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Abstract

Options that sound too good to be true often are too good to be true. How can decision

makers detect if something is too good to be true, and what are their psychological

responses to such options? Here, we argue that they know about and compare them

against a regularity present in many domains in the environment: Risks and rewards are

typically inversely related (Pleskac & Hertwig, 2014). Using a novel preferential oddball

paradigm, we investigated behavioral and physiological responses to deviations from such

regularities as participants evaluated risky options. In two experiments (N = 183),

participants priced monetary gambles drawn from environments in which risks and rewards

were negatively correlated, positively correlated, or uncorrelated. In later trials, they were

presented with “surprising” gambles that deviated from the respective environment’s

risk–reward structure. Pricing, response times and (in Experiment 2) pupil dilation were

recorded. In both experiments, participants took more time responding to “surprising”

than to “expected” options. Crucially, “surprisingly good” options were evaluated with

even more scrutiny than “surprisingly bad” options. When response time was limited,

prices for surprising options offering high payoffs deviated from the expected values of the

gambles in a way that was consistent with a distortion towards the environment’s

risk–reward structure. Moreover, surprisingly good options were associated with an

increase in pupil size. Taken together, risky options are evaluated based not only on their

payoffs and probabilities (evaluation from givens), but also on the extent to which they fit

the risk–reward structure of the environment (evaluation from environments).
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Too Good to Be True? Psychological Responses to Surprising Options in Risk–Reward

Environments

On December 25th, 2017, Nicole Coggins and her mother-in-law bought 100 lottery

tickets for the South Carolina Holiday Cash Add-a-Play lottery for $1 each. Astonishingly,

every ticket was a winner, giving them a total of $18,000 in winnings. Wade Crenshaw,

who was working behind the cash register at a convenience store that day, noticed that

more and more people were asking to buy Add-A-Play tickets. He later said, “It was weird,

everybody [was] winning so much. I didn’t know if they were doing some kind of Christmas

special” (Fortin, 2017). If you also think that this sounds “too good to be true,” you’d be

right: When the lucky winners went to cash in their prizes, the machine deemed their

tickets to be invalid (Harrington, 2017). As it later emerged, the many winning lottery

tickets were not a Christmas special, but could be traced back to a computer glitch.1

As this story shows, if something sounds too good to be true, it probably is. But how

do people tell that something is too good to be true? The only way to detect such

exceptionally good gambles is by being aware of the tradeoffs one faces in regular, or

nonexceptional, choice situations. A frequent tradeoff is the one between payoffs and

probabilities: Safer gambles (e.g., bonds) usually yield smaller payoffs than riskier gambles

(e.g., stocks). Higher payoffs are more unlikely in the lottery and many other monetary

and nonmonetary domains (Pleskac & Hertwig, 2014). In other words, risks and rewards

are inversely related in many of life’s gambles. In this article, we examine to what extent

people adapt to regularities in risk–reward relationships, and how learning and adapting to

different risk–reward structures influences their responses to options that surprise them by

deviating from the learned regularity. Specifically, we were interested in behavioral and

physiological responses to these surprising options.

1 As of January 23, 2018, the South Carolina Education Lottery Commission may, pending an internal

investigation, treat the the tickets as valid and owe more than $35 million to all the winners from

December 25, 2017 (“South Carolina may owe double in Christmas lottery glitch”, 2018).
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If people showed specific responses to such surprising options, it would indicate that

they do not assess the options’ values soley in terms of their payoffs and risks, which we

term “evaluation from givens.” Rather, it would indicate they also assess how the current

option relates to the larger population of options, which we term “evaluation from

environments.” By and large, theories of decision making are mute with regard to how

people take into account the specific choice environment (though see Payne et al., 1993;

Todd et al., 2012). Instead, they focus on how people form a preference among the options

available in the choice set (e.g., Birnbaum, 1992; Busemeyer & Diederich, 2002; Kahneman

& Tversky, 1979; Mellers et al., 1997; Trueblood et al., 2014; Usher & McClelland, 2004).

An increasing amount of evidence suggests, however, that how options are evaluated

depends in part on the ecological (marginal) distribution of monetary payoffs and

probabilities (Birnbaum, 1992; Stewart et al., 2006, 2015; Walasek & Stewart, 2015). As

mentioned before, here, we highlight an additional ecological regularity that focuses on the

joint distribution of payoffs and probabilities that make up the options. While risks and

rewards (or payoffs and probabilities) generally tend to be inversely related, the strength of

these risk–reward relationships varies across domains: For gambles in casinos, for instance,

there is a near-perfect (though biased) inverse relationship between payoffs and

probabilities; other gambles, such as which journal to submit a paper to (trading off impact

factor against acceptance rate), show a decidedly weaker relationship (Pleskac & Hertwig,

2014). Moreover, a risk–reward relationship is not always a given. For instance, a negative

relationship between risk and reward is to be expected in economic markets only if an

equilibrium has been achieved, but not in newly forming markets that have not yet reached

an equilibrium.

Our previous work has shown that people indeed learn such risk–reward structures

present in their immediate choice environment (Leuker et al., 2017a). Specifically, we asked

people to evaluate monetary gambles of the form “p chance of winning x, otherwise

nothing” by indicating a price for each gamble (where p was the probability and x was the
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monetary payoff). Participants were exposed to environments in which risks and rewards

were negatively correlated, positively correlated, or uncorrelated. They were not informed

about the different risk–reward structures, nor were they instructed to learn the

relationship. Thus, any learning was unsupervised (where there is no corrective feedback;

Love, 2002) and incidental (where learning is not the primary objective; Brooks, 1978;

Dulany et al., 1984; Nelson, 1984; Ward & Scott, 1987; Wattenmaker, 1991; Whittlesea,

1987). When they were asked to estimate the probability of winning different payoffs, the

participants’ estimates reflected the environment to which they had been exposed.

Moreover, they used the learned risk–reward relationship to make decisions under

uncertainty, in which the probabilities of the possible outcomes were unknown. When

payoffs were large, participants who had previously experienced a “negative risk–reward

world” preferred a smaller, sure reward over a larger, uncertain reward. This pattern is

consistent with participants inferring low probabilities for high payoffs. In contrast,

participants in the “positive risk–reward world” preferred the larger, uncertain option over

the smaller, sure thing, consistent with inferring high probabilities for high rewards.

Whereas our previous work investigated how people exploit learned risk–reward

structures in decisions under uncertainty, here we address whether—and if so to what

extent—risk–reward structures also leak into the evaluation of risky gambles in which both

payoffs and probabilities are explicitly given (decisions under risk). Here, people have all

the information necessary to choose in a way that is consistent with maximizing subjective

expected utility (Savage, 1954; von Neumann & Morgenstern, 1944). Yet regularities in the

combination of risks and rewards in an environment may also lead people to form

expectations about the risks and rewards offered by an option. Options that do not match

the environmental structure may be perceived as “surprising” and consequently trigger

specific behavioral and physiological responses. The goal of this article is to identify and

characterize those responses.

Responses to surprising stimuli have been studied in other areas of psychology and
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neuroscience. Researchers using what has become known as the oddball paradigm

(Herrmann & Knight, 2001; Huettel & McCarthy, 2004; Picton, 1992; Squires et al., 1975)

have examined whether participants automatically detect surprising stimuli in a sequence

(called “deviants” or “oddballs”), without being explicitly instructed to process a

particular sequence or deviations from it. For example, in a typical auditory oddball

paradigm, participants are presented with a sequence of standards (s) and a small subset of

deviants (d) that can differ in volume, duration, or pitch (e.g., s–s–s–s–s–s–d–s–s–d–s–s–s).

