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Chapter 7

Why the Distinction between
Single-event Probabilities and
Frequencies is Important for
Psychology (and Vice Versa)

Gerd Gigerenzer
University of Chicago

Some years ago in Stanford I was lunching with a motley group of colleagues,
mostly psychologists and economists, all interested in judgment under uncer-
tainty. We gnawed our way through our sandwiches and through the latest
embellishments of the prisoners’ dilemma, trading stories of this or that
paradox or stubborn irrationality. Finally, one economist from Princeton
concluded the discussion with the following dictum: “Look,” he said with con-
viction, “either reasoning is rational or it’s psychological.”

This forked opposition between the rational and the psychological has
haunted me ever since. Frege scholars will hear in it an echo of the nineteenth-
century debate between the logician Frege and the psychologist Wundt over
the status of the “laws of thought”; the economists and psychologists seated
at the picnic table with me that afternoon had in mind the more recent findings
of the “heuristics and biases” research program in cognitive psychology (e.g.
Tversky & Kahneman 1974, 1983). Certainly anyone acquainted with only this
aspect of contemporary psychology—and it remains among the best publi-
cized, both to colleagues in other disciplines and to the public at large—could
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130 G. Gigerenzer

easily have come to think that psychology is about revealing and explaining
human irrationality. The conjunction fallacy, the base-rate fallacy, the
overconfidence bias—this was the gloomy litany of sins people seemed to
commit routinely and incorrigibly against reason. According to the exponents
of the “heuristics and biases” program, human beings were programmed to be
systematically, stubbornly irrational when making judgments under
uncertainty—at least, most of the time. (Experimental subjects were not
dazzling at logical thinking either, but that is another story and another
research program.) No wonder the psychology of reasoning had become nearly
synonymous with the investigation of the irrational (you get a taste from Table
7.1).

What exactly did it mean to be irrational, according to the psychologists of
the heuristics and biases program? Let me use a well-known example, the
“Linda problem”. Assume you are a subject in a psychological experiment. In
front of you is a text problem and you begin to read:

Lir}da is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination

Table 7.1 A sample of conclusions from the heuristics and biases program

In making predictions and judgments under uncertainty, people do not appear to
follow_ th.e calculus of chance or the statistical theory of prediction. Instead, they rely
on a l.lmlted number of heuristics which sometimes yield reasonable judgments and
sometimes lead to severe and systematic errors.

Daniel Kahneman & Amos Tversky (1973, page 237)

It appears that people lack the correct programs for many important judgmental tasks.

...we have not had the opportunity to evolve an intellect capable of dealing
conceptually with uncertainty.

Paul Slovic, Baruch Fischhoff & Sarah Lichtenstein (1976, page 174)

The gen\{ineness, the robustness, and the generality of the base-rate fallacy are matters
of established fact.

Maya Bar-Hillel (1980, page 215)

The biases of framing and overconfidence just presented suggest that individuals are
generally affected by systematic deviations from rationality.
Max Bazerman & M.A. Neale (1986, page 317)

[Overconﬁden.ce bias] has proved so robust that it is hard to acquire much insight into
the psychological processes producing it.

Baruch Fischhoff (1988, page 172)

[We are] a species that is uniformly probability-blind, from the humble janitor to the
Surgeon General ... We should not wait until A. Tversky and D. Kahneman receive

a Nobel prize for economics. Our self-deliberation from cognitive illusions ought to
start even sooner. ’

Massimo Piattelli-Palmarini (1991, page 35)
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and social justice, and also participated in antinuclear demonstrations. Which of
these two alternatives is more probable?

(a) Linda is a bank teller
(b) Linda is a bank teller and active in the feminist movement.

Which alternative would you choose? Assume you chose (b), just as most
subjects—80% to 90% —in previous experiments did. Tversky and Kahneman
(1983) argue: (b) is the conjunction of two facts, namely that Linda is a bank
teller and is active in the feminist movement, whereas (a) is one of the
conjuncts. Because the probability of a conjunction cannot be greater than
that of one of its conjuncts, the correct answer is (a), not (b). Therefore, your
judgment is recorded as an instance of a celebrated reasoning error, known as
the conjunction fallacy. Tversky, Kahneman, and others have shown that this
type of judgment is highly stable across experimental manipulations. By
analogy to stable visual illusions, stable reasoning errors, such as the
conjunction fallacy, have been labeled cognitive illusions. The standard
conclusion is that the mind does not possess the proper statistical algorithms,
but relies on non-statistical quick-and-dirty algorithms, such as the represent-
ativeness heuristic. That is, the mind assesses the probability by calculating the
similarity between the description of Linda and each of the alternatives, and
chooses the alternative with the highest similarity. Judging probability by
similarity has been termed the representativeness heuristic.

This alleged demonstration of human irrationality in the Linda Problem has
been widely publicized in psychology, philosophy, economics and beyond.
Stephen J. Gould (1992, page 469) puts the message clearly:

1 am particularly fond of [the Linda] example, because I know that the
[conjunction] is least probable, yet a little homunculus in my head continues to
jump up and down, shouting at me—“but she can’t just be a bank teller; read
the description.” ... Why do we consistently make this simple logical error?
Tversky and Kahneman argue, correctly I think, that our minds are not built (for
whatever reason) to work by the rules of probability.

In what follows I will argue that Gould should have had more trust in the
intuition of his homunculus.

Two aspects of the standards of rationality versus irrationality assumed by
this and other celebrated experiments cry out for closer inspection.

(1) The distinction between single-event probabilities and frequencies. In
the supposed demonstrations of the conjunction fallacy, the base rate fallacy,
and the overconfidence bias, rationality is characterized not simply by prob-
ability theory, but some particular interpretation of probability theory, often
a narrow version of Bayesianism. In the Linda problem, probability theory
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is applied to a single event—that Linda is a bank teller—rather than to
frequencies. Does probability theory apply to single events?

This is a controversial matter amongst probabilists, who have long and
heatedly debated the merits of subjective Bayesian versus objective frequentist
interpretations of probability. The influential Bayesian Leonard J. Savage
(1954), for instance, introduced his notion of personal probability with every-
day examples of reasoning about singular events: “I personally consider it
more probable that a Republican president will be elected in 1996 than that it
will snow in Chicago sometime in the month of May, 1994. But even this late
spring snow seems to me more probable than that Adolf Hitler is still alive”
(page 27). Savage’s proposal challenged the frequentist schools which were
then dominant, as they are in most statistics departments today. Savage was
quite explicit about the deviant character of his proposal, when he added,
“Many, after careful consideration, are convinced that such statements about
probability to a person mean precisely nothing, or at any rate that they mean
nothing precisely” (page 27).

The mathematician Richard von Mises (1957) was one of those many. In his
view, a reference class (collective) has to be defined first, and then the prob-
ability of a repetitive event is the relative frequency of this event in its class.
One of his examples is the probability of death at age 40, as determined from
the data of insurance companies. The class is “all men insured before reaching
the age of forty after complete medical examination and with the normal
premium”. The number of deaths at age 40 was 940 out of 85 020, which cor-
responds to a relative frequency of about 0.011. This probability is attached
to a class, but not to a particular person or a single event. Every particular
person is always a member of many different classes, whose relative frequen-
cies of death may have different values. Therefore, von Mises concluded, “It
is utter nonsense to say, for instance, that Mr. X, now aged forty, has the
probability 0.011 of dying in the course of the next year.” (pages 17-18).

By now it should be clear that according to a strong frequency view of
probability (e.g. Neyman, 1977; von Mises, 1957), what has been labeled the
conjunction fallacy is not an error in probabilistic reasoning. In this view,
probability theory is about frequencies and simply doesn’t apply to single
events.

(2) Content-independent rationality. There is a peculiar indifference in this
standard of rationality to background knowledge: rationality here means the
deployment of formal algorithms (or rules, such as the conjunction rule) which
are content-independent. That is, it is assumed that they can and should be
applif:d to tasks with different specific contents, provided the formal structure
remains constant. From this point of view, rationality is not bound to any
specific domain, and knowledge ideally is irrelevant to proper reasoning.

