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GERD GIGERENZER

Discovery in Cognitive Psychology:
New Tools Inspire New Theories

The Argument

Scientific tools — measurement and calculation instruments, techniques of inference
— straddle the line between the context of discovery and the context of justification,
In discovery, new scientific tools suggest new theoretical metaphors and concepts;
and in justification, these tool-derived theoretical metaphors and concepts are more
likely to be accepted by the scientific community if the tools are already entrenched in
scientific practice.

Techniques of statistical inference and hypothesis testing entered American
psychology first as tools in the 1940s and 1950s and then as cognitive theories in the
1960s and 1970s. Not only did psychologists resist statistical metaphors of mind prior
to the institutionalization of inference techniques in their own practice; the cognitive
theories they ultimately developed about “the mind as intuitive statistician” still bear
the telltale marks of the practical labaratory context in which the tool was used.

Introduction

The Problem

How do we arrive at new ideas? Gottfried Wilhelm Leibniz once had a vision of how to
generate new knowledge mechanically. “Now since all human knowledge can be
expressed by the letters of the alphabet, and since we may say that whoever understands
the use of the alphabet knows everything, it follows that we can calculate the number of
truths which men are able to express” ([1690] 1951, 75). And calculate he did: The
number was in the order of 1 followed by 73 trillion zeros. It included all truths, all
falsehoods, and, for the most part, letter combinations that signify nothing at all. Swift
parodied Leibniz’ “art of combinations” in Gulliver’s Travels. The academicians of
Lagoda had written down all the words of their language and randomly combined
them. If a sequence of words looked intelligible, the Lagodians wrote it down and

* This article was supported by a grant, P8842-MED, from the Fonds zur férderung der wissen-
schaftlichen Forschung (FWF), Austria.
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stored it in their library of knowledge. Present-day computers can practice Leibniz’s
art of combinations much faster than the Lagodans could. However, since Gulliver
visited the academy of Lagoda long ago, the mechanical art of discovery has made little
progress. Where do new ideas come from, if not from Lagoda?

The Demise of the Problem

Most working scientists — and in this regard social scientists are indistinguishable
from natural scientists — have either been indifferent to the source of their new ideas,
or wax mystical on the subject, relating dreams and thunderbolt inspirations. Many
philosophers, especially neopositivists, have generally followed the scientists’ lead,
drawing a sharp distinction between the context of discovery and the context of
justification, and concentrating mainly on justification: “The philosopher of science is
not much interested in the thought processes which lead to scientific discoveries . . .
that is, he is not interested in the context of discovery, but in the context of justification”
(Reichenbach 1949, 292).

Simply put, the message is: We neither know nor care where theories come from; we
just want to know whether they are right or wrong. In the writings of many, discovery
and justification became two distinct, temporally ordered and largely unconnected,
entities — so distinct as to mark the lines between disciplines. For instance, the
philosopher R. B. Braithwaite remarked on problems of discovery: “These are historical
problems, both as to what causes the individual scientist to discover a new idea, and as
to what causes the general acceptance of scientificideas. The solution of these historical
problems involves the individual psychology of thinking and the sociology of thought.
None of these questions is our business here” (1953, 20-21).

Karl Popper, in The Logic of Scientific Discovery ([1935] 1959), denied the very
existence of the object named in his title (the original German version, however, is
entitled Logik der Forschung, which means “logic of research”). Popper, like
Braithwaite, handed down the study of discovery to psychology:

The question how it happens that a new idea occurs to a man — whetheritis a
musical theme, a dramatic conflict, or a scientific theory — may be of great
interest to empirical psychology; but it is irrelevant to the logical analysis of
scientific knowledge. . . . Accordingly, I shall distinguish sharply between the
process of conceiving a new idea, and the methods and results of examining it
logically. ... My view may be expressed by saying that every discovery contains
“an irrational element,” or a “creative intuition,” in Bergson’s sense. (P. 31)

Discovery thus became associated with irrationality, or Popper’s lucky guesses, and
romanticized as fundamentally mysterious. Justification, in contrast, became
associated with logic, mathematics, and statistics.

Contrary to Popper’s suggestion, psychologists have not paid much attention to the
processes of discovery. There are exceptions, such as Max Wertheimer (1959) on
Einstein, Howard Gruber (1981) on Darwin, Ryan Tweney (1985) on Faraday, and
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Herbert Simon (1973) reworking a logic of discovery. But by and large, psychologists,
like other social scientists, have been strongly concerned with the logic and the tools
for justification — in particular, with Popper’s falsification logic and, to a much
greater extent, with the statistical methods of R. A. Fisher, Jerzy Neyman and Egon
Pearson, and others, for drawing inferences from data to hypotheses.

A New Look at Discovery: The Theoretical Power of Tools

The conduct of science is often discussed using the twin terms of theory and data.
Hypothetico-deductivist methodology in general and fallibilism in particular hold that
theory comes first, then data are obtained in an attempt to falsify the theory. In
Popper’s view, for instance, data hardly have lives of their own. Only through the lens
of theory do we know what we observe (e.g., Popper 1978, 46). On inductivist
accounts, however, data play the primary role, and theories emerge as generalizations
from data. Much of the debate surrounding the “theory-ladenness” of data has
centered on the precise relationship of these twins. Until recently, however, few
philosophers of science have looked beyond theory and data, to what actually happens
in the laboratory. Even those philosophers who called themselves logical empiricists,
ironically, did not include laboratory routines and tools in their analysis of scientific
knowledge.

