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The perceptual constancy view posits that children perceive rectangular areas 
dependent on shape, whereas adults do not. Following Brunswik (1934a), we call 
this dependency the “limited perceptual constancy of area under variation of 
shape.” A series of four experiments (with 150 children and 80 adults) using or- 
dinal paired comparisons rejected the general equation ai = f(Ai, Si) as a model of 
limited area constancy (a, is the perceived area, Ai and Si the physical area and 
shape of rectangle 0. Children judged area dependent on shape, but dependent 
on the covariation C,,, of area and shape in the experimental set of rectangles, 
rather than on the particular shape of the rectangle judged. A quantitative version 
of this covariation mechanism that seems to generate limited area constancy is 
proposed, and its relation to Parducci’s range-frequency theory is discussed. Not 
one child’s judgments could be predicted from a height + width rule (assuming 
identical linear psychophysical functions). We demonstrate and correct serious 
errors in Anderson and Cuneo’s (1978a, 1978b) claims for a height + width rule in 
children. Our results support a three-step developmental model for paired com- 
parisons of area: (1) centering on one side of the rectangle, (2) limited area con- 
stancy, that is, ai = f(Ai, C,,,), and (3) area constancy. 

How are the areas of rectangular shapes judged by children, and how are they 
judged by adults? Beginning in 1916, this question was studied in Jena by Peters 
(1933), and later Brunswik took it up (1934a, 1934b) in Vienna. The conclusions 
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were that (1) perceived area is dependent on the shape of the rectangle, and (2) 

the degree and the direction of this dependency changes with age. This interac- 
tion between perceived area and shape has been theoretically treated within the 
framework of Gestalt psychology (Rubin, 1921; Werner, 1933) and within that of 
the “generalized problem” of perceptual constancy (Brunswik, 1934a), which in 
turn influenced Piaget’s approach to the evolution of perceptual constancies 
(Piaget, 1969). According to these views, perceived area was understood in 
German-speaking countries to be different from the mere “sum” of its parts, 
height, and width (Btihler, 1913; Granit, 1921, Hempstead, 1900; Leeser, 1916; 
Lenk, 1926; Rausch, 1949, 1952, 1964; Sander & Volkelt, 1962; Selinka, 1939); 
this nondecomposability is reflected, although in different ways, in the recent 
distinction between integral and separable dimensions in English-speaking coun- 
tries (Garner, 1974; Monahan & Lockhead, 1977; Shepp, 1978; Shepp, Burns, & 
McDonough, 1980; Tighe & Shepp, 1983; Weintraub, 1971). 

All these views share a lowest common denominator: Perceived area is depen- 
dent on shape. We call this dependency the “limited perceptual constancy of area 
under variation of shape,” following Brunswik (1934a), or, for short, “limited 
area constancy.” The classical constancy problem refers to the perceived con- 
stancy of a property of an object (such as size) under variation of external 
conditions (such as its distance to an observer). Brunswik’s “generalized prob- 
lem” refers to the perceived constancy of a property of an object (such as area) 
under variation of other properties of the same object (such as its shape or color). 
How limited area constancy should be modelled, however, has not always been 
made clear, but most of the authors mentioned above seem to agree with the 
following general formulation: 

where ai is the perceived area of a rectangle i with physical area Ai and shape Si. 
The function f accounts for the dependency and is as yet unspecified. Although 
Equation 1 is the most common interpretation of limited area constancy, it is not 
the only one possible. For instance, Equation 1 is based on the specific assump- 
tion that the dependency can be explained by the shape Si of a single rectangle i, 
without taking into account the distribution of shapes in the whole series of 
rectangles presented. Most of the authors mentioned above (with exceptions such 
as Shepp, Burns, & McDonough, 1980) view the development of area perception 
as an increase in perceptual constancy: Children perceive area as dependent on 
the shape (Equation l), whereas adults show, at least approximately, perceptual 
constancy of area under variation of shape (Equation 2): 

ui = flAi) = flAi, .Si), for all S@ (2) 

To summarize, what we call the perceptual constancy view assumes that 
perceived area is dependent on shape in young children but is approximately 
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independent in adults. Development of area perception is, in this view, the 
increasing ability to abstract from “irrelevant” cues such as shape. 

COGNITIVE ALGEBRA HYPOTHESES 

The last decade has witnessed the rise of another point of view, however, which 
assumes that perceived area is arrived at by adding or multiplying height and 
width, the assumed perceptual “parts.” Anderson and Cuneo (1978a), Cuneo 
(1980), and Wilkening (1979, 1980) concluded from their experiments that chil- 
dren (5-6 years old and younger) use an adding rule to calculate perceived area 
from perceived height and width, whereas adults use a multiplying rule. Let us 
denote perceived height as hi, perceived width as wi, and perceived area as a,; 
then these hypotheses can be written as follows: 

ai = hi + w. I (height + width rule) (3) 

ui = hiW. I (height X width rule) (4) 

The theoretical framework is called cognitive algebra or information integra- 
tion theory, and its methodology is called functional measurement (Anderson, 
1981, 1982). In the theoretical framework, judgment of area is decomposed into 
three steps (Figure 1). Fist, the physical height H of a rectangle is transformed 
by a psychophysical function& into perceived height h; similarly, physical width 
W is transformed byf, into w. Note that h and w are assumed to be independent. 
Second, h and w are integrated into perceived area (I by an integration rule I, that 
is, either by adding or multiplying. Third, a is transformed by the judgment 

H-h 

psychophysical 
function 

integration 
rule 

h = fh(H) 
w= f,(W) 

a = I(h,w) 

a-R 

judgment 
function 

R = g(a) 

Figure 1. Theoretical framework of information integration theory (cognitive 
algebra). 
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function g into the judged area R on a rating scale. If one accepts this framework, 
developmental changes might be postulated either in f, I, or g, or in some 
combination thereof. The authors mentioned above prefer the interpretation of 
development as a change in the integration rule, from adding to multiplying. 

Doubtless the most surprising conclusion was that young children used a 
height + width rule. This hypothesis implies that children are able to decompose 
area into its parts, height and width, but that they, because of some unknown 
innate developmental factor, use the wrong algebraic operation to integrate the 
parts again. Meanwhile, researchers using the same framework and methodology 
concluded that children integrate information of many kind by an adding rule 
(e.g., Butzin & Anderson, 1973; Cuneo, 1982; Kun, Parsons, & Ruble, 1974; 
Miller, 1982; Singh, Sidana, & Saluja, 1978; Singh, Sidana, & Srivastava, 1978; 
Wilkening, 1980). 

This conclusion led to the postulate of a new general principle of cognitive 
development: 

. . . the height + width rule is a manifestation of a primitive integration process 
that operates across many different situations. Various stimulus cues are evaluated 
as relevant, depending on the specifics of each situation. In each situation, how- 
ever, the relevant cues are combined by the same adding-type integration. . . . 
Overall, it seems reasonable to think that a single general-purpose integration 
process underlies these diverse judgments (Anderson & Cuneo, 1978a, pp. 366- 
367). 

In addition to the height + width and the multiplying mles, we will consider 
three other simple algebraic rules, discussed in the cognitive algebra tradition: 

ui = max(hi,wi) (longer-side rule) (5) 

ui = hi (height-only rule) (6) 

ai = wi (width-only rule) (7) 

The longer-side rule predicts that children use the longer of height and width 
when judging the area. Different from the height-only and width-only rules, this 
rule implies that children attend to both sides of the rectangle, but base their 
judgment solely on the larger one. Previous results concerning this perceptual 
strategy are contradictory. Verge and Bogartz (1978) concluded that children 
center on the longer side in an area-matching task, whereas Leon (1982) found 
no evidence of such a rule in ratings of areas. 

