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Abstract

Multiphase flows are present in many natural and industrial processes including filtration,
pollution control, pharmaceutical applications, food industry and fluidized bed reactors.
Experimental investigation of such flows, although interesting and ideal, is often associated
with many difficulties in constructing and running the set-up. High investment cost is another
issue of experimental studies. During the recent years, the computational power of computers
has continually and exponentially grown. This provides the researchers with a fertile region for
numerical investigation of multiphase flows. In numerical simulation, a variety of geometries with
different configurations can be examined. Beside the importance of multiphase flow modeling,
another motivation for this dissertation was to use an alternative for classical Navier-Stokes
based solvers. Lattice Boltzmann method (LBM) is proven as a profound and robust model
since its introduction three decades ago.

This dissertation aims at developing a lattice Boltzmann solver (ALBORZ) for various
solid-liquid two-phase flows. The main focus would be on particulate flows and the fluid flow
among porous structures. In this regard, both laminar and turbulent flows are considered and
non-isothermal applications are studied as well. The dissertation includes seven chapters which
can be summarized as follows.

In Chapter 1, the importance of multiphase flow modeling will be presented. A short review
on different types of particulate flows and the importance of LBM in CFD studies will be given
as well. The complete plan of this dissertation is summarized in the last part of this chapter.

Chapter 2 reviews the fundamentals and the equations of LBM, starting with a brief historical
background of the model and explaining the contributions in the model in the last thirty years.
Afterwards, the Boltzmann transport equation and single relaxation time model are presented.
Comparison of single relaxation time LBM with classical Navier-Stokes based solvers is another
topic covered in this chapter. The advantages and shortcomings of single relaxation time-LBM
are thoroughly reviewed. Finally, multi-relaxation time LBM is discussed in this chapter.

The theory and applications of developed LB solver for laminar particle-laden flows is
presented in Chapter 3. The immersed boundary method (IBM), which takes the particle-fluid
interactions into account is explained and the equations are given. Afterwards, particle position
update method, collision models, the influence of force term in LB equations and numerical
algorithms are presented. Finally, the code is validated for numerous applications of single and
multiple solid rigid particles against the results from experiments and other numerical models.
Both 2D and 3D cases are modeled and the effect of particle shape is tested as well.

Since many multiphase flows occur in a non-isothermal state, the heat transfer effect on
particle motion needs a careful and complete study. This issue is covered in Chapter 4. The
formulation of the non-isothermal model and treatment of heat source term are first presented.
For numerical validation, stationary and moving particles with constant or varying temperature
are modeled. Again, both circular and spherical particles are taken into account. Finally, various
applications of the model are introduced in which heat transfer to/from particles can significantly
alter the behavior of the particles. This effects depend on many parameters including Grashof
number, Prandtl number and fluid/particle properties.

Flow in porous media is covered in Chapter 5. Different configurations including a
face-centered and a body-centered cube together with a real geometry reconstructed from
CT images are successfully modeled and the effect of multi-relaxation time LBM on the
permeability is investigated.

Chapter 6 is devoted to the simulation of particle-laden turbulent channel flows with spherical
particles. In this respect, turbulent flow in a straight channel is seeded with multiple spherical



particles. It is shown that particles can change the characteristics of the flow. Particles
concentration belongs to the dense regime. It is checked how mean flow velocity, its rms and
particle distribution vary with the distance from the wall. Vortex structures change noticeably
in the presence of particles.

In many practical applications, particle shape is not spherical. Therefore, Chapter 7 concerns
the simulation of spheroidal particles in both laminar and turbulent flows. It includes introducing
a new method for distribution of Lagrangian points on particle surface and using quaternions for
updating particle rotational velocity. A validation case for rotation of an ellipsoid in a Couette
flow is given. The influence of multiple particles on a turbulent channel flow is investigated and
compared to the results of spherical particles.

