Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Differential modulation of foreground and background in early visual cortex by feedback during bistable Gestalt perception

MPG-Autoren
/persons/resource/persons214517

Grassi,  PR
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84327

Zaretskaya,  N
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83797

Bartels,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grassi, P., Zaretskaya, N., & Bartels, A. (2016). Differential modulation of foreground and background in early visual cortex by feedback during bistable Gestalt perception. In Neurizons 2016: Speak your mind (pp. 76-77).


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7CB6-8
Zusammenfassung
A growing body of literature suggests that feedback modulation of early visual processing is ubiquitous and central to cortical computation. In particular stimuli with high-level content have been shown to suppress early visual regions, typically interpreted in the framework of predictive coding. However, physical stimulus differences can preclude clear interpretations in terms of feedback. Here we examined activity modulation in the early visual cortex (V1 and V2) using fMRI during distinct perceptual states associated to the same physical input. This ensures in a unique way that observed signal modulations cannot be accounted for by changes in physical stimulus properties, and can therefore only be accounted for by percept-related feedback interactions from higher level regions. We used a dynamic stimulus consisting of moving dots that could either be perceived as corners of a large moving square (global Gestalt) or as distributed sets of locally moving dots. We found that perceptual binding of local moving elements into an illusory Gestalt led to spatially segregated differential modulations, in both, V1 and V2: retinotopic representations of illusory lines and foreground were enhanced, while inducers and background suppressed. The results extend prior findings to the illusory-perceptual state of physically un-changed stimuli, and show percept-driven background suppression in the human brain. Based on prior work, we hypothesize that parietal cortex is responsible for the modulations through recurrent connections in a predictive coding account of visual processing.