In the Linda problem, for instance, whatever you know about bank tellers
and feminists is assumed to be entirely irrelevant; indeed, you need not read
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the description of Linda at all—it is irrelevant to content-independent ration-
ality. Hence there is little analysis of how the content of a problem cues the
understanding of the term “probable” in this research tradition. “Probable”
can refer to typical, prototypical, frequent, credible, to the weight of evi-
dence, to a plausible causal story, or to what “may in view of present evidence
be reasonably expected to happen,” as the Oxford English Dictionary informs
us. Most of these uses do not obey the laws of probability. For instance,
judgments of typicality do not follow the conjunction rule. Betty Friedan may
count as a typical feminist writer, but not as a typical writer. Such psycho-
logical considerations, however, are not part of the content-independent
rationality that defines right and wrong reasoning in the heuristics and biases
program.

These two issues are not independent. For instance, suppose one insists that
every single-event statement involving the term “probable,” as in the Linda
problem, must obey the laws of probability theory rather than, say, the guide-
lines of the Oxford English Dictionary. (I take the statements in Table 7.1 to
epitomize this conviction.) One would then be uninterested in how content
(add physical and social context, goals, if you want) determines what is reason-
able in a given situation.

I will focus in this chapter on the distinction between single-event prob-
abilities and frequencies, and will say little about the role of content in under-
standing what is rational (on the latter see Cosmides & Tooby, 1992;
Gigerenzer, 1991; Gigerenzer & Hug, 1992).

In the first part, drawing on recent work in the history of probability, I will
show that the distinction between single-event probabilities and frequencies
was dependent on theories of mind: the meaning of probability changed when
theories of mind changed. In the second part, drawing on recent experimental
work, I will show that apparently stable cognitive illusions are dependent on
the distinction between single-event probabilities and frequencies: cognitive
illusions tend to disappear when single-event probabilities- are changed into
frequencies. Thus, I argue that the conceptual distinction between single-event
probabilities and frequencies is of direct relevance for psychology, and vice

versa.

7.1 HOW THEORIES OF PSYCHOLOGY SHAPED
THE MEANING OF PROBABILITY

According to legend, probability is one of the few seminal ideas that has an
exact birthday. In 1654, precisely three hundred years before Savage’s treatise,
the now famous correspondence between Blaise Pascal and Pierre Fermat first
cast the calculus of probability in mathematical form. Ian Hacking (1975)
argued that the notion of probability that emerged so suddenly was
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Janus-faced from the very beginning. One face was aleatory, concerned with
observed frequencies (e.g. co-occurrences between fever and disease, comets
and deaths of kings); the other face was epistemic, concerned with degrees of
belief or opinion warranted by authority. In his view, the twentieth-century
duality between objective frequencies and subjective probabilities existed then
as it does now. Barbara Shapiro (1983) and Lorraine Daston (1988), however,
have argued that probability in the seventeenth and eighteenth centuries had
more than Janus’s two faces. It included physical symmetry (e.g. the physical
construction of dice, now called “propensity”); frequency (e.g. how many
people of a given age died annually); strength of argument (e.g. evidence for
or against a judicial verdict); intensity of belief (e.g. the firmness of a judge’s
conviction in the guilt of the accused); verisimilitude; and epistemological
modesty, among others. Over the centuries, probability also conquered new
territory and created further meanings, such as in quantum physics, and lost
old territory, such as the probability of causes (Daston, 1988). Rather than
Janus’s two faces, probability seems more like a group of visages loosely
assembled in a family portrait, with some members joining over time and
others dropping out.

7.1.1 The Unity: Frequencies and Subjective Beliefs

The puzzling fact about the Enlightenment probabilists is the ease with which
they slid from one meaning of probability to the next—and this holds
independently of whether you see probability as Janus-faced or more like a
family portrait. This ease created the apparent paradox that competing
present-day interpretations of probability could claim the same work as their
ancestor. Jakob Bernoulli’s Ars conjectandi (1713), for instance, has been
variously claimed as anticipating the 20th century’s subjective interpretation,
Rudolf Carnap’s logical interpretation, and the extreme frequentist inter-
pretation of Jerzy Neyman and Richard von Mises (Hacking, 1975, pages
15-16).

The solution to this puzzle lies in the intimate link between psychology and
probability. Daston (1988, Chapter 4) argues that only with hindsight does it
seem that Bernoulli and other classical probabilists vacillate between objective
and subjective interpretations. Whereas today these interpretations look
incompatible to many, the classical probabilists were able to reconcile the
subjective and objective facets of probability on the basis of the theories of
mind advanced by John Locke, David Hartley, and David Hume. The
following account of how associationist psychology shaped and incorporated
ideas of probability is a condensed version of Daston’s (1988) detailed study.

Philosophers such as Hartley and Hume, and mathematicians like
Condorcet and Laplace, treated associationist psychology and mathematical
probability as kindred topics. Following Locke’s associationism, Hume held
that the mind unconsciously and automatically tallied frequencies and
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proportionated degree of belief (for Hume, the vivacity of an idea). And
Hume insisted that the psychological mechanism that converted frequency into
belief was finely tuned: “When the chances or experiments on one side amount
to ten thousand, and on the other to ten thousand and one, the judgment gives
the preference to the latter, upon account of that superiority.” (Hume,
1739/1975, page 141). Despite his reservation about the validity of induction,
Hume made probabilistic thinking the de facto standard of reasonableness.
Hume linked frequency with belief, but his account contained almost no refer-
ence to the mathematical theory of probability. David Hartley’s (1749) work
did. He combined elements from Locke’s sketch of associationism and
Newton’s physiological speculations concerning the vibratory basis of sensa-
tions, and worked it into a full-blown associationism that connected the laws
of mind with the laws of probability. Repeated associations created cerebral
vibrations until grooves of mental habit were etched in the brain. Through this
physiological mechanism, human judgment, when undeflected by strong emo-
tion or passion, imitated the law of large numbers.

The list of psychological mechanisms underlying the mapping of objective
frequencies into subjective belief, postulated from Locke to Hartley to
Laplace, seems surprisingly familiar to a contemporary psychologist: observed
frequencies are transformed into degrees of belief through “traces”,
“vibrations”, “interior images”, and “impressions”. All these mechanisms
assumed the passive, automatic and unconscious mapping of experienced fre-
quencies into subjective probabilities. Being built up from frequencies, degrees
of belief were considered to be rational. The Enlightenment empiricists had
taken due notice of the distortion of rational belief through passion and
interest, but they believed these were corrigible aberrations.

These psychological theories were the backbone of what is now known as
the classical interpretation of probability (from 1660 to c. 1840) and they
explain some of its central features. First, classical probability conflated sub-
jective belief and objective frequencies, based on associationist psychology.
Second, probabilities were epistemic, a figment of human ignorance and there-
fore subjective, not part of the physical world. Classical probabilists, from
Jakob Bernoulli through Laplace, were arch determinists (Daston, 1992).
God, or Laplace’s secularized demon, could dispense fully with probability.
However, we humans are, as John Locke put it, most of the time condemned
to live in the twilight of probability rather than the noonday sun of certainty.
Although the world itself is deterministic, human cognition is inherently
probabilistic and empirical in its working—a view that was revived, among
others, in Egon Brunswik’s (1955) functional probabilism. Third, the mapping
of frequencies into subjective probabilities was considered to be rational, as
were subjective probabilities, unless disrupted by passion or interest. The
Enlightenment probabilists cherished the fiction of the hommes éclairés, an
elite of educated people who could prevent such disruptions from affecting
their beliefs. Probability theory mirrored their reasoning and provided a tool
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for those unfortunates needing help to stay clear of these disruptions. Human
reasoning and probability theory were two sides of the same coin. In Laplace’s
famous phrase, probability theory was nothing more than “good sense
reduced to a calculus”.

