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Abstract

Understanding the computational implications of specific synaptic connectivity patterns is a

fundamental goal in neuroscience. In particular, the computational role of ubiquitous electri-

cal synapses operating via gap junctions remains elusive. In the fly visual system, the cells

in the vertical-system network, which play a key role in visual processing, primarily connect

to each other via axonal gap junctions. This network therefore provides a unique opportunity

to explore the functional role of gap junctions in sensory information processing. Our infor-

mation theoretical analysis of a realistic VS network model shows that within 10 ms following

the onset of the visual input, the presence of axonal gap junctions enables the VS system to

efficiently encode the axis of rotation, θ, of the fly’s ego motion. This encoding efficiency,

measured in bits, is near-optimal with respect to the physical limits of performance deter-

mined by the statistical structure of the visual input itself. The VS network is known to be

connected to downstream pathways via a subset of triplets of the vertical system cells; we

found that because of the axonal gap junctions, the efficiency of this subpopulation in encod-

ing θ is superior to that of the whole vertical system network and is robust to a wide range of

signal to noise ratios. We further demonstrate that this efficient encoding of motion by this

subpopulation is necessary for the fly’s visually guided behavior, such as banked turns in

evasive maneuvers. Because gap junctions are formed among the axons of the vertical sys-

tem cells, they only impact the system’s readout, while maintaining the dendritic input intact,

suggesting that the computational principles implemented by neural circuitries may be much

richer than previously appreciated based on point neuron models. Our study provides new

insights as to how specific network connectivity leads to efficient encoding of sensory

stimuli.

Author summary

Understanding sensory stimuli from the environment and deciding how best to respond

to it behaviorally is essential for survival. What makes organisms efficient in encoding

these sensory stimuli? This study provides a novel view on this unresolved issue using the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005846 December 4, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang S, Borst A, Zaslavsky N, Tishby N,

Segev I (2017) Efficient encoding of motion is

mediated by gap junctions in the fly visual system.

PLoS Comput Biol 13(12): e1005846. https://doi.

org/10.1371/journal.pcbi.1005846

Editor: Lyle J. Graham, Université Paris Descartes,
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visual system of the fly. We show that a specific synaptic connectivity manifested via gap

junctions (GJs) among axons in the Vertical System (VS) network leads to particularly

high encoding efficiency of the axis of rotation of the fly’s ego motion. Due to these GJs,

triplets of VS neurons (the VS5-6-7 triplet), which connect to a downstream motor sys-

tem, encode motion stimuli at an efficiency close to the physical limit; this efficient encod-

ing is necessary for evasive maneuvers that are critical for the fly to escape predators. We

then suggest why GJs in the VS network enable such high encoding efficiency.

Introduction

The principles governing synaptic connectivity may hold the key to understanding the func-

tional organization of the brain. Gap junctions (GJs) underlying the operation of electrical syn-

apses are found in both the central nervous system [1–4] and the sensory system [5,6,7].

However, their functional role still remains elusive despite extensive studies [8–13]. Here we

address this problem in the vertical system (VS) network of the fly visual system, where recent

studies [14–18] have identified that in this sensory network, individual neurons primarily use

GJs to communicate with one another. This provides a unique opportunity to characterize the

function of GJs in the context of sensory information processing.

In the visual system of the blowfly Calliphora vicina, photoreceptor signals are processed in

four consecutive layers of the neuropile: the lamina, medulla, lobula, and lobula plate, each of

which is arranged in columnar, retinotopic fashion. In a striking parallel to the vertebrate ret-

ina [19, 20], the direction of visual motion is computed in parallel ON and OFF motion path-

ways [21]. Columnar T4 and T5 cells in the lobula and lobula plate, represent the output of the

ON and the OFF pathway, respectively [22]. They synapse onto the dendrites of large-field tan-

gential cells (LPTC) such as the horizontal system (HS) and vertical system (VS) cells [23, 24,

25]. Among these LPTCs, 20 different VS cells have been described. There are 10 VS cells in

both the left and right compound eyes, ordered VS1 to VS10 along the anterior-posterior axis

[26]. These were shown to encode the azimuth degree of the axis of rotation via their axonal

voltages (these are non-spiking neurons). VS cells are connected to other LPTC cells within

the lobula plate, as well as to downstream neurons such as the descending neurons (DNOVS1,

2 [26, 27]) that are upstream to the neck motor center. Intriguingly, adjacent VS cells are

connected to each other via axonal GJs, whose conductance is on the order of 1 μS [16,18]. Sur-

prisingly, the only identified output of the VS system to the downstream system is the connec-

tion between the left and the right VS 5-6-7 triplets to the DNOVS neurons. No downstream

pathways are known to read out from the whole VS 1–10 network.

The VS network is an early sensory network that encodes motion information from a com-

plex environment under severe constraints. For example, the fly only requires a 30–40 ms

visual-motor delay to elicit evasive maneuvers [28, 29] to escape from swats effectively. Previ-

ous work hypothesized that this is because neural coding of sensory information is efficient

[30–37]. This principle has been used successfully to account for many observed properties in

sensory systems, from the size and shape of receptive fields [30, 31, 38, 39], and the statistics of

the spike train [40, 41], to the higher-order interaction of populations of neurons [42–46].

However, previous work on efficient coding with population of neurons has not considered

whether the inclusion of a specific connectivity feature i.e., GJs, can contribute to the emer-

gence of this encoding efficiency [47].

Here, we investigated whether the VS network encodes motion information efficiently

using axonal GJs and if so, the implications of this efficient encoding of motion in behavioral
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contexts. However, because experimental studies that record the impact of the visual input

impinging on VS cell dendrites usually use calcium imaging [48], the response of VS cell den-

drites at millisecond precision is still unavailable. We therefore investigated this problem by

using a physiologically realistic model of the VS network [16]. Because previous work had

shown that GJs can only help encoding when they are located at the axons [17], here we con-

trast with and without axonal GJs in this VS network to quantify the effect of the axonal GJs.

In addition, because this network connects to the neck motor center via descending neurons

(DNOVS1,2) and DNOVS2 has a maximum firing rate of 100Hz ([27], DNOVS1 is a graded

neuron), we used the first 10 ms after the stimulus onset to sample the VS axonal voltages.

Based on our simulations of the model VS network with GJs and without GJs in two differ-

ent stimulus conditions (natural and checkerboard), below we show that these axonal GJs

enable VS cells to reduce the fluctuation in encoding individual axes of rotation, such that VS

cells can jointly encode different axes of rotation with better separability. Furthermore, our

information theoretic analysis showed that with GJs, motion encoding by the VS network,

based on its joint axonal output voltage, extracts almost all the available motion information

provided by dendritic input. We also found that the VS 5-6-7 triplet which is directly con-

nected to downstream DNOVS1,2 neurons encodes motion more efficiently than the network

as a whole, and reaches at least 90% of the physical limit of performance as determined by the

statistical structure of the visual input itself. This near-optimal encoding efficiency emerged as

robust regardless of the signal to noise ratios. Because GJs are formed among the axons of VS

cells, they only impact the system’s readout while maintaining the dendritic input intact, sug-

gesting that the computational principles implemented by neural circuitries may be much

richer than previously assumed from point neuron models [49, 50]. Finally, we demonstrate

that this efficient encoding of motion enabled by the GJs is behaviorally important. Without

GJs, the VS network cannot even encode some basic rotations correctly such as the up/down

tilt of the head and body (pitch rotation). Considering that evasive maneuvers involve a

banked turn [29, 51] which combines roll and pitch at the same time, this finding suggests that

the presence of GJs is critical for the survival of the fly.