This dissertation is concluded with a summary, recommendations, and outlook which are
presented in Chapter 8. The main contributions and novelties contained in this work are listed
below:

Highlights and main contributions:

• Development of a new LBM tool that can accurately handle different laminar and turbulent
two-phase flows;

• Using LBM to simulate the motion of circular, elliptical, spherical and spheroidal particles
in laminar flows;

• Developing a non-isothermal LBM tool to model the motion of fully-resolved particles by
considering complete particle-particle and particle-fluid interactions;

• Presenting the immersed boundary-lattice Boltzmann simulation of turbulent particle-laden
pressure-driven flows;

• Extending a model to investigate the behavior of ellipsoid particles based on IB-LBM;

Keywords: Lattice Boltzmann method, Immersed boundary method, Particle-laden flow,
Porous media; Direct numerical simulation



Zusammenfassung

Mehrphasenströmungen finden in vielen natürlichen und industriellen Prozessen statt,
einschließlich Filtration, Verschmutzungssteuerung, pharmazeutischen Anwendungen,
Nahrungsmittelherstellung und Wirbelschichtreaktoren. Die experimentelle Untersuchung
solcher Strömungen wird angestrebt, sie ist jedoch oft mit vielen Schwierigkeiten bei der
Konstruktion und Durchführung verbunden. Hohe Investitionskosten sind ein weiteres
Problem experimenteller Studien. In den letzten Jahren ist die Rechenleistung von Computern
kontinuierlich und exponentiell gestiegen. Dies bietet eine gute Grundlage für die numerische
Untersuchung von Mehrphasenströmungen. In der numerischen Simulationen können
mehrere Geometrien mit unterschiedlichen Konfigurationen untersucht werden. Neben der
Bedeutung der mehrphasigen Strömungsmodellierung bestand eine weitere Motivation für diese
Dissertation darin, eine Alternative für klassische Navier-Stokes-basierte Löser zu verwenden.
Die Lattice-Boltzmann-Methode (LBM) ist seit ihrer Einführung vor drei Jahrzehnten ein
vielversprechender und robuster Ansatz.

Diese Dissertation zielt auf die Entwicklung eines Lattice-Boltzmann-Lösers (ALBORZ)
für verschiedene Partikel-Fluid-Zweiphasenströme ab. Der Schwerpunkt liegt dabei auf den
Partikelströmungen und dem Fluidstrom innerhalb von porösen Strukturen. In dieser Hinsicht
werden sowohl laminare als auch turbulente Strömungen betrachtet und auch nicht-isotherme
Anwendungen untersucht. Die Dissertation enthält sieben Kapitel, die sich wie folgt gliedern.

In Kapitel 1 wird die Bedeutung der LBM für Mehrphasenströme vorgestellt. Ein kurzer
Überblick über den Stand der Technik wird ebenfalls gegeben. Die vollständige Zielstellung
dieser Dissertation ist im letzten Teil dieses Kapitels zusammengefasst.

Kapitel 2 prüft die Grundlagen und die Gleichungen der LBM, beginnend mit einem kurzen
historischen Hintergrund des Modells, und erklärt ferner die Weiterentwicklungen in den letzten
Jahren. Danach werden die Boltzmann-Transportgleichung sowie das single relaxation time
(SRT) Modell dargestellt. Der Vergleich von SRT-LBM mit klassischen Navier-Stokes-basierten
Lösers ist ein weiteres Thema in diesem Kapitel. Die Vor- und Nachteile dieses Modells werden
sorgfältig überprüft. Schließlich wird die multi-relaxation time (MRT)-LBM in diesem Kapitel
diskutiert.

Die Theorie und Anwendungen des entwickelten LB-Lösers für laminare partikelbeladene
Strömungen werden in Kapitel 3 ausführlich dargestellt. Die Immersed-Boundary-Methode,
die die Partikel-Fluid-Wechselwirkungen berücksichtigt, wird erläutert und die Gleichungen
aufgelistet. Anschließend werden das Verfahren zur Aktualisierung der Partikelposition, das
Kollisionsmodell, der Einfluss des Kraftterms in den LB-Gleichungen und der numerische
Algorithmus behandelt. Schließlich wird der Code für zahlreiche Anwendungen einzelner und
mehrerer Partikel mit den Ergebnissen von Experimenten und anderen numerischen Modellen
validiert. Sowohl 2D als auch 3D-Fälle werden modelliert und die Wirkung der Partikelform
wird ebenfalls untersucht.