Scientific methods — from physical tools such as microscopes to analytical tools
such as statistical techniques — are, however, not “neutral” with respect to either data
or theory. First, data are tool-laden. For instance, quantitative judgments — ranging
from estimates of the brightness of light to the number of hours per week one spends
watching television — vary systematically with the particular measurement method
used (e.g., Birnbaum 1982, Schwarz et al. 1985). This poses a challenge to one
fundamental assumption about the mind: the assumption that there exist, prior to
measurement, definite subjective values for opinions, attitudes, or probabilities, which
are to be “recorded” by some neutral method. The counterclaim is that such subjective
values often do not exist but are created in the interaction between a measurement
method and a mind (Gigerenzer 1981). Accepting the challenge would lead us to
analyzing the structure of a method (such as experimental tasks, instructions, and
response scales) in terms of which information, probability cues, and demand
characteristics act on the mind, rather than looking for a “neutral” method. This would
revise the traditional questions of the type “What is in the mind?” into “How does this
experimental setup (or environment) act on the mind?” However, much of psychology,
like much of everyday thinking, still attempts to answer questions of the first type and
looks for “neutral” tools of data generation that do not “distort” the subjective values
that are assumed to have an independent prior existence (Gigerenzer 1987a).

Second, and this is the argument I will develop here, theories are tool-laden, too.
How do tools for justification shape theoretical concepts? Little seems to be known
about this from the history of science, although there are a few suggestive examples. It
has been argued that after the mechanical clock became an indispensable tool for



332 GERD GIGERENZER

astronomical measurement, the universe itself became seen as a kind of mechanical
clock, and God as a divine watchmaker. Lenoir (1986) showed how Faraday’s instru-
ments for recording electric currents shaped electrophysiological theory by promoting
such concepts as “muscle current” and “nerve current.” Hackmann (1979) made a
similar point about the role of instruments in eighteenth-century electrostatics. More
generally, Gooding, Pinch, and Schaffer (1989) and Hacking (1983) have argued that
experimental practice has a life of its own, and Galison (1987) and Lenoir (1986) have
emphasized the role of the familiarity experimenters have with their tools, and the
importance of experimental practice in the quest for knowledge. Nonetheless, despite
the recent move toward emphasizing experimenters’ practice in addition to theory and
data, not much is known about how that practice shapes new theoretical concepts.

What follows is a case study using theories of mind. I will (i) state the tools-to-theories
heuristic, (ii) show how new statistical tools inspired new cognitive theories, and (iii)
conclude with the argument that looking at the origins of theories is not only of
historical interest but can help to evaluate limitations and possibilities in current
cognitive theories.

The Tools-to-Theories Heuristic

My general argument is that there is an understanding of discovery and acceptance of
new ideas in terms of heuristics that goes beyond the accidental, mystical, and
idiosyncratic. Heuristics are strategies that can be, but need not be, consciously
applied by researchers. Heuristics are more general than thunderbolt guesses but less
general than a monolithic logic of discovery, of the sort Hanson (1958) was looking
for. The heuristics approach to discovery has been promoted by Herbert Simon and
his co-workers (e.g., Langley et al. 1987; Simon and Kulkarni 1988), and I will discuss
below in what respects my approach differs from Simon’s data-driven concept of
heuristics. I will try to identify here only one of a potential bundle of heuristics that
generate new ideas: the tools-to-theories heuristic (Gigerenzer 1991a; Gigerenzer and
Murray 1987).

My thesis is twofold: (1) Discovery: new scientific tools suggest new theoretical
metaphors and concepts, once they are entrenched in a scientist’s practice. (2)
Acceptance: once proposed by an individual scientist (or group), the new theoretical
metaphors and concepts are more likely to be accepted by the scientific community if
the members of the community are also familiar with the new tools.

By “tools” I mean tools of justification — analytical or physical. Analytical tools
may or may not rely on data. Examples of analytical methods of justification that use
data are tools for data processing such as statistics; examples of analytical methods
that do not use data are logical criteria for theory evaluation such as logical consistency.
Examples of physical tools of justification include measurement instruments such as
clocks. Thus the present thesis is more specific than the general assertion that scientists
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may use any new technology — such as the steam engine or the telephone switchboard
— as metaphors or even as models.

In what follows I will deal with one specific analytical tool: techniques of statistical
inference and hypothesis testing.

The Institutionalization of the Tool: The “Inference Revolution”

The birthday of the experimental study of the mind is usually dated toward the end of
the year 1879, when Wilhelm Wundt devoted some space at the University of Leipzig
for conducting experiments. Wundt followed the German ideal for linking teaching
and research in the form of an institute where students could perform experiments.
Like G. T. Fechner’s psychophysics, Wundt’s psychology retained intimate links with
philosophy and the Geisteswissenschaften. In the United States, in contrast, an
intellectual structure comparable to German philosophy did not exist, and psychology
developed disciplinary autonomy more quickly — given a university structure that
favored specialization and was controlled by businessmen and politicians engaged in
practical professional activity (Danziger 1990). Thus proponents of the new project of
a scientific psychology had to legitimate their project before a very different tribunal,
depending on which side of the Atlantic they worked. In the United States, the primary
legitimation was practical, not philosophical, and the primary market for marketable
methods was education (ibid.; see also Rose 1985 on how practical problems shaped
scientific psychology in England).