Results

Assessing the role of gap junctions (GJs) in encoding motion stimuli in

the fly VS network

To investigate how/whether axonal GJs in the VS network impact the encoding efficiency of

the axis of rotation θ, we followed the procedure depicted in Fig 1. Fig 1A shows an example

stimulus, which has a fixed axis of rotation embedded in a cube (the “cage”) with a randomly

generated natural scene. We mimicked the optic flow of a fly rotating in the center of this

“cage” by rotating the cage accordingly (see Materials and Methods). This optic flow was pro-

jected to the fly visual system (Fig 1B), thus generating responses from approximately 5000

local motion detectors (LMD, not shown, see Materials and Methods) following the retinoto-

pic organization from the retina through the lobula [52]). The output of these LMDs were then

projected to the dendrites of VS cells (detailed morphology is depicted in the lower left of Fig

1B).

Fig 1C shows the physiologically realistic and simplified VS network model used in this

study. In this model, each VS neuron is represented by a single dendritic compartment con-

nected via an axial resistance to an axonal compartment. The dendritic compartment inte-

grates the current generated by all LMDs which are located within the receptive field (RF) of

that cell. The RF was defined as a 2D Gaussian with an azimuth width of 15˚ and an elevation

width of 60˚ (see Materials and Methods). The dendritic compartments of the VS neurons
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differed as regards the center of their RFs; i.e., the center of the RF of VS1 was at 10˚, but was

at 26˚ for VS2 and 154˚ for VS10 (Fig 1C top values, and see also Table 1 in Materials and

Methods for a summary of the RFs of all 10 VS cells of the right compound eye, the RFs of the

VS cells in the left compound eye are symmetrically located at -10˚ for VS1, . . ., -154˚ for

Fig 1. How do axonal GJs help to efficiently encode the axis of ego rotation, θ, in the VS network of the fly?

(A) Schematic depiction of the visual stimuli used in the simulation. Six natural images (five are shown here except the

frontal one) were randomly selected from the Van Hateren and Schilstra dataset [51]; each image was patched on a

different face of a cube. Assuming that the fly is located in the center of this cube, we obtain the optic flow pattern of the

fly’s ego rotation around θ (thick blue arrow) by rotating this cube around θ. (B) The fly visual system is composed of a

retina, lamina, medulla, lobula and lobula plate. The retina, lamina and medulla are organized retinotopically. The

vertical system (VS) network in the lobula plate integrates output from the upstream LMD units and sends global

motion-sensitive signals downstream. (C) The VS model used in the present study; in this figure, the 10 VS cells of the

right visual system are shown. In this model, the complex dendritic branches of the VS cells are reduced to a single

compartment (gDe); this dendritic compartment is connected via an axial resistance to the axonal compartment (gAx-

De). The VS cells are connected to each other sequentially via axonal GJs; each VS has a preferred dendritic receptive

field (RF) center (e.g., 10˚ for VS1, 26˚ for VS2 and 154˚ for VS10, as indicated). The computed dendritic input

following visual input are shown in red and purple for VS1 and VS10, respectively. The corresponding axonal voltages

(VAx) are also shown. In this work, we only used the first 10 ms of the dendritic input and the axonal output.

https://doi.org/10.1371/journal.pcbi.1005846.g001
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VS10, respectively). The traces in Fig 1C show an example of the input current to the dendrites

(top trace) and the corresponding axonal voltage (lower trace) following a visual input, for

VS1 (in red) and VS10 (in purple), respectively. As can be seen, the axonal voltages of these VS

neurons do not exactly reflect the corresponding input current to their dendritic compart-

ment, i.e. note that while the current is relatively smooth, the axonal voltage of these VS neu-

rons shows much larger jitter; at one point, it even flips sign to be opposite to the sign of the

dendrite current (compare the two red traces at left of Fig 1C).

This implies that the effect of the axonal GJs (the current flowing via these GJs between

adjacent axons) was significant. The arrow connecting Fig 1C to Fig 1A depicts the key aim of

this study, which was to identify, using the information bottleneck method [53] as our major

theoretical approach, how connectivity features such as these axonal GJs in the VS system give

rise to efficient encoding of the visual input in a realistic visual scenario. We only used the axo-

nal voltage for the first 10ms it seems that this is the relevant timescale for integration in the

VS network (see S2 Fig, which shows that a longer integration window does not help to encode

additional motion information).

GJs improve the separability of the axes of rotation

In Fig 2 we showed that GJs among axons in the VS system help the joint axonal voltage to

obtain better clustering with respect to different axes of rotation, θ. We first computed the volt-

age response of various VS cells separately to natural scenes as a function of the axis of rota-

tion, both with and without axonal GJs (Fig 2A and 2B, respectively for an example VS5 cell).

We found that with axonal GJs, both the range and variability of the VS cell voltage responses

were smaller than without GJs. We next investigated, in Fig 2C and 2D, how the reduced vari-

ability due to the axonal GJs, as found for single neurons (Fig 2A and 2B) influences the joint

axonal response of two VS cells. To this end, we plotted the voltage response (as well as the

95% confidence ellipses of the joint voltages) induced by the natural scene of VS5 versus VS6

for two axes of rotation (θ = 0˚ in green and θ = 60˚ in red). Thus, the inclusion of GJs

strengthened the correlation between the joint axonal voltages (compare Fig 2C with Fig 2D)

and, consequently, reduced the overlap in the joint axonal responses to the different axes of

rotation. Without GJs, the 95% confidence ellipses for 0˚ and 60˚ almost entirely lay on top of

each other whereas with GJs the corresponding 95% confidence ellipses only have a small area

of overlap. This result suggests that the joint voltage responses of VS5 and VS6 form distinct

clusters for different axes of rotation with axonal GJs but not without GJs.

When the joint voltage responses of the triplets (e.g., VS5-6-7) of cells were computed, we

found that with axonal GJs, the encoding of the full range of the axes of rotation was dramati-

cally improved (comparing Fig 2E to Fig 2F). The presence of GJs reduced the variability even

further in with higher dimensions, while enhanced the linear correlation among the voltage

responses of the VS5-6-7 cells, resulting in joint voltages that were tightly clustered for each

axis of rotation, with little overlap between axes of rotation for the different cells (Fig 2F). This

distinct clustering was hardly visible when GJs were absent (Fig 2E). As we further showed in

S4 Fig in more detail, both the reduced variability the strengthened correlation induced by the

axonal GJs led to superior encoding of the axis of rotation, θ, which was characterized by

improved precision in mapping θ to distinguishable clusters of the joint VS responses.