By the time Siméon-Denis Poisson (1837) published his major work on
probability, the classical interpretation was under attack on several fronts.
The psychological theories postulating mechanisms that guaranteed the pro-
portioning of belief to frequencies had given way to those that emphasized the
illusionary nature of human belief. Etienne de Condillac (1754) was one of the
first to express misgivings about the reliability of the link between frequency
and belief. In his psychology, wishful thinking became the rule rather than the
exception. Condillac was preoccupied with pathological associations caused by
experiences early in life, by prejudice, or by brain consistency. He held, for
instance, that young girls were prone to confuse chimeras for realities, because
their brains were soft and even faint associations left permanent impressions
in a soft medium. Condillac and his followers shifted the associationist psy-
chology of Hume and Hartley to a psychology in which needs, wants, and tem-
peraments (and other sources of pathologies) determined how the mind
distributed attention, which in turn organized experience (Daston, 1988). The
unity between frequency and belief was slowly eroded. What psychology had
given to probability, it now took away. Poisson was the first to distinguish
clearly in print, in 1837, between the subjective and the objective meaning of
probability.

There is a broader intellectual and social context in which the rise and the
fall of the classical interpretation of probability is embedded. The French rev-
olution and its aftermath seems to have shaken the confidence of the
probabilists in the existence of a single shared standard of reasonableness.
What constituted “good sense” was no longer self-evident. The consensus and
the values of the intellectual and political élites fragmented and disappeared,
as did I’homme éclairé, the fiction of the reasonable man who embodied this
consensus (Daston, 1988; Gigerenzer et al., 1989, Chapter 1).

7.1.2 The Divorce: Frequencies versus Subjective Belief

Subjective belief and objective frequencies began as equivalents and ended up
as diametric opposites. Poisson had distinguished the two, and the political
economist and philosopher Antoine Cournot (1843) seems to have been the
first who went one step further and eliminated subjective belief from the
realm of mathematical probability: mathematical probability was not a
measure of belief. Only then did it become evident that the classical inter-
pretation of probability had been an interpretation. Classical probability
was a form of “mixed mathematics”, a term stemming from Aristotle’s
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explanation of how optics and harmonics mixed the forms of mathematics
with the matter of light and sound. Classical probability theory had no
existence independent of its subject matter—the beliefs of reasonable men.
The modern view that a mathematical theory might indeed exist independently
of a particular subject matter—the distinction between formal theory and
application—was foreign to mixed mathematics. Arguably, mathematical
probability did not free itself from its particular applications until very
recently, when in 1933 A.N. Kolmogoroff presented his axiomatization of
probability.

The new associationist psychology which focused on illusions had, by the
early nineteenth century, provided the arguments for severing subjective prob-
abilities from objective frequencies, and, ironically, associationist psychology
from probability theory. By about 1840, /’homme éclairé had given way to
I’homme moyen. Probability was no longer about mechanical rules of rational
belief embodied in an élite of reasonable men, but about the properties of the
average man (/’homme moyen), the embodiment of mass society if not
mediocrity. Adolph Quetelet’s (1835) social physics determined the statistical
distributions of suicide, murder, marriage, prostitution, height, weight, educa-
tion, and almost everything else in Paris, and compared these with the distri-
butions in London or Brussels. The means of these distributions defined the
fictional average man in each society. The means and rates of moral behaviors,
such as suicides and crimes in Paris or in London, proved to be strikingly
stable over the years; this was cited as evidence that moral phenomena are
governed by the laws of a society rather than by the free decisions of its
individuals. In nineteenth-century France, statistics became known as “moral
science”.

This new focus on mass phenomena had a tremendous impact on pioneer
sociologists such as Herbert Spencer and Emile Durkheim, and shaped demog-
raphy, insurance, epidemiology, Prussian bureaucracy, the debates on free
will, Francis Galton’s enthusiasm for the normal curve and Gustav Theodor
Fechner’s statistical aesthetics, infer alia (Hacking, 1990; Stigler, 1986).
Quetelet’s model of human behavior as erratic and unpredictable at the indi-
vidual level, but governed by statistical laws and predictable at the level of
society, was independently adopted by James Clerk Maxwell and Ludwig
Boltzmann to justify, by analogy, their statistical interpretation of the
behavior of gas molecules (Porter, 1986). By this strange route, physics
became revolutionized through the analogy with statistical laws of society.

Throughout most of the nineteenth and twentieth centuries, the “probabil-
istic revolution” (Kriiger, Daston & Heidelberger, 1987; Kriiger, Gigerenzer &
Morgan, 1987) was about frequencies: from the kinetic theory of gas to
quantum statistics, and from population genetics to the Neyman—Pearson
theory of hypothesis testing. The urn model of classical probability was now
concerned with these mass phenomena, excluding subjective degrees of belief
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such as single-event probabilities. Joseph Bertrand in his Calcul des probabi-
lités (1889), for instance, criticized Laplace’s applications of Bayes’ theorem
to calculate degrees of belief: we believe the sun will rise tomorrow because
of “the discovery of astronomical laws and not by renewed success in the game
of chance” (page xliv).

As is well known, subjective probability has regained acceptance in the
second half of this century with the pioneering work of Bruno de Finetti and
Frank Ramsay in the 1920s and 1930s and Leonard Savage in the 1950s. The
reasonable man, once exiled from probability theory, had his comeback.
Economists, psychologists, and philosophers now struggle again with the issue
of how to codify “reasonableness” in mathematical form—the same issue once
abandoned by mathematicians as a thankless task. Before the 1970s, the return
of subjective probability still provoked a particularly lively debate between
frequentists and subjectivists (now called “Bayesians”). Today, both sides
pretend to know each other’s arguments all too well and seem to have stopped
listening. Frequentists dominate statistics and the experimental sciences;
subjectivists the areas of theoretical economics and artificial intelligence. The
territory has been divided up. As Glenn Shafer (1989) complained, “concept-
ually and institutionally, probability has been balkanized” (page 15).

To summarize: theories of psychology have been important in shaping the
meaning of probability, and therewith the subject matter of probability
theory. In particular, the associationist psychology of Locke, Hume and
Hartley provided the grounds for not distinguishing objective frequencies and
subjective degrees of belief—from the inception of probability theory circa
1650 to roughly 1840. The turn of associationist psychology towards illusions
dethroned the reasonable man of classical probability theory and made the
distinction between degrees of reasonable belief and frequencies obvious.

After this conceptual transformation, psychology found itself dissociated
from probability theory, too.

7.2 HOW THE DISTINCTION BETWEEN SINGLE

EVENTS AND FREQUENCIES AFFECTS COGNITIVE
ILLUSIONS

Psychologists like precise birthdays too. Textbooks celebrate 1879 as the
beginning of what is referred to as scientific psychology, when Wilhelm Wundt
devoted some space at the University of Leipzig for conducting experiments.
For Wundt, the experimental method was a means to study elementary
cognitive processes, such as attention and perceptual thresholds, but not (what
he believed to be) deeply culture-bound processes such as thinking (Danziger,
1990). For these and other reasons, such as the dominance of American
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behaviorism, probabilistic reasoning was only occasionally a topic for
psychologists in the first half of this century.

The classical probabilists would have felt a strong sense of déja vu upon
learning about some of the theoretical developments in the second half of the
twentieth century. Around 1950, Jean Piaget in Geneva revived the reasonable
man of classical probability theory. In Piaget and Inhelder’s (1951/1975)
experimental work, the formal laws of probability are the laws of the adolescent
and adult mind. Errors in probabilistic reasoning were characteristic only
during ontogenetic development, until the age of fourteen or so, when formal
probabilistic reasoning emerges. Take for instance the law of large numbers.
In 1703 Jacob Bernouili had written in a letter to Leibniz that the law of large
numbers is a rule that “even the stupidest man knows by some instinct of
nature per se and by no previous instruction” (see Gigerenzer et al., 1989, page
29). More than two centuries later, Piaget and Inhelder concluded that even
twelve to thirteen year olds intuitively apply the law of large numbers and
understand the reasons for the law (page 207).