The deviants are detected even when participants’ attention is not focused on the stimuli.

The detection of deviants typically has an electrophysiological correlate, the mismatch

negativity (for reviews, see Näätänen, 2007; Garrido et al., 2009).

Do oddball effects also occur when people evaluate a sequence of options in

preferential, risky choice, and encounter an option that deviates from the learned

regularities in the combination of payoff and probability? How do people respond to such

“risk–reward oddballs”? Unlike in the perceptual studies in which oddballs have previously

been observed, the stimuli used in decisions under risk are rather abstract, higher level

objects. Moreover, in risk–reward environments, different options drawn from one and the

same environment can be consistent with the same risk–reward environment (e.g., $10 with

p = .9; $20 with p = .8; and $30 with p = .7 all fit a negative risk–reward environment; see

Leuker et al., 2017a), whereas the standards in an oddball paradigm are identical across

the sequence (s–s–s–s–s). Finally, other than in the perceptual studies, gambles are

value–based stimuli. As a consequence, deviants from a risk–reward structure can either be

“surprisingly good” (higher in expected value than expected) or “surprisingly bad” (lower

in expected value than expected). Note that in this article we are concerned with peoples’

evaluations of options in the gain domain; thus, “surprisingly bad” options still involve a

gain (but a small and unlikely one).

Physiological responses to “surprising” stimuli have been investigated in reward-based

paradigms, where it has been shown that both human and animals are sensitive to
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“risk-prediction errors”—that is, to mismatch between expected and experienced risks, or

probabilities (Bossaerts, 2010; O’Neill & Schultz, 2013; Preuschoff et al., 2008). One key

finding is that mispredictions in either direction (probability is low but a reward is still

obtained, or probability is high but no reward is obtained; see Preuschoff et al., 2011) seem

to be associated with pupil dilation.2 In our case, the nature of surprise is somewhat

different, as it is based not on the outcome, but on the mismatch between the properties of

the current option (probabilities and payoffs) and its environment. In addition, detecting

surprising options in risk–reward environments does not necessitate feedback about

whether or not an option is obtained. We return to these conceptual (and possibly

functional) differences between our study and previous studies of surprise in the Discussion.

The Present Experiments

In two experiments, we investigated behavioral (Experiments 1 & 2) and

physiological (Experiment 2) responses to surprising (expected) options that deviated from

(vs. matched) a previously learned risk–reward environment. Between participants, the

structure of the environment was manipulated to be negatively correlated, positively

correlated, or uncorrelated (Figure 1). In both experiments, participants indicated the

price at which they would be willing to sell a monetary gamble of the form “p chance of

winning x, otherwise nothing.” There were two types of gambles. Environment gambles

defined the structure of the environment in a given condition. Test gambles were common

to all conditions but, depending on the condition, were consistent with the environmental

structure (expected gambles), inconsistent with the environmental structure (surprising

gambles), or (in the uncorrelated condition) neither to be expected nor perceived as

2 Reward-prediction errors, in contrast, involve a mismatch between expected and experienced rewards. In

contrast to risk-prediction errors, the neurobiological correlates differ depending on the direction of the

misprediction: Rewards better than expected lead to a positive reward-prediction error and an increase in

dopaminergic firing; rewards worse than expected lead to a negative reward-prediction error and a decrease

in dopaminergic firing (Schultz, 2002; Schultz et al., 1997).
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Figure 1 . Stimuli. Gambles were drawn from one of the three risk–reward environments. A

set of test gambles, which was common to all three conditions, was randomly interspersed

after two-thirds (Experiment 1) or one-third (Experiment 2) of the trials. The number and

proportions of environment gambles vs. test gambles varied slightly between experiments.

Test gambles are color-coded by gamble type: Gambles shown in blue were consistent with

the risk–reward relationships in a condition and could therefore be expected. Gambles

shown in red were inconsistent with risk–reward relationships in a condition and were

therefore surprising. Gambles shown in light gray (panel C) served as reference gambles.

Here, participants were unlikely to have any expectations about particular risk–reward

relationships (due to the environment gambles being uncorrelated).

surprising (reference gambles). After some exposure to one experimental

environment—through evaluating a number of environment gambles—participants were

presented with the test gambles.

Participants were not instructed to pay attention to the underlying risk–reward

structure in either experiment. We examined how pricing and response times (RTs) varied

as a function of whether the gambles were surprising or expected, and relative to the

reference gambles in the uncorrelated condition. In Experiment 2, in addition to the
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behavioral responses, we tracked pupil size in response to surprising, expected, and

reference gambles. Next, we formulate our hypotheses for the various dependent variables

in our experiments.

Pricing

In both experiments, participants’ pricing decisions were incentivized using a

Becker-DeGroot-Marschak auction (Becker et al., 1964). The prices stated for surprising

options could deviate from the expected value in various ways: On the one hand,

participants could rely solely or partially on the risk–reward structure they have

experienced to price the options. For instance, if a surprising gamble is associated with a

high probability but the risk–reward structure suggests a low probability, participants

might indicate a price that is lower than the gamble’s expected value. Conversely, if a

surprising gamble is associated with a low probability but the risk–reward structure

suggests a high probability, participants might indicate a price that is higher than the

gamble’s expected value.3

Response times

Increasing familiarity with the risk–reward structure of an environment may

accelerate the processing of subsequent options consistent with that structure. At the same

time, people may need more time to price surprising gambles (e.g., to integrate the payoff

with the “surprising probability”)—than when the same gambles are presented in a context

in which their structure is expected. This pattern would be consistent with findings in the

domain of event sequence learning (i.e., responses to stimuli in different locations that

follow a sequence, e.g., 4–3–2–1–4–3–2–1). Here, longer RTs for stimuli inconsistent with a

3 A qualitatively identical prediction is that (some) people align payoff information to probabilities

(instead of probability information to payoffs): If a surprising gamble is associated with a high payoff, but

the risk–reward structure suggests a low payoff, participants would be expected to indicate a lower price

than warranted by the gamble’s expected value.
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learned sequence are taken as direct evidence that a sequential stimulus structure has been

learned (Rüsseler & Rösler, 2000).

As noted earlier, a unique feature of surprising value-based stimuli is that options can

be surprisingly good or surprisingly bad. Prior research found that people may have a

mechanism in place that “prevent[s] impulsive responding due to the presence of high value

options” (Cavanagh et al., 2014, p. 2) (also see Frank et al., 2007). By extension,

participants may respond more slowly to surprisingly good options than to surprisingly bad

ones. Note such a mechanism would also be consistent with response times increasing not

as a function of surprise (in evaluations from environments), but as a function of absolute

value (in evaluations from givens).

Pupil dilation

In Experiment 2, we modified the pricing paradigm used in Experiment 1 to measure

pupil dilation as participants inspected the properties of a gamble. We did so by

sequentially presenting first the payoff, then the probability for each gamble. We predicted

that participants would be surprised by options for which the probability information

deviated from the learned risk–reward environment, and that their surprise would become

manifest as the probability information was revealed. Inspired by paradigms investigating

feedback-based “risk-prediction errors” (Preuschoff et al., 2011), we hypothesized that

participants would show greater pupil dilation when an option turned out to be surprising

(i.e., to have an unexpected probability), but not in response to just seeing high or low

payoffs.