Table 1. The centers of dendritic RF for VS1-10 (right eye).

VS1 VS2 VS3 VS4 VS5 VS6 VS7 VS8 VS9 VS10

10˚ 26˚ 42˚ 58˚ 74˚ 90˚ 106˚ 122˚ 138˚ 154˚

https://doi.org/10.1371/journal.pcbi.1005846.t001
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Fig 2. GJs reduce the variability and enhance the clustering of the combined axonal responses to

different axes of rotation. (A) Response of VS5 to stimuli embedded with natural scenes as a function of the

rotation axis when GJs are absent from the VS network. The continuous line shows the mean voltage

response; the pink shaded area represents one standard deviation from that mean. (B) As in A but when the

VS cells are all connected with GJs = 1 μS (see the circuit in Fig 1C). (C) Joint axonal voltage response of VS5

versus VS6 in the absence of GJs. A total of 1000 samples for both θ = 0˚ (green) and for θ = 60˚ (red) in

response to natural stimuli are shown (see Materials and Methods). Their 95% confidence ellipses are

shown in black. (D) As in C but with GJs = 1 μS. (E) Joint axonal voltages for VS5-6-7 of the left compound

eye without GJs and (F) with GJs = 1 μS for six different axes of rotation (indicated by respective colors). Note

the greatly improved separability of the axes of rotation in the presence of GJs.

https://doi.org/10.1371/journal.pcbi.1005846.g002
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GJs enable near-optimal motion encoding

In Fig 3, we determined that the VS network, especially the VS5-6-7 triplet, shows near optimal

encoding of the axis of rotation based on the information bottleneck method [53].

We used two mutual information metrics to investigate this efficiency: the value (rele-

vancy); i.e., the mutual information between the axis of rotation and the axonal voltage,

denoted Iθ−Ax and the neural cost (complexity); i.e., the mutual information between the den-

dritic current and the axonal voltage, denoted IDe−Ax. IDe−Ax is the information we have access

to and Iθ−Ax is the information we would like to know. Namely, Iθ−Ax is the amount of informa-

tion an encoding can provide about the axis of rotation after it encodes IDe−Ax bits from the

Fig 3. Near-optimal motion representation with GJs. (A) Near optimal motion representation for natural

stimuli due to GJs by both triplets of VS cells (blue cross) and by the whole VS network (blue dot). The

efficiency of the representation for a subpopulation is denoted by a single point in the IDe−Ax − Iθ−Ax plane,

which shows how much information (in bits) corresponds to the neural cost and how much information is

provided at this cost to represent the axis of rotation. This plane shows the feasible (blue region) and

infeasible (white region) separated by the bound I�
y� AxðIDe� AxÞ, dark blue line (see Materials and Methods) for

all axes of rotation of natural stimuli. The error bars depicting encoding efficiencies for triplets with/without GJs

(blue vs. orange, respectively). Single cells with/without GJs appear in green/yellow squares, respectively (all

20 individual VS cells behaved very similarly to each other). The encoding efficiency of the whole VS network

with/without GJs is shown in blue/orange circles. (B) The scatterplot of efficiencies for representations of all

120 triplets (all possible triplets out of the 10 VS cells; the same triplets were used in both sides of the visual

system), with/without GJs (blue/orange respectively). The arrows point to VS5-6-7, the triplet connecting

downstream to the neck motor center. Note the considerable improvement in efficiency due to GJs for this

triplet. (C) Similar to (A), but for checkerboard stimuli. (D) Similar to (B), but for checkerboard stimuli.

https://doi.org/10.1371/journal.pcbi.1005846.g003
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dendritic input. We define IDe−Ax as cost because in order to obtain information about θ, the

axonal voltage needs to build an encoding of the dendritic input. This encoding would not

only contain information about θ, but also other aspects of the information from the dendritic

input. The mutual information between dendrite and axon quantifies how complex this

encoding needs to be in order to encode a specific amount of information about θ. Using the

information bottleneck method (Tishby, Pereira, & Bialek, 1999), we obtained the so-called

information curve: every point of this curve denotes the maximum Iθ−Ax (denoted I�
y� Ax) for

the respective IDe−Ax cost.

To investigate the encoding efficiency, in terms of (IDe−Ax, Iθ−Ax), of the encodings for θ, by

the axonal voltage in the VS network, we generated data following the procedure shown in Fig

1. The dataset contained samples for each axis of rotation, from 0 to 360 in 1˚ steps. This uni-

form sampling was recently shown to be behaviorally relevant [29]. Each sample was a combi-

nation of input current and output voltage (as in Fig 1C), generated by projecting a randomly

selected natural scene (Fig 1A) onto the modeled visual system (Fig 1B, see Materials and

Methods). Note that the major fluctuation of the input to the dendrites came from the random

instantiation of the embedded scenes. Based on these data, Fig 3 plots the encoding efficiency,

(IDe−Ax, Iθ−Ax), for three VS subpopulations: (i) all individual VS cells; (ii) all 120 VS triplets

and (iii) the whole VS network to investigate how GJs changed their respective encoding

efficiency.

Fig 3A and 3C show the information curve (in dark blue) for natural and checkerboard sti-

muli, respectively. Every point on this curve denotes the optimal Iθ−Ax with a specific neural

cost IDe−Ax. When we compare a realistic encoding with (Iθ−Ax, IDe−Ax) to the information curve,

we compare the information it obtains about the stimuli, namely the Iθ−Ax with this limit, denoted

as I�
y� AxðIDe� AxÞ. By doing this, we can evaluate if a particular encoding is optimal or not. In addi-

tion, note that both curves have a favorable region, the “shoulder”, such that encodings located at

this region have the most value for Iθ−Ax whereas the ratio of the value to the cost still remains

high. Any encoding with a neural cost IDe−Ax that is higher than the IDe−Ax for the “shoulder” will

suffer from a “diminishing return”; i.e., increasing the cost will not gain much on the motion

information, Iθ−Ax. Specifically, we define the shoulder region as the segment where the derivative

of ratio between Iθ−Ax/IDe−Ax changes the fastest, i.e., the top 10% in magnitude of the entire infor-

mation curve. Thus, the shoulder region for natural stimuli has IDe−Ax between (3.11, 3.90) bits

(Fig 3A) and for checkerboard stimuli has IDe−Ax between (5.56, 6.34) bits (Fig 3C). Therefore,

when we compare two encodings with respect to the information curve, we first favor the encod-

ing with higher optimality, which is evaluated according to their own respective I�
y� AxðIDe� AxÞ

from the information curve, then we will prefer the encoding which is closer to this shoulder

region because it extracts significant amount of information without suffering the effect from the

law of diminishing returns.