The height-only and width-only rules were considered by Anderson and 
Cuneo (1978a) to represent Piaget’s theory of centration. Since their data reject 
both rules, they claimed to have falsified Piaget’s centration hypothesis. We shall 
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not consider these rules as representing Piagetian theory, since, when Piaget 
applied his “law of relative centrations” to height and width (1969, pp. 8-12), he 
gave quite a different theoretical account. Piaget referred to an overestimation of 
whatever portions of a figure are attended to, rather than to a selective response 
to only one aspect of the figure. The law of relative centrations predicts an 
overestimation of the height of a rectangle if it is paired with a shorter width and 
vice versa. 

This means that Piaget’s law predicts a dependency between perceived height 
and width of rectangles. This dependency, however, differs from the height-only 
rule and the width-only rule as well as from the height + width rule and the 
multiplying rule, since all these cognitive algebra models are based on the 
assumption that h and w are independent. Therefore, we shall consider these 2 
one-dimensional rules as hypotheses stemming from the cognitive algebra frame- 
work rather than from Piaget’s. Similarly, as has already been pointed out by 
Wilkening (1979), logical multiplication, which according to Piaget is necessary 
for conservation, is not the same as Equation 4 in the cognitive algebra frame- 
work. Piaget’s hypothesis, that judged height is dependent on width, is similar to 
Equation 1 rather than to Equations 6 and 7. 

To summarize, the cognitive algebra view differs from the perceptual constan- 
cy view (as stated in Equation 1) in two fundamental respects: It assumes that 
perceived area is independent from shape in all stages of development, and it 
uses height and width rather than area as basic theoretical concepts, thereby 
assuming that area can be decomposed into independent height and width in alI 
stages of development. Both views explain judged area exclusively by proper- 
ties of the single rectangle (or pair of rectangles) to be judged, but do not include 
properties of the series of rectangles in which a rectangle to be judged is 
embedded. 

There are serious methodological problems present in the early research in 
German-speaking countries, such as Peters’s work (1933), and such problems 
persist, although in different guises, in recent cognitive algebra research. In what 
follows, we shall first briefly review three major problems in the cognitive 
algebra tradition and add some new information. Second, we shall propose a 
research strategy, that we used in the series of experiments reported, and which 
eliminates some of these problems. 

Problems with Previous Tests of Hypotheses 

Power and Asymmetric Testing. One fundamental problem in cognitive 
algebra research is that the adding and multiplying hypotheses were accepted 
according to different standards-widely different-as will be seen. The use of a 
multiplying rule was determined by the presence of a significant (bilinear) in- 
teraction between height and width, while the use of the height + width rule was 
inferred from a nonsignificant interaction. It is well known in theory, although 
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sometimes forgotten in practice, that no conclusion can be drawn from a nonsig- 
nificant result unless it has been shown that the test had a large power (Sedlmeier 
& Gigerenzer, 1989). 

The power of a test is the long-run probability of getting a significant result if 
the alternative hypothesis is true. The alternative hypothesis of interest, both for 
the perceptual constancy and the cognitive algebra views, is an interaction pat- 
tern. Note that the power increases with the effect size, which in turn depends on 
the perceptual mechanism and the design. If the dependency of perceived area 
from shape were on the order of Piaget’s (1969, p. 11) dependency of height on 
width, around 6%, or on the order of Mach’s illusion, from 2% to 5% (Richter, 
1988), then such deviations from either parallel curves or linear fans need a 
powerful test to be detected, as illustrated by Gigerenzer and Murray (1987, p. 
98). 

What is the power of previous tests? We do not know, since previous studies, 
with the important exception of those of Anderson and Cuneo (1978a), from 
which the height + width rule was originally inferred, did not estimate the 
power. Nevertheless, there are two different statements in the literature, which 
cannot both be true. Bogartz (1978) calculated the predictions of both the height 
+ width rule and the multiplying rule (assuming in both cases linear judgment 
functions) for Anderson and Cuneo’s designs. Bogartz showed that the dif- 
ferences between both predictions were small compared to the standard errors of 
the means (only about ti of the standard error), and consequently argued that the 
experiments lacked the power to detect the interaction predicted by a multiplying 
rule. In their reply, however, Anderson and Cuneo (1978b) argued that the power 
was greater than .99. We shall resolve this contradiction. 

We reconstructed both Bogartz’s and Anderson and Cuneo’s calculations and 
recalculated a power of only .09 for Anderson and Cuneo’s (1978a) Experiments 
2,5, and 6, and .06 for Experiment 3. (These are the same four experiments for 
which Anderson and Cuneo claimed a power greater than .99.) This finding 
clearly supports Bogartz’s conjecture. There are two reasons for these widely 
different power values. First, Anderson and Cuneo (1978b) pooled the data of all 
four experiments, that is, of four tests of interactions, into their calculation of a 
single power value. This artificially increased n by a factor of 4 and resulted in a 
large overestimation of the true power of each of the four tests. Second, they did 
not follow standard texts on power calculations (e.g., Cohen, 1977, pp. 369- 
377) for calculating the effect size of the interaction, but used a formula from 
Dixon and Massey (1969, p. 270), which is not appropriate for effect sizes of 
interactions, but rather for tests between two means. This choice increased the 
already inflated power value. Expressed as Cohen’s f, the true effect size in 
Anderson and Cuneo’s study (i.e., the difference between the predictions of the 
height + width and the multiplying rule) was . 10, which is a “small” effect size 
in Cohen’s terminology. Note that the sample effect sizes actually found were 
much larger, .22, .40, and .29 in Experiments 2,5, and 6, respectively, but none 
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Table 1. Reliability of Ratings 

Age Groups 

S-6-year-olds 
7-9-year-olds 

Adults 

Mean 
r 

.67 
.I9 

.96 

Standard 
Deviation 

.218 

.I54 

.025 

Mean error 
1-S 

.51 

.37 

.08 

of these was significant! Thus the interaction tests were not sensitive enough to 
detect effect sizes that were even two or four times as large as that predicted by 
the multiplying rule or by any other interaction of similar size. r 

Therefore, the prior probability not to detect an interaction, if there is one, 
was more than 90% (beta), whereas that of the opposite error (alpha) was only 
5%. The issue of power is, consequently, a question of symmetry (Sedlmeier & 
Gigerenzer, 1989): Anderson and Cuneo’s tests led to widely different proba- 
bilities of correct acceptance for the height + width rule on the one hand, and for 
a competing interaction hypothesis, such as an interaction between area and 
shape, on the other. 

Age-Dependent Loss of Reliability. One possible source of low power is 
low reliability in children’s area judgments. What do we know about the reli- 
abilities? Studies conducted in the cognitive algebra framework, such as Ander- 
son and Cuneo’s (1978a), Butzin and Anderson’s (1973), Cuneo’s (1980), and 
Wilkening’s (1979, 1980) made general claims that young children can use rating 
scales in a reliable way. None of these studies, however, reported the actual 
reliabilities. We replicated Wilkening’s (1979) study (see Experiment 1) and 
calculated the reliabilities. Table 1 shows a strong, age-dependent loss of reliabil- 
ity. The average intraindividual error in area ratings, as measured by 1 - r2, 
drops from .51 in the youngest group to .37 in 7-9-year-olds to .08 in adults. 

In order to check the objection that children’s low reliabilities were a result of 
peculiarities of our replication, we asked Fritz Wilkening for the reliabilities of 
his 1979 study, which he kindly calculated and sent to us. His values for 1 - r2 
are almost identical with ours for the S-year-olds and 8-year-olds: .48 and .36.2 
The source of this large error in young children is unknown. 

1 The power of the height X width interaction test in the experiments of Anderson and Cuneo 
(1978a) was calculated from the following information: (1) the degrees of freedom reported, ranging 
from F(4.24) to F(4.56); (2) the pooled mean square error reported by Anderson and Cuneo (1978b) 
(as an estimation of the population variance); and (3) the predictions of the multiplying hypothesis, as 
specified in Table 5 in Bogartz (1978). The effect size was calculated using Cohen’s (1977, p. 37 1) 
formula for the standardized effect size measure of interaction. For example, for Experiment 6 in 
Anderson and Cuneo (1978a), Cohen’s (1977) Table 8.3.15 gives a power of .09. 