Locke, Hartley, and Hume had assumed that the mind unconsciously tallies
frequencies and converts them into degrees of belief. Hasher and Zacks (1979)
concluded from their experiments that frequencies are one of the few kinds of
information (the others being word meaning and spatial and temporal loca-
tion) that are monitored automatically—that is, without intention or much
attention, and without interfering with other tasks. Moreover, what is now
called automatic frequency processing seems to be generally accurate, a
conclusion independently arrived at by others (e.g. Brehmer & Joyce, 1988).
The thesis that objective frequencies eventually shape degrees of belief has
now been experimentally demonstrated (Hasher, Goldstein & Toppino, 1977).
Locke, Hartley, and Hume would have been enthusiastic about these
experimental findings. The reasonable man is back, dressed in modern
fashion: less élite (everyone is a reasonable intuitive statistician) and confirmed
by numerous experimental results.

The déja vu, however, goes beyond the recreation of the reasonable man.
Around 1970, much of cognitive and social psychology turned away from the
rational intuitive statistician and focused on illusions (Kahneman, Slovic &
Tversky, 1982; Nisbett & Ross, 1980). One and a half centuries earlier,
associationist psychology had turned to illusions, and the reasonable man had
crumbled along with the classical interpretation of probability. Now illusions
were again being used to destroy belief in the rational homo sapiens, and to
challenge economists’ rational homo economicus. Now, as then, illusions were
no longer the exception, but the rule.

Here the historical parallels end. The old challenge was that passion and
wishful thinking almost always interfere with the rational laws of thought.
Freud’s attack on human rationality is a well-known variation on that
theme. The unconscious wishes and desires of the Id are a steady source of
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intrapsychic conflict that manifests itself in all kinds of irrational beliefs, fears,
and behaviors. The new challenge, however, does not invoke passion or
wishful thinking as interfering with otherwise rational reasoning. This
challenge is stronger: the human mind does not possess the proper statistical
algorithms. Poor reasoning is seen as a straightforward consequence of the
laws of human reasoning, which are non-statistical “rule-of-thumb”
heuristics. The mind is a poor intuitive statistician whether or not passion and
wishful thinking compound this state of affairs.

Ironically, the departure point of the unreasonable man that emerged two
decades after Piaget’s revival of the reasonable man was Savage’s neo-
Bayesianism. In the 1960s, Ward Edwards and his colleagues at the University
of Michigan made two related proposals. First, Edwards, Lindman & Savage
(1963) attempted to persuade experimental psychologists to turn Bayesian and
to dispense with frequentist hypothesis testing. Second, Edwards (1968)
proposed to study empirically whether intuitive reasoning follows Bayesian
statistics. The first proposal fell still-born from the press; the second became
a raging success.

Experimenters already had their frequentist statistics, a curious and con-
fused mishmash of Fisher’s significance testing and Neyman—Pearson’s
hypotheses testing (Gigerenzer, 1993). This was generally presented as the sine
qua non of scientific method. Textbooks did not tell their readers that they
were teaching a shotgun marriage between Fisher and Neyman—Pearson.
Rather, the textbooks created the illusion that “statistics is statistics is statis-
tics”. Since the 1950s, statistical inference had become a mechanical ritual in
psychology and beyond, enforced by journal editors and internalized by
researchers as the guardian of objectivity and scholarly morality. Bayesianism,
by contrast, looked subjective and, above all, unnecessary.

Thus, in the 1970s and 1980s, Bayesianism became a rational yardstick
for the subjects in psychological experiments, but not for the experimenters
who analyzed them. Subjects were judged rational if their inferences from data
to hypotheses followed Bayes’ theorem; otherwise their judgments were
recorded as errors in reasoning, such as the base rate fallacy (see below).
However, when experimenters made inferences from data to hypotheses—
here, whether subjects are Bayesians—they did 7ot use Bayes’ theorem. They
used, as they had been taught for two decades before Edwards’ proposal,
frequentist statistics. But the most commonly used kind of frequentist
statistics, R.A. Fisher’s significance testing, does not use prior probabilities or
base rates. This neglect of base rates by experimenters was not recorded as an
error in reasoning, although it had all the characteristics of the base rate fal-
lacy. Nor do I know of a single experimenter who noticed and remarked on
that amazing double standard. The split between Bayesians and frequentists
not only divides disciplines today, but can also go right through a single
individual (Gigerenzer, 1993).
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Edwards seems to have soon become dissatisfied with pointing out
discrepancies between subjects’ reasoning and Bayes’ formula, and no
interesting and rich theory of how subjects actually do reason had emerged.
He turned to the task of designing tools that help people reason the Bayesian
way. In the 1970s, Amos Tversky and Daniel Kahneman took over Edwards’
second proposal and turned it into what is now known as the heuristics and
biases program.

The heuristics and biases program arrived at a view of human rationality
(Table 7.1) diametrically opposed to that of classical probability theory. Yet
this modern program neglects the distinction between single-event probabilities
and frequencies just as the classical probabilists ignored the distinction
between subjective degrees of certainty and objective chances.

I will now use the distinction between single-event probabilities and
frequencies to unearth the reasonableness hidden by the perspective of the
heuristics and biases program.

7.2.1 Representation of Information: Single-event Probabilities
versus Frequencies

My point here is precisely not to champion one side over another—
frequentism over Bayesianism, or vice versa—but to point out a connection
between the single-event probabilities/frequencies distinction and a second
distinction, that between algorithms and information representation.

Much ink flowed in debates about mental algorithms: is the-mind equipped
with the right statistical algorithms or only with suboptimal algorithms based
on rules of thumb such as the représentativeness heuristic? These two alterna-
tives, however, are not sufficient for a theory of cognitive processes underlying
judgment under uncertainty, because they only deal with the level of
algorithms. Algorithms need information, and information needs representa-
tion. This distinction between algorithms and information representation is
central to David Marr’s (1982) analysis of visual information-processing
systems.

For example, consider numerical information. This information can be
represented by the Arabic numeral system, the binary numeral system,
Roman numerals, and other symbol systems. These different representations
can be mapped one-to-one onto each other, and are in this sense formally
equivalent representations. But they are not necessarily equivalent for cal-
culating algorithms. The algorithms programmed into my pocket calculator
work well when I feed them Arabic numerals, but not when I feed them binary
numbers. The human mind seems to acquire analogous preferences for one
form of representation: contemplate for a moment long division in Roman
numerals.
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Let me now return to the distinction between single-event probabilities and
frequencies. Instead of squabbling over which captures the “real” meaning of
probability, let us instead regard them as two different representations of
probability information. Finer distinctions can be made, but this will suffice
to start.

An evolutionary speculation links these two distinctions. Assume that some
capacity or algorithm for statistical reasoning has been built up through
evolution by natural selection. For what information representation would
such an algorithm be designed? Certainly not for percentages and single-event
probabilities (as is assumed in many experiments on human reasoning), since
these took millennia of literacy and numeracy to evolve as tools for communi-
cation. Rather, in an illiterate and innumerate world, the representation would
be frequencies of events, sequentially encoded as experienced—for example,
3 out of 20 as opposed to 15% or p=0.15. Such a representation is couched
in terms of discrete cases, that is, natural numbers.

Note that bumblebees, birds, rats, and ants all seem to be good intuitive
statisticians, highly sensitive to changes in frequency distributions in their
environments, as recent research in foraging behavior indicates (Gallistel,
1990; Real & Caraco, 1986). One wonders, reading that literature, why birds
and bees seem to do so much better than humans.

In short, the proper functioning of a mental algorithm depends on the way
in which information is represented. So, to analyze probabilistic reasoning, we
must attend to the difference between, at least, the frequency and the single-
event representation of probability. If evolution has favored one of these
forms of representation, then it would be frequencies, which prelinguistic
organisms could observe and act on.

Attending to this distinction suffices to make several apparently stable
cognitive illusions disappear.

7.2.2 How to Make the Conjunction Fallacy Disappear

Now we apply the distinction between single-event and frequency information
representation to the Linda problem. We only change the format from single
event to a frequency representation, leaving everything else as it was.

Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimination
and social justice, and also participated in antinuclear demonstrations.

There are 100 people who fit the description -above. How many of them are:
(a) bank tellers
(b) bank tellers and active in the feminist movement.