To offer methods that would be able to solve the practical problems of educational
administrators (e.g., to decide whether a new teaching method is more effective than an
established one), the Wundtian model of experimentation had to be radically revised.
In a Wundtian experiment, one or a few individuals were studied—usually Ph.D.s or
professors —, each of them a trained observer of his own mental processes; the goal
was knowledge, not practical application. During the 1920s and 1930s, a fundamental
change in experimental practice occurred in the United States: from studying single
individuals to aggregates; from studying professional psychologists to studying
children, recruits, and undergraduates; and from studying natural groups such as boys
versus girls (as in the Galtonian, not the Wundtian, tradition) to the study of treatment
groups. Treatment groups are artificial, in the sense that their members happen to get
the same treatment — such as a new method of instruction. Treatment groups
represent neither a preexisting social or biological category nor an individual. Danziger
(1987, 1990) has documented this shift in experimental practice. For instance, in
1914-16, 70 percent of empirical studies in the American Journal of Psychology
reported individual data only; by 1934-36 this had dropped to 31 percent, and by
1949-51 to 17 percent. Group data only were reported by 80 percent of the studies in
1949-51.

The triumph of the aggregate over Wundt’s individual, and of the treatment group
over Galton’s natural groups, prepared the field for the institutionalization of statistical
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inference in the mid-1950s. Statistical methods for testing the significance of the
difference between the means of two (or more) randomized treatment groups — such
as Student’s ¢-test and Fisher’s analysis of variance — seemed to be tailor-made for the
new subject matter of psychology: the aggregate.

Experimental studies before 1940 did not use any single standardized method to
make inferences from data to hypotheses. On the contrary, they often employed a
multitude of descriptive statistics — such as means, medians, modes, ranges, standard
deviations, sums, ratios, and percentages. Inferences to hypotheses were sometimes
made informally by eyeballing; sometimes, more formally, by critical ratios. Descrip-
tion and inference were not distinguished at all in other studies, or no inferences
beyond the data were made (Gigerenzer and Murray 1987, chap. 1). Experimentation
before 1940 was not of one kind: different ideas of experimental practice — ranging
from Wundt to the treatment group and from the Gestalt psychologists’“demonstration
experiment” to Egon Brunswik’s “representative design” — coexisted.

The statistician R. A. Fisher (1935), however, emphasized that experimental design
and statistical analysis are two sides of the same coin. To make Fisher’s methods of
significance testing fit psychological experiment, experimental design first had to show
repetition, randomization, and independence — the mathematical ingredients of
Fisher’s significance testing. Wundtian-type experiments, for instance, did not do this,
but the randomized treatment group experiment did. The Fisherian link between
experiment and statistics effectively ruled out other ideas of experimental practice
from experimental psychology, once the “inference revolution™ had occurred.

Rucci and Tweney (1980) found only seventeen articles using Fisher’s analysis of
variance (ANOVA) before 1940, mainly from educational psychology and
parapsychology. By 1955, more than 80 percent of articles in four leading journals used
ANOVA and related methods of significance testing for evaluating hypotheses (Sterling
1959). And today, the number is close to 100 percent. I will take 1955 to be an
approximate date for the firm institutionalization of inferential statistics in curricula,
textbooks, and editorials — in short, the inference revolution (Gigerenzer and Murray
1987). By the early 1950s, half of the psychology departments of leading American
universities had made statistical inference a graduate program requirement (Rucci and
Tweney 1980). Editors of major journals made statistical inference a requirement for
publication. Editors and reviewers alike looked for objective criteria to evaluate the
quality of research submitted, independent of its content. For instance, after editing
the Journal of Experimental Psychology for twelve years, A. W. Melton said in an
editorial that he used the level of significance (.05, .01, or .001) as a yardstick for the
quality of the studies submitted (1962).

A flood of statistical textbooks for psychologists appeared, typically written by
other psychologists — that is, nonmathematicians. Early textbook writers, such as
J. P. Guilford in his influential Fundamental Statistics in Psychology and Education
(1942), taught Fisher’s significance testing, but in a version deeply confused with a
“Bayesian” interpretation of levels of significance. That is, probapbilities of data given
some hypothesis (levels of significance) were confused with Bayesian probabilities of
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hypotheses given some data; significance testing cannot provide the latter, but
probabilities of hypotheses are what researchers want, after all. After World War 11,
textbook writers became aware also of Jerzy Neyman and Egon S. Pearson’s
hypothesis-testing theory and started to add concepts from the Neyman-Pearson
theory, such as “power,” to their texts. The resulting statistical tool was presented as a
single, monolithic body of knowledge, simply entitled “statistics.” Even today,
experimenters and students are not informed about the raging controversies between
Fisher on the one hand and Neyman and Pearson on the other, and between these
frequentists and the Bayesians, or about the controversial issues surrounding statistical
inference. Nor is it pointed out that physicists, chemists, and molecular biologists get
along well without all these techniques of inference. Instead, the institutionalized tool
has been presented as the sine qua non of scientific inference.