2 Wilkening’s I I-year-olds are not considered hem, because we had no such group; their value 
was .22, which also supports the age-dependent decrease in reliability. The only difference occurred 
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We suggest that the rating scales used in previous research pose a task too 
difficult for young children: The child must be able to memorize and maintain a 
constant anchor and metric throughout all judgments (Gigerenzer, 1983a, 1983b; 
but see Wilkening, 1983). This reasoning would locate the source of error in the 
judgment task, and not in children’s perception, that is, in g instead of a (see 
Figure 1). Whatever the source is, this large error has an important effect when 
combined with asymmetric hypothesis testing: Any interaction pattern (not only 
a diverging fan) is less likely to be detected in younger children than in older 
children and adults. 

Number of Unknown Parameters: A Crucial Experiment Reevaluated. In 

the cognitive algebra framework the judgment functions, the integration rules, 
and the psychophysical functions are unknown parameters. In none of the studies 
mentioned above can these functions be independently estimated from the data. 
The data support only combinations of integration rules plus judgment functions, 
but not integration rules or judgment functions per se. For instance, it is well 
known that parallel curves do not imply the use of a height + width rule. 
Combinations consisting of an integration rule and a judgment function imply 
parallelism, but such combinations may or may not include a height + width 
rule. For example, a multiplying rule plus a logarithmic judgment function 
implies parallelism, too (for more examples, see Bimbaum, 1982, p. 451). 
Surber (1984) argued that it is routine for experimenters to ignore this issue and 
simply assume that the judgment function is linear throughout all ages. 

As a solution, two-operation tasks were proposed, in which the combined area 
of two rectangles had to be estimated. We know of a single experiment using a 
two-operation task with 5-year-olds (Anderson & Cuneo, 1978a, Experiment 6) 
that attempted a crucial test between two competing hypotheses. These were the 
height + width rule plus linear judgment function and the multiplying rule plus 
logarithmic judgment function. The former predicted parallel curves. Since the 
interaction did not reach significance, the authors inferred that their “results 
imply that the judgments of single rectangles follow the height + width rule” (p. 
353). This experiment is still cited as the strongest evidence available: “The 
height + width rule can hardly be called artifactual in light of these results” 
(Silverman & Paskewitz, 1988, p. 77). Let us examine this “evidence.” 

In this crucial experiment the interaction predicted by the competing hypoth- 
esis (multiplying rule plus logarithmic judgment function) was not quantitatively 
specified, as often is the case in asymmetric significance testing. The authors 

with respect to Wilkening’s adults, whose average value was .24, attributable to two highly unrelia- 
ble subjects. Furthermore, our result is supported by Bogartz (1978, p. 382). who estimated that the 
error variance of the children’s mean ratings in Anderson and Cuneo’s Experiment I (1978a) was four 
times as large in Syear-olds as in I I-year-olds, and by Lohaus (1986). who reported that the reliabili- 
ties of magnitude ratings (such as used by Wilkening, 1979) decreased from .7l in adults to .37 in 5- 

6-year-olds (Kendall’s 7). 
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relied only on the nun~ignificance of the interaction test-but recall that we 
estimated a power of only .09 for this test. 

Gigerenzer and Murray (1987, p. 100) specified the predicted interaction. 
Their analysis revealed that (1) children’s mean area ratings followed the predic- 
tions of the multiplying rule plus logarithmic judgment function rather than those 
of the height + width model, and (2) even ifmean ratings had coincided exactly 
with the predictions of the multiplying model, the interaction would not have 
reached significance. Even then, the height + width rule plus linear judgment 
function would have been erroneously judged as supported. Thus, contrary to 
Anderson and Cuneo’s claim, their data support the multiplying model and not 
the height + width rule plus linear judgment function. For a detailed exposition 
of this erroneous claim see Gigerenzer (1983b) and Gigerenzer and Murray 
(1987, pp. 91-103). 

This sole extant crucial experiment epitomizes how nonspecification of the 
predictions of the alternative hypothesis in asymmetric significance testing, large 
age-dependent error, and low power can combine to elicit unwarranted infer- 
ences . 

Symmetric Testing Based on Paired Comparisons 
In an attempt to resolve these three problems, we adopted in the following 
experiments a symmetric testing procedure based on ordinal paired comparisons. 
The use of paired comparisons instead of area rating allowed us to dispense with 
all parametric assumptions about the judgment function, for example, the as- 
sumption of linear or logarithmic shapes. In an ordinal paired comparison task, 
the child simply has to point to the rectangle in a pair that appears to have a 
greater area (similar to Siegler, 1976, 1978). We have had to make assumptions 
about the psychophysical functions (see Figure l), but, with one important ex- 
ception, we have had to assume only monotone psychophysical functions. Thus 
the overall number of unknown parameters is reduced. In order to avoid the 
problems of asymmetric testing, we used a symmetric testing procedure, in 
which each hypothesis was tested against the data with the same probability of 
erroneous rejection. More precisely, we reformulated each hypothesis as a statis- 
tical null hypothesis and specified its predictions, as described in the next 
section. 

For ordinal paired comparisons, the hypotheses above can be restated as 
follows: 

ai > aj iff fa(Ai) > fa(Aj), and 

ai = uj iff f,(AJ = fa(Aj) (area constancy), (8) 

where Ai, Aj are the physical areas of the rectangles i and j, respectively, and f, is 
the psychophysical function. It is sufficient to assume that f, is a strictly 
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monotone function in order to derive the prediction that ordinal paired com- 
parisons follow physical area. Equation 8 gives the same predictions as the 
multiplying rule in the cognitive algebra view. But, area constancy does not 
mean multiplying. Limited area constancy implies that no strictly monotone 
functionf, exists, since the same physical areas can be perceived to have different 
areas, dependent on the shape. The predictions of the remaining hypotheses for 
paired comparisons are: 

ai > aj iff max (fh(Hi), f,(W,)) > max (fh(Jfj)v fw(Wj)) (longer-side rule) (9) 

Ui > Uj ifff,(WJ > f,+nCwj (width-only rule) (10) 

(height-only rule) (11) 

"i > uj ifff,WJ + . /w(wi) > fhtHj) + fwCwj) (height + width rule) (12) 

If “=” is substituted on one side for “>“, it is substituted on the other side 
too, as in Equation 8. It is sufficient to assume that f, and fh are monotone 
functions in (10) and (11) respectively, and thatf,,, andf, are identical monotone 
functions in (9), in order to derive the prediction that area judgments follow 
physical height or width. Predictions of hypotheses (8) to (11) are the same for 
any monotone function J This would not be true, however, for the height + 
width rule, where we shall assume identical linear functions in order to derive 
predictions. 

The results of the series of four experiments surprised us and led to theoretical 
revisions. Each experiment was designed to test alternative explanations of the 
previous one. 

EXPERIMENT 1 

The first experiment contained (1) a replication of Wilkening’s (1979, Experi- 
ment 2) study using area ratings, and (2) a study using paired comparisons and 
symmetric hypotheses tests. The emphasis of the paired comparison study was 
on strict comparability with Wilkening’s experiment. Therefore, we asked the 
same children and adults for both ratings and paired comparison, and we used the 
same rectangles in order to avoid possible effects of the absolute size of 
rectangles. 

Method 

Subjects. Three groups were investigated: 5-6-year-olds (n = 20), 7-9- 
year-olds (n = 23), and adults (n = 20). The two groups of children were taken 
from a Montessori kindergarten and a Montessori school in Munich. The adults 
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were psychology students at the University of Munich. Sex was balanced in all 
groups. Because of illness, three 5-6-year-olds could not participate in the rating 
task, and three 7-9-year-olds could not participate in the paired comparison task. 

Rating Scale Task 
As mentioned above, materials and procedure used in the rating task exactly 
replicated those used by Wilkening (1979, Experiment 2). 

