3) in the computation of H we use the same strategy as in LAPACK since
version 3.6.0. There the locality improved LU decomposition was introduced [12] to avoid
the direct level-2 BLAS fallback. The key idea is to apply the blocked algorithm again to
H but with a block size of NB

2
recursively until the block size is reduced to 1 and the final

work consists only in updating a single column. As in the case of the LU decomposition
this increases the data locality of the operations and allows to use more level-3 BLAS
operations than if one uses the rank-1 formulation immediately.

Taking the GPUs into account, we can easily create a hybrid CPU-GPU version of our
algorithm. The rank-NB update is well suited for the GPU because, on the one hand, the
general matrix-matrix product is one of the best optimize routines for the GPUs and, on
the other hand, using the block cyclic distribution scheme this can be easily parallelized
across multiple GPUs. Asynchronous operations and lookahead are also easy to implement
by splitting the update with H and A23 into two parts. The first part affects the leading
NB columns of A23 and results in the input data for the computation of the next matrix
H. Afterwards the GPUs can handle the remaining part of A23 while the CPU prepares
the next matrix H.

Newton’s Method for the Matrix Sign Function The Matrix Sign Function X :=
sign(A), e.g. [9], is the generalization of the sign of a scalar number to the matrix case.

3

PACO 2017 Extended Abstract

2.5 3 3.5 4

4

5

6

GPU Clock Frequency [GHz]

R
u
n
ti
m
e
[s
]

3.5

4

4.5

5
·103

E
n
er
g
y
C
o
n
su
m
p
ti
o
n
[W

s]Energy
Runtime

Figure 1: m = 20 480

2.5 3 3.5 4
16

18

20

22

24

26

GPU Clock Frequency [GHz]

R
u
n
ti
m
e
[s
]

18

20

22

·103

E
n
er
gy

C
o
n
su
m
p
ti
o
n
[W

s]Energy
Runtime

Figure 2: m = 40 960

One way to compute it is to use one of its defining properties, X2 = I, and apply the
Newton iteration with the initial value A. This yields the following iteration:

Xk+1 :=
1

2

(
Xk + X−1k

)
X0 = A. (6)

On convergence sign(A) = X∞ holds. In practical implementations a scaling factor ck is
introduced to accelerate the convergence [3]. For ease of presentation we do not regard
this here.

Beside the inversion of the matrix Xk we only need a matrix valued scale and a matrix
valued add operation. Having in mind that this operation is bandwidth bound we refer to
the high bandwidths of the system here. Reaching a practical GPU–memory bandwidth
of 500 GB/s one can still scale a matrix filling up the device memory 31.25 times per
second. With a memory bandwidth of 230GB/s bandwidth bound operations can also be
performed on the CPUs.

If pivoting is enabled during the inversion of Xk, the Gauss-Jordan-Elimination scheme

computes the inverse X̃k

−1
of PXk, where P consists of all permutations used during the

pivoting. Therefore, we have to add a column permutation to X̃k

−1
to obtain X−1k :=

X̃k

−1
P T . As long as only one GPU is used this can easily be performed on the GPU.

If the matrix is distributed across several GPUs this becomes a communication intensive
procedure. Due to the limited bandwidth between two GPUs (40GB/s) the irregular
movement of the columns will slow down the whole procedure. In this case we move the
whole matrix X−1k to the host memory again and use a parallel permutation algorithm
there. Finally, we distribute the matrix to devices again an create an on device copy of the
matrix to have Xk+1 already available for the next iteration. Changing the devices’ data
layout to a cyclic block row representation we can easily permute the columns but the
problem of the distributed data moves to the row permutation inside the Gauss-Jordan
Elimination, which causes the same problems there.

3 Results

We run all experiments on the OpenPOWER 8 system (IBM POWER System 822LC)
running CentOS 7.3 (with a custom build Linux 4.8 kernel) mentioned in the Introduction.
The software ecosystem consists of Nvidia CUDA 8.0, IBM XLC 13.1.5, IBM XLF 15.1.5,

4

PACO 2017 Extended Abstract

2.5 3 3.5 4

55

60

65

70

GPU Clock Frequency [GHz]

R
u
n
ti
m
e
[s
]

60

65

70

·103

E
n
er
gy

C
o
n
su
m
p
ti
o
n
[W

s]Energy
Runtime

Figure 3: m = 61 440

Dimension 20 480 40 960 61 440

EDP(1) 3.890 3.225 2.959
EDP(2) 3.890 3.225 2.959
EDP(3) 3.890 3.690 3.092

Table 1: CPU Clock Frequency (in [GHz])
minimizing the EDP(w) with
weights w = 1, 2, 3.

and IBM ESSL 5.5 as host BLAS/LAPACK library. The CPUs clock frequency can be
adjusted in a range from 2.061GHz to 4.023GHz by steps of ≈33MHz, where for high
clock frequencies above 3.823GHz the frequencies are reduced automatically due to power
supply and thermal issues. Nevertheless, we force the CPUs to reach these frequencies by
using the userspace performance governor of the cpufreq mechanism of the Linux kernel.