Pupil dilation may also be linked to surprising options for different reasons. Recent

research has shown that pupil dilation is associated with an increase in the decision

threshold in decisions between very similar options (see Cavanagh et al., 2014, for choices

and pupil dilation modeled as a drift diffusion process). This decision threshold results in a

more rigorous evaluation of the alternatives, which in turn produces longer RTs. A similar
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mechanism might emerge for surprising options in risk–reward environments, in which a

more rigorous evaluation of surprising options may be linked to both longer RTs and

increases in pupil size. Here, the effect of surprise on pupil dilation could also depend on

the option being “surprisingly good” versus “surprisingly bad” or on the payoffs offered by

the surprising option. If RTs indicate a more rigorous evaluation of surprisingly good

(relative to surprisingly bad) options, a similar dissociation may be observed in pupillary

signals. Thus, it is plausible that participants scrutinize more carefully only those

surprising options that offer a surprisingly high expected value and not those that offer a

surprisingly low one (e.g., due to less impulsive responding in the presence of high-value

options; Frank et al., 2007).

Experiment 1: Behavioral Responses To Surprising Risk–Reward Combinations

In Experiment 1, participants priced monetary gambles drawn from negative,

positive, or uncorrelated risk–reward environments. Our main question was how RTs and

prices would differ when participants encountered gambles that represented surprising

risk–reward combinations relative to expected risk–reward combinations (in the positive

and negative environments) and relative to reference gambles (i.e., in the uncorrelated

environment, when gambles could not be compared against any risk–reward regularity).

We should note that we originally designed Experiment 1 as a means of testing how

exposure to different risk–reward environments impacted performance on various

subsequent decision-making tasks. These data and analyses are reported elsewhere

(Experiment 2 in Leuker et al., 2017a).

Method

Participants. We recruited 90 participants (53 females, age 24.7 years, SD = 4.1

years, proportion students = .72) from the participant pool maintained at the Max Planck

Institute for Human Development. Each participant completed the experiment (duration 65

min) in exchange for a show-up fee of e10 and a performance-based bonus (e1.99 – e7.82).
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Stimuli. Participants priced monetary gambles of the form “p chance of winning x,

otherwise nothing.” For the negative condition, these gambles were constructed as follows:

150 random payoffs were drawn from a uniform distribution with the range 1.01–2500. The

probabilities for each payoff were set so that they were inversely related to the payoff x

(p = 1 − x/2500). We jittered payoffs and probabilities by adding normally distributed

noise with a standard deviation of 0.1 to both the logit transformation of the probabilities

and the logit transformation of normalized payoffs. We then transformed those perturbed

values back to the scales used in the experiment. For the positive condition, we used the

same gambles as in the negative condition but reversed the order of the probabilities. For

the uncorrelated condition, we randomly linked probabilities and payoffs. This approach

maintained the marginal distribution of payoffs and probabilities across conditions (as

marginal distributions of payoffs and probabilities may influence choice; see Stewart et al.,

2006).

In addition to these 150 condition-dependent gambles, participants also priced 22

gambles that were common to each of the three conditions, yielding 172 gamble stimuli per

condition. Specifically, we included 10 less extreme gambles in the center of the

payoff–probability distribution space (intermediate payoffs and probabilities). These

gambles fit equally well within each condition and were not linked to either high or low

(i.e., extreme) payoffs. They were therefore used to study condition-dependent differences

beyond gambles being surprising, expected, or reference gambles (these gambles are not

depicted in Figure 1). and 12 test gambles at the margins of the payoff–probability

distribution space. These consisted of 3 high payoff/high probability ($$$,%%%), 3 high

payoff/low probability ($$$,%), 3 low payoff/high probability ($,%%%), and 3 low

payoff/low probability ($,%) gambles; see triangles in Figure 1). Payoffs were random

draws between E$1–E$500 (low) and E$2000–E$2500 (high). Probabilities were random

draws between 0.01–.2 (low) and .8–1.0 (high). Payoffs and probabilities were factorially

combined to obtain the four payoff/probability combinations. The test gambles were
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Free RT 
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Figure 2 . Task. In Experiment 1, participants saw a gamble and priced it in their own

time. The price was set by moving an arrow along a rating scale and confirming the price

by clicking on it.

interspersed after 100 environment-only trials (i.e., in the last third of the trials).

Procedure. Participants indicated their willingness to sell (WTS) for one gamble

at a time (see Figure 2), taking self-paced breaks between the five blocks. The task was

presented in the form of a game show called “Keep or sell?” (“Behalten oder Verkaufen?”).

To motivate participants to indicate their true valuations of the gambles, we implemented

a Becker-DeGroot-Marschak auction (Becker et al., 1964) as follows: Participants entered a

price at which they would be willing to sell each gamble by moving the mouse along a

rating scale (E$0–2500) and confirming the value with a click. To incentivize the task, the

experimenter informed participants that 10 gambles would be randomly selected at the end

of the experiment. For those 10 gambles, the experimenter then offered a randomly

generated buying price between 0 and the absolute payoff in that gamble. If the

experimenter’s buying price exceeded the participant’s selling price, participants sold the

gamble and earned the buying price. If the participant’s selling price exceeded the

experimenter’s buying price, the gamble was played out (e.g., 50% chance of E$380). The

dominant strategy in this task is to price a gamble based on its subjective value: Setting

higher prices can prevent participants from selling unattractive gambles; setting lower

prices can lead to them selling attractive gambles under value. In other words, the prices
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should approximate participants’ certainty equivalents for the gambles. Experiments were

coded in PsychoPy (Peirce, 2007).

Statistical Analyses

We used Bayesian estimation techniques (Kruschke, 2015). Specifically, we applied

Bayesian generalized linear mixed models using Stan in R for regression analyses with the

rstanarm package (RStanArm, Version 2.9.0–4). All regression models used trial-level data

and participant as a grouping factor. We ran three chains using Markov Chain Monte

Carlo sampling to draw from posterior distributions of parameters. Depending on model

complexity, we ran 10,000–30,000 samples per chain (to ensure an effective sample size of

>10,000 for each regressor) and set a burn-in of 500 samples. We investigated (convergence

of) our posteriors through visual inspection and the Gelman–Rubin statistic (Gelman &

Rubin, 1992). In general, we report the mean of the posterior distribution of the parameter

or statistic of interest and two-sided 95% equal tail credible intervals (CI) around each

value. In all analyses, we compared how condition-dependent expectations (expected,

surprising, reference) modulated the behavioral measure of interest (deviations from prices,

deviations from typical RTs, pupil dilation). We modeled all gamble types simultaneously

and used the “$,%” gambles as baseline gambles. For the “expectation” variable, we used

“expected” as the baseline. As the RT data were slightly right-skewed, we normalized RTs

using a log-transformation of the data before running our analyses. For better

interpretability, we report and plot parameters and credible intervals from regression

models using untransformed data. Qualitatively, the conclusions were identical for

log-transformed and untransformed data (see Open Science Framework).

https://osf.io/6mtuj/?view_only=6a5f45b296b245d3ad81127a2bff8f42
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Figure 3 . Behavioral results for the test gambles interspersed in Experiment 1. (A–D)

Pricing. Prices expressed as normalized deviations from the gambles’ expected values

(price
2500 − EV

2500). We found little to no difference in how well prices were adjusted to the

expected values of the gambles. (E–H) Response times. Participants slowed down when

options were surprising. RTs expressed as deviations from individual median RTs across

trials (RTtrial − RTind. Md). Black dots and error bars represent the mean and the 95%

credible interval of the posterior predictive distribution. Reference = uncorrelated

condition in all panels; expected = negative condition in panels A, D, E, H/positive

condition in panels B, C, F, G; surprising = negative condition in panels B, C, F,

G/positive condition in panels A, D, E, H.