Da viele Mehrphasenströmungen in nicht-isothermen Prozessen auftreten, erfordert
die Auswirkung der Wärmeübertragung auf die Partikelbewegung eine sorgfältige und
umfassende Untersuchung. Dieses Problem wird in Kapitel 4 behandelt. Die Formulierung des
nicht-isothermen Modells für den Wärmequellen-Term werden vorgestellt. Zur numerischen
Validierung werden stationäre und sich bewegende Partikel mit konstanten oder variablen
Temperaturen modelliert. Auch hier werden sowohl kreisförmige als auch sphärische Partikel
berücksichtigt. Schließlich werden verschiedene Anwendungen des Modells eingeführt, bei denen
der Wärmeübergang zu/von Partikeln deren Verhalten signifikant verändern kann. Diese Effekte
hängen von vielen Parametern ab, z.B. der Grashof-Zahl, der Prandtl-Zahl und den Fluid- und



Partikeleigenschaften.
Die Durchströmung poröser Medien ist in Kapitel 5 enthalten. Es werden verschiedene

Konfigurationen, einschließlich eines flächenzentrierten und eines körperzentrierten Würfels
zusammen mit einer aus CT-Bildern rekonstruierten, realen Geometrie, erfolgreich modelliert
und der Effekt der MRT-LBM auf die Permeabilität untersucht.

Kapitel 6 befasst sich mit der Simulation partikelbeladener turbulenter Kanalströme. Hier
werden in die turbulente Strömung eines Kanals mehrere sphärische Partikel eingebracht.
Es zeigt sich, dass die Partikel die Eigenschaften der Strömung verändern können.
Die Partikelkonzentration ist hoch und gehört zum dichten Regime. Die mittlere
Strömungsgeschwindigkeit, deren mittlere Quadratwurzel und die Partikelverteilung hängen
vom vertikalen Abstand zur Wand ab. Die Wirbelstruktur zeigt große Veränderungen, wenn
Partikel vorhanden sind.

In vielen praktischen Anwendungen ist die Partikelform nicht sphärisch. Daher behandelt
Kapitel 7 die Simulation von Ellipsoidpartikeln sowohl in laminaren als auch in turbulenten
Strömungen. Es beinhaltet die Einführung einer neuen Methode für die Verteilung der
Lagrange-Punkte auf der Partikeloberfläche und die Verwendung von Quaternionen für die
Aktualisierung der Rotationsgeschwindigkeit der Partikel. Ein Validierungsfall für die Rotation
eines Ellipsoids in einer Couette-Strömung ist gegeben. Der Einfluss mehrerer Partikel auf einen
turbulenten Kanalfluss wird untersucht und mit den Ergebnissen von sphärischen Partikeln
verglichen.

Diese Dissertation schließt mit einer Zusammenfassung, Empfehlungen und einem Ausblick
in Kapitel 8. Die wichtigsten Beiträge und Neuheiten in dieser Arbeit sind nachfolgend aufgelistet:

Wesentliche Inhalte und Neuerungen:

• Entwicklung eines neuen LBM-Lösers (ALBORZ), welcher verschiedene laminare,
turbulente und zweiphasige Strömungen modellieren kann;

• Verwendung der LBM zur Simulation der Bewegung von kreisförmigen, elliptischen und
sphärischen Partikeln in laminaren Strömungen;

• Entwicklung eines nicht-isothermen LBM-Lösers zur Modellierung der Bewegung
voll aufgelöster Partikel unter Berücksichtigung vollständiger Partikel-Partikel- und
Partikel-Fluid-Wechselwirkungen;

• Einführung der IB-LBM Simulation turbulenter Druckströmung mit Partikeln;

• Modellerweiterung zur Untersuchung des Verhaltens von Ellipsoidpartikeln auf Basis von
IB-LBM;

Schlüsselwörter: Lattice-Boltzmann-Methode, Immersed-Boundary-Methode, Partikel,
Poröses Medium, Direkte-Numerische-Simulation
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Nomenclature

Roman Symbols

a particle (major) radius [m]

B blockage ratio [-]

b particle minor radius [m]

bf body force [N/m3]

c0 Kozeny-Carman factor [-]

ci lattice speed in direction i [m/s]

cij force scale of collision [N]

cir factor parameter for point distribution on spheroid [-]

Cp,f specific heat of fluid [J/(kg.K)]

Cp,p specific heat of particle [J/(kg.K)]

Cp,r specific heat ratio [-]

cs sound speed [m/s]

D diameter [m]

D(x) delta function at x [-]

Df degree of freedom [-]

d′i distance of ith particle to an imaginary particle [m]

dij distance between ith and jth particle [m]

dp particle diameter [m]

Ds dimension of the space [-]

E total energy [J]

e internal energy [J]

Ep second stiffness factor for particle-particle collision [-]

Ew second stiffness factor for particle-wall collision [-]

f tensor of distribution function in MRT [-]