Materials. Sixteen rectangles were generated from all possible combina- 
tions of four heights and four widths, of 4,8, 12, and 16 cm. Rectangles were cut 
from wood 8 mm thick and wrapped in silver paper, so that they looked like 
chocolate bars. A real 4 X 4 cm chocolate bar, consisting of four 2 X 2 cm 
chocolate pieces, was used as an anchor. A board, 150 cm long, 6 cm wide, and 
2 cm thick, was used as a rating scale. The board lay between the child and the 
experimenter and had on its reverse side, invisible to the child but in view of the 
experimenter, a centimeter scale. 

Procedure. Each child was tested separately. First, the experimenter gave 
the child the real chocolate bar and asked him or her to unwrap it, break it into 
the four pieces and form a row of them, starting on the left side of the scale. Then 
the child was asked to indicate on the board where the row ended. Having 
completed this introduction, the child was allowed to eat the anchor stimulus. 
Thereafter, the child was shown the 16 “chocolate bars,” one after the other, and 
was told that he or she should imagine that each bar was broken into pieces of the 
same size he or she had seen before, and arranged in a row. Then the child was 
asked to point to a place on the board where the row would end. The child’s 
judgment was noted in centimeters by the experimenter. The 16 rectangles were 
presented in random order. The presentation was repeated in a different order, 
yielding a total of 32 judgments per child. The experimental procedure was the 
same for adults. 

Paired Comparison Task 

Materials. From the rectangles used by Wilkening (1979, Experiment 2), all 
pairs were generated that gave different predictions for the height + width rule 
and the multiplying rule. These 10 pairs are shown in Table 3. All rectangles 
were wrapped in silver paper, so that they looked like chocolate bars. 

Procedure. Each child was tested separately. The child sat at a table and the 
experimenter placed one pair of chocolate bars on the table. The child was asked 
in which of the two bars there was more chocolate. The child could respond 
“equal,” but was not explicitly instructed to do so. All 10 pairs were presented in 
random order and the pairs were repeated six times in different orders, yielding a 
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total of 60 judgments for each child. Adults were tested under identical condi- 
tions. The order of rating scale task and paired comparison was varied among 
subjects in all groups. 

Results: Area Ratings 

Group Analysis. Figure 2 shows the mean ratings of areas in the three age 
groups. The group means are almost identical with those reported by Wilkening 
(1979); they show roughly parallel curves in 5-6-year-olds, and a diverging fan 
of curves in adults, from which the height + width rule in young children and the 
multiplying rule in adults were inferred (Anderson & Cuneo, 1978a). Means in 
7-9-year-olds show the well-known in-between pattern. Main effects for height 
and width were F(3,48) = 42.2 and 41.8 in 5-6-year-olds, F(3,66) = 51.5 and 
47.6 in 7-9-year-olds, and F(3,57) = 239.0 and 243.9 in adults. The bilinear 
component of interaction (Graesser & Anderson, 1974) was F( 1,22) = 8.05 and 
F(1,19) = 132.3 in 7-9-year-olds and adults, respectively. The bilinear compo- 
nent was not significant @ > .05) in 5-6-year-olds, and the residual component 
was not significant in any of the three groups. 

Single-Case Analysis. Inferences from group means to the processing of 
individual minds can be highly misleading, for instance, if individual differences 
exist within age groups. Individual analyses of variance (following Anderson, 
1982, pp. 75-78) revealed that rating patterns strongly varied within age groups, 
and that many patterns in young children were unsystematic (Table 2). Inspection 

5-6-year-olds 7-9-year-olds adults 

I hoightlcmr 

Ol 4 I I 

4  8 12 I6 4 8 12 16 .I 6  12 I6 

rectangle base width (cm) 

Figure 2. Group mean ratings of area. Each point corresponds to one rectangle. 
Each unit on the ordinate (rating scale) corresponds to 2 square cm (since pieces of 
chocolate 2 cm wide were used as anchors; see text). 
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Table 2. Single-Case Functional Measurement Analysis 

Significant main and interaction effects~ 

Age Group 

Height, Width, Height 
and Bilinear and Height Width 

n Interactionb Width only only Others 

5-6-year-olds 17 0 7 I 1 8 
7-9-year-olds 23 4 II 3 2 3 
Adults 20 12 3 0 0 5 

‘p < .05 
bDiverging curves only (see Bredenkamp, 1984). 

of individual graphs confirmed this result. Only 7 out of 17 children in the 5-6- 
year-olds showed results in the single-case analysis of variance that corresponded 
to the group analysis. Mean intraindividual error variances in area ratings were 
strongly age-correlated, as shown above in Table 1. The average percentage of 
crossovers (from all possible crossovers in a 4 X 4 design) was 3% in adults, 
15% in 7-9-year-olds, and 25% in 5-6-year-olds. 

Results: Paired Comparisons 
Paired comparisons showed no age-dependent loss in reliability. Almost half of 
the children and 3 adults produced consistent judgments in all 6 replications. 

Each of the five hypotheses defined in Equations 8-12 predicts which rec- 
tangle in a pair is judged to contain more chocolate, or that both are judged equal 
(Table 3). Take for instance the ( 12 X 12, 16 X 8) pair. The height-only rule (H) 

Table 3. Predicted Responses for Experiment 1 

Rectangle Pairs 

LfzfI Stimulus 12x12 12x8 8x12 8x8 8x16 4x16 8x8 4x16 4x16 4x12 
Right Stimulus 16X8 16x4 16x4 16x4 12x12 12x8 16x4 8x12 8X8 8x4 

Hypothesis 
H R R R R R R R R R R 
W L L 
H+W lkq kq kq R kq I!q & ; L kq 
L R R R R L L R L L L 
AC L LLEqRRLREqR 
Lc+ L L L L R R L R R R 
LC- L L L R R R L R L R 

Note. R denotes right-side rectangle judged larger, 15 denotes left-side rectangle judged large, and 
E9 denotes the two rectangles judged equal size. For convenience, predictions of the two limited area 
constancy hypotheses (LC+ , LC-) are included; these were suggested post hoc by the judgmental 
patterns in Experiment 1 (see text). 

Abbreviations for hypotheses are: height-only rule (ff), width-only rule (W), height + width rule 
(If+W), longer-side rule (L), area constancy (AC), limited area constancy (K+ and K-). The 
rectangles’ sizes are specified as height X width. 



248 Cerd Gigerenzer and Hans R. Richter 

predicts that the right rectangle will be chosen, since it has the greatest height. 
The width-only rule (W) predicts the left rectangle, the height and width rule (H 
+ W) predicts that the two rectangles are judged equal size, and so on. Each 
hypothesis gives a different pattern of predictions. Since each person judged the 
10 pairs in 6 repetitions, each hypothesis can give between 0 and 60 correct 
predictions for each subject.3 

Symmetric Testing. The problem of asymmetric hypothesis testing dis- 
cussed above is that one of two hypotheses (H + W) was identified with the 
statistical null hypothesis, whereas the other was not. This resulted in a small 
probability of erroneously rejecting H + W (alpha) and a very large probability 
of erroneously rejecting competing hypotheses (beta), as we have seen. 

One way to avoid this problem is to reformulate each hypothesis as a null 
hypothesis and test each hypothesis using the same alpha level. We did so. To 
reformulate the deterministic hypotheses above as statistical ones, a probability 
(of false predictions) larger than zero had to be selected (zero corresponds to the 
deterministic hypothesis). We chose a probability of .lO for each hypothesis. 
Thus we tested the five null hypotheses that judgments follow area constancy 
(height + width rule, longer-side rule, etc.) with a probability of .90. Under each 
of these null hypotheses the number of false predictions should follow a binomial 
distribution with a mean of 6 and lie below 12, with probability .99. If it reached 
or exceeded this boundary, the null hypothesis was rejected at the .Ol level of 
significance (one-tail test). This symmetric hypothesis testing procedure guaran- 
tees the same alpha level (probability of erroneous rejection) for each hypothesis 
tested. 

Note that if a null hypothesis was rejected, this result implied that all “strong- 
er” hypotheses with p < .lO were also rejected (including the deterministic 
model). All tests were performed at the individual level. 