Results

We excluded trials in which participants indicated prices that exceeded the payoff

offered in the gamble by more than E$100, as this suggests lack of attention to the task.

We also removed trials in which RTs deviated by +/ − 3SD from an individual’s median,
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assuming that these RTs are unlikely to reflect cognitive processing in a specific trial. In

total, we removed 4.6% (718/15,480) of the trials across all participants. We analyzed our

data with and without these excluded trials and obtained qualitatively very similar results.

In the following report, we note when these exclusions led to qualitatively different results.

Prices. Across all gambles, including the environment gambles, prices were strongly

related to the gambles’ expected values (payoff × probability interaction, b = 0.90, CI =

[0.87, 0.92], with the uncorrelated condition as baseline). Prices in the negative condition

were slightly more adjusted to the expected value than were prices in the other two

conditions (payoff × probability × negative condition, b = .05, CI = [.01, .07]). This could

be an artifact of the narrower distribution of expected values in the negative condition

than in the other two conditions (which may result in similar price estimates, and less

error, throughout). Indeed, there were no differences between conditions when we used

normalized deviations from expected values (price
2500 − EV

2500) as a dependent variable and

condition as predictor (rather than modeling prices based on the payoff × probability

interaction; all condition-dependent CIs included 0). There were also no

condition-dependent differences for test gambles with intermediate payoff–probability

combinations (all CIs included 0).

We hypothesized that participants would provide prices closer to the gambles’

expected values when risk–reward combinations were expected than when they were

surprising. When gambles were surprising, we hypothesized a deviation in the direction of

the probability expected from the structure of the environment. However, as Figure 3

shows, there were no reliable pricing differences as a function of whether the gamble was

surprising vs. expected (b = 0.001, CI = [−0.010, 0.013], surprising vs. expected across

gamble types); or whether it was a reference gamble vs. expected (b = 0.006, CI =

[−0.009, 0.021]). There was a small (but noncredible) difference in pricing for gambles that

were surprising, but only when gambles offered high payoffs. Consistent with our

prediction, prices for high-probability gambles with a surprisingly high payoff ($$$,%%%)
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decreased (b = −0.009, CI = [−0.047, 0.029], surprising vs. expected). At the same time,

prices for low-probability gambles with a surprising high payoff ($$$,%) increased

(b = 0.014, CI = [−0.028, 0.057], surprising vs. expected).4 It is plausible that prices were

slightly adjusted to what could be expected (a low probability % in $$$,%%% gambles and

a high probability %%% in $$$,% gambles).

Response times. The mean RT across gamble types was 15.3 s per trial in the

uncorrelated condition (CI = [13.52, 17.13]) and credibly lower in the negative (b = −3.16,

CI = [−5.75, −0.53]) and positive (b = −2.92, CI = [−5.51, −0.38]) conditions.5 In

addition, participants in the uncorrelated and negative conditions responded slightly faster

as trials proceeded (buncor = −0.013, CI = [−0.017, −0.009]). This pattern was slightly

more pronounced in the negative condition (bneg = −0.008, CI = [−0.013, −0.002]). The

effect of trial number on RT was not credible in the positive condition (bpos = 0.007, CI =

[−0.002, 0.015], with the uncorrelated condition as baseline).6 There were no

condition-dependent RT differences for test gambles with intermediate payoff–probability

combinations (all CIs included 0).

How did RTs differ when gambles were surprising? To address this question, we

computed individual median RTs across all trials and computed deviations from these

median RTs for each trial. These could then be used as an indicator of condition and

processing differences dependent on specific gamble types (RTtrial − RTind. Md). As Panels

E–H in Figure 3 show, participants slowed down in response to surprising versus expected

4 These gambles were also overpriced in general (main effect), possibly a result of the high payoff > E$2000

and insufficient adjustment for low probabilities. Experiment 2 yielded a similar result, as reported later.

5 When all trials were included in the analysis, participants’ average RT decreased to 10.8 s in the

uncorrelated condition (CI = [8.54, 11.57]) and was again slightly faster in the correlated conditions,

bneg = −1.18, CI = [−4.44, −0.008], bpos = −1.94, CI = [−5.15, −0.85].

6 The differential effect of the positive condition over the baseline condition (uncorrelated) was

bpos = 0.020, CI = [0.015, 0.026]. When this interval was added to the interval of the uncorrelated

condition, the net effect of trial on RTs was no longer credible.
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gambles. On average, they spent 3.5 s longer on surprising gambles than on expected

gambles (b = 3.48, CI = [2.53, 4.42], modeled across gamble types). RTs to reference

gambles were statistically indistinguishable from those to expected gambles.

When RTs were broken down by specific payoff–probability combinations,

participants were 2.5 s quicker when responding to the least attractive gambles in all

conditions, irrespective of whether the gambles were surprising or not ($,%, b = −2.40, CI

= [−3.83, −0.97]). Conversely, all participants took more time responding to the most

attractive gambles ($$$,%%%, b = 3.45, CI = [1.57, 5.34]). Responses were further slowed

down by about another second when gambles were also surprising (see Figure 3, panel F),

but this effect was not credible (b = .78, CI = [−1.91, 3.49]). All results were qualitatively

the same in a model using normalized, log-transformed RTs.

The most attractive gambles in the negative condition were surprising. Put

differently, participants in the negative condition took much longer responding to the most

attractive gambles ($$$,%%%) than to less attractive, expected gambles ($$$,%). They

also took longer responding to these gambles than in the positive condition, where these

attractive gambles ($$$,%%%) were expected. A similar effect was observed for

participants in the positive condition responding to high-payoff gambles with an

unexpectedly low probability ($$$,%, see Figure 3, panel H). 7

Conclusion

Experiment 1 suggests that people form expectations about risk–reward structures

that reflect the experienced environments. This was evident in participants’ responses to

options that did not match these expectations. Specifically, they slowed down in response

to surprising options. At the same time, their adjustments of prices to the gambles’

7 These results are consistent with a model in which we regressed RTs onto expected values, conditions and

their interaction: RTs generally increased as gambles offered higher expected values (bunc = 1.73, CI =

[0.84, 2.61]). However this was much more pronounced in the negative condition (bneg = 3.40, CI =

[1.35, 5.40]), and not credible in the positive condition (bpos = −0.58, CI = [−1.71, 0.54]).
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expected values were the same for all gamble types (surprising, expected, and reference). It

is plausible that participants slowed down when options were surprising to achieve the

same level of pricing “accuracy” as when options were expected. In addition to the overall

RT effects, the data showed that participants’ processing of the options was highly

dependent on the attractiveness of the gambles: Differences in RTs were more pronounced

for surprisingly good ($$$,%%%) than for surprisingly bad gambles ($,%)—to which

participants responded faster in general. Notably, these surprise effects emerged

irrespective of any feedback on whether or not an outcome was obtained.

Experiment 2: Pupillometric and Behavioral Responses to Surprising

Risk–Reward Combinations

In this experiment, we sought to replicate the findings of Experiment 1; in addition,

we considered pupil dilation as a physiological measure of surprise. We hypothesized that

pupil dilation would increase when participants were presented with gambles offering a

surprising combination of risk and reward.

Methods

We adapted the methodology from Experiment 1 to include an eye-tracking

component that allowed us to measure pupillary responses to surprising options. We

outline key differences below.