Fig 3A and 3C show that all triplets (blue crosses) and the whole VS 1–10 network (blue cir-

cles) encoded more information about the stimuli with GJs than the case without GJs (orange

cross and orange circle, respectively). In natural stimuli with GJs, the VS 1–10 reached 2.306

(± 0.001)/2.685 = 86% of its respective limit I�
y� AxðIDe� AxÞ. Interestingly, the mean efficiency of

all triplets when the network had GJs reached 87% of their respective limits. For the checker-

board stimuli, these ratios became 4.150 (±0.004)/4.430 = 93% and 94%, respectively. With

GJs, they all operated near-optimally. Furthermore, the encoding using triplets was superior to

that of the whole VS network, because triplets have lower neural cost (IDe−Ax is lower). In addi-

tion, the total 120 triplets were divided to a few clusters according to their tuning curve spacing

(see S5 Fig). We define the tuning spacing as the maximal angular distance between cells in the

triplet. For example, the spacing in VS 1-6-10 triplet is 144˚ which is ±154˚ (the RF center for
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the left and right VS10 cells, respectively) minus ±10˚ (the RF center for the left and right VS1

cells, respectively). In general, the larger the tuning spacing, the higher the IDe−Ax. All triplets

with tuning spacing of 80˚ or more form one cluster (shown in purple). The triplets with

boundary VS cells (VS1 and VS10) tend to have similar IDe−Ax compared to other triplets with

narrower tuning spacing but without boundary VS cells. i.e., triplet VS 1-2-4 with tuning spac-

ing of 48˚ has similar IDe−Ax as that of VS 2-3-4 (for which the tuning spacing is 32˚) rather

that of VS 2-3-5 (for which the tuning spacing is 48˚, see the three arrows in S5 Fig). As shown

in this figure, all triplets encode similar amount of information in Iθ−Ax; indicating that those

triplets with narrow tuning spacing are therefore preferred for encoding θ because of their

moderate IDe−Ax. Surprisingly, the encoding using single cells did not benefit from GJs as

much. They in general represented more information about the axis of rotation, but GJs

increased their neural costs which pushed these single cell encodings farther away from their

respective limits (Fig 3A and 3C, green and yellow squares at the lower left). It is also worth

noting that with GJs or without GJs, all single VS cells were similar in terms of the motion

information they represented, as well as their respective neural costs.

Several features of the encoding by the VS 5-6-7 triplet with GJs make it unique. It was the

closest to its respective physical limit among all triplets; namely its Iy� Ax=I�
y� Ax ratio was 2.228 ±

(0.004)/2.478 = 90% for the natural stimuli and 4.060 ± (0.003)/4.1 = 99% for the checkerboard

stimuli (blue arrows in Fig 3B and 3D, respectively). This is much higher than the Iy� Ax=I�
y� Ax

ratio achieved by the same VS 5-6-7 triplet without GJs: without GJs, the encoding by the VS

5-6-7 triplet only has Iy� Ax=I�
y� Ax ratio as 1.587 ± (0.003)/2.231 = 71% in natural stimuli and

3.54/4.061 = 87% in checkerboard stimuli (orange arrows in Fig 3B and 3D, respectively). In

other words, the difference in optimality with versus without GJs is visible in both Fig 3B and

3D when we compare the blue versus the orange arrows (and their respective points). The

most important feature of the encoding by the VS 5-6-7 triplet was that, with GJs, its IDe−Ax

makes it locates within the shoulder region of the information curve for the natural stimuli

(where IDe−Ax between (3.11, 3.90) bits, see Fig 3A and 3B), achieving 90% of its respective

limit in Iθ−Ax. This shows that for natural statistics, this triplet encoding achieved a nearly opti-

mized return in value Iθ−Ax through a modest IDe−Ax cost. Therefore, with GJs, the VS 5-6-7

triplet was optimized to encode motion in the natural environment.

Efficient encoding by the VS 5-6-7 triplet is robust regardless of signal-

to-noise ratio (SNR)

Reducing the SNR of the stimuli can reduce the information transmission of the photoreceptor

[54]. Therefore, changing the SNR will also change the encoding efficiency of motion. To

investigate whether the near-optimality of the encoding by the VS 5-6-7 triplet shown in Fig 3

was robust regardless of the SNR we performed the above analysis on separately generated

datasets by changing the luminance (linearly changing SNR) and contrast of the checkerboard

stimuli and the contrast (quadratically changing SNR) of the natural stimuli (see Materials

and Methods). Fig 4 depicts how the near optimality varies with changes in the SNR by the VS

5-6-7 triplet.

As shown in Fig 4A–4C, GJs enable motion encoding by the VS 5-6-7 triplet to operate near its

respective physical limits, regardless of the wide variation in signal-to-noise ratios. Compared to

the same representation without GJs (shown in circles), having GJs emerged as especially beneficial

for low SNR scenarios. For example, when the contrast was set at 60% for the natural stimulus, the

encoding by the VS 5-6-7 triplet reached 1.851 ± 0.002 bits about the axis of rotation (orange trian-

gle in Fig 4A). Given that the neural cost for this case was IDe−Ax = 2.74 ± 0.002 bits, the informa-

tion curve in Fig 4A shows that the respective motion information limit was at I�
y� Ax = 2.09 bits.
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Hence, it achieved (Iy� Ax=I�
y� Ax) 1.851 ± (0.002)/2.090 = 88% of this physical limit. This encoding

efficiency not only outperformed the scenario where the GJs were absent but the contrast stayed

the same (orange circle), but also outperformed the scenarios which were without GJs but the con-

trast was higher (higher SNR). In particular, when the stimulus had a 100% contrast, without GJs,

the encoding by the VS 5-6-7 triplet could only extract 1.587 ± 0.003 bits about the axis of rotation

(top left-most purple circle in Fig 4A). This value was lower than the 1.851 ± 0.002 bits that was

extracted at a lower contrast when GJs were present. Furthermore, this 1.587 ± 0.003 bit value was

suboptimal (its Iy� Ax=I�
y� Ax was only 71%). This finding indicates that GJs may be better at improv-

ing the encoding efficiency of motion than that from enhancing the stimulus contrast (which is a

typical strategy for improving SNR).

For the checkerboard stimuli (Fig 4B and 4C), GJs had a range of effects. At a low SNR

(when the luminance and contrast were low), the encoding by the VS 5-6-7 triplets added

additional bits to the cost (the x-axis) with GJs but also extracted more motion information

(the y-axis; e.g., compare green circle to green triangle in Fig 4B). For example, with a 20%

Fig 4. With GJs, the near-optimality encoding by the VS 5-6-7 triplet is robust over a wide range of

signal-to-noise ratios. (A) The information curve and the encoding efficiency of the axis of rotation by the VS

5-6-7 triplet in the IDe−Ax − Iθ−Ax plane to varying contrast levels of natural stimuli (contrast is coded by colors

as shown in inset). The cases with GJs are represented by triangles and without GJs by circles. The blue

curve is the same as in Fig 3. Note that for the case represented by the orange triangle (60% contrast with

GJs) more information Iθ−Ax is extracted about motion and is closer to the information curve as compared to

the orange, cyan and purple circles (representing 60%, 80% and 100% contrast without GJs, respectively).