F force vector [N]

f force density vector [N/m3]

f particle distribution function [-]

f ′ post-collision distribution function [-]

FB buoyancy force [N]

F c collision force [N]

ff force vector in MRT [N/m3]

xx



fi distribution function in direction i [-]

Fs reduced form of distribution function [-]

g gravity [m/s2]

G channel flow driving force [N/m3]

G shear rate [1/s]

g temperature distribution function [-]

H Hamiltonian [-]

H channel half-height [m]

I mass moment of inertia [kg.m2]

k permeability [m2]

kB Boltzmann constant [J/K]

L domain length [m]

Lch characteristic length [m]

Le fluid travel path length [m]

M transformation matrix in MRT [-]

m moment tensor in MRT [-]

M mass [kg]

M transformation matrix from inertial to body-fixed frame [-]

N number of particles [-]

n nth time step [-]

NA Avogadro’s number [-]

Nl number of Lagrangian points [-]

nps number of points per each strip of spheroid [-]

p linear momentum [kg.m/s]

p pressure [Pa]

q molecule position vector [m]

Q Q-criterion [1/s2]

Q exchanged heat [J]

q0, q1, q2, q3 quaternions [-]

R ideal gas constant [J/(mol.K)]

R radius [m]

S diagonal matrix of relaxation times in MRT [-]

S surface control [-]

S surface area [m2]

s strain rate [-]

T Torque [N.m]

T temperature [C]

T tortuosity [-]

t time [s]

t∗ non-dimensional time [-]



Tr rotation period [s]

U velocity [m/s]

u velocity vector [m/s]

U mean velocity in porous media [m/s]

U particle settling velocity value [m/s]

U d desired velocity [m/s]

umag velocity magnitude [m/s]

v peculiar velocity [m/s]

v shifted velocity vector in Shan-Chen model [m/s]

V volume [m3]

Vs normalization vector [-]

W width [m]

Wi weight coefficient in direction i [-]

x position vector [m]

X main flow direction in porous media [-]

X position vector [m]

Greek Symbols

α parameter for point distribution on spheroid [-]

α thermal diffusivity [m2/s]

β thermal expansion coefficient [1/K]

δ Kronecker delta [-]

∆h grid size [m]

∆ρ particle and fluid density difference [kg/m3]

∆T temperature difference [C]

∆t time step [s]

∆Sl length or area of particle segment [m, m2]

∆x grid size in x direction [m]

εp stiffness factor for particle-particle collision [-]

εw stiffness factor for particle-wall collision [-]

ζ lattice particle velocity [m/s]

ζ repulsive force range [m]

θ Euler angle [rad]

θ orientation angle of particle [rad]

θ parameter for point distribution on spheroid [-]

κ von Kármán constant [-]

λ particle aspect ratio [-]

λ relaxation time [s]

µ fluid dynamic viscosity [Pa·s]
µ′ bulk viscosity [Pa·s]



ν fluid kinematic viscosity [m2/s]

ξ microscopic particle velocity [m/s]

ρ density [kg/m3]

ρr density ratio [-]

σ fluid stress tensor [Pa]

σ′ deviatoric stress [Pa]

τ relaxation time [-]

τ stress [Pa]

τP particle-induced stress [Pa]

τp particle response time [s]

φ Euler angle [rad]

φ porosity [-]

φ solid phase volume fraction [-]

Φ mass loading [-]

ψ Euler angle [rad]

Ω rotational speed [rad/s]

Ω collision operator [-]

ωi vorticity field [1/s]

ωi non-dimensional weight coefficient in direction i [-]

Non-dimensional Parameters

Ga Galileo number

Gr Grashof number

Ma Mach number

Nu Nusselt number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

St Stokes number

Subscripts and Superscripts

B Boussinesq

b bulk

c center

c cold

c collision

ch characteristic

cyl cylinder

d desired

eq equilibrium

f fluid



g temperature field LB property

h hot

i ith discrete velocity

K Kolmogorov

l Lagrangian

maj major

N number of particles

n time step

noF no force

noH no heat

p particle

R Reynolds

r particle to fluid property ratio

ref reference value

T terminal value

V viscous

w wall

x, y, z Cartesian coordinate system directions

τ friction

Abbreviations

ALE Arbitrary Lagrangian-Eulerian

BBGKY Bogoliubov, Born, Green, Kirkwood, Yvon

BCC Body-centered cube

BGK Bhatnagar, Gross, Krook

CFD Computational Fluid Dynamics

CT Computed tomography

DDF Double distribution function

DEM Discrete element method

DF Direct forcing

DKT Drafting, kissing, tumbling

DLM Distributed Lagrange multiplier

DNS Direct numerical simulation

EDF Equilibrium distribution function

FCC Face-centered cube

FDM Fictitious domain method

FHP Frisch, d’Humières, Hasslacher

HSB Higuera, Succi, Benzi

IBM Immersed boundary method

LB Lattice Boltzmann
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Chapter 1