Participants. Ninety-three (55 female) participants (age M = 25.6 years,

SD = 3.7 years) from the participant pool at the Max Planck Institute for Human

Development, Berlin, completed the experiment (duration 75 min). All participants were

paid a fixed rate of e12 plus a bonus based on their performance (e3.53–e11.67).8

8 After the pricing task reported here, participants completed a risky choice task. The respective data and

analyses are reported elsewhere (Leuker et al., 2017b). The reported duration includes the additional

choice tasks.
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Figure 4 . In Experiment 2, participants priced gambles after seeing information on the

payoff and probability of each gamble in a fixed sequence. After 4 s in total, the gamble

disappeared from the screen. We added a blank screen to achieve sufficient spacing

between the critical stimuli (i.e., a gamble’s risk–reward relationship) and the participant’s

manual response. Subsequently, participants had as much time as they wanted to indicate

a price for the gamble on a rating scale. We measured pupil dilation as a response to a

gamble’s payoff alone (t1) and as a response to its payoff and probability combined (t2).

Stimuli. We reduced the number of stimuli to 90 condition-dependent gambles and

increased the number of gambles common to each of the three conditions. Again, we also

added six gambles with intermediate payoff–probability combinations. As these gambles fit

equally well within each condition and were not linked to either high or low (i.e., extreme)

payoffs, they were used to study condition-dependent differences beyond gambles being

surprising, expected, or reference gambles (they are not depicted in Figure 1). As test

gambles, we created six gambles for each combination of risks and rewards, or payoffs and

probabilities. Overall, these procedures resulted in 120 gambles. As the triangles in

Figure 1 show, only a subset of the test gambles was surprising. In Experiment 2, the

surprise/environment gamble ratio was (12/120 = .10). Half of the test gambles will always

blend in with the condition’s environment gambles. The test gambles were interspersed

after 40 environment-only trials.
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Procedure

Experiment 2 differed from Experiment 1 in that each gamble’s payoff and

probability appeared sequentially: After a fixation cross, the payoff appeared for 2 s,

followed by the probability for another 2 s. After a blank screen (2 s), the screen

automatically switched to a rating scale. Participants entered the prices they were willing

to sell the gamble for by moving the mouse along this rating scale (E$0–E$2500) and

clicking on the value to confirm (free RT). This experimental paradigm can help to

disentangle reactions to payoff only, reactions to payoff and probability combined, and

manual responses (Figure 4). To control for the pupillary light reflex, we matched the

gambles’ luminance to the background of the screen by defining stimuli colors in the

Derrington, Krauskopf, and Lennie color space (see Derrington et al., 1984; MacLeod &

Boynton, 1979). Gambles were presented in orange on a gray background with the same

luminance (for clarity’s sake, these colors are not shown in the figure).

Eye Tracking

We collected binocular eye tracking data with an EyeTribe tracker, sampled at 60 Hz.

The experiment was implemented in PsychoPy 1.83.01 (Peirce, 2007) and the eye-tracking

interface PyTribe (Dalmaijer et al., 2014). Before the task, each participant’s eye

movements were calibrated using the EyeTribe UI with a 9-point grid (< 0.7 degrees of

visual angle). Participants were seated approximately 60 cm from the screen with their

chin on a chinrest affixed to the table, in a room with negligible ambient light. We

obtained pupil size from the left and the right eye (arbitrary units, measured at every Hz).

Eye-Tracking Analyses

Pupillary data were preprocessed as follows. We used EyeTribe’s default settings to

detect fixations and removed saccade data, because pupillary responses during (and even

before) saccades differ systematically from those during fixations (Mathôt et al., 2016).
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Trials were discarded when pupil size deviated more than 3 SDs from a participant’s

median pupil size and when it was outside plausible values (range [10,40] in arbitrary units

given by Eyetribe). This procedure removed blinks (rows with values [0,0]) and

measurement error. We smoothed the data using a lowess filter, and we averaged the pupil

size of the left and the right eye. We removed trials with fewer than 15 samples, which

would indicate extremely poor eye tracking (one would expect 240 samples, minus a few

blinks, per 2 s period). This applied to a small proportion of all trials: .07 of all trials at t1

(when reward was shown); .05 of all trials at t2 (when reward and probability were shown).

To facilitate comparisons across participants and consistent with the literature, we

analyzed pupillary signals aligned to a baseline pupil size. As a baseline signal, we used the

offset of stimulus presentation (median value in the first 100 ms of a trial).9 We did so by

subtracting the signal at each time point from the baseline signal and then dividing by the

baseline signal, resulting in a percentage change relative to the stimulus onset.

Pupillary responses to psychologically relevant stimuli are thought to occur after

approximately 1000 ms (and are therefore conceptually different from the pupillary light

reflex that occurs after milliseconds, see Gagl et al., 2011; Van Steenbergen & Band, 2013).

As in previous research using pupillary responses in the context of choice (Cavanagh et al.,

2014), we therefore set an a priori region of interest from 1000 to 2000 ms poststimulus at

t1 (payoff visible on screen) and t2 (payoff and probability visible together on screen) for

our statistical analyses (see Figure 1). We obtained the median percentage change in pupil

dilation within this a priori region of interest. The median percentage change is a

conservative estimate that may even underestimate the true effect but is more robust to

measurement error than is peak dilation. We compared the results of this analysis with

results using the mean dilation (e.g., as in Mathôt et al., 2016) and peak dilation (e.g., as

9 We used this baseline to obtain a similar measure of pupil changes for both t1 and t2. Often the fixation

cross time is used as a baseline; in our paradigm, however, the fixation cross only preceded stimulus

appearance at t1; see Figure 4.
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in Fiedler & Glöckner, 2012), which were qualitatively very similar (see Supplementary

Materials for results using the other two indicators). An additional advantage of having a

single value for the percentage pupil change per trial is that this analysis automatically

controls for multiple testing (due to an otherwise vast number of pupil samples recorded at

60 Hz). We would like to stress that our focus was not on the time course of pupil dilation

because we introduced a fixed lag between payoffs, probabilities, and participants’ ability

to respond (however, for completeness, we plot the timecourse of pupillary responses at t1

and t2 in the Supplementary Materials). While some research has studied pupil dilation

shortly before a decision is made (Fiedler & Glöckner, 2012, finding that pupil dilation

increases as the participant is deciding), in our setup we cannot determine a unique time

point at which participants made their choice: They could have reached a decision prior to

being able to enter it on the rating scale.

Results

As in Experiment 1, we excluded trials in which participants indicated prices that

exceeded the payoff offered in the gamble by more than E$100, as this suggests lack of

attention to the task. Moreover, we removed trials in which RTs deviated by +/ − 3SD

from an individual’s median, assuming that these RTs are unlikely to reflect cognitive

processing on a specific trial. Overall, these standards resulted in the removal of 9.2%

(1,027/11,160) of trials across all participants. We analyzed our data with and without

these excluded trials and obtained qualitatively very similar results. In the following

report, we note when these exclusions led to qualitatively different results.

Pricing. For all participants, prices were strongly related to the expected values of

the gambles (credible payoff × probability interaction, buncor = 0.86, CI = [0.83, 0.89]).

This relationship was slightly more pronounced in the negative condition (bneg = 0.055, CI

= [0.010, 0.099]) and slightly less pronounced in the positive condition (bpos = −0.051, CI =

[−0.096, −0.006]) than in the uncorrelated condition. These differences could be an artifact
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of the different marginal distributions of expected values across the conditions.10 When we

controlled for expected value, prices deviated positively from the expected value in all three

conditions (bunc = 0.030, CI = [0.004, 0.057], bneg = −0.013, CI = [−.041, .024],

bpos = 0.008, CI = [−0.030, 0.048], but only credibly in the uncorrelated condition).11 Prices

did not deviate in a particular direction for gambles with intermediate payoff–probability

combinations (gambles common across conditions but no test gambles; all CIs included 0).