Results. In Table 4, a subject is classified under a particular hypothesis if his 
or her judgmental pattern deviates significantly from the patterns predicted by all 
hypotheses except for the hypothesis under which it is classified. None of the 
five hypotheses could predict the area judgments of the children. Overall, three 
judgment patterns, intra- and interindividually highly consistent, emerged; they 
define three subgroups whose group size changes over age. The longer-side rule 

3 One problem in counting false predictions arose when a hypothesis predicts “equal,” but a child 
used “greater” or “smaller” judgments only. To account for such a response style, we treated this 
situation as a forced choice task, where p(“greater”) = .S is predicted. Each pair of “greater” and 

“smaller” judgments within the 6 repetitions was transformed into 2 “equal judgments.” For in- 
stance, if a hypothesis predicted “equal,” either 6 “equal” judgments or 3 “greater” and 3 “smaller” 
judgments or 2 “equal,” 2 “greater.” and 2 “smaller” judgments were counted as 6 correct judg- 
ments. Six “greater” judgments, however, were counted as 6 false predictions, and intermediate 
values were treated accordingly. 
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Table 4. Test of Predictions for the Stimulus Set in Experiment 1 

Aee n Lc+ LC- AC H+W L H W Unclassifiable 

5-6-year-olds 20 10 0 I 0 3 0 1 5 

7-9-year-olds 20 7 I 8 0 I 0 0 3 

Adults 20 0 4 15 0 0 0 0 I 

Nore. A subject is classified under a hypotheses (rule) if his or her judgments did not deviate 
significantly from the predictions of that hypothesis and did deviate significantly from the predictions 
of o/l other hypotheses (all ps < .Ol). 

Abbreviations for hypotheses are: Limited area constancy (LC+ and LC-), area constancy (AC), 
height + width rule (H+W). longer-side rule (L), height-only rule (H), and width-only rule (W). 

predicted the judgments of a small group of children perfectly (i.e., 60 correct 
predictions); these were all among the youngest in their groups. Area constancy 
predicted the judgments of a second group of subjects, whose group size in- 
creased with age, from 1 to 8 to 15. The most frequent pattern in children, 
however, could be predicted by none of the hypotheses. This pattern was shown 
by 17 children but no adults, and was highly intra- and interindividually con- 
sistent: In a total of 17 X 60 = 1020 judgments, there were only 7 deviations 
from the general pattern. 

A post hoc analysis revealed that this pattern followed area constancy, except 
for 12 violations that all occurred in the same two pairs, (8 X 8; 16 X 4) and (4 X 

16; 8 X 8). In these pairs, and in only these pairs, physical area was equal. 
Without exception, all of these 17 children judged the square to be larger. 
Surprised by this consistent overestimation of the square, we also reanalyzed the 
judgment patterns of the 5 adults whose judgments deviated significantly from 
area constancy. In four cases, the deviations were also due to these two critical 
pairs, but these adults judged the square to be smaller. Following this post hoc 
analysis, the symbol LC in Tables 3 and 4 denotes limited area constancy when 
physical areas are equal (i.e., in critical pairs), and LC+ and LC- denote 
overestimation and underestimation, respectively, of areas with square shapes (as 
opposed to rectangular shapes). 

The largest number of false predictions in both groups of children (79% and 
84%, respectively) stemmed from the height + width rule (assuming identical 
linear psychophysical functions); here there was not a single child whose judg- 
ments did not differ significantly from the rule’s predictions. 

Discussion 
The replication of Wilkening’s study, with twice as many subjects in each of the 
three age groups tested, showed almost identical rating patterns on the group 
average level. As in Wilkening’s study, mean ratings of the youngest group cover 
only a small range of the response scale and exhibit roughly parallel curves. On 
the individual level, however, patterns were highly variable and idiosyncratic in 
young children, and their reliability was low. For the same children and adults, 
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paired comparisons revealed clear-cut individual differences within age groups 
and no sign of an age-dependent loss of reliability (see also Lohaus & Trautner, 
1986). It may be objected that high intraindividual reliability could simply be the 
consequence of an insensitivity of the pairs; that is, they could be too “easy” in 
the sense that every person judges the same rectangle to be the larger one. This is 
clearly not the case, since judgments systematically differ among individuals: 
Already in 5-year-olds, four significantly different judgmental patterns exist, 
predicted by the hypotheses AC, L, and W, and the post hoc pattern LC+ . The 
frequency of these patterns increases or decreases systematically with age 
groups, which indicates their developmental significance. 

Our post hoc analysis of paired comparisons found the first trace of an influ- 
ence of shape on perceived area in the following two deviations from area 
constancy (S denotes shape defined as shorter side/longer side): 

ai > uj if Ai = Aj and Si > Sj w+) (13) 

ai > aj if Ai = Aj and Si < Sj w-) (14) 

We might defend the height + width rule by arguing that children gave 
different weights to perceived height and width, or that different psychophysical 
functions exist for height and width. Since different weights and psychophysical 
functions cannot be empirically separated in this context (Schonemann, Cafferty, 
& Rotton, 1973), we shall examine both objections as the question whether 
different psychophysical functions should be assumed. 

Data from paired comparisons provide a means for checking this objection. 
Assume for a moment that there are different functionsf for height and width. 
Then a 90” rotation of a nonsquare rectangle should change perceived area, 
whereas a rotation of a square should not. The set of rectangles contained, for 
each pair, a corresponding pair where rectangles had been rotated 90”, such as 
(12 x 12, 16 X 8) and (8 X 16, 12 X 12). Analysis of individual area judgments 
in children showed, however, that for all pairs, judgments were independent of a 
90” rotation (except for one child who centered on width). Thus, for the present 
material, there is no evidence of different psychophysical functions. 

EXPERIMENT 2 

We had three objections to the conclusions derived from paired comparisons in 
Experiment 1. The fist objection was that the LC+ and LC- patterns were 
determined ex post facto. Therefore, we replicated the experiment. Second, the 
systematic deviations were detected in two critical pairs only. We added two 
other pairs that were sensitive for an overestimation of square shapes in younger 
children and for an underestimation in adults. Third, the bad fit of the height + 
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width rule in paired comparisons could be due to children’s misunderstanding the 
instructions as a forced-choice task-not allowing judgments of equality. This 
could have an effect on the number of correct predictions of the height + width 
rule, since 8 out of the 10 pairs constructed from the rectangles used by Wilken- 
ing (1979, Exp. 2) gave equality predictions if the height + width rule were true 
(as opposed to 2 if area constancy-or multiplying plus identical linear func- 
tionsf-were true, and 0 if the centering rules were true). Although we took into 
account such response styles in the evaluation (Note 3), there might still be some 
effect due to the instructions. We now explicitly instructed half of the subjects in 
all age groups that areas may be equal, whereas the other half received the same 
instructions as in Experiment 1. 

Method 

Subjects. Sixty new subjects were investigated; age groups werethe same as 
in Experiment 1 (n = 20 in each group). The children and adults were sampled 
from the same institutions as in Experiment 1. 

Materials and Procedure. We constructed two additional rectangle pairs 
that differentiated between the AC and the LC+ hypotheses in children and the 
AC and LC- hypotheses in adults. Pair Number 11 was 10 X 6.4,4 X 16, which 
is a modification of the critical pair (8 X 8,4 X 16) in the original set. If children 
overestimated more squarelike shapes, and not only perfect squares, then they 
should judge the 10 X 6.4 rectangle to be the larger one. If they judged physical 
areas correctly, independent of shape, they should judge both equal; if they 
followed the height + width rule, they should select the 4 X 16 rectangle. Pair 
Number 12 was 16 X 8, 10.7 X 10.7, which has the same ratio of areas (.89) as 
the 16 X 8, 12 X 12 pair in the original set, but now the square is physically 
smaller. If overestimation of square shapes is not restricted to physically equal 
rectangles, but has a stronger effect, then younger children should judge these 
two “chocolate bars” to be equal or even judge the square to be the larger. 