Subjects are now asked for frequency judgments rathér than for single-event
probabilities. If the mind solves the Linda problem by using a representativeness
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heuristic, changes in information representation should not matter, because
they do not change the degree of similarity. The description of Linda is
still more representative of (or similar to) the conjunction “teller and
feminist” than of “teller.” Subjects therefore should still commit the
conjunction fallacy.

However, if there is some statistical algorithm in the mind that is adapted
to frequencies as information representation, then something striking should
happen to this stable cognitive illusion. Violations of the conjunction rule
should largely disappear.

Table 7.2 How to make the conjunction fallacy disappear

Linda problem Conjunction violations (%)

Single-event versions
Tversky & Kahneman (1983)

Which is more probable? 85

Probability ratings 82

Probability ratings 7* 57

Betting 56
Fiedler(1988)

Probability ranking, Exp. 1 91

Probability ranking, Exp. 2 83
Hertwig & Gigerenzer (1993)

Probability ranking 88

Frequency versions
Fiedler (1988)

How many out of 100? 22

How many out of X? 17
Hertwig & Gigerenzer (1994)

How many out of 200? 13

How many 16

Note: The various versions of the Linda problem are (i) which is more
probable (see text, n = 142), (ii) probability ratings on a nine-point scale
(n = 119), (iii) probability ratings using the alternative “Linda is a bank teller
whether or not she is active in the feminist movement” (T°*) instead of
“Linda is a bank teller” (T) (n = 75), (iv) hypothetical betting, i.e. subjects
were asked “if you could win $10 by betting on an event, which of the
following would you choose to bet on?” (n = 60). Fiedler asked subjects to
rank order T, T&F, and other alternatives with respect to their probability.
In his first frequency version the population size was always 100, in the
second it varied (n=44 and 23, in Experiments 1 and 2, respectively).
Hertwig & Gigerenzer asked subjects to rank order T, T&F, and F, with
respect to their probability (single-event version, n=24), or estimate the
frequency of T, T&F, and F (in the two frequency versions, each n = 25). {n
one of the frequency versions, the number of women was specified (200); in
the other, this number was not specified.
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The available experimental evidence confirms this prediction. Klaus Fiedler
(1988) reported that the number of conjunction violations in the Linda
problem dropped from 91% in the original, single-event representation to 22%
in the frequency representation. A similar result was found when he replaced
“there are 100 people” by some odd number such as “there are 168 people.”
The drop in the number of conjunction violations here was from 83% to 17%.
Hertwig and Gigerenzer (1994) used three alternatives: F (Linda is active in the
feminist movement), T&F (Linda is a bank teller and active in the feminist
movement) and T (Linda is a bank teller). In the single-event task, subjects
rank-ordered F, T&F and T with respect to their probability; in the frequency
task, they estimated the frequency of T, T&F and F (“how many out of
2007”). The percentage of conjunction violations dropped from 88% in the
single-event task to 13% and 16%, respectively, in two frequency tasks.

Hertwig and Gigerenzer as well as Fiedler reported similar results for other
reasoning tasks from which the conjunction fallacy has been inferred as a
stable cognitive illusion. Tversky and Kahneman (1983) had reported a similar
case in their original paper, but maintained the claim that people commit a
fallacy when choosing the conjunction in the single-event case.

To summarize: The philosophical and statistical distinction between single
events and frequencies clarifies that judgments hitherto labeled instances of the
“conjunction fallacy”’ cannot be properly called reasoning errors in the sense
of violations of the laws of probability. The conceptual distinction between
single-event and frequency representations suffices to make this allegedly
stable cognitive illusion largely disappear. The conjunction fallacy is not the
only cognitive illusion that is subject to this argument.

7.2.3 How to Make the Base-rate Fallacy Disappear

In the 1960s, Ward Edwards and his colleagues designed probability revision
problems to find out whether their subjects were Bayesians. Many of these
problems used the tried-and-true urns-and-balls problems, and the major
finding was that subjects exhibited conservatism—that is, that they seemed to
give too much weight to the base rates. From the 1970s on, however, Tversky,
Kahneman, and many of their followers claimed that reasoning deviates from
Bayes’ rule in the opposite direction, that subjects in fact ignore base rates—
the so-called base-rate fallacy.

Recently, some researchers have weakened their claims about the generality
and robustness of the base-rate fallacy, but some of the fundamental confu-
sions with which this stimulating research was burdened from the very start
have survived (Gigerenzer & Murray, 1987, ch.5).

The two confusions I will point out are both instances of blurring single-
event probabilities and frequencies. The first confusion is between the
Bayesian notion of a person’s prior probability and the frequentist concept of
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a base rate. Tversky and Kahneman (e.g. 1974; Kahneman & Tversky, 1973)
started out using the expressions “neglect of base rates” or “insensitivity to
base rates” interchangeably with those of “neglect of prior probabilities” or
“insensitivity to prior probabilities.” However, priors and base rates are
different things. Priors are subjective degrees of belief that may be informed
by objective base rates, but need not be identical. (Similarly, the subjective
likelihoods that enter Bayes’ theorem and the “individuating” information
presented by the experimenter need not be identical; see Birnbaum, 1983;
Schum, 1990). This confusion, however, was necessary to argue that if a
subject does not give much weight to whatever base rate information the
experimenter has presented, this counts as a demonstration of a fallacy, i.e.,
that the subject does not reason by Bayesian principles. Whether or not the
mind actually reasons by Bayesian principles, this confusion between a base
rate and a subjective prior has prevented us from drawing adequate conclusions
from experimental work.

The second and related confusion is between normative theories of the
subjective and frequentist varieties. For instance, when subjects seemed not to
pay much attention to base rate information, Kahneman and Tversky (1973,
p. 243) asserted: “The failure to appreciate the relevance of prior probability
in the presence of specific evidence is perhaps one of the most significant
departures of intuition from the normative theory of prediction.” But which
normative theory? They seem to have had Bayesianism in mind, and at that,
a narrow version thereof—e.g., one that conflated base rates with priors
(Gigerenzer, Hell & Blank, 1988). But what if intuition were measured against
the frequency view?

I will now apply the distinction between single-event and frequency infor-
mation representation to the base-rate fallacy . Here is an observation to start
with,

Some researchers tend to change the representation of a problem from
single-event probabilities to frequencies when they turn away from their
subjects and explain the correct solution to their readers. An early example is
Hammerton (1973, p. 252) who used single-event probabilities to communicate
information to his subjects:

1. A device has been invented for screening a population for a disease known
as psylicrapitis. 2. The device is a very good one, but not perfect. 3. If someone
is a sufferer, there is a 90% chance that he will be recorded positively. 4. If he
is not a sufferer, there is still a 1% chance that he will be recorded positively. 5.
Roughly 1% of the population has the disease. 6. Mr. Smith ha§ been tested, and
the result is positive. The chance that he is in fact a sufferer is:

Hammerton seems to have been surprised that his subjects gave a median
response of 85% (which is close to the 90% hit rate) despite the 1% base rate.
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Such judgments have been labeled by others as the base-rate fallacy. When the
author explained the correct answer to his readers, he switched however,
without comment into a frequency representation (p. 252):

Out of every 100 persons tested, we expect 1 to have the disease; and the device
is nearly certain to say that he has. Also, out of that 100, we expect the machine
to say that 1 healthy person has the disease. Thus, in the long run, out of every
100 persons tested, we expect 2 positive results, one of which will be correct and
the other incorrect. Therefore the odds on any positive result being valid are
roughly even.

The frequency format could be easily digested by Hammerton’s readers.
You can “see” that the relative frequency is one out of two (i.e. 50%), and
not 85%. Hammerton’s subjects, however, were tested and failed on a single-
event representation.

Here is a second example. In a fascinating article on mammeography, Eddy
(1982) reports that he asked 100 physicians questions of the following kind:

The prevalence of breast cancer is 1% (in a specified population). The probability
that a mammography is positive if a woman has breast cancer is 79%, and 9.6%
if she does not. What is the probability that a woman who tests positive actually
has breast cancer? %

Eddy (1982) reports that 95 out of 100 physicians estimated the probability
p(cancer | positive) to be about 75%. However, if one applies Bayes’ theorem
to the information given, p(cancer | positive) is only about 0.08 (or 8%). The
judgment of these 95 physicians once more looks like an instance of the base-
rate fallacy. College students, physicians, writers of medical textbooks (Eddy,
1982), and staff at the Harvard Medical School (Casscells, Schoenberger &
Grayboys 1978) all seem to have equally great difficulties with problems of this
kind. Reasoning about single-event probabilities (or percentages) does not
seem to come naturally to them.