The German situation provides an instructive comparison. As mentioned above,
German experimental psychology could legitimate itself independently of marketing
methods. Moreover, there existed a well-established educational system, which
provided only a limited market for the products of applied psychology (Danziger
1990). These reasons, among others, seem to be responsible for the fact that in
Germany the various experimental practices developed since Wundt were not as easily
dominated by the treatment group method. For instance, in the period 1924-25, the
proportion of studies reporting group data only was as low as zero percent in
Psychologische Forschung and 13 percent in Archiv fiir die gesamte Psychologie,
compared to 35 percent in the American Journal of Psychology and 44 percent in the
Journal of Experimental Psychology. Ten years later that proportion was still low in
the two German journals: 13 percent and 23 percent, respectively. In the American
Journal of Psychology and the Journal of Experimental Psychology, however, the
reporting of group data only had already reached 55 percent and 61 percent,
respectively (ibid.). In Germany psychology, consequently, inferential statistics was
institutionalized only when experimental methods imported from the United States
reshaped it after World War 1L

From Institutionalized Statistics to Intuitive Statistics: The “Cognitive Revolution”

Shortly after the inference revolution, American behaviorism was eroded and
ultimately overthrown by mentalist concepts. This is commonly referred to as the
“cognitive revolution” of the 1960s (Gardner 1985). The cognitive revolution was,
however, not a “re-volution” in the original sense of the term; it was not a return to the
earlier mentalist concepts. The cognitive revolution did more than revive the mental; it
changed the very meaning of what the mental is. Tools such as computers and statistics
turned into theories of mind.

Techniques of statistical inference provided a large part of the new mentalist
concepts that fueled the cognitive revolution. Cognitive processes became understood
as statistical calculations, and the mind became seen as a statistician that draws
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random samples from nervous fibers, computes probabilities, calculates analyses of
variances, and sets decision criteria dependent on cost-benefit analyses. Figure 1
summarizes the most influential theories. For each theory, I have labeled the cognitive
process it deals with and the kind of homunculus statistician in charge of that mental
activity. The cognitive processes range from elementary to complex, and from
conscious to unconscious. For the most part these topics were not new; they were
studied intensively before the inference revolution (e.g., in Fechnerian psychophysics
and in the Gestalt tradition). Using two topics from the forehead in Figure 1, I will
illustrate how old questions were reshaped and found new answers through the
analogy between tool and mind.
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Figure 1. Cognition as intuitive statistics

Examples: visual and auditory stimulus detection: J. A. Swets (1964); recognition memory: B. B. Murdock
(1982); social judgment: B. Brehmer and C. R. B. Joyce (1988); information processing: W. Edwards (1966);
causal attribution: H. H. Kelley (1967); pattern recognition: D. W. Massaro (1987); rationality (defective):
A. Tversky and D. Kahneman (1974); creativity and discovery: P. Langley, H. A. Simon, G. L. Bradshaw,
and J. M. Zytkow (1987); testimony: M. H. Birnbaum (1983); shape and form perception: R. L. Gregory
(1974); visual and auditory discrimination: W. P. Tanner (1965); adaptive memory: J. R. Anderson and R.
Milson (1989).
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Causal Attribution as Intuitive Statistics

What makes us perceive a causal link between two events? What different kinds of
causal relations does the human mind distinguish? Jean Piaget (1930), Albert Michotte
([1946] 1963), Karl Duncker ([1935] 1945), and others studied these and related
questions in Europe. Michotte, for instance, investigated how certain temporal and
spatial relationships between visual objects, such as moving dots, produced
phenomenal causality. Subjects were made to “perceive” that one dot pushes or
launches another. After the inference revolution, the American psychologist Harold
H. Kelley and his colleagues made causal attribution a main topic in the cognitive
social psychology of the 1970s and 1980s. His new idea was this: In his “causal
attribution theory,” Kelley (1967, 1973) postulated that the mind attributes a cause to
an effect in the same way as American behavioral scientists have come to do — namely,
by calculating (unconsciously) an analysis of variance, computing F-ratios, and testing
null hypotheses.

The assumption is that the man in the street, the naive psychologist, uses a naive
version of the method used in science. Undoubtedly, his naive version is a poor
replica of the scientific one — incomplete, subject to bias, ready to proceed on
incomplete evidence, and so on. Nevertheless, it has certain properties in common
with the analysis of variance as we behavioral scientists use it. (Kelley 1973, 109)

Kelley assumed that the mind calculates an analysis of variance (ANOVA) with
three independent variables, which he called person, entity, and circumstances (time
and modality). These were the potential causes for an observed behavior. For instance,
in a study on causal attribution by McArthur, subjects were given the following
information: “Paul is enthralled by a painting he sees at the art museum. Hardly
anyone who sees the painting is enthralled by it. Paul is also enthralled by almost every
other painting. In the past, Paul has almost always been enthralled by the same
painting” (1972, 110).

Subjects were asked what caused the effect (being enthralled by the painting): Paul
(person), the painting (entity), the particular circumstances (time), or some interaction
of these factors? The information supplied to the mind’s hypothesized ANOVA system
specified that there is small variance (in being enthralled) across paintings, high
variance across persons, and small variance over time. Therefore, the F-value (in
ANOVA, F after Fisher) is low for entity and circumstance but high for person, and
the mind should attribute the cause to the person — that is, to Paul.

The analogy between the statistical tool and causal inference was more than a new
fashionable language, for it radically changed the kind of questions posed and the kind
of research undertaken. Here is a shortlist of discontinuities in cognitive theory that
bear the telltale fingerprints of the new tool:

1. Kinds of causal inference. Michotte’s work reflected the broadly Aristotelian
conception of four kinds of causes (see Gavin 1972). Piaget (1930) even distinguished
seventeen kinds of causes in children’s minds. Through the analogy with ANOVA,
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however, the new Fisherian mind focused only on the one kind of cause for which
ANOVA isused as a tool. This kind of causality is similar to Aristotle’s material cause.

2. Nature of causal inference. In Michotte’s view, and also in the view of the Gestalt
psychologists, causal perception is direct and spontaneous and needs no inference — a
consequence of laws inherent in the perceptual field. ANOVA, in contrast, is used in
psychology as a technique for inductive inferences from data to hypotheses; the focus
in Kelley’s attribution theory is, consequently, on the inductive, data-driven side of
causal perception.