If the adults underestimate the area of the more squarelike shape, then they 
should judge the 4 x 16 rectangle in pair Number 11 to be the larger, as in the old 
pairs (8 X 8, 4 X 16, and 16 X 4, 8 X 8). The second new pair presented to the 
adults was different from the children’s pair Number 12. Whereas for children 
the original pair ( 16 x 8, 12 x 12) was modified into a pair where the more 
elongated rectangle had a larger physical area, adults received pair Number 12’, 
16 X 8, 10 X 14.4, where the more elongated rectangle had the smaller area. In 
all three pairs (the original and Numbers 12 and 12’), the ratio of areas was kept 
constant (.89). If adults underestimated the area of the more squarelike shape, 
then they should judge the 16 X 8 rectangle to be the larger one. 

The procedure was identical with that in Experiment 1, except that, as men- 
tioned above, half of the people in each group were asked “Which bar contains 
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more chocolate?“, whereas the others were also explicitly instructed that bars 
may be equal, and that in these cases the answer “equal” should be given. Each 
subject judged 12 pairs of rectangles in 6 repetitions, so the number of judgments 
was 72. 

Results 
Analysis of paired comparison followed the same procedure as in Experiment 1. 
Again, there was no age-dependent loss of reliability, and the pairs were sensitive 
enough to produce clear-cut individual differences within and between age 
groups. Explicit instruction for equality judgments increased the overall number 
of such judgments in all age groups, but this increase had no effect on the 
reliability of judgments or on the results of hypothesis testing. Therefore, both 
instruction conditions are aggregated in Table 5. 

Results could be replicated when we used more critical pairs. We found the 
LC+ pattern again in 16 children and in none of the adults. Centering rules and 
area constancy predicted the other two main patterns, which showed the same 
age-dependent change in frequency as in Experiment 1. The height + width rule 
again gave the largest number of false predictions in both groups of children, and 
we did not find a single subject whose judgments did not depart from it signifi- 
cantly. 

In contrast to Experiment 1, more children centered on height than on the 
longer of the two sides. Two of these children showed an impressive performance 
when, after Experiment 2, we gave them the rectangles again and explicitly told 
them about the difference between height and area. But they continued to judge 
“amount of chocolate” by height only. When we rotated these rectangle pairs 
(90”) in front of the children, they changed their judgment and pointed to the 
other rectangle, which now had the greater height. These children did not seem 
to grasp the concept of invariance of area with respect to rotation. 

We now made another check of whether the bad fit of the height + width rule 
(assuming the same linear psychophysical functions) was due to the larger 
number of equality predictions. We considered only those pairs of rectangles 
where dominance predictions (as opposed to equality predictions) were made, 
and reanalyzed Experiments 1 and 2. When equality predictions were not evalu- 
ated, the mean number of false predictions by the height + width rule was 
slightly reduced, but still large: 64.1% in 5-6-year-olds and 65.4% in 7-9-year- 
olds . 

Table 5. Test of Predictions for the Stimulus Set in Experiment 2 

Age n Lc+ LC- AC H+W L H W Unclassifiable 

5-6-year-olds 20 7 I 0 0 I 4 0 7 
7-9-year-olds 20 9 2 3 0 I I 0 4 
Adults 20 0 6 IO 0 0 0 0 4 
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Discussion 
How can we explain the direction of the illusion? Why did young children 
overestimate square shapes instead of underestimating them? Peters (1933), who 
reported the same effect, did not explain why children judged a square to be the 
larger, but offered an explanation for why adults showed the opposite illusion. 
Older children and adults anticipate the effect of shape on area and try to avoid it, 
resulting in some cases in an overcompensation, that is, in an underestimation of 
the square. Brunswik (1934a, 1934b) gave a different account of the perceptual 
interaction between area and shape in his treatment of what he called the “gener- 
alized pmblem of constancy.” According to Brunswik, the perceptual system, if 
one is instructed to judge area, generates “in-between objects” (Zwischengegen- 
sriinde), that is, a compromise between area and shape. But neither Brunswik’s 
“in-between objects” nor his “cue learning” principles (on their relationship, see 
Gigerenzer & Murray, 1987, pp. 70-74) can explain the direction of the illusion. 
The same holds for the more recent studies of Pelfoldy (1974), Shepp (1978), and 
Shepp, Burns, and McDonough (1980). 

We tried earlier to explain this puzzling fact by a “good Gestalt illusion” in 
young children (Gigerenzer, 1984; Richter & Gigerenzer, 1984). This hypothesis 
assumes a tendency to overestimate simple and symmetric geometric figures. For 
instance, it predicts that children will also overestimate the area of a circle 
compared with an ellipse of equal size. Our thesis was that the limited perceptual 
constancy stated in Equation 13 was due to a good Gestalt illusion, whereas the 
limited perceptual constancy stated in Equation 14 was due to adults’ anticipation 
of the perceptual illusion and overcompensation for it. Thus we assumed that 
Equation 13 reflected a principle of perceptual development, whereas Equation 
14 described the interference of a cognitive process. In the third experiment we 
tested the hypothesis of a good Gestalt illusion using a new and larger set of 
rectangle pairs to control for effects due to the specific sets of rectangles used 
before. 

EXPERIMENT 3 

Our conclusions from Experiments 1 and 2 were that (1) area constancy increases 
with age, and (2) limited area constancy is due to a good Gestalt illusion in 
children and an overcompensation in adults. We now considered the objection 
that these results were dependent on the specific set of rectangle pairs derived 
from Wilkening’s experiment. In particular, the squarelike shapes were never 
physically smaller than the more elongated shapes in the 10 pairs of Experiment 
1, and in all but one pair (Number 12) in Experiment 2. Children with rather 
well-developed area constancy (as opposed to centering strategies) might learn 
during the experiment that the square is in most cases the larger one and use the 
square shape as a cue for larger area in critical pairs. In order to test this 
objection, we constructed a new and larger set of 30 rectangle pairs, in which the 
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number of physically greater areas was balanced between more elongated and 
squarelike shapes. This set also contained 10 pairs with physically equal areas 
but differing shapes, and thus 10 more critical pairs for testing the interaction 
between perceived area and shape. Since this set contained not a single pair for 
which the height + width rule predicted equality, it also provided a strong test for 
the objection that the failure of the height + width rule could be due to the larger 
number of equality predictions in Experiments 1 and 2. 

Method 

Subjects. Two groups participated in the experiment, 50 children aged 4-6 
and 40 adults aged 18-40. The children were from a kindergarten in Munich; the 
adults were psychology students. 

Materials. Rectangles were generated in a 6 X 13 (shape X area) matrix, 
with shapes of !~‘4, I/,, I/?, 2/, 3/, and ‘/I, and area ranging from 48.06 cm* to 
136.55 cm* in steps of constant relative differences (8.9%). Thirty pairs were 
selected with the restriction that each pair (where physical area was not equal) 
had a “matched pair,” and that physical differences within a pair were not 
unreasonably large. “Matched pairs” were defined in the following way, using 
the symbol A, for the area of the rectangle with the more squarelike shape in a 
pair, and A, for that of the less squarelike. Ro pairs are called “matched” if (1) 
the rectangles in the first pair have the same shapes as those in the second pair; 
and (2) the ratio ASIA, in the first pair is equal to the ratio A,IA, in the second 
pair. Thus in each matched pair there is one pair where the more squarelike 
rectangle is physically larger, and one pair where it is smaller. An example is 7.5 
x 9.9,5.8 X 11.7and8.1 X 10.9,6.9X 13.9,wheretheshapesineachpairare 
Vi, ‘/2, and ASIA, is 74.25168.06 = 1.09 in the first pair, and A,IA, is 
96.42188.30 = 1.09 in the second pair (shapes are exact, measures for height and 
width are rounded). The 12 pairs used in Experiment 2 were added, and thus the 
entire set consisted of 42 pairs. 