Let us now perform a thought-experiment with the mammography problem.
Change the information representation in the mammography problem from
single-event probabilities to frequencies:

Imagine 100 people (think of a 10 X 10 grid). We expect that one woman has
cancer and a positive mammography. Also, we expect that there are 10 more
women with positive mammographies but no cancer. Thus we expect 11 people
with positive mammographies. How many women with positive mammographies
will actually have breast cancer?

With frequencies, you immediately “see” that only about I out of 11 women
who test positive will have cancer. The base-rate fallacy disappears if the infor-
mation is represented in frequencies. Note that by “frequencies”, I mean
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natural numbers. Let us now turn from the thought-experiment to real
experiments,

Casscells et al. (1978) gave 60 staff and students of the Harvard Medical
School the following problem, cast in single-event probabilities (except for the
base rate):

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate
of 5%, what is the chance that a person found to have a positive result actually
has the disease, assuming you know nothing about the person’s symptoms or
signs?

If one inserts these numbers into Bayes’ theorem, the posterior probability
that the person actually has the disease is 0.02 (assuming the test correctly
diagnoses every person who has the disease—a piece of missing information).

Most of the staff and students at Harvard Medical School were hopelessly
lost—almost half estimated this probability as 0.95 not 0.02. Only 11
participants answered 0.02. Note the amount of variability in the physicians’
judgments about the probability of the disease! The modal answer of 0.95 was
taken to be another instance of the base-rate fallacy, or base-rate neglect, as
Tversky and Kahneman (1982) called it. The base rate of the disease (1/1000)
is neglected, and judgment is based only (or mainly) on the characteristics of
the test (here: the false positive rate). This seemed yet more proof of the
stability of the base-rate fallacy.

But I will now apply to the Harvard Medical School problem the same
frequency-representation procedure I applied to the preceding problems. If
there is some kind of algorithm for statistical reasoning that works on
frequency representations, changing the information representation in the
Harvard Medical School problem from single-event probabilities and
percentages to frequencies should make the base-rate fallacy disappear.
Consequently, the large variability in judgments should also disappear.

Cosmides and Tooby (in press) have tested this prediction in a series of
experiments with more than 400 Stanford undergraduates. They constructed
a dozen or so variations of this medical problem, substituting step-by-step fre-
quencies for single-event probabilities. In the original single-event version, the
Stanford undergraduates gave almost the same low percentage of 0.02 answers
as the staff and students at Harvard Medical School, 12% compared to 18%
(Table 7.3). The original single-event version was somewhat ambiguous,
because the true positive rate was not specified and Stanford undergraduates
might not know what the term “false positive rate” means. Therefore, Cos-
mides and Tooby constructed a purified single-event version in which these
ambiguities were eliminated:

The prevalence of disease X is 1/1000. A test has been developed to detect when
a person has disease X. Every time the test is given to a person who has the
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disease, the test comes out positive. But sometimes the test also comes out
positive when it is given to a person who is completely healthy. Specifically, 5%
of all people who are perfectly healthy test positive for the disease.

What is the chance that a person found to have a positive result actually has
the disease, assuming that you know nothing about the person’s symptoms or
signs?__ %

This made the percentage of 0.02 answers go up, but only to 36%. Rather
dramatic effects were obtained, however, when the single-event format was
changed into a frequency format. There were two major changes, the format
of the information (first paragraph of the single-event version) and that of the
task (second paragraph). To change the format of the information from single
events to frequencies, (1) all probability information was expressed in frequen-
cies such as “50 out of 1000” instead of 5%, and (2) a reference class
(“Americans”) was added on which these frequencies are defined. Nothing else
was changed:

One out of 1000 Americans has disease X. A test has been developed to detect
when a person has disease X. Every time the test is given to a person who has
the disease, the test comes out positive. But sometimes the test also comes out
positive when it is given to a person who is completely healthy. Specifically, out
of every 1000 people who are perfectly healthy, 50 of them test positive for the
disease.

To transform the task from estimating a single-event probability to estimating
a frequency, a new sample of Americans was introduced, and the second para-
graph of the single-event version was replaced by the following question:

How many people who test positive for the disease will actually have the disease?
——outof .

If our minds were not built to reason statistically, but only equipped with
crude heuristics (consult Table 7.1), then the distinction between single events
and frequencies should not matter. But it does. Table 7.3 shows how one can
make almost everybody (or almost nobody, or any proportion inbetween) find
the answer that corresponds exactly with the result of applying Bayes’ theorem
to the information given—that is, a probability of 0.02 or a frequency “1 out
of 51,” respectively. If both the information and the task were in terms of fre-
quencies, this percentage was over seventy; if only one of the two was
represented by frequencies, the percentage was inbetween the single-event and
the frequency versions. If the frequency format was combined with asking the
subjects to construct a pictorial frequency representation (i.e. to represent
each person by a square, and mark those who do have the disease and those
who test positive), then the percentage reached 92%.
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Table 7.3 How to make the base-rate fallacy disappear: The Harvard
Medical School problem (see Cosmides & Tooby, in press)

Answers in accordance

Representation of the problem n with Bayes’ rule (in %)
Original single-event format 60 18
(Casscells et al., 1978)

Single-event format, replication 25 12
Information in frequency format, 25 56
task in single-event format

Information in single-event format, 75 59
task in frequency format

Information and task in frequency 75 73
format

Information and task in frequency 25 92

format, pictorial representation

Cosmides and Tooby’s experimental variations, both in number and in
detail, go beyond what I have described here. But my summary suffices to
make the same point as with the conjunction fallacy. The conceptual distinc-
tion between single-event probabilities and frequencies seems to be as impor-
tant for the untutored mind as it is for probability theory. It can make
apparently stable cognitive illusions disappear.

These results have direct implications for teaching statistical reasoning.

7.2.4 Natural Sampling of Frequency Information

So far I have dealt with situations in which frequency information comes in
one package, as in textbook problems or in newspapers. In many natural
environments, and for animals or people in an illiterate world, however,
frequencies must be sequentially learned through experience. How does an
algorithm vary if we move from the standard single-event probability textbook
problem to a corresponding ecological situation, in which the structure of the
environment is sequentially learned through experience? Here is another
thought experiment.

Let us transpose the above medical diagnosis problem to a non-literate
society where physicians have to rely on their experience alone. Assume you
are a physician. Your tribe has been afflicted for one year by a previously
unknown and fatal disease. Everyone suspected of having the new disease is
sent to you. You were lucky to discover one symptom that seems to signal the
outbreak of the disease. What would it mean to be a Bayesian physician in this
non-literate society?
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You would encounter all information sequentially, as discrete cases that add
up to frequencies. This information gathering is sometimes called natural
sampling (Kleiter, 1993), a concept corresponding to Brunswik’s (1955)
representative sampling. So far you have seen 30 people suspected of having
the disease. Ten of these turned out to have the disease, 20 did not. Of the 10
persons afflicted, 8 showed the symptom; of the 20 persons not afflicted, only
4 had the symptom. Now they bring in number 31. She has the symptom.
What mental algorithm do you need in order to calculate the Bayesian
posterior probability that she actually has the disease?