Introduction

1.1 Motivation and objective

Multiphase flows are common in a wide range of industrial applications and environmental

processes. Examples include sediment transport, aerosols, pulp and paper industry, crystallization

and pharmaceutical processes. Multiphase flows can be classified according to the state of

different phases or components. Hence, gas/solids flows, liquid/solids flows, or bubbly flows

can be identified. Exact prediction of fluid flow behavior is central to the efficiency of these

processes. Three approaches are usually used in this respect: 1) experimental studies, which need

laboratory equipment, 2) theoretical modeling, based on mathematical equations and models

for the flow, 3) computational studies, using the computing power of modern computers to

explore the problem. Experimental studies are often expensive and may need special equipment.

Theoretical studies are mainly limited to very simple geometries. For complex geometries or

turbulent regimes, an analytical formulation is almost impossible to achieve. Due to enhanced

computational power, numerical simulation is getting more and more important.

With respect to numerical studies, multiphase flows are first classified based on the interface

of two phases, like dispersed or separated flows. In dispersed flows, particles or droplets are

distributed in a connected volume of the continuous phase. Separated flows include two or more

continuous streams of different fluids which are separated by interfaces; like those happen in

free-surface flows. Two main types of dispersed phase models are usually identified: trajectory

models and two-fluid models. In trajectory models, the motion of the dispersed phase is modeled

by following the motion of particles. This type of modeling is also called the Lagrangian approach.

If solid particles are used, each particle can be a point or a fully-resolved particle. Different terms

for drag, lift and moment forces are either accurately calculated or appropriate correlations

are used. On the other hand, in two-fluid models (the Eulerian approach), the dispersed phase

is treated as a second continuous phase that is interacting with the first, continuous phase.

Relevant equations of mass, momentum, and energy are written for the flow. The discrete

nature of the disperse phase is neglected in this case [1].

Due to the wide and straightforward application of the trajectory model for finite-size

particles, it is used in this thesis for the simulation of particle-laden flows; with the emphasis

1
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on solid particles dispersed in a fluid flow. In this regard, the volume fraction of the dispersed

phase, φ, and its mass loading Φ are the two main parameters that determine the level of

interaction between the phases. When both values are small, the carrier flow has the dominant

effect on the dynamics of the dispersed phase (i.e., one-way coupled). When the mass of the

dispersed phase is comparable with that of the carrier phase, the back-influence of the dispersed

phase on the carrier-phase dynamics cannot be ignored (i.e., two-way coupled). By a further

increase of φ, the interactions between particles (such as collisions) cannot be neglected and

this regime is described as four-way coupling [2, 3].

This study was started after completion of several experimental projects considering the

possibility of drag reduction in a turbulent flow by addition of elongated particles. Therefore, a

solver was needed to take into account large non-spherical particles in a turbulent flow. For this

purpose, the lattice Boltzmann method (LBM) appeared to be attractive. On the way toward

understanding ultimately drag reduction- an objective not reached yet in this thesis and left

for future studies- a variety of challenges were encountered and successfully solved. Additional

applications, even if slightly out of focus, become possible, and have been considered as well in

this study.

Numerical simulation of finite-size particles in four-way coupled regimes is often very

challenging and demands high computational time and power even at small fractions of solid

phase. Most of the studies in this regard are based on Navier-Stokes (NS) solvers. During the

last three decades, the lattice Boltzmann method has evolved as a robust alternative for classical

Navier-Stokes equations. The LBM was originally developed as an automaton for fluid systems.

It has been later obtained from the Boltzmann transport equation with a single relaxation time

collision operator. At the macroscopic level, it has been shown to recover the Navier-Stokes

equations in the limit of weakly compressible flow. In LBM, the data are only exchanged with

the first neighbors. Thus, LBM is highly adequate for parallel computing. This has increased

LBM applications in different flow regimes and configurations. Therefore, LBM is used here

to simulate finite-size particles in fluid flows. In addition to particle-laden flows, fluid flow in

porous structures and complex geometries is modeled here by LBM.