Procedure. For the children, the procedure was the same as in Experiment 
2, except that each rectangle pair was judged only once. For adults, rectangle 
pairs were projected onto a screen, and the subjects were given a questionnaire 
with response alternatives for each pair. This procedure allowed us to test adults 
in a group session and was introduced for purely economic reasons. Pretests 
using both rectangles wrapped in silver paper (as in Experiments 1 and 2) and 
slides showed that the results were quite similar in adults, but not in children. 
Therefore, only adults were tested in a group session using slides, but children 
were tested individually, using rectangles wrapped in silver paper and the pro- 
cedure used in Experiments 1 and 2. 
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Table 6. Test of Predictions for the Stimulus Set in Experiment 3 

Age II Lc+ LC- AC kr+w L H w Unclassifiable 

4-6-year-olds 50 13 7 6 0 13 0 0 11 
Adults 40 I 1 35 0 0 0 0 3 

Results 
Hypothesis testing and classification followed the procedures of Experiments 1 
and 2. Table 6 shows two main results. First, in contradiction to the assumed 
good Gestalt illusion, children showed both overestimation (LC+) and under- 
estimation (LC-) of square shapes, whereas in adults both effects disappeared 
except for two cases. Second, although the area constancy hypothesis now pre- 
dicts 13 equality judgments (3 for the set of pairs used in Experiment 2, and 10 
for the new set) as opposed to only 8 equality predictions by the height + width 
rule, there was still not a single child who followed the predictions of the height 
+ width rule. We now have direct evidence that the failure of the latter cannot be 
attributed to the issue of equality predictions. 

Discussion 
Results support the perceptual constancy view: There is limited perceptual con- 
stancy in children and perceptual constancy in adults. But results contradict our 
previous explanation, the hypothesis of an age-dependent switch in the influence 
of shape on perceived area. The hypothesis of a good Gestalt illusion in children 
and an overcompensation in adults cannot explain the result in Table 6. It seems 
that the positive correlation between area and squarelike shapes in Experiments 1 
and 2 influenced children to use shape as a cue for area, and to overestimate 
square shapes. In the third experiment, where a new set of pairs with uncorre- 
lated areas and shapes was introduced, limited perceptual constancy in children 
is divided into LC+ and LC- patterns. The greater number of overestimations of 
squares can be attributed to the fact that we have added the 12 original pairs to 
the 30 uncorrelated ones, resulting in a slightly positive correlation between area 
and shape in the whole set used. 

It seems that we now have strong evidence for the existence of limited area 
constancy in children, but that the direction of the dependence between area and 
shape calls for an explanation different from a good Gestalt illusion. Results of 
Experiments 1-3, seen together, even contradict Equation 1 as a general frame- 
work of limited perceptual constancy. The dependency between perceived area 
and shape seems to be due to the actual correlation between shape and area in the 
set of rectangles presented, rather than to the shape Si of the particular rectangle 
judged. Thus the dependency, but not the direction of the dependency, seems to 
be a characteristic of age. 

If this were true, we should be able to reverse children’s stable overestimation 



256 Cerd Cigerenzer and Hans R. Richter 

of squares in Experiments 1 and 2 into an equally stable underestimation if we 
reverse the correlation between shape and area in the experimental set. 

EXPERIMENT 4 

We next considered the judgments of the two critical pairs (equal physical area) 
in Experiment 1 as the dependent variable and the correlation between area and 
shape in the remaining 8 pairs as the independent variable. We replaced the 
original 8 pairs by 8 “matched” pairs, which had the same shapes and the same 
ratio of areas, but the more elongated rectangle was now always the larger one. 
Thus the correlation between squarelike shapes and area was now negative 
instead of positive, as in Experiment 1. The critical pairs were the same as in 
Experiment 1. If the mechanism of limited perceptual constancy is that children 
learn about the shape-area correlation during the experiment and use it as a cue 
for area, then we should now find that the consistent overestimation of square 
shapes disappears and turns into an equally consistent overestimation of elon- 
gated rectangles. 

Method 

Subjects. Twenty children aged 4-6 from a Munich kindergarten served as 
subjects. 

Materials. The same materials as in Experiment 1 were used, except that the 
8 pairs with unequal physical area were replaced by “matched” pairs. We kept 
the size of the more squarelike rectangle constant and enlarged the area of the 
second rectangle, leaving all shapes and the ratio of areas constant. 

Procedure. Same as in Experiment 1, except that only 4 replications were 
made. 

Table 7. Dependency of Children’s 
Area Judgments on the Correlation 
Between Area and Shape in the 
Bxoerimental Set 14-6-vear-old& 

Rectangle Set 
Exp. 1 Exp. 4 

Overestimation 
of squares 
Gc+) 

Underestimation 
of squares 

10 0 

w-1 0 12 
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Results and Discussion 
As in experiment 1, children gave very reliable judgments. A child was classified 
as fC+ if he or she always judged the square in the two critical pairs the larger, 
or if he or she made no more than one deviation (“equal” judgments were 
counted as deviations). The same procedure held for classifying children as 
LC- . Table 7 shows that overestimation of squares disappeared completely, and 
that children now underestimated squares. Inter- and intraindividual consistency 
of this response pattern was almost identical to the opposite pattern in Experi- 
ment 1; 8 of the 12 classified children showed not a single deviation. This result 
demonstrates that the limited perceptual constancy found in children derives its 
direction from the particular shape-area correlation in the experimental set rather 
than from some innate, age-dependent, perceptual principle. 

GENERAL DISCUSSION 

A Contextual Theory of Limited Area Constancy 
As mentioned in the introduction, there exists a long tradition from Biihler 
(1913) and Rubin (1921) to Rausch (1964) and Shepp (1978) that emphasizes the 
dependency of perceived area on shape. The results reported here, however, 
reveal that there are two ways to model this limited area constancy, correspond- 
ing to two distinct meanings of “shape” as context. The first view, which we 
followed earlier when we postulated a “good Gestalt illusion” in young children 
(Gigerenzer, 1984; Richter & Gigerenzer, 1984), attempted to understand the 
dependency on the conceptual basis of Equation 1. This view, like the cognitive 
algebra view, focuses on the properties of a single rectangle i: 

ai = JAi, Si) (15) 

Present results, however, suggest that it is not the shape of a particular 
rectangle that influences perceived area, but the covariation of shape and area in 
the set of rectangles. Let us denote this covariation with Cset; we then get the 
following revision of Equation 1: 

(16) 

For paired comparisons, C,,, can be defined in a simple way as the relative 
frequency of pairs in which the more squarelike shape has the larger area: 

c,,, = n,4n, + nJ’ (17) 

where ns and nr are the number of pairs in which the square or the rectangle, 
respectively, has the larger area. In Experiments l-4 the values for C,,, were 
1 .OO, .89, .62, and .OO, respectively. One important result of Experiment 3 was 
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that if the covariation between area and shape in the rectangle set is decreased 
from 1.00 (Experiment 1) and .89 (Experiment 2) to .62, this change did not 
result in a corresponding decrease of limited perceptual constancy and an in- 
crease of perceptual constancy (AC patterns). Rather, the percentage of tC + and 
LC- in children remained constant throughout all four experiments, ranging 
between 40% and 60%. This result suggests that (1) these children use the 
covariation cue in all cases, and (2) they infer the covariation from the area-shape 
relationships in the first few pairs. Since we presented the pairs in random order 
in all experiments, which varied from person to person, some children may have 
inferred from the first pairs that greater area covaries with a more elongated 
shape, whereas others may have experienced more squarelike shapes with greater 
area. 

Thus the value of C,,, should predict the proportions of children overestimat- 
ing and underestimating square shapes. Table 8 shows that C,,, is an excellent 
predictor of the relative number of children overestimating square shapes. The 
proportion of LC+ patterns among all limited constancy patterns (LC+ and 
LC-) is almost perfectly related to the C,,, value of the experiment: 

C se, = n+l(n+ + n-) (18) 

where n+ and n- are the numbers of LC+ and LC- patterns, respectively. 
Equation 18 proposes a quantitative version of the covariation principle in Equa- 
tion 16. 