3. Material 1o study causal inference. In Michotte’s and Heider’s work, the experi-
mental setup for studying causal perception consisted, typically, of moving stimuli
such as dots. ANOVA, in contrast, needs repetitions or numbers as data in order to
estimate variances and covariances. Consequently, the material presented to subjects
in order to study the new Fisherian mind consisted of stories with information about
the frequency of events (e.g., McArthur 1972) — material that had played no role in
either Michotte’s or Piaget’s work.

These three fingerprints of the tool may suffice here to illustrate the sharp
discontinuity in theory before and after the inference revolution. I turn now to some
details important for the present thesis on discovery and acceptance.

Kelley repeatedly credited Heider for having inspired his ANOVA theory of causal
attribution. Heider indeed suggested that causal reasoning might be analogous to
experimental methods, but he metaphorically talked about an implicit “factor analysis”
(Heider 1958, 123, 297). Now factor analysis was not a method of the experimental
community; rather it was an indispensable method of its rival community, the
“correlational” discipline that investigates individual differences in intelligence and
personality. The schism between the two communities, the “Tight Little Island” of
experimental psychology and the “Holy Roman Empire” of correlational psychology,
as Cronbach (1957) called them, had been repeatedly taken up in presidential addresses
before the American Psychological Association and had deeply affected the values and
the mutual esteem of psychologists (Gigerenzer 1987b). There is no a priori reason why
factor analysis or analysis of variance should be a better model of intuitive causal
reasoning — and in fact both tools have been used (largely uncritically) in their
respective communities to justify causal claims. But Kelley did not follow Heider’s
suggestion here. He chose the tool he and his colleagues of the American experimental
community were familiar with: analysis of variance.

By the time Kelley proposed the analogy between ANOVA and causal reasoning,
about 70 percent of the articles in major American journals using statistical tests
already used ANOVA to process data and justify conclusions to hypotheses (Edgington
1974). Thus when Kelley proposed his new vision of the mind, his colleagues in the
experimental community were familiar with the tool from their laboratory practice
and were prepared to accept the analogy as plausible. The long-sought laws of causal
reasoning were the tools of the behavioral scientists. What else could they be?

Practical Context. 1 want to emphasize that the heuristic of discovery and acceptance
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I am dealing with here is not simply the application of a new kind of mathematics to an
old topic. My focus is on the practical context of justification a scientist is familiar
with. This context is much richer than the pure mathematics or statistics used. For
instance, nothing in the mathematics of significance tests (as used in ANOVA) tells the
scientists whether they should use the test to reject hypotheses or reject data (so-called
“outliers”). Both are tasks in experimental science: get rid of bad hypotheses and of
bad data.

In the experimental community within psychology, however, significance tests have
been used only for rejecting hypotheses, not as a tool for rejecting data. In the labora-
tory the problem of outliers, or potentially bad data, has been handled informally, by
judgment. In contrast, significance tests in other disciplines or periods were applied to
reject data, not hypotheses. For instance, in the early nineteenth century it was
common practice for astronomers to use significance tests (similar to those in ANOVA)
for rejecting outliers (Swijtink 1987). At least provisionally, the astronomers assumed
their theory to be correct and mistrusted the data, whereas the ANOVA mind,
following the laboratory practice in experimental psychology, assumes the data to be
correct and mistrusts the theory. Assume that Harold Kelley had lived one and a half
centuries earlier than he did and was trained in the use of significance tests to reject
data. According to the present thesis, it is likely that our nineteenth-century Kelley
would have seen causal attribution as hypothesis-driven, rather than data-driven. The
homunculus statistician in the brain would have checked the data — that is, the
information presented — and not the hypothesis.

The general point is that the new tool is not just an application of new mathematics;
it also bears the marks of the practical laboratory context in which it is used. In the case
of Kelley’s new theory, that context is an inductive, data-driven view of justification.

Stimulus Detection as Intuitive Statistics

Detection of a stimulus and discrimination between two stimuli are seen as the
elementary building blocks of cognition. How intense must a signal on a radar screen
be to be detected against a background of white noise? How much heavier than a
standard stimulus of 100 grams must a comparison stimulus be for a difference to be
perceived? Since Herbart (1816), detection and discrimination have been explained
using a threshold metaphor. Detection occurs only if the effect a stimulus has on the
nervous system exceeds a certain threshold value, the “absolute threshold.” Detecting
a difference (discrimination) between two stimuli occurs if the excitation from one
exceeds that of the other by an amount greater than a “differential threshold.” A long
psychophysical tradition, from E. H. Weber to G. T. Fechner to E. B. Titchener, sawin
the differential thresholds the elements of mind (Titchener counted about 44,000).
After the inference revolution, the psychophysics of thresholds was revolutionized
by the new metaphor of the mind as a statistician. W. P. Tanner and J. A. Swets
proposed in their theory of signal detectability (TSD) that the mind “decides” whether
there is a stimulus or only noise, just as a statistician of the Neyman-Pearson school
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decides between two hypotheses (Swets 1964; Tanner and Swets 1954). In Neyman-
Pearson statistics, two sampling distributions (hypotheses H; and H,) and a decision
criterion are defined. The latter balances the probabilities of the two possible decision
errors, Type I and Type II errors. Depending on which side of the criterion the data
fall, the decision “reject H, and accept H,,” or vice versa, is made. In straight analogy,
TSD assumes that the mind calculates two sampling distributions for “noise” and
“signal plus noise” and sets a decision criterion. The latter balances the costs of the two
possible perceptual errors, now called “false alarms™ and “misses.” Depending on
which side of the criterion an observation falls (both the criterion and the observation
are represented as likelihood ratios), the subject says “No, there is no signal” or “Yes,
there is a signal.” Tanner and his colleagues were, like Kelley, explicit about the
analogy between the human mind and a statistician. The subject’s “task is, in fact, the
task of testing a statistical hypothesis” (Tanner and Swets 1954, 403). Tanner (1965)
referred to the mind as a “Neyman-Pearson” detector and, in unpublished work,
included in flow charts the drawing of a homunculus statistician performing the
unconscious statistics of the mind (see Gigerenzer and Murray 1987, 49-53).