(B) As in (A), but using checkerboard stimuli. (C) As in (B) but with different luminance levels.

https://doi.org/10.1371/journal.pcbi.1005846.g004

Fig 5. GJs are particularly important for the fly’s survival when encoding is based on the VS 5-6-7

triplet. (A) RMSE for estimating axes of rotation (1600 samples, each in 5˚ steps) based on the encoding by

the VS 5-6-7 triplet with GJs (blue) and without GJs (orange). The RMSE using all VS 1–10 cells with GJs is

shown in magenta. (B) The variability of the estimated axis of rotation for the case of θ = 45˚ with (blue, with

radius 1) and without (orange, with radius 1.5) GJs. Note that with GJs, the error falls within the same

quadrant whereas without GJs the error is almost 180˚. This means that without GJs, the fly cannot encode

pitch axis correctly. Since the VS 5-6-7 triplet is connected downstream to the fly motor system, GJs are

essential for the fly’s behavior, e.g., avoiding swats (see text). (C) Similar to (B), but for the θ = 180˚ stimulus.

https://doi.org/10.1371/journal.pcbi.1005846.g005

Efficient coding via gap junctions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005846 December 4, 2017 10 / 22

https://doi.org/10.1371/journal.pcbi.1005846.g004
https://doi.org/10.1371/journal.pcbi.1005846.g005
https://doi.org/10.1371/journal.pcbi.1005846


luminance (green circle and triangle in Fig 4C), GJs added a 0.8 bit cost (the Iθ−Ax axis) to the

encoding by the VS 5-6-7 triplet but resulted in a 0.7 additional bit improvement in Iθ−Ax (the

green triangle is above the small green circle). At a high SNR (when the luminance and con-

trast are both high), the encoding by the VS 5-6-7 triplet extracted more bits about the axis of

rotation, but without a significant change in the cost IDe−Ax. For example, for 100% luminance,

the encoding by VS 5-6-7 when connected by GJs achieved 0.46 more bits in Iθ−Ax without

changing IDe−Ax (compare the purple circle to the purple triangle in Fig 4C).

With GJs, the VS 5-6-7 triplet successfully encodes motion information

critical for behavior

To better understand the importance of this efficient encoding by the VS 5-6-7 triplet with GJs

(Fig 3B and 3D), we investigated its impact on behavior based on a separate test dataset made up

of 1600 samples for each axis of rotation in 5˚ steps for natural stimuli. We tested how well the

encoding by the VS 5-6-7 triplet performed in estimating the axis of rotation θ. We evaluated the

performance of the VS 5-6-7 triplet (with and without GJs) by calculating the root mean square

error (RMSE) between the estimated axis of rotation (θest) and the specific target θ (Fig 5).

Fig 5A shows that as expected with GJs, the encoding by the VS 5-6-7 triplet is significantly

better in estimating the axis of rotation compared to that without GJs. Without GJs (Fig 5A,

orange trace), the estimation error for each individual axis of rotation was modulated by the

distance from the center of the RF for VS5, VS6 and VS7 (±74˚, ±90˚, ±106˚ respectively,

Table 1). Thus, without GJs the errors were large (up to 40˚ for θ = 90˚) for the axes of rotation

that were close to the center of the respective RF (the large peaks in Fig 5A), because the

motion input near their axis of rotation was small (S1 Fig). The blue and magenta traces in Fig

5A show that with GJs all errors were within 10˚. Fig 5A also shows that the encoding by the

VS 5-6-7 (blue trace) was as good as when the whole VS network was used (magenta trace).

Fig 5B and 5C depict the behavioral superiority of GJs. We compared the variability in esti-

mation using the encoding by the VS 5-6-7 triplet for two different target stimuli, θ = 45˚ and

θ = 180˚. The case of θ = 45˚ corresponds to combining a roll (turn clockwise/counterclock-

wise) and a pitch (tilt up/down), as when the fly performs a banked turn whereas θ = 180˚ cor-

responds to a clockwise roll. When the target θ = 45˚, without GJs the variability in estimation

using the encoding by the VS 5-6-7 triplet spanned almost 180˚ and was asymmetrical around

45˚; the magnitude of the clockwise error exceeded 90˚ (Fig 5B, orange). This indicates that

without GJs, the encoding by the VS 5-6-7 triplet cannot correctly distinguish the optic flow

corresponding to the fly tilting upwards or downwards, thus it may confuse the 45˚ with -45˚.

In the presence of GJs (Fig 5B, blue) however, the error was within the same quadrant of the

target stimulus (the blue band around θ = 45˚). When θ = 180˚, the improvement in estimation

due to GJs was mainly manifested in the reduction of the standard deviation of the estimation

error (Fig 5C). Thus, although having GJs can reduce the standard deviation of the estimation

error, its main advantage is to provide critical behaviorally related information so that the

upward and downward rotation can be encoded correctly. S2 Fig shows that in the case of

checkerboard stimuli, GJs can in addition lead to a hyperacuity level of discrimination [55].

Thus overall, having GJs improves the encoding by the VS 5-6-7 triplet for those optic flow

patterns which are resulted from common maneuvers the fly perform, such as banked turns.

This underscores the functionality of GJs in the VS network in enabling the fly’s behavior.

Discussion

To successfully apply information theory to analyze a biological system, it is critical to know

which information is relevant. Here we focused on a physiologically realistic model of the VS
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network in the fly visual system [18], which is known to encode motion information (Fig 1

and [23]). The analysis showed that within the 10 ms of stimulus onset, with axonal GJs, the

VS system could efficiently encode the axis of rotation, θ (Fig 3A and 3C). In particular, effi-

cient encoding was also achieved by the VS 5-6-7 triplet (Fig 3A and 3C) which is the only

known output of this network. Although the entire VS network operates near-optimally, the

encoding by the VS 5-6-7 triplet emerged as superior to that of the whole network, and was

robust regardless of the signal to noise ratio (Fig 4). In addition, the efficiency by the VS 5-6-7

triplet was shown to correspond to the favorable region in the information curve (Fig 3) where

the gain of motion information, Iθ−Ax, is maximized with modest IDe−Ax cost (Fig 3A and 3B).

In addition to identifying the emergence of efficient encoding of the axis of rotation, we also

assessed quantitatively the extent to which GJs in the VS network are critical to successful visu-

ally guided behavior. This constitutes a step forward from previous experiments [17] which

only quanlitatively suggested that GJs might contribute to reducing the fluctuations in the

pitch axis (tilt up/down). Here we analyzed the uncertainty distribution of the estimated axis

of rotation, and showed that the VS 5-6-7 triplet can encode all axes of rotation uniformly well

in the presence of GJs (Fig 5B and 5C). However, without GJs, the encoding by the VS 5-6-7

triplet yield errors of up to 90˚ for those rotations including a pitch component (tilt up/down).