The conceptual change from Equation 1 to Equation 16 relates our under- 
standing of limited area constancy to range-frequency theory (Parducci, 1974). 
As in range-frequency theory, judgments depend on the distribution of a variable 
in the whole experimental set of stimuli. But in range-frequency theory this 
variable is the variable judged, whereas in the present analysis it is the covaria- 
tion between the variable judged (area) and a second variable of the same stim- 
ulus (shape). Moreover, range-frequency theory deals with contextual effects in 
category rating, but the covariation principle formulated in Equations 16-18 
deals with context effects in ordinal paired comparisons. Both views are alike in 
that contextual effects are seen as an integral part of perceptual judgment and of 

Table 8. Covariation Between Shape and Area 
in the Four Experiments and Relative Fre- 
quency of 4-dyear-olds Overestimating Squares 

n+ 
n c set n+ + n- 

Experiment 1 20 1 .oo 1.00 
Experiment 2 20 .89 .89 
Experiment 3 50 .62 .65 
Experiment 4 20 .oo .oo 
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its development, rather than as a nuisance (Stevens, 1971) or something that 
should be avoided (Poulton, 1979). Contextual effects have often been dismissed 
as laboratory artifacts that merely distort the “true” subjective values or psycho- 
physical functions. On the contrary, we conjecture that in many situations, sub- 
jective values and judgments are inferred from contextual information, a view 
proposed more than 50 years ago in Brunswik’s (1934a) “multidimensional 
psychophysics.” Range-frequency theory and our covariation hypothesis might 
be combined in some ways; for example, the frequency principle might be gener- 
alized to a two-dimensional frequency distribution that specifies the covariation 
between two variables. 

For instance, the question whether the covariation principle also applies to 
children’s ratings of area could be answered by this generalization. Imagine two 
(or more) sets of rectangles with different covariations between area and shape. 
For instance, in one set rectangular shapes tend to be larger, but in the other set 
square shapes are. A “critical pair” would be any two rectangles with equal area 
(predicted by some hypothesis under consideration), but varying shape. If the 
covariation principle applies to ratings, children should rate either the rectangular 
shape or the square shape to be larger, whichever covaries with larger area. The 
degree of covariation in the set of rectangles should predict the proportion of 
children that give higher ratings to square shapes, in analogy to Equations 16-18. 

Perceptual Constancy and Cognitive Algebra: 
Towards a Rapprochement 
The perceptual constancy view and the cognitive algebra view are not irrecon- 
cilable. The problems that lead to contradictory predictions are the currently 
prevalent formulations. For instance, there is nothing in the cognitive algebra 
framework that precludes substituting area and shape for height and width in 
Figure 1, which would transform the cognitive algebra view into a perspective 
that is fully compatible with Equation 1, although not with Equation 16. More- 
over, Anderson (198 1, 1982) himself has done much work on the dependency of 
perception on “irrelevant” cues, and it is rather atypical that his developmental 
account of area perception does not deal with context effects. Thus, there is some 
potential for a rapprochement. 

In any case, the popular developmental thesis that young children use a height 
+ width rule (Anderson & Cuneo, 1978a; Cuneo, 1980; Wilkening, 1979) is not 
supported by ordinal paired comparisons. The evidence against this view is: 

1. All 130 children aged 4-9 in Experiments l-3 (Experiment 4 was not de- 
signed to test for the height + width rule) showed judgments that deviated 
significantly from the predictions of the height + width rule (based on 
identical linear functions fi. 

2. Among the cognitive algebra hypotheses considered, physical area provided 
by far the best overall predictions in all age groups. In the cognitive algebra 



260 Cerd Cigerenzer and Hans R. Richter 

framework, this is equivalent to saying that the multiplying rule plus identi- 
cal linear functions f gave the best overall predictions, even in 5-6-year- 
olds. 

3. Area was judged to be dependent on shape by children (and children’s 
comments show that they realize this dependency).4 Furthermore, some of 
the younger children consistently center. 

With respect to the height + width rule, however, we are in no better position 
than in the cognitive algebra research cited above: In both cases conclusions are 
conditional on the assumption of linear functions for either psychophysical or 
judgment functions. What we reject is the joint assumption of a height + width 
rule and identical linear psychophysical functions for height and width. Note that 
in the range of lengths used in the present study, say between 0 and 30 cen- 
timeters, a linear function is not an unjustifiable assumption. This would imply 
the rejection of the height + width rule itself. Empirical evidence exists (e.g., 
Krantz, 1972; Reese, 1946-1952; Stevens & Galanter, 1957; Teghtsoonian, 
1965) for what Stevens and Galanter called “the rather obvious fact that apparent 
length is very nearly a linear function of physical length” (1957, pp. 378-379). 
We would follow Stevens and Galanter on this issue, but we have, as mentioned 
above, no independent evidence. 

Finally, cognitive algebra research suffers from the straightforward reliance on 
analysis of variance (ANOVA) on both theory construction and testing. Consider 
a factorial design with height and width. What questions can we answer if we 
apply ANOVA to the design? We can discover whether the effect of height, 
width, both, or the interaction is significant. This already gives us all the hypoth- 
eses that have been proposed for area judgment and its development by Anderson 
& Cuneo (1978a). Cuneo (1980), and Wilkening (1979, 1980). These are height- 
only, width-only, height + width, and multiplying. Even Piaget’s theory has 
been put into the Procrustean bed of the ANOVA language, as we have shown 
above. The impact of ANOVA on shaping cognitive algebra theory and other 
cognitive theories has been dealt with in detail elsewhere (Gigerenzer & Murray, 
1987). Here, it is sufficient to point out the circle in which traditional cognitive 
algebra research is caught. Biases both in hypotheses construction and testing can 
combine: The height + width rule suggested by the ANOVA framework is “vali- 
dated” by ANOVA through confirming the null hypothesis of no interaction. 

This limitation can be resolved. Cognitive algebra theory usually states two or 
more hypotheses with precise predictions, and there is no reason to declare one 

4 Children’s spontaneous comments during their performance are another source of evidence for 
the dependency of perceived nrea on shape. Children overestimating square shnpes typically mode 
remarks such ns “one is longer, the other is thicker and therefore larger,” “the longer one has less, 

the square has more,” nnd “the thicker one is larger.” Throughout all experiments, young children 
mentioned that they take the shape into account. 
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of the two hypotheses to be the null hypothesis. It should be recalled that Fisher, 
who developed null hypothesis testing as it is used in ANOVA, called these tests 
only a weak argument (see Gigerenzer et al., 1989, chapter 3). In the present 
study we eliminated this asymmetry by treating every hypothesis as a null hy- 
pothesis (see also Gigerenzer, Hell, & Blank, 1988), but there are other sym- 
metric testing procedures, such as Fisher’s maximum likelihood or Neyman and 
Pearson’s hypothesis testing, that could be used. Here we may see another 
possible rapprochement between the perceptual constancy and cognitive algebra 
points of view. 

A Three-Step Processing Model 
We propose that the development change in paired comparison judgments of area 
is a three-step process, with considerable overlap of age groups in the first two 
steps: 

Step I: Centeting. The most frequent centering strategy is centering on the 
longer side. It implies that children pay attention to both sides of a rectangle, but 
seem not yet to have developed the concept of area. Alternatively, centering 
could also be seen as a simplistic judgmental strategy that is dependent on the 
task, not only on the concept of area. 

Step 2: Limited Perceptual Constancy. Area perception is influenced by the 
shape of the rectangles, and the direction of this influence is determined by the 
covariation between area and shape in the set of rectangles (Equations 16-18). 

Step 3: Perceptual Constancy. Area perception matches physical area, in- 
dependent of shape. 

From our experiments, considering all 150 4-9-year-olds, we must conclude 
that Step 3 is rare in young children, and that Step 1 is not found in normal 
adults. Limited perceptual constancy is the most frequent transition state for 
children aged 4-9. 
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