Again, the new analogy radically changed the understanding of the nature of
stimulus detection and created new research questions and even a new kind of data.
Here are some fingerprints of the statistical tool:

1. Nature of stimulus detection. The century-old concept of a fixed threshold was
replaced by the twin notions of observer’s attitudes and observer’s sensitivity. Just asin
hypotheses testing the Neyman-Pearson technique emphasizes both a subjective part
(e.g., selection of a decision criterion depending on cost-benefit considerations) and a
mathematical part, stimulus detection became understood as involving both subjective
processes — such as attitudes and cost-benefit considerations — and sensory processes
(Swets et al., 1964).

2. New questions. The analogy between stimulus detection and intuitive statistics
made new questions thinkable. For instance, “How can the mind’s decision criterion
be manipulated?” A substantial number of experiments on visual and acoustic detection
and discrimination were performed to answer this question (see Green and Swets 1966;
Swets 1964).

3. New data. The analogy made new kinds of data visible. Two types of errors —
false alarms and misses — were generated and investigated in the new experiments, just
as the statistical theory distinguishes between two types of errors. As far as I can tell,
the practice of generating these two kinds of data was not common before.

For the present argument it is important that the new analogy between stimulus
detection and intuitive statistics was not suggested or even forced by new data. Quite
the contrary. In their seminal paper, Tanner and Swets (1954, 401) explicitly admit
that their new theory “appears to be inconsistent with the large quantity of existing
data on this subject.” What happened was that a new tool inspired a new theory, which
changed the kind of data generated.

Following Tanner’s lead, the Neyman-Pearson technique of hypothesis testing was
subsequently transformed into theories for a broad range of cognitive processes (see
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fig. 1), ranging from recognition memory (e.g., Murdock 1982; Wickelgreen and
Norman 1966) to eyewitness testimony (e.g., Birnbaum 1983) and perception of
randomness (e.g., Lopes 1982).

The Mind as an Intuitive Statistician

I will briefly discuss some of the remaining homunculi statisticians appearing in
figure 1. How does the mind perceive shape and form? Why is there no blank in the
viewed world that corresponds to the blind spot in the eye? How is this blank filled in?
To answer such questions, Gregory (1974, 1980) developed a hypothesis-testing version
of Helmholtz’s “unconscious inferences.” The mind is a “betting machine” or “induction
machine,” and the best model of its cognitive strategies is the scientific method:
“Perception is similar to science itself” (Gregory 1980, 63). To perceive an object means
to test and accept a hypothesis, and Gregory takes the notion of perceptions as
hypotheses quite literally. For instance, significance levels explain why we perceive an
object as having only one shape or form, despite the presence of competing hypotheses:
“We may account for the stability of perceptual forms by suggesting that there is
something akin to statistical significance which must be exceeded by the rival
interpretation and the rival hypothesis before they are allowed to supersede the present
perceptual hypotheses” (Gregory 1974, 528). Gregory’s “betting machine” is an eclectic
statistician who does Fisherian significance testing, Neyman-Pearson hypothesis
testing, and Bayesian statistics without clearly distinguishing between them — a
procedure similar to the eclectic teaching of statistics and the corresponding practice in
psychological laboratories mentioned above.

Ward Edwards and his co-workers were among the first to test whether the
homunculus statistician is a Bayesian statistician. In Edwards’ work, the dual function
of statistics as a tool and a model of mind is again evident. On the one hand, Edwards,
Lindman, and Savage (1963) proposed Bayesian statistics for scientific hypothesis
evaluation. On the other hand, in his research on information processing, Edwards
confronted untutored people with probability revision problems and studied how
good a Bayesian statistician the mind actually is. He found the mind to be a reasonably
good, albeit conservative Bayesian (e.g., Edwards 1966). His program was taken up by
Daniel Kahneman, Amos Tversky, and others, who claimed the opposite result: the
mind is not a Bayesian at all. In the 1970s and 1980s, Edwards’ Bayesian statistician in
the mind came to be seen as defective — a claim that stimulated controversies about
human rationality (e.g., Cohen 1982; Tversky and Kahneman 1974). However, the
“defective” Bayesian statistician is rather the exception. Most recent theories that
interpret pattern recognition, speech perception, adaptive memory, and other cognitive
processes as Bayesian statistics (e.g., Anderson 1991) consider this analogy to be both
normatively and descriptively appropriate. For instance, Massaro (1987) and Anderson
and Milson (1989) propose Bayes’ rule as both the optimal and the actual mechanism
for speech perception and human memory, respectively.
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The examples of new ideas and new cognitive theories I have given count among the
most influential and innovative ideas in cognitive psychology since the cognitive
revolution, Smith (1986) discussed related cases with physical tools. For instance, he
argued that Edward C. Tolman’s use of the maze as an experimental apparatus
transformed Tolman’s conception of purpose and cognition into spatial characteristics
such as “cognitive maps.”