The main goal of the experiments is to check whether it is worth to spent more energy
by enforcing a high CPU clock frequency, or where optimal points between an increase
of the runtime and the saved energy are. The optimality is checked with respect to the
Energy-Delay-Product (EDP) [5, 8] defined by:

EDP(w) = E · Tw, (7)

where E is the energy-to-solution, T is the time-to-solution, and w a weight factor to
penalize the time. The optimal block size NB for the Gauss-Jordan Elimination was
determined in previous experiments. Here, we restrict to the matrix inversion since this
is the most challenging operation during the computation of the Matrix Sign Function.
We use random matrices A of dimension 20 480, 40 960, 61 440.

Figures 1 to 3 show the runtime and the energy consumption of the Gauss-Jordan
Elimination. For the smallest case (m = 20 480) we observe that we have an approximately
linear decrease of the runtime coupled with a slowly increasing energy consumption. In
this case, one can still choose nearly maximum CPU clock frequency and still obtain an
economically optimal execution. This coincides with the suggestion of the EDP from
Table 1 to chose a frequency next to the maximum. For larger problems we see that
beginning with a clock frequency of ≈2.9GHz we have a steep increase of the energy
consumption while only obtaining a small speed up in the runtime. On the other hand,
regarding the largest example (m = 61 440) the increase of the clock frequency from
2.959GHz to 4.023GHz costs 14.2% more energy while only accelerating the process by
2.2%, while switching from the clock frequency from 2.016GHz to 2.959GHz we only
need 5% more energy and accelerate the algorithm by 26.9%. The EDP from Table 1
suggest exactly this clock frequency for w = 1 and w = 2. Even if we increase the
impact of the runtime to w = 3 the EDP only suggests an increase of the clock frequency
by 4 steps to 3.092GHz. Finally, we see that for an increasing problem dimension the
influence of the pure CPU power decreases and even for higher weights of the runtime the
EDP suggests a moderate clock frequency in order to obtain an economically acceptable
solution.

5

PACO 2017 Extended Abstract

4 Conclusions

We have shown that for the Gauss-Jordan Elimination on the OpenPOWER 8 platform
one can save a remarkable amount of energy by choosing a proper clock frequency for the
CPUs without causing a noteworthy increase of the runtime. This extended abstract only
covers the case of fixed CPU clock frequencies but the hardware (supported by the drivers
from the Linux kernel) supports automatic adjustment with respect to several policies.
These so called cpufreq governors will also be taken into account in the final contribution
as well as the overall process of the Newton iteration (6).

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, SIAM, Philadelphia, PA, third ed., 1999.

[2] P. Benner, P. Ezzatti, E. S. Quintana-Ort́ı, and A. Remón, Matrix inver-
sion on CPU-GPU platforms with applications in control theory, Concurrency and
Computing: Practice and Experience, 25 (2013), pp. 1170–1182.

[3] R. Byers, C. He, and V. Mehrmann, The matrix sign function method and the
computation of invariant subspaces, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 615–
632.

[4] E. D. Denman and A. N. Beavers, The matrix sign function and computations
in systems, Appl. Math. Comput., 2 (1976), pp. 63–94.

[5] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, Analyzing the energy-time trade-off in high-
performance computing applications, IEEE Trans. Parallel Distrib. Syst., 18 (2007),
pp. 835–848.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, fourth ed., 2013.

[7] N. J. Higham, Computing the polar decomposition—with applications, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 1160–1174.

[8] M. Horowitz, T. Indermaur, and R. Gonzalez, Low-power digital design,
Proceedings of 1994 IEEE Symposium on Low Power Electronics, (1994), pp. 8–11.

[9] C. Kenney and A. J. Laub, The matrix sign function, IEEE Trans. Automat.
Control, 40 (1995), pp. 1330–1348.

[10] M. Köhler, C. Penke, J. Saak, and P. Ezzatti, Energy-aware solution of
linear systems with many right hand sides, Comput. Sci. Res. Dev., (2016). accepted
for publication.

[11] E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, X. Sun, and R. van de Geijn, A
note on parallel matrix inversion, SIAM J. Sci. Comput., 22 (2001), pp. 1762–1771.

[12] S. Toledo, Locality of reference in LU decomposition with partial pivoting, SIAM
Journal on Matrix Analysis and Applications, 18 (1997), pp. 1065–1081.

6

	Introduction
	Gauss-Jordan Elimination
	Results
	Conclusions