It turns out that in natural sampling this algorithm is quite simple—indeed,
much simpler than required in those studies from which the base rate fallacy
has been concluded. The algorithm needs only two absolute frequencies: the
number a of people with symptom and disease, and the number b of people
with symptom and no disease. These frequencies are a=8 and b=4,
respectively. The algorithm to calculate the relative frequency f(D|S) of
people with disease D among those who have the symptom S is:

a 8

SIS = 5= 5+3

If you are a Bayesian and want to calculate from the frequencies monitored
so far the posterior probability p(D|S) that patient number 31 has the
disease, your mental algorithm is just as simple:

3
p(D|S)= 514

Compare now this algorithm to that needed in the standard probability
revision tasks of the heuristics and biases program. In the latter, the infor-
mation is presented in terms of three single-event probabilities (forget for a
moment the confusion between base rates and subjective priors): the prior
probability p(D), and the likelihoods p(S|D) and p(S| —D). For this
representation of information, Bayes’ theorem is:

. p(D)p(S|D)
POI8) = 5561 D)+ p(-D)p(S|-D)

The information (corresponding to the natural sampling condition) would
be represented as p(D) = 0.33, p(S|D)=0.80, and p(S|-D) = 0.20. Inserting
these numbers into Bayes’ theorem results in the following calculation:

p(D|8)=0.33x0.80/(0.33 x 0.80 + 0.67 x 0.20) = 0.67

The result is the same as in natural sampling, but the calculation is much
more difficult.

The general point I want to make is that the way information is represented
in an experiment, versus encountered in a natural environment, can require
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reasoning algorithms of differing complexities. Even if these algorithms are
mathematically equivalent, as they are in the thought experiment just
presented, they can be computationally and psychologically different. Specific-
ally, if information is encoded through natural sampling of frequencies—as
opposed to laboratory studies which present three single-event probabilities—
the following differences arise:

(1) In natural sampling, memory needs to monitor only ftwo kinds of infor-
mation, the frequencies @ and b. No attention need be paid to the base
rates themselves.

(2) In natural sampling, Bayes’ rule reduces to a simple algorithm.

(3) Frequency information, naturally sampled, carries more information than
single-event probabilities. Absolute frequencies contain information about
the sample size (e.g. “3 out of 20”, as opposed to p =0.15), which allows
for computing the precision (so-called second-order probabilities) of the
information (Kleiter, 1993).

I know of very few studies that have used natural sampling instead of dis-
playing three single-event probabilities. Christensen-Szalanski and Beach
(1982) represented the information in a medical diagnosis problem (similar to
those described earlier) both in the single-event probability format, as usual,
and by natural sampling. In the single-event version the usual results were
obtained, from which the base-rate fallacy has been concluded. In the natural
sampling condition, subjects were shown 100 slides, one by one. Each slide
contained information about one patient: whether or not the patient had pneu-
monia, and whether or not the test result was positive. As in the single-event
version, the task was to estimate p(pneumonia | positive). The mean estimate
in the natural sampling condition was 0.22, almost identical with the actual
relative frequency f(pneumonia | positive) = 6/(6 + 19) = 0.24. (Although the
means were very close, there was still considerable individual variability in esti-
mates, perhaps due in part to individual differences in monitoring the actual
frequencies.)

Here is a second study. One of the best publicized demonstrations of the
base-rate fallacy outside of the realm of medical diagnosis problems is Tversky
and Kahneman’s (1982) Cab problem:

A cab was involved in a hit-and-run accident at night. Two cab co_mpanies, the
Green and the Blue, operate in the city. You are given the following data:

(i) 85% of the cabs in the city are Green and 15% are Blue.

(ii) a witness identified the cab as Blue. The court tested the reliability of the
witness under the same circumstances that existed on the night of the accident
and concluded that the witness correctly identified each one of the two colors
80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident was Blue rather
than Green?
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Tversky and Kahneman reported that the modal and median response of
several hundred subjects was 0.80, whereas Bayes’ theorem gives only 0.41.
The median response is identical with the witness’ hit rate—just as in some of
the medical diagnosis problems—and this has been interpreted to mean that
subjects neglect base rates. Bar-Hillel (1980; 1983) has tried many variations,
such as presenting the base rates before or after the other information, and
concluded that the base-rate fallacy was a robust phenomenon. Tversky and
Kahneman (1980) suggested that the reason for this is that base rates tend not
to be used unless they are seen as causal: “The proportions of Blue and Green
cabs does not induce a differential propensity to be involved in accidents and
this information is therefore neglected.” (page 70).

Note that the problem, like those described earlier, is presented in terms of
single-event probabilities and percentages. If base rates are neglected because
they are not “causal”, then the distinction between single-event probabilities
and frequencies should not matter, since frequencies do not induce a “differen-
tial propensity to be involved in accidents”, either.

Schlotterbek (1992) displayed the information in the Cab problem by means
of natural sampling. In an analogy to the study by Christensen-Szalanski and
Beach, 100 incidents of hit-and-run accidents were shown, one by one, using
a computer display. In each case the subjects could see whether the cab was
blue or green, and what the witness reported. After they had seen all 100 inci-
dents, subjects estimated either the probability that a cab reported as “blue”
is actually blue, in a new case, or the corresponding frequency f(blue | “blue”).
Subjects were also asked (after they had seen all 100 cases) for their perceived
four conjoint frequencies (blue cabs and report “blue”, blue cabs and report
“green”, and so on). This allowed one to control for individual differences in
perceived frequencies. Each subject’s response to the frequency task was com-
pared with the actual frequency, which was 12 out of 29, or 0.41, and with
the corresponding individual frequency, calculated from the subject’s reported
conjoint frequencies.

Probability judgments corresponded well to the actual frequency (as in the
Christensen-Szalanski & Beach study), and frequency judgments still better
(median = .42; mean = .45). Half of the frequency judgments hit exactly either
the actual frequency (12 out of 29) or the corresponding number calculated
from subjects’ perceived conjoint frequencies. Perceived conjoint frequencies
were in very good correspondence with actual frequencies, with a slight overes-
timation of the smallest frequency (blue cabs and report “green”) and underes-
timation for the largest (green cabs and report “green”). Neither of these two
frequencies, however, is needed to solve the frequency task.

To summarize: the examples given, including sequential frequency
processing, show that the distinction between single-event probabilities and
frequencies is relevant to understanding how the mind reasons about a class
of problems that are often termed Bayesian probability revision problems.
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Thus far, we have seen how to make two cognitive illusions, the conjunction
fallacy and the base-rate fallacy, largely disappear. I will now turn to a third
prominent illusion.

7.2.5 How to Make Overconfidence Bias Disappear

Confidence in one’s knowledge has been typically studied with questions of the
following kind:

Which city has more inhabitants?

(a) Hyderabad
(b) Islamabad

How confident are you that your answer is correct?
50%, 60%, 70%, 80%, 90%, 100%

Imagine you are an experimental subject. Your task is to choose one of these
two alternatives. Suppose you choose Islamabad, as most subjects in previous
studies did. Then you are asked to state your confidence, or subjective
probability, that your answer “Islamabad” is correct. 50% confident means
guessing; 100% confident means that you are absplutely sure that Islamabad
is the larger city. From a large sample of questions, the experimenter counts
how many answers in each of the confidence categories were actually correct.

The major finding of some two decades of research is the following
(Lichtenstein, Fischhoff & Phillips, 1982): In all the cases where subjects said,
“I am 100% confident that my answer is correct”, the relative frequency of
correct answers was only about 80%; in all the cases where subjects said, “I
am 90% confident”, the relative frequency of correct answers was only about
75%; when subjects said “I am 80% confident”, the relative frequency of
correct answers was only about 65%, and so on. Values for confidence were
systematically higher than relative frequencies. This systematic discrepancy
has been interpreted as an error in reasoning and has been named over-
confidence bias. Quantitatively, overconfidence bias is defined as the difference
between mean confidence and percentage correct.