The impact of tools on new ideas may be particularly great in such disciplines as
psychology, where experimenter and theoretician are but two roles of the same person.
Unlike physics, psychology has not yet established a division of labor between a
theoretical psychology and an experimental psychology.

Discovery without Acceptance

One important test for the present thesis is to look at the period before the
institutionalization of inferential statistics in experimental psychology. Theories that
conceive of the mind as an intuitive statistician (of whatever school) should have a very
small likelihood of being discovered during this earlier period, and an even smaller
likelihood of being accepted. I know of only a single case, that of Egon Brunswik, in
which an analogy between mind and statistician was proposed during this period. How
was his analogy received?

Brunswik’s psychology was based on a quite unusual blending of the European
functionalist tradition, represented by his doctoral adviser Karl Biihler at Vienna; the
logical positivist philosophy of the Vienna Circle, represented by his second doctoral
adviser, Moritz Schlick; and American neo-behaviorism, as set forth by Edward
Tolman (Leary 1987). The personal and professional ties with Tolman were the main
reason why Brunswik left Vienna for Berkeley in 1937. Once in the United States, he
became influenced by a fourth tradition, the Anglo-American statistical tradition of
correlation and regression analyses, as founded by Karl Pearson and Francis Galton.
Under the influence of the latter tradition, Brunswik changed his methods for
measuring perceptual constancies, from calculating (nonstatistical) “Brunswik ratios”
(see Brunswik 1934) to calculating Pearson correlations (Brunswik 1940), such as
“functional” and “ecological validities.” After adopting the new tools in the late 1930s,
he began to think of the perceptual system as an “intuitive statistician.” Like the
Brunswikian researcher, the perceptual system was supposed to calculate correlations
and regressions to infer the structure of the environment from ambiguous or incomplete
perceptual cues. Brunswik seems to have been the first to propose the metaphor of the
mind as intuitive statistician.

Brunswik’s analogy came too early, around 1940 — which is about fifteen years
before the institutionalization of inferential statistics in American experimental
psychology. Moreover, it rested on the “wrong” techniques: correlational statistics.
Brunswik’s intuitive statistician, like the Brunswikian researcher, was of the Karl
Pearson school. As mentioned earlier, correlation was an indispensable method not in
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the experimental community but rather in its rival community of personality
researchers, known as “correlational psychology” (Cronbach 1957). Brunswik could
not succeed in persuading his colleagues in the experimental community to consider
the statistical tools of the competing community as a model of how the mind works.
Ernest Hilgard (1955), in his rejection of Brunswik’s ideas, did not mince words:
“Correlation is an instrument of the devil” (p. 228).

Not only was Brunswik’s analogy not accepted by the experimental community at
the time; most of his colleagues did not even understand what Brunswik was saying.
The misunderstanding and the resistance are well-documented in the two discussions
of Brunswik’s new ideas — at Chicago in 1941, and at Berkeley in 1953 (see Gigerenzer
1987b). As Leary (1987, 133-34) points out, even Brunswik’s own students and
colleagues at Berkeley admitted a considerable degree of incomprehension.

Two months after Hilgard’s statement appeared in a series of comments on
Brunswik’s ideas that epitomize rejection and lack of understanding, Brunswik
committed suicide. Brunswik did not survive to see the success of his analogy. It was
accepted only after statistical inference became institutionalized in experimental
psychology, and with the new institutionalized tools rather than with (Karl) Pearsonian
statistics as models of mind.

Brunswik’s case illustrates the difference between discovery and acceptance. Tools
familiar from one’s own research practice can suggest new theoretical concepts and
metaphors. Familiarity with the tool in the scientific community to which the scientist
belongs can prepare or hinder the acceptance of the new ideas.

The Double Legacy of the Tool: Mathematics and Practical Context

Where do theories come from, and does it matter? I have argued that the context of
justification is a resource for discovery. But does knowledge about the origins of a
theory also matter for its evaluation? I will argue that looking at the origins of ideas is
not only of interest for understanding discovery and for acceptance of new theories,
but that it can also help in evaluating theories.

Tools do not come as pure mathematical (or physical) systems; they come laden with
the baggage of practical contexts of application. Features of the context in which a tool
has been used may be smuggled Trojan-horse fashion into new theories. I have
mentioned one such “birthmark” above. Because methods of statistical inference had
been used in experimental psychology exclusively for rejecting hypotheses while
trusting the data (and not vice versa), causal attribution was seen to be data-driven —
that is, to be the product of a cognitive mechanism that tests hypotheses (potential
causes) but not data (information).

In this section I will briefly point to a second feature of the practical context, which
has reappeared in recent cognitive research programs (for further details, see Gigerenzer
1991a). Statistical inference is taught and used in experimental psychology as if there
existed a single, monolithic method that gives the correct, or at least the best, solution
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to all problems of scientific inference (Gigerenzer, 1992). Kelley (1973, 109), for
instance, even speaks of analysis of variance as “the method used in science.” The
assumption that “statistics speaks with one voice” explains why, after the inference
revolution, almost all experimental psychologists started to do one kind of statistical
calculation for all kinds of inductive inference. This practice is in sharp contrast to the
actual situation in statistics, where several competing proposals for good statistical
inference exist. The problem of scientific inference has not yet found a unique solution.
As Neyman and Pearson (1928, 176) emphasized, in “many cases there is probably no
single best method of solution.”