Thus, this result predicts that without GJs, maneuvers involving a substantial pitch rotation

component should be error-prone. This is detrimental to many free flight maneuvers. For

example, the banked turn, which is usually initiated when escaping predators, always involves

a pitch rotation (tilt of the head up or down) along with a roll rotation [29, 51]. It is critical for

the fly’s survival to perform these maneuvers accurately, which points to the need to have GJs

in the corresponding VS network. Hence, not only that GJs enable efficient encoding of

motion to emerge in the VS network but, in addition, that this efficient encoding is essential to

subsequent visual guided behaviors.

Comparison to related studies on the VS network

Only a few studies [56, 57] have attempted to use a probabilistic approach to investigate popu-

lation coding of motion in the VS network. These studies have focused exclusively on how well

the axonal voltage, with/without GJs, could be used to estimate the axis of rotation. Although

this estimation can be generalized to a wide spectrum of tasks [58]), it is still not as parsimoni-

ous as the measure of motion information (in bits) that we provided in this study. Our mea-

sure of motion information quantifies the absolute amount of information available to

perform all possible tasks. Unlike the previous approach (which hypothesized that reading out

from the whole VS network is optimal in decoding), we used the information bottleneck

method [53] that enabled us to evaluate the physical limit of encoding efficiency, which is

solely determined by the statistical structure of the visual input itself. This meant we could

assess how well the system performs with respect to its respective physical limit without mak-

ing any assumptions. We were able quantitatively show that the VS 5-6-7 triplet outperforms

the whole VS network in terms of encoding efficiency (Fig 3). We further shed light on the

behavioral superiority of having GJs, by inspecting which errors they could correct on both

estimation and discrimination tasks (Fig 5 and S3 Fig), which was not investigated in previous

studies.

GJs in the VS network provide a novel mechanism for efficient encoding

in the fly visual system

The blowfly visual system is a classical model for studies on efficient encoding of motion.

Most previous studies have been conducted on the H1 neuron, a LPTC neuron selective for
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horizontal inward motion, but without known direct connections to the VS network [40,

59, 60]. It was shown that the H1 neuron efficiently uses of its spiking capacity to transmit

information and is highly adaptive for natural stimuli. Its encoding efficiency is close to

the its physical limit [40] as we have shown for the VS system. These works claimed that a

single neuron can generate efficient encoding of its input. We complement this view on the

efficient encoding of motion by showing that the specific synaptic connectivity may also

serve as a candidate mechanism for efficient encoding in a population-coding paradigm.

In this perspective, our work broadens the applicability of a previously known computa-

tional principle to describe how circuitry features supports efficient encoding of sensory

stimuli

The VS neurons consist of an elaborated dendritic tree and an axon that is connected via

GJs to nearby axons. Therefore, the VS cells in our model consist of a separate dendritic and

axonal compartment (Fig 1). Importantly, this implies that GJs facilitate information transmis-

sion among axons while maintaining the information received by the dendrites intact. Thus,

the efficient coding mechanism suggested in our work is fundamentally different from those

observed in “point neuron” models, which can only interpret improving the mutual informa-

tion between input and output as increasing of energy expenditure on single cells [61, 62]. To

the best of our knowledge, this study is the first to demonstrate that the efficient encoding of

sensory stimuli can be induced by axonal GJs.

Future work

There are two natural extensions of the present study. The first is to extend the single cell

model to include the elaborate dendritic morphology of real VS cells. It is known that local

motion detectors (LMD) units impinge on distal small dendritic branchlets of VS cells [48].

Given that LMDs function on time scales that are about ten times slower than those of the

membrane time constant of VS cells [18], the input to the dendrites is likely to be sparse.

This may impact the encoding strategy implemented by the VS system. This leads to the

intriguing question of whether and how the dendritic structure might influence the near

optimality of the encoding efficiency as found in the present study. We hypothesize that

including dendrites would illustrate how the “roll” motion (clockwise/counterclockwise turn)

is encoded, since previous experiments have shown that the dendritic morphology can reduce

fluctuations in the vertical direction [63]. Furthermore, the biological VS network receives

input from both the compound eyes and the ocelli [64], whereas our simulation only consid-

ered how efficiently the VS network represents its input from the compound eyes. We predict

that additional information from the ocelli should improve the motion representation of the

VS network [64].

The second extension would be to investigate why the 10 ms following the stimulus onset

is the relevant timescale for the efficient encoding of motion. As shown in S2A Fig, most

motion information is obtained by the VS5-6-7 triplet within the first 10 ms. Considering that

a change in rotation in response to a visual cue takes ~30–40 ms [29], it remains unclear why

the saturation of motion information encoding should take place in the first 10 ms. In other

words, how does the information available in the first 10 ms act predictively for the behavioral

state of the fly at later times? Addressing this issue could shed light on whether the efficient

encoding of motion in the fly visual system matches the efficient encoding of predictive infor-

mation, a known principle that governs population coding in the retina [65].

Given the presence of gap junctions in many neuronal systems, we believe that our study

will encourage the exploration of GJs as a common mechanism for improving information

transmission in these systems. Initial evidence suggests that GJs improve information
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transmission in both the periphery (retina, shown in [7]) as well as in neocortical L2/3 inhibi-

tory interneuron networks [66]. The discussion in [19] supports the idea that low-level motion

detection follows a common circuit design in both fly and mammalian motion vision. How-

ever, the extent to which this commonality also holds throughout the central nervous system

has yet to be studied.

Materials and methods

The simplified VS model

The modeled VS network used in the present work (Fig 1) was first introduced in [18]. In this

model, each VS cell is represented by a dendritic compartment connected, axially, to an axonal

compartment. This model was validated in [18] where they used genetic algorithm to match

the axial and membrane resistances of each VS cell, such that steady-state potentials at the den-

dritic root resulting from current injections into a certain VS cell match the experimental data.

As a second constraint for the parameter fit the VS cells had to approximate an input resistance

of about 4MO. This model was then used in several follow-up studies e.g., [67] and [56].

Simulation of the model VS network

We used the model VS network (Fig 1) first introduced in [16, 18] in this study. This model

uses two compartments to describe an individual VS cell. It defines the receptive field (RF) of

these dendritic compartments as 2-D Gaussian with σazimuth = 15˚ and σelevation = 60˚, tiling

along the anterior-posterior axis (Fig 1). The neighboring axonal compartments of different

VS cells are connected by GJs, whereas VS1 and VS10 are connected by inhibitory chemical

synapses. In our simulation, all conductance magnitudes and the inhibition magnitude were

set using the same method as in [16, 18, 56]. We only varied the magnitude of the GJ conduc-

tance between 0 and 1 μS. We chose 1 μS because this is the value used previously [18], which

confirmed that with this GJ, this reduced model displayed behavior similar to a realistic VS

cell.

In every simulation, we first generated the “cage” (Fig 1) either by randomly selecting six

images from the van Hateren dataset [51] or by randomly generating six checkerboard images.

Then, we rotated this cage at a specific axis of rotation (500˚/s based on experimental findings

[68, 69, 70]. This yielded the optic flow pattern which we then fed into the 5000 local motion

detectors (LMD) [52]. Each LMD comprised two subunits that differed by 2˚ in elevation.