Is overconfidence bias really a “bias” in the sense of a violation of prob-
ability theory? Let me rephrase the question: has probability theory been
violated if one’s degree of belief (confidence) in a single event (i.e. that a
particular answer is correct) is different from the relative frequency of correct
answers in the long run? From the point of view of the frequency interpre-
tation, the answer is “no”. In this view, probability theory is about frequencies;
it does not apply to single-event judgments such as confidences. Therefore, no
statement about confidences can violate the laws of probability. Even for
Bayesians, however, the answer is not “yes”. The issue here is not internal
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consistency, but the relation between subjective probability and external
(objective) frequencies, which is a more complicated issue and depends on
conditions such as independence. In particular, if there is no feedback after
each answer, as in this research, and if the true answers for a series of
questions are dependent, one cannot expect that one’s average degree of belief
matches the relative frequency of correct answers. Consider, for instance, pre-
dictions of the following type: “Will there be snowfall on December 24, 1999,
in downtown Boston? Yes/No.” “Will there be snowfall on December 24,
1999, at Logan (Boston) airport? Yes/No.” “Will there be snowfall on
December 24, 1999, in Cambridge, Mass.? Yes/No.” And so on. Assume,
after careful consideration, that your probability that there will be snow is 0.7
in each case. Nevertheless, you cannot expect that your single-event confi-
dences match the relative frequencies in the long run, because the outcomes
are dependent. If it snows in downtown Boston, it will most likely snow in all
places, and you appear to be underconfident; otherwise you will appear
overconfident.

For these various reasons, a discrepancy between confidence in single events
and relative frequencies in the long run should not be labeled simply an
“error” in statistical and probabilistic reasoning, contrary to the claims in the
heuristics-and-biases literature. It only looks that way from the perspective of
a narrow interpretation of probability theory that blurs the fundamental
distinction between single events and frequencies.

However, for the last two decades, many researchers have taken it for
granted that any systematic difference between confidence and frequency is a
reasoning error, a regrettable deviation from rationality. And they assumed
that their task is to explain this discrepancy by some deficiency in our mental
or motivational programming, such as a “confirmation bias” (Koriat, Lichten-
stein & Fischhoft, 1980), “insensitivity to item difficulty” (von Winterfeldt &
Edwards, 1986, page 128), and the tendency of humans in the Western world
to overestimate their intellectual powers (Dawes, 1980). Similar to other
“cognitive illusions”, overconfidence bias has been suggested as an expla-
nation for human disasters of many kinds, including deadly accidents in
industry (Spettell & Liebert, 1986), errors in the legal process (Saks & Kidd,
1980) and systematic deviations from rationality in negotiation and manage-
ment (Bazerman & Neale, 1986).

Many experiments have demonstrated the stability of the overconfidence
phenomenon despite various “debiasing methods”, such as warning subjects
about overconfidence prior to the experiment or providing monetary
incentives. We even used a bottle of French champagne as an incentive, but
to no avail. Edwards and von Winterfeldt (1986, page 656) concluded in a tone
of regret: “Can anything be done? Not much.” .

I will now apply the distinction between single-event probabilities and fre-
quencies to the overconfidence bias. Take the same kind of general-knowledge
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questions that have been used before to demonstrate the overconfidence bias.
But now let our subjects make frequency judgments. After our subjects
answered 50 general-knowledge questions of the Hyderabad—Islamabad type,
in the usual format, they also had the opportunity to judge frequencies: “How
many of these 50 questions do you think you answered correctly?”

If confidence in one’s knowledge were truly biased due to confirmation bias,
wishful thinking, or other deficits in cognition, motivation, or personality,
then the difference between a single-event and a frequency representation
should not matter. Overestimation should remain stable, as it does with
warnings and bribes.

Table 7.4 shows the results of two experiments (Gigerenzer, Hoffrage &
Kleinbélting, 1991). If one calculates, for each subject, the difference between
mean confidence (averaged over 50 questions) and the relative frequency of
correct answers, one finds as usual a stable positive difference that has been
called the overconfidence bias: the value +13.8 is such a difference (multiplied
by 100, and averaged across the 80 subjects in the first experiment). But the
interesting issue is how the frequency estimates compare with the actual
frequencies.

When we compared subjects’ estimated frequencies with their true
frequencies, there was no overestimation. Frequency judgments were quite
accurate. In both experiments, the mean differences were even slightly
negative, indicating a tendency towards underestimation. For instance, the
figure ~2.4 means that in the actual set of 50 questions, the estimated
frequency of correct answers was, on the average, 1.2 lower than the true
frequency. Subjects missed the true frequency by an average of only about 1
correct answer in a set of 50 questions.

Note that the very same subjects appear to be overestimating their
knowledge, if one blurs the distinction between single-event probabilities and

Table 7.4 How to make the overconfidence bias disappear (see
Gigerenzer, Hoffrage & Kleinbélting, 1991)

Experiment | Experiment 2
Difference between (n=80) (n=97)

+13.8 +15.4

Mean confidence and relative
frequency of correct answers
(“overconfidence bias”)

Estimated frequency and -24 ~4.2

frequency of correct answers

Note: To make values for frequency and confidence jufigments comparable, all
frequencies were transformed to relative frequencies. Values shown are
differences multiplied by a factor of 100.
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frequencies. You may think that this difference between single-event and
frequency judgment is simply due to subjects having second thoughts about
their performance at the end of the experiment. We have checked this. When
the sequence “confidence judgments—frequency judgment” was repeated again
and again (by presenting several sets of 50 questions in a sequence), subjects
consistently gave different values for confidence and frequency.

This chapter is not the place to pursue the question of how to model these
striking judgments. We have developed the theory of probabilistic mental
models (Gigerenzer, Hoffrage & Kleinbélting, 1991), which explains this and
related phenomena with an algorithm that infers both confidences and
frequencies from frequency information—that is, from frequency information
based on different reference classes.

To summarize: I have argued that the discrepancy between mean confidence
and relative frequency of correct answers, known as “overconfidence bias”, is
not an error in probabilistic reasoning. It only seems that from a narrow
normative perspective, in which the distinction between single-event probabili-
ties and frequencies is blurred. If we ask our subjects about frequencies instead
of single-event probabilities, we can make this stable phenomenon disappear.
The conceptual distinction is much more effective with our subjects than
money or French champagne.

The striking effect of frequency representations on apparent violations of
probability theory, as reported in this chapter, seems to generalize to so-called
violations of utility theory as well. For instance, Keren and Wagenaar (1987)
showed that standard violations such as the “certainty effect” and the
“possibility effect” (Kahneman & Tversky, 1979) largely disappear when a
single gamble is changed into a repeated gamble (see also Keren, 1991; Lopes,
1981; Montgomery & Adelbratt, 1982). It also seems to generalize to a class
of phenomena known as the “illusion of control” (Langer, 1975), which
largely disappears if single-event estimates are replaced by judgments about a
series of events (Koehler, Gibbs & Hogarth, in press).

7.3 CONCLUSIONS

Probability theory and psychology have historically been intertwined since the
Enlightenment. The psychological theories of Locke, Hume, and Hartley
provided the grounds for the classical interpretation of probability, in parti-
cular for the assumption that the mind unconsciously tallies frequencies and
converts them into rational degrees of belief. This created the fiction of the
reasonable man (/’homme éclairé) and the blurring of the distinction between
objective frequencies and subjective probabilities. When, by the early
nineteenth century, psychological theories had shifted to illusions, the reason-
able man dissolved and the difference between frequencies and degrees of
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belief became clear. The reasonable man gave way to the average man
(’homme moyen), and the frequency interpretation of probability emerged
and became dominant. When the subjective interpretation—Bayesianism and
subjective utility theory—regained influence in the second half of this century,
these modern versions of Enlightenment rationality often did not distinguish
between single-event probabilities and frequencies, nor between single and
repeated gambles—just as classical probability theory had not. And many
psychologists, following in these footsteps, also failed to make this distinction
and found the human mind overflowing with cognitive illusions. Conflating
single-event probabilities and frequencies now served the fiction of the
irrational man.

Much of the current view is condensed in my economist colleague’s dictum,
“either reasoning is rational or it’s psychological.” Rationality is now defined
in terms of formal algorithms or axioms, and psychology is called upon to
explain the irrational. However, algorithms work on information, and infor-
mation needs representation. To discuss rationality in terms of algorithms
alone, good or bad ones, is incomplete if one does not pay attention to the
kind of information representation that these algorithms were designed to
work upon. Consequently, one cannot simply conclude from what looks like
bad performance, or cognitive illusion, that there are poor algorithms. This
non sequitur has been a basic flaw in the heuristics and biases program. When
information is represented in terms of frequencies rather than single-event
probabilities, apparently stable cognitive illusions tend to disappear.
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