The practice-governing assumption that “statistics speaks with one voice” has
reemerged in, among others, Tversky and Kahneman’s “heuristics and biases” program
— a program studying intuitive statistical reasoning. Everyday problems of inference
are posed, and subjects’ answers are recorded. The experimenters claim that each of
these problems has only one “correct” answer; if subjects deviate from this answer,
their responses are labeled “fallacies” of reasoning. In this rhetoric the allegedly correct
solution is directly derived from “the dictates of normative statistical theory” (Bar-Hillel
1984, 99) or from “the normative theory of prediction” (Kahneman and Tversky 1973,
234). But there is no single normative theory of prediction; consequently, the reasoning
problems do not have only one “correct” answer. For instance, Neyman-Pearson
theory leads to different answers for the famous “cab problem” than Tversky and
Kahneman (1980) calculated using Bayes’ theorem (see Birnbaum 1983; Gigerenzer
and Murray 1987, 167-74). In the “cab problem,” the subjects’ task is to estimate the
probability that a cab involved in a hit-and-run accident at night was from the Blue (as
opposed to the Green) company, given a witness’ testimony “blue,” and information
about the perceptual accuracy of the witness and about the base rates of blue and green
cabs in the city. The fact that this and other reasoning problems have several good
answers rather than a single “normative” one has important consequences for claims
that people’s answers reflect “fallacies> and “biases” of probabilistic reasoning, and for
a revised research program on intuitive statistics (see Gigerenzer 1991b; Lopes 1991).

Heuristics of Discovery: Data-Driven versus Tool-Driven

In their computational explorations of scientific creativity, Herbert Simon and his
co-workers (e.g., Langley et al. 1987) attempted to develop general-purpose discovery
systems. These do not rely on domain-dependent heuristics, as did earlier systems such
as DENDRAL — a program that identifies organic molecules from mass spectrograms
and nuclear magnetic resonances. The creators of BACON, in contrast, claim that it is
“a system of considerable generality that is capable of significant scientific discovery”
(ibid., 63). Langley et al. (1987) deal with two kinds of discoveries: quantitative laws
using BACON and related programs, and qualitative taxonomies using clustering
methods. In both cases, the underlying metaphor for scientific discovery is intuitive
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statistics. Here, the homunculus statistican uses exploratory data analysis (Tukey
1977), as indicated in figure 1.

How does BACON make a discovery? What is the relation between BACON’s
heuristics of discovery and the tools-to-theories heuristic?

Consider how BACON rediscovers Kepler’s third law of planetary motion. As the
program’s name indicates, discovery starts from data: two rows of measurements —
for a planet’s distance and its period, respectively. The heuristics of discovery are rules
for transforming that data, such as “If the values of two numerical terms increase
together, then consider their ratio.” The successive transformations of the original
data by such heuristics finally produce Kepler’s law (noisy data poses some problems).

There are basic differences between the concept of a heuristic in BACON and the
tools-to-theories heuristic. First, BACON’s heuristics work on data, whereas the
tools-to-theories heuristic works on tools for data generation or processing. The latter
does not depend on empirical data at all; as I have argued above, it can even produce
new kinds of data. Second, BACON’s heuristics discover descriptions of data — that
is, numerical laws — but no explanations of phenomena. The tools-to-theories heuristic
does not discover any numerical relationships, since it does not operate on data. It can,
however, generate rich conceptual frameworks that not only have explanatory power
but in fact revolutionize our understanding of an old phenomenon and create new
phenomena. A good example is the theory of signal detectability (Gigerenzer and
Murray 1987, chap. 2). Thus there is little overlap between the two concepts of
heuristics; their function is complementary.

More recently, Simon and Kulkarni (1988) went beyond the data-driven view of
discovery in an attempt to include heuristics for planning and guiding experimental
research. Still, the present approach differs from Simon’s in the emphasis on
experimental practice as a source of new ideas. Both approaches, however, emphasize
that it is possible to understand discovery in terms of heuristics of creative thinking and
thus to go beyond lucky guesses.

Conclusion

The present case study of tool-laden theories gives a new twist to the relation between
the context of discovery and the context of justification. In the debate on whether
discovery is an important topic for understanding science, both sides in the debate
have construed the issue to be whether an earlier stage of discovery should be added to
a later stage of justification (Nickles 1980). In contrast, I have described a situation
where methods of justification come first and discovery follows.

Scientific discovery is still, by and large, terra incognita. As Gerald Holton in his
seminal Thematic Origins of Scientific Thought (1988) puts it, “There has been
no systematic development of the point” (p. 41). Holton analyzed “thematic” pre-
conceptions in theories, whereas I have examined methodological preconceptions
in the origins of new theories. One or the other seem to be indispensable for theorizing.
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Imagine that finally a member of the academy of Lagoda found a nineteen-word
sentence — which happened to be the same one Charles Darwin used in 1838 to express
the three principles of heredity, variation, and superfecundity, from which natural
selection and evolution followed inexorably (Gruber 1977). If the Lagodans did not
share Darwin’s framework of metaphors — based on, among other things, his practical
experience with artificial selection as a pigeon breeder — they might not even
understand the meaning of the sentence. Sharing familiar experiences with research
practice and tools may be indispensable for understanding and accepting new theories.

Popper ([1935] 1959, 278) once declared that “scientific guesses are guided by the
unscientific.” However, the tools-to-theories heuristic describes a process of discovery
which emphasizes that science, in the form of tools of justification, does indeed guide
guesswork. At least in some cases, the context of justification turns out to explain the
context of discovery.
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