Across all gamble types, the deviation of prices from expected value differed

somewhat between expected and surprising options (b = 0.012, CI = [0.000, 0.023]). As

Figure 5 (panels A–D) shows, the difference between expected and surprising options was

driven by high-payoff gambles (panels B, D). Specifically, participants indicated lower

prices when the most attractive gambles ($$$,%%%) were surprising (i.e., in the negative

condition) than when they were expected (i.e., in the positive condition) (b = −0.037, CI =

[−0.069, −0.005]). Thus, when the most attractive gambles were surprising, prices were

adjusted to what could be expected (a low probability). Conversely, participants indicated

higher prices when high payoff/low probability gambles ($$$,%) were surprising than when

they could be expected (b = 0.086, CI = [0.018, 0.156]; all models using $% gambles as

baseline). Again, prices in the surprising condition were adjusted to what these

participants might have expected (a high probability). Taken together, these results are

consistent with the probabilities that participants could expect from high payoffs: the

negative condition prompts the expectation that a high payoff will be accompanied by a

low probability; the positive condition prompts the expectation that a high payoff will be

accompanied by a high probability. However, prices did not seem to be adjusted to

10 When all trials were included in the analysis, prices were (as expected) less well adjusted to gambles’

expected values, as indicated by a weaker but credible payoff × probability interaction, bunc = 0.70, CI =

[0.66, 0.71]. Again, there were no differences between conditions (all CIs contained 0).

11 When all trials were included in the analysis, there was a positive deviation from expected values,

bunc = 0.051, CI = [0.023, 0.060], slightly less so in the negative condition bneg = −0.023, CI =

[−0.063, −0.009], bpos = −0.005, CI = [−0.044, 0.008].
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participants’ expectations in their pricing of low-payoff gambles.12

12 When all trials were included in the analysis, the effect of surprise on prices for the attractive gambles

($$$,%%%) was not credible, but in the same direction (b = −0.017, CI = [−0.061, 0.027]). The effect on

the high-payoff, low-probability gambles ($$$,%) was qualitatively identical (b = 0.10, CI = [0.018, 0.020]).
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Figure 5 . Behavioral results for the test gambles interspersed in Experiment 2. (A–D)

Pricing. Prices expressed as normalized deviations from the gambles’ expected values

(price
2500 − EV

2500). For low payoffs, we found little to no difference in how well prices were

adjusted to the expected values of the gambles. For high payoffs, prices of surprising

options differed from prices of expected options. (E–H) Response times. Participants

slowed down when options were surprising. This effect was driven by the surprisingly good

options (panel F). RTs expressed as deviations from individual median RTs across trials

(RTtrial − RTind. Md). Black dots and error bars represent the mean and the 95% credible

interval of the posterior predictive distribution. Reference = uncorrelated condition in all

panels; expected = negative condition in panels A, D, E, H/positive condition in panels B,

C, F, G; surprising = negative condition in panels B, C, F, G/positive condition in panels

A, D, E, H.

Response times. Participants took 4.67 s (CI = [4.06, 5.28], RT model with the

uncorrelated condition as baseline) on average per trial from seeing the empty screen (2 s
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enforced) to entering a response on the rating scale. There were no credible differences in

these average RTs across conditions (all CIs for condition-dependent effects contained 0).

Similar to Experiment 1, participants’ response speeds increased as trials proceeded

(b = −0.008, CI = [−0.11, −0.006]).13 RTs did not differ across conditions for test gambles

with intermediate payoff–probability combinations (all CIs included 0).

The range of RTs was smaller in Experiment 2 than in Experiment 1 due to the

experimental design, in which a price could not be entered before seeing payoff and

probability information for 2 s each. However, as in Experiment 1, our focus was on RT

differences for particular gamble types. Again, RTs varied depending on the

payoff–probability combination: Consistent with Experiment 1, participants across all

conditions responded faster to unattractive gambles ($,%, b = −0.55, CI = [−1.05, −0.04])

and spent more time evaluating the most attractive gambles ($$$,%%%, b = 0.65, CI =

[0.19, 1.11], main effects).

Moreover, RTs again depended on the gamble type: In Experiment 2, participants

spent 0.28 s longer on surprising gambles than on expected gambles (CI = [0.031, 0.52]).

As in Experiment 1, RTs for reference gambles were indistinguishable from those for

expected gambles. As Figure 5 shows, the effects of surprise differed slightly depending on

the gambles’ payoff–probability combinations. In particular, surprise elevated the RT

differences for the most attractive gambles, but this effect was not credible ($$$,%%%,

b = 0.40, CI = [−0.28, 0.63], expectation × gamble type). These differences in RTs were

qualitatively identical when data from all participants was entered in the analysis.14 15

13 These “practice effects” disappeared when all participants were included in the analysis. Likewise, they

did not emerge in the positive and negative conditions when we used normalized, log-transformed RTs.

14 All results were qualitatively the same in a model using normalized, log-transformed RTs.

15 As in Experiment 1, these results are consistent with a model in which we regressed RTs onto expected

values, conditions and their interaction: RTs generally increased as gambles offered higher expected values

(bunc = 0.34, CI = [0.00, 0.69]). Again, the link was much more pronounced in the negative condition

(bneg = 1.41, CI = [0.81, 2.01]), and (also as before) not credible in the positive condition (bpos = 0.20, CI
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In sum, both the payoff a gamble offers and whether or not it is surprising influence

the pricing and processing of gambles. In Experiment 2, participants spent more time

evaluating attractive gambles (%%%,$$$) when those gambles were surprising (i.e., in the

negative condition). However, the differences in RTs were much smaller than in Experiment

1. This difference is likely an artifact of the experimental design, in which a high

proportion of the overall RT was fixed (payoff presented for 2s, payoff + probability for 2 s,

blank screen for 2 s = at least 6 s to process the gamble before being able to enter a price).

Pupil dilation. We analyzed pupil responses at two time points. Pupillary

responses to payoffs only (t1) were used to test the influence of payoff magnitude: If

participants responded to surprising options (defined as payoff–probability combinations),

pupil size should not vary between high or low payoffs at t1. This was indeed the case

across all conditions (all CIs contained 0).16 How did pupil dilation change as a function of

whether or not a gamble was surprising? Figure 6 shows mean changes in pupil dilation

after both payoff and probability information was presented (t2). Panels A–D suggest that

pupil size was not associated with gambles being either surprising or expected (b = −0.14,

CI = [−0.92, 0.63], main effect of surprising vs. expected across gamble types), nor with

differences between expected and reference gambles (b = 0.06, CI = [−1.01, 1.12], main

effect of reference vs. expected across gamble types). Instead, pupil size was affected by

surprise and how attractive a gamble was. Specifically, pupil size decreased in response to

surprisingly bad gambles (Panel C: $,%, b = −1.75, CI = [−3.38, −0.11]) and increased in

response to surprisingly good gambles (Panel D: $$$,%%%, b = 2.84, CI = [0.75, 4.96]).

When these gambles were expected or when they were reference gambles (i.e., in the

uncorrelated condition), pupil responses were statistically indistinguishable from 0 (all CIs

= [−0.23, 0.65]).