They were randomly distributed in the sphere mimicking the visual range of the fly. Each VS

dendrite used the output of LMDs, which fell into its respective RF to generate the input cur-

rent to the model VS network. The temporal average of the resulted axonal voltage VAx ¼
1

T

R
VAx tð Þdt (t = 10 ms) was used for our subsequent analysis.

Model joint distributions as Gaussian copula

Similar to [56], we also used the Gaussian copula to model high dimensional joint distribu-

tions; i.e., the joint distribution between the current and the axis of rotation P(curr,θ) and the

joint distribution P(VAx) for the representation of subpopulation VS cells. For an N-dimension

random variable: (R1,. . .,RN), the copula C (Sklar’s theorem, [71]) is defined as follows:

FðR1; . . . ;RNÞ ¼ CðF1ðR1Þ; . . . ; FNðRNÞÞ ð1Þ

where Fi(Ri) =
R

. . .
R

F(R1,. . .,RN)dR1 . . . dRi−1dRi+1dRN is the marginal cumulative distribu-

tion of the variate Ri. With a new variable Ui = Fi(Ri), the Gaussian copula is a parameterized

copula defined by the correlation matrix S in which its diagonal entries are Sii = 1, and its off-
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diagonal entries are ∑ij = corr (F−1(Ui), F−1(Uj)). The Gaussian copula then has the following

form:

CS

GaussðuÞ ¼ FSðF
� 1ðU1Þ; . . . ;F� 1ðUNÞÞ ð2Þ

in which the F−1 is the inverse cumulative function of the standard normal distribution, and

F∑ is the cumulative distribution function of the multi-dimensional Gaussian distribution

with a covariance matrix defined by S. Correspondingly, for a given vector (R1,. . .,RN), the

copula density has the following form:

cS

Gauss ¼
1

detðSÞ
exp½wtðS� 1 � IÞw� ð3Þ

where w = (F−1(U1),. . .,F−1(UN)).

Therefore, for a given (R1,. . .,RN) the density is defined as follows (by combining the Gauss-

ian copula and the marginal distribution functions):

PðR1; . . . ;RNÞ ¼ cS

GaussðU1; . . . ;UNÞ
YN

i¼1

d
dRi

FiðRiÞ ð4Þ

where the d
dRi

Fi Rið Þ denotes the marginal probability density for each variate Ri.

Goodness of fit for Gaussian copula between dendritic input and the axis

of rotation

Fig 4 in [56] showed that the Gaussian copula can capture most of the dependence structure in

the joint distribution of VS subpopulation axonal responses. Here, we present the goodness of

fit test for the Gaussian copula of the joint distribution P(curr,θ) combining the dendritic

input curr and the axis of rotation θ. Initially, this task looks prohibitive because of the high

dimensionality of the dendritic currents (dimension d = 20). However, this 20-dimensional

current input has only two principal axes (S6A and S6C Fig). Hence, we only need to validate a

4-dimensional Gaussian copula composed of the two principal axes from the current and the

two-dimensional transformation (cosθ,sinθ). S6B and S6D Fig show that the Gaussian copula

indeed captures most of the dependence structure of the joint distribution P(curr,θ).

Mutual information estimation

We used the k-nearest neighbor approach described in [72] to obtain the mutual information

measures I(curr,VAx) and I(VAx,θ). Here, the mutual information I(X,Y) between two distribu-

tions, X and Y, were evaluated as the derivative of a complete gamma function (for details, see

[72]) as follows:

IðX;YÞ ¼ cðkÞ � hcðnx þ 1Þ þ cðny þ 1Þi þ cðNÞ ð5Þ

k is the number of nearest neighbors (we set k = 11, because this is the value at which we

observed the estimation to converge [72]. nx and ny are determined based on k.

When we report the I(curr,VAx) and I(VAx,θ), we report a cross-validated mean of the

above computation. Namely, we divided a dataset of 360,000 samples (1000 samples for each

axis of rotation) into five subsets, and report the mean mutual information estimation. We

omitted the standard deviations when we plotted Fig 3, Fig 4 because of their small magnitudes

(<0.01).
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Efficient encoding of motion based on the information bottleneck method

Not all information transmitted from the photoreceptors are about motion, hence we can

build a compressed representation of motion if we know which information we need to keep

(relevant information) and which are not from the input. The information bottleneck method

[48] treats VAx as the representation subject to be optimized (the “bottleneck”). The represen-

tation VAx has a value, i.e., how much motion information is represented (relevancy) and a

neural cost (complexity), i.e., how much information is obtained from its input. Mathemati-

cally, we can define the relevant information as Iθ−Ax = I(θ,VAx), the mutual information

between any representations and the axis of rotation θ and the neural cost as the mutual infor-

mation between the joint axonal voltage and the dendritic current: IDe−Ax = I(curr,VAx). It is

also the complexity of the “bottleneck” VAx. The optimally efficient encoding (“bottleneck”)

minimizes the following variational principle:

LIB½PðVAxjcurrÞ; b� ¼ IDe� Ax � bIy� Ax ð6Þ

where β is the trade-off parameter between saving the neural cost; i.e., reducing the complexity

IDe−Ax and increasing the value; i.e., increasing the relevant information Iθ−Ax.

In general, this problem is difficult. However, given that the combined distribution of the

current inputs is a Gaussian copula, we can obtain an analytic solution for this particular VS

network, following the meta-Gaussian information bottleneck framework [73, 74]. Based on

this framework, we can use the left eigenvector and left eigenvalues of the matrix M ¼
SDejyS

� 1

De to determine the optimal representation.

Therefore, for the whole range of IDe−Ax, we adapted the Eq 11 from to calculate their

respective optimal relevant information Iθ−Ax. We thus obtained:

IDe� Ax ¼ Iy� Ax þ
nI

2
log

YnI

i¼1

ð1 � liÞ
1
nI þ exp

2IDe� Ax

nI

� �
YnI

i¼1

li
1
nI

 !

ð7Þ

where λi are the left eigenvalues of M in ascending order. nI is the cutoff number of eigenvalues

that we used to estimate the information curve. Starting at IDe−Ax = Iθ−Ax = 0, we estimated the

information curve composed of several segments with an increasing number of eigenvalues.

Manipulation of the stimulus

Luminance. To change the luminance of an image, we scaled the whole image intensity to

the desired level; e.g., 0.2.

Contrast. To change the contrast of an image, we subtracted the mean luminance and

added it back after we scaled the residue pixel intensity to the desired contrast level; e.g., 60%.

The difference between changing the luminance and changing the contrast is that changing

the luminance changes the mean whereas changing the contrast does not.

Estimation of the axis of rotation

Similar to the method in [56], we report the estimation performance based on a dataset of

1600 samples that were embedded within the natural stimuli between 0˚ and 360˚ in 5˚ steps.