1.2 Thesis outline

This thesis describes some contributions in the simulation of laminar and turbulent two-phase

flows using LBM. All studies are performed with an in-house LB solver (ALBORZ) developed by

myself since 2013 at the Laboratory of Fluid Dynamics and Technical Flows (LSS), University

of Magdeburg. High-efficiency computations in terms of CPU time and memory have been

conducted with ALBORZ. The code can model both 2D and 3D configurations on a parallel

architecture. Most of the simulations of porous structures and turbulent particulate flows could

not be achieved without the parallelized structure of the code. After this Introduction, the thesis

continues with a description of the lattice Boltzmann approach.

Chapter 2 (Lattice Boltzmann Method) contains an introduction into lattice Boltzmann
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method. The chapter encompasses the historical background of the model, its importance,

advantages and disadvantages, governing equations and description of single- and multi-relaxation

time models. This chapter also justifies the reason behind using a specific type of LB configuration

in the following chapters.

Chapter 3 (Laminar Particulate Flows) deals with the simulation of fully-resolved rigid

particles in laminar fluid flows. The study includes both circular and elliptical particles in 2D,

and spherical particles in 3D configurations. The immersed boundary method (IBM) handles

fluid-particle interactions. Newton’s equation of motion, particles’ collision approach and LBM

with force term are the other topics covered in this chapter. It ends with multiple validation

and application cases.

Chapter 4 (Non-isothermal Particulate Flows) presents the extension of our LB tool to

non-isothermal applications. Heat exchange between particles and the fluid is modeled in this

chapter. This extension is another contribution of this thesis that is of great importance to

many practical applications, like the motion of catalyst particles. This chapter includes the

formulation of thermal IB-LBM, the method of updating particle temperature for both equal

and unequal particle and fluid heat capacities. Different particle shapes are modeled, where

particles have constant or varying temperature.

Chapter 5 (Porous Media Flow) aims to develop and demonstrate the robustness of LBM

for complex geometries like porous structures. Locality of calculations is the main feature that

makes the LBM suitable for these type of geometries. This chapter will use three different

schemes to predict the permeability. Simulations include structured and unstructured packings

and the influence of force scheme, relaxation time and domain size will be studied. Furthermore,

some correlations for the prediction of permeability and tortuosity in faced- and body-centered

cube packings will be provided.

Chapter 6 (Turbulent Channel Flow with Resolved Spherical Particles) presents simulation

results of spherical particles motion in turbulent channel flows. Up to now, all simulations

were in laminar regime at relatively low Reynolds number. Simulation of turbulent flow is

inherently complex because of wide range of time and length scales involved. Particles make the

problem even more complex. To do so, multiple fully-resolved spherical particles are released in

a turbulent channel flow. Effect of particles on mean and fluctuating flow parameters will be

studied and compared to those of single-phase flow. The simulation is carried out for different

concentrations, particle densities and sizes.

Chapter 7 (Two-Phase Flows with Prolate Spheroidal Particles) covers the simulation of

laminar and turbulent flows with spheroidal particles. The chapter starts with an introduction,

followed by the governing equations of spheroid rotation. The method of quaternions is explained

and validated for the rotation of a spheroid in a Couette flow. The next part extends the study

to turbulent flows with suspended spheroidal particles, to investigate the effect of particle shape

on turbulent flow properties. Effect of spheroidal particles on turbulence is compared to that

with spherical ones.

Chapter 8 (Conclusions and Outlook) closes this thesis with a summary and discussion of
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the presented research topics and results. Some perspectives regarding future LBM applications

will be stated. In particular, the importance and novelty of LBM for other multiphase flows

will be discussed. Future topics on the simulation of other types of particle-laden flows will be

covered as well.

1.3 ALBORZ Features

In this section, the features applied in the developed LB code (ALBORZ) are listed. These

include:

• 2D and 3D simulations of laminar and turbulent flows

• Single- and multi-relaxation time schemes

• Particle-fluid interaction by immersed boundary method

• Reading geometry of the computational domain from the file

• Simulation of circular and elliptical particles in 2D and spherical and spheroidal particles

in 3D studies

• Curved boundary treatment in 2D simulations

• Code