16 bunc = −0.07, CI = [−0.91, 0.76], using the uncorrelated condition as baseline; bneg = −0.40, CI =

[−1.59, 0.71], bpos = −0.33, CI = [−1.52, 0.88], all comparisons $$$ > $. These results are plotted in the

Supplementary Materials. The results were qualitatively identical with and without excluded trials.
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contained 0). Panels A and D show that the change in pupil dilation was statistically

indistinguishable from a 0% change for gamble types involving some tradeoff between

payoffs and probabilities ($$$,% or $,%%%) across all three conditions—that is,

irrespective of whether these gambles were surprising or not.

Figure 6 . Pupil dilation after seeing gambles (both payoff and probability information on

the screen). Pupil dilation computed as the median percentage change from 1000–2000 ms

after the stimulus. Black dots and error bars represent the mean and the 95% posterior

predictive distribution.

Conclusion

Experiment 2 further corroborates that people seem to build up expectations about

the options appearing in a particular risk–reward environment. As in Experiment 1, this

was evident in longer RTs for surprising gambles. Moreover, the data from Experiment 2

suggest differences in pricing—but only when gambles offered a high payoff. Specifically,

when the probability of such gambles was low but participants expected a high probability

given the risk–reward environment, participants indicated prices that were drawn towards
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that expectation (and were slightly higher). Conversely, when the probability was high but

participants expected a low probability, prices were drawn towards that expectation (and

were slightly lower). Lastly, surprisingly good options were associated with a reliable

increase in pupil size ($$$,%%%). However, pupil size was not associated with surprise per

se (across gamble types).

General Discussion

If something sounds too good to be true, it usually is. The only way to identify such

exceptional options is being sensitive to some of the tradeoffs people typically face in their

choice environments. A frequent regularity people encounter is an inverse relationship

between risks and rewards (Pleskac & Hertwig, 2014). Using a novel preferential oddball

paradigm, we found evidence that (a) people are fairly sensitive to such regularities and (b)

they show distinct responses to surprising options that deviate from the regularities. That

is, people seem to compare new, incoming options against the risk–reward relationship they

learned from their environments. In the preferential oddball paradigm, people learned

about risk–reward structures by pricing monetary gambles drawn from negative, positive,

or uncorrelated risk–reward environments (also see Leuker et al., 2017a). After some

exposure to a particular risk–reward environments, participants encountered surprising

options that deviated from learned risk-reward structures. We investigated to what extent

these surprising options were linked to three indicators of surprise: prices, RTs, and pupil

dilation. Next, we discuss these three indicators in detail. We then relate our findings to

previous research on surprise and consider their broader implications for preferential choice.

Do people evaluate surprising options differently from nonsurprising options? A

comparison across experiments suggests that the time decision makers have available to

inspect an option plays an important role. Without timing restrictions (as in Experiment

1, Figure 2), people may have been able to compensate for the uncertainty that surprising

options induce simply by looking at or evaluating the options for longer. This may explain
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the limited differences in pricing we observed when comparing surprising with expected

options or reference gambles. In Experiment 2, the time available for inspecting options

was limited. Here, prices deviated from gambles’ expected values in the direction of

participants’ expectations: When the probability of surprising gambles was low but

participants expected it to be high, prices were drawn towards that expectation (and were

slightly higher). Conversely, when the probability was high but participants expected it to

be low, prices were drawn towards that expectation (and were slightly lower).17 However,

prices only deviated for options offering high payoffs. While this systematicity speaks

against random variability in indicating prices for surprising options, the extent to which

choices are affected by surprise may depend on whether or not the duration with which

payoffs and probabilities can be inspected is fixed (as in Experiment 2, Figure 4), and the

payoffs the surprising options offers.

How do people process surprising options? Our data show that people may take more

time when evaluating surprising options than when the same options are to be expected.

How much longer people take to evaluate a surprising option also depends on whether the

option is surprisingly good ($$$,%%%) or surprisingly bad ($,%). This stakes effect was

also present in pupil size, which increased in response to surprisingly good options (relative

to baseline), but not in response to surprise in general, or in response to high expected

value in general ($$$,%%%). The differences between surprisingly good and surprisingly

bad gambles are consistent with a “hold your horses” mechanism by which people behave

less impulsively in the presence of high–value options (Cavanagh et al., 2014; Frank et al.,

2007). That is, more scrutiny is required only when high payoffs are at stake. Here, we

have shown that such a mechanism can be weakened when high payoffs are to be expected

17 We interpret these findings as indicating that participants adjusted probability information to payoffs

because payoffs were presented first in Experiment 2, followed by probabilities. This does not rule out the

possibility that people may also use the risk–reward relationship in other situations to adjust payoffs to a

plausible range.
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in an environment, and strengthened when high payoffs are not to be expected.

More generally, our data bring a new perspective to the growing body of research on

how the environmental distribution of monetary payoffs and probabilities influences how

(otherwise identical) options are evaluated (Birnbaum, 1992; Stewart et al., 2006, 2015;

Walasek & Stewart, 2015). Here we show that people go beyond evaluating options from

givens. Instead, our results point to a mixture between evaluations from givens and

evaluations from environments. For instance, prices for surprising options were adjusted to

the options’ expected values but sometimes shifted in the direction of environmental

expectations. What is more, we observed substantial shifts in the way that surprising

options were processed. Such environment-based evaluations cannot be anticipated by

prominent theories of choice, which conceptualize risks and rewards as independent

attributes that determine the expected utility of an option (von Neumann & Morgenstern,

1944) or its subjective worth (Tversky & Kahneman, 1992).

The fact that people seem to engage in environment-based evaluations (i.e. compare

options to the “global” choice environment these options are drawn from) can bring a new

dimension to other decision making concepts. Consider the case of dominance. Typically

dominance (where one option is superior to all other options on all attributes) or the

related concept of stochastic dominance are defined within a given (“local”) choice set

(Hadar & Russell, 1969). However, there may be a more global aspect to dominance. For

example, in the negative risk–reward environment, surprisingly good options strongly

dominated all other options in the set. Conversely, the surprisingly bad options were

dominated by all other options in the set. The fact that in our data people showed distinct

responses to these value-based “oddballs” (but not to the same options when these could

be expected) suggests that they may be sensitive to dominance in these larger, global set of

options. Given the important role dominance plays in context effects like the attraction

effect (Huber et al., 1982), it is plausible that context effects may not only arise in local

choice environments, but also in global choice environments.
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In addition, our results bring a novel dimension to studies of surprise. Similar to

oddball paradigms using lower level auditory stimuli, we show that feedback is not a

prerequisite for the mind to detect surprising stimuli (or deviants) in a sequence of

standards. As mentioned before, a crucial difference between oddball paradigms and the

preferential oddball paradigm we used here is that the latter entails value-based stimuli.

Our data suggest that, in contrast to oddball paradigms, the direction of the surprise (i.e.,

whether an option is surprisingly good or surprisingly bad) matters in preferential choice.

Another critical difference is that attention to the stimuli is not required in oddball

paradigms (Garrido et al., 2009), but is probably required in the preferential oddball

paradigm reported here. By extension, we a “mismatch negativity” may not necessarily

emerge for preferential oddballs—a prediction that is directly testable in further research.

From this perspective, the results may be more comparable to previous studies on

“risk-prediction errors” (Bossaerts, 2010; O’Neill & Schultz, 2013; Preuschoff et al., 2008)

or “reward-prediction errors” (Schultz, 2002; Schultz et al., 1997) than oddball paradigms.

However, these prediction errors have to date only been elicited in contexts in which

feedback is given. Is feedback required for prediction errors to be elicited? This question

could be investigated by comparing neurophysiological correlates of surprisingly good

versus surprisingly bad options with and without explicit feedback.