For a given axonal voltage vector R in the test set, we estimated its corresponding rotation axis

as the expectation θest given R. We first represented this with the rotation vector s(θ) = (cosθ,

sinθ), and then computed the expectation of this vector with sest = E(s|R) =
R

s(θ)P(θ|R)dθ to

obtain θest. Following Eq 4, we then obtained P(θ|R) by combining the fit copula and the mar-

ginal distributions of individual axonal responses. For the estimation performance, we used
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the Root Mean Square Error (RMSE) between the estimated θest and the real θ, averaging over

all 1600 samples.

RMSEðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1600
Syðy

est
� yÞ

2

r

: ð8Þ

Likelihood ratio

We used the checkerboard stimuli in the discrimination task. Here, the test dataset had 1600

samples for the axis of rotation between 0˚ and 360˚ in 1˚ steps (as opposed to the coarser 5˚

steps for the natural stimuli). For the task, we used the likelihood ratio between two hypothe-

ses: θ and θ0, with respect to the response vector R to determine which stimuli corresponded to

R. The ratio was defined as the likelihood that a specified response vector corresponded to θ
compared to the likelihood that this response vector corresponded to θ0.

LðRÞ ¼
LðyjRÞ
Lðy0jRÞ

ð9Þ

Here, the likelihood LðyjRÞ ¼ PðRjyÞ.
In the discrimination task, the likelihood ratio determines that R corresponded to θ if Λ(R)

> 1, and to θ0 otherwise.

Discriminability

We computed the discriminability d0 according to [41]. The higher the discriminability, the

higher the success rate in discriminating between two alternative hypotheses. We estimated d0

based on the probability of correct discrimination Pc by the equation d0 = 2F−1(Pc). Here,

F xð Þ ¼ 1ffiffiffiffi
2p
p
R x
� 1

dz expð� z2

2
Þ, as discussed in [41]. We followed this method to first evaluate the

probability of correct discrimination Pc, and then to obtain d0. In our case, Pc is the mean prob-

ability of correctly discriminating whether the response vector R corresponds to θ against the

alternatives of both θ + Δθ and θ − Δθ, i.e., Pc = SRP(R|θ)H (P(R|θ) − P (R|θ + Δθ)) + SRP(R|θ)

H(P(R|θ) − P(R|θ − Δθ)). The H (�) is the Heaviside step function indicating that only the cor-

rectly discriminated samples were included in obtaining Pc, which was evaluated over all 1600

samples.

Supporting information

S1 Fig. Optic flow of rotation in the counterclockwise direction around the axis θ (black

dashed line). Note that this rotation yields no motion at the axis itself. The further away the

respective azimuth degree is from the axis θ (up to 90˚), the greater the rotation.

(TIF)

S2 Fig. (A) The information about the axis of rotation encoded by the axonal voltages of the

VS 5-6-7 triplet with the integration window extending from 10 ms to 50 ms, with (in blue)

and without (in orange) GJs, respectively. (B) The colored bars show the information about

the axis of rotation encoded by the axonal voltages of the VS 5-6-7 triplet for GJs from 0 to

1 μS in the VS network. Its upper limit appears as the horizontal line; i.e., the amount of infor-

mation about the axis of rotation available at the dendritic current of the VS network.

(TIF)

S3 Fig. Emergence of hyperacuity and improvement in discrimination with GJs for the

representation by VS 5-6-7 triplet. (A) The discriminability, d’, between θ and θ’ (θ—θ’ = Δθ)

for all axes of rotation as a function of Δθ, with (yellow) and without (blue) GJs. Error bars

Efficient coding via gap junctions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005846 December 4, 2017 17 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005846.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005846.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005846.s003
https://doi.org/10.1371/journal.pcbi.1005846


indicate one standard deviation. Note that only the blue curve intersects the hyperacuity region

whereas the orange curve does not. (B) The uncertainty distribution density for θ = 0˚ (blue

histogram) and θ’ = 2˚ (pink histogram) without GJs. The dashed line represents the decision

rule, (θ + θ’)/2. When a stimulus falls to the left of the dashed line, it belongs to the red distri-

bution; otherwise, to the green distribution. The 85˚ overlap indicates that this decision rule

has a 57% likelihood of being correct (see text). (C) Similar to (B), but with GJs. In this case,

the (θ + θ’)/2 decision rule has a 70% likelihood of being correct, corresponding to the 60%

overlap between the two histograms.

(TIF)

S4 Fig. Both smoothing (reducing trial-to-trial variability) and improving correlation con-

tributes to better encoding of axis of rotation. (A) Joint axonal voltage response of VS5 ver-

sus VS6 in the absence of GJs. A total of 1000 samples for both θ = 0˚ (green) and for θ = 60˚

(red) in response to natural stimuli are shown (see Materials and Methods). Their 95% confi-

dence ellipses are shown in black. (B) Shuffled joint axonal voltages of VS5 and VS6 (95% con-

fidence ellipses shown in black); (C) As in (A) but with GJs = 1 μS. (D) Joint axonal voltages

for VS5-6-7 of the left compound eye without GJs for six different axes of rotation (indicated

by respective colors). (E) Shuffled joint axonal voltages of VS5-6-7 with the same color code as

in (D). (F) Joint axonal voltages for VS5-6-7 with GJs = 1 μS. Shuffled joint axonal voltages of

VS 5-6-7 (with GJs) still show capability to cluster different axes of rotations (comparing (E) to

(D)) but it is inferior to the case without shuffling (comparing (F) to (E)).

(TIF)

S5 Fig. Encodings by triplets of VS neurons is divided to clusters according to their tuning

spacing. Encoding of triplets for natural stimuli (with GJs), color coded according to the triplet

tuning spacing (see text). Note that the e.g., the cluster in red contains both triplets with spac-

ing of 32˚ as well as triplets with spacing 48˚ and contain VS1 or VS10. Arrows are pointing to

VS 2-3-4, VS1-2-4 and VS 2-3-5, respectively, showing that triplet with boundary VS cells

(VS1-2-4 with spacing of 48˚) clusters together with VS2-3-4 (with spacing of 32˚) rather than

with VS 2-3-5 (the cluster in green with spacing of 48˚).

(TIF)

S6 Fig. Goodness of fit for the Gaussian copula combining dendrite input and stimuli θ.

(A) The ten most significant principal components from the currents and the percentages of

variance that they explain individually based on the natural stimuli. Note that 90% of the vari-

ance can be explained with the two most significant principal components. (B) The quantile-

quantile plot the with P(curr,θ), where the current is represented by its two most significant

principal components, and θ is represented as (cosθ,sinθ). The points are the quantile values of

the empirical copula (x-axis) against the fitted Gaussian copula (y-axis) for 10,000 equally

spaced points of the form (0.1 m, 0.1 n, 0.1 p, 0.1 q) with 1�m, n, p, q� 10. We obtained

these values based on 360,000 samples, (1000 samples for each individual axis of rotation

between 0˚ and 360˚). (C) Similar to (A) but with the checkerboard stimuli. Note that the first

two most significant principal components explained all variance. (D) Similar to (B) but with

the checkerboard stimuli.

(TIF)

S1 Text. With GJs, encoding by the VS 5-6-7 triplet shows hyperacuity level discrimina-

tion.

(DOCX)
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