A final question pertains to the role of surprise in risk–reward environments. Is there

an adaptive aspect to surprise in risk–reward environments? Is its role similar to, or distinct

from, other types of surprise? In value-based choice, “reward-prediction errors” are thought

to aid reward-based learning. A similar mechanism would be plausible if participants

anticipated the surprisingly good option being added to their bonus at the end of the study

(without feedback after each choice). Similarly, in oddball paradigms, the mismatch

negativity has been described as a marker for error detection that stems from a break in a

learned regularity. According to the model adjustment hypothesis, the prediction error

leads to a subsequent updating of the [previously learned] model (Garrido et al., 2009).
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The model adjustment hypothesis is consistent with the predictive coding framework

(Friston & Kiebel, 2009). Adjusting one’s model of the world in this way could also be

adaptive in risk–reward environments in which the relationships may vary (e.g., a weaker

relationship is expected in newly forming markets). However, it remains an open question

how much evidence is needed for a model to be adjusted. Our previous experiments

suggest that the risk–reward regularity people extract largely reflects the structure of the

environment trials (Leuker et al., 2017a). Maintaining a risk–reward rule even after seeing

surprising risk–reward combinations would be consistent with a “rule-plus-exception

model,” according to which people may learn exceptions to a rule instead of updating that

rule if they are unable to identify the rule that would account for the exceptions (Nosofsky

et al., 1994). For instance, a person “might regard a single-dimension rule as tentatively

acceptable as long as it correctly classifies 60% of the incoming exemplars” (p. 56).

In value-based decision making, extracting a rule from the overall environment and

forming expectations may serve a very particular function: to help people to identify when

options are too good to be true. Forming expectations in this way may work in many

nonlaboratory environments in which risks and rewards are inversely related (Pleskac &

Hertwig, 2014). In these environments, people know that there is usually “no free lunch,”

in that the larger rewards they desire occur only rarely (but if they are lucky and get a

“free lunch” once, it does not mean that their model of risk–reward environments will

change). Ultimately, being sensitive to an environment’s risk–reward structures and

deviations from those structures can lead to adaptive decisions under risk.

General Conclusion

Three main conclusions can be drawn from the experiments presented. First, people

build expectations about the structures of the options in their global choice environments.

When presented with options that deviate from these expectations, people slow down to

evaluate them. Second, the direction of deviation matters: Surprisingly good options are
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evaluated with more scrutiny than surprisingly bad options. Third, the expectations people

have can directly influence their evaluations of options, particularly when the time

available to process those options is fixed. These behavioral signatures may reflect how

people deal with surprising options in nonlaboratory environments, especially when those

options are “too good to be true”: They take some more time to scrutinize them.
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1 Pupil dilation (mean vs. peak vs. median)

We report changes in median pupil size in the main text. We obtain qualitatively very similar
results when using the mean change (Figure S1), the peak changes (Figure S2) or median changes
(Figure S3) in pupil dilation as an indicator. Supplementary figures also show results for gambles
with intermediate payoff–probability combinations ($,$,%,%; these were payoffs around 1250E$ and
probabilities around 50%). We used these gambles as a different type of reference class as these
gambles matched the expectations in all three conditions. Just as the other gamble types, six of
these gambles were interspersed after 40 environment–only trials. As expected, there were no credible
differences in pupil size for these gambles.

Figure S1: Mean changes in pupil dilation between 1000 and 2000ms after observing (A) payoffs
only, (B) or payoff–probability combinations. Black triangles and error bars represent the mean and
the 95% credible interval of the posterior predictive distribution.
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Figure S2: Peak changes in pupil dilation between 1000 and 2000ms after observing (A) payoffs only,
(B) or payoff–probability combinations. Black triangles and error bars represent the mean and the
95% credible interval of the posterior predictive distribution.

Figure S3: Median changes in pupil dilation between 1000 and 2000ms after observing (A) payoffs
only, (B) or payoff–probability combinations. Black triangles and error bars represent the mean
and the 95% credible interval of the posterior predictive distribution. Results shown in panel B are
reported in the main manuscript.
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2 Pupil dilation (temporal dynamics)
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Figure S4: Temporal dynamics of pupil dilation for different payoffs across the three conditions,
before any probability was paired with these payoffs. The grey line depicts intermediate payoff
levels around 1250E$, paired with intermediate probability levels around 50% (not discussed in
main manuscript). Pupil dilation aggregated across participants and trials and smoothed with a
loess function.
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Figure S5: Temporal dynamics of pupil dilation for different payoff–probability combinations across
the three conditions. The most attractive gambles in the set are plotted in red, the least attractive
gambles are plotted in blue. Pupil dilation aggregated across participants and trials and smoothed
with a loess function.

We plotted the change in pupil dilation in response to both only the payoffs (Figure S4) and payoff-
probability combinations (Figure S5). Figure S4 shows that, if anything, low payoffs led to a larger
% change in pupil dilation than high payoffs (at t1). However, these differences were not statistically
meaningful. Figure S5 shows the effects of payoff-probability combinations (at t2). We expected
that pupils would be larger in response to surprising gambles. However, across all three conditions,
the most attractive gambles ($$$, %%%) are associated with the largest changes in pupil size. The
change in pupil size in response the most attractive gambles ($$$, %%%) gambles was credible when
these gambles were surprising (in the negative condition).

3 Pupil dilation (exploratory analyses)

3.1 Is pupil dilation linked to expected value?

What is the effect of expected value on pupil dilation across conditions, using all gambles (including
environment gambles)? Note that due to the design of the experiment, the (marginal) distribution of
expected values differs across the three conditions. Specifically, in the negative condition, expected
values never exceeded E$600, except for the six most attractive gambles ($$$, %%%), with expected
values close to E$2500. These gambles appeared after 40 environment-only trials. Therefore, the few
high EV gambles in the negative condition stood in contrast to all other gambles in the condition
with no intermediate EVs (EVs were below E$600 or very high), which might have produced a
stronger reaction to high versus low EVs (“salience”). Indeed pupil dilation was linked to EV in the
negative condition (b = .0009, CI = [.0003, .0014]). The marginal distribution of EVs in the positive
condition was also bimodal. Again, expected value was linked to pupil dilation (b = .0006, CI =
[.0003, .009]). For both of these correlated conditions, the effect was small. Expected value was not
linked to pupil dilation in the uncorrelated condition (b = .000, CI = [−.0004, .0003]).
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3.2 Is pupil dilation linked to response time differences?

Recall that participants slowed down when indicating prices to the most attractive gambles ($$$,
%%%) versus least attractive gambles ($, %), especially when these gambles were surprising. The
pupillometric data showed differentiable responses to attractive versus unattractive gambles. Are
these two processes linked? There was no association between response times and the pupil effect
when these gambles were reference gambles (breference = 0.21, CI = [−.64, 1.07]), or when these
gambles were expected (bexpected = −0.03, CI = [−0.82, 0.75]). When these gambles were surprising,
pupillometric responses towards very attractive versus very unattractive gambles are slightly more
dissociable in longer trials (that is, when participants slow down to process surprising gambles).
Specifically, there was a weak but not credible interaction between taking more time on a given trial,
gamble type and surprise (b = 0.35, CI = [−0.14, 0.84], model on the trial level with participant as a
grouping factor). The effect is slightly larger, but also not credible, when including all participants
in the analysis (b = 0.39, CI = [−0.08, 0.87]).

This analysis is not meaningful for the other payoff–probability combinations ($$$,% and $,
%%%, or the reference gambles) — there were little to no (main) effects of these gamble types on
reaction times and pupil dilation. That is, there was no association between pupil dilation and
reaction times for these gamble types in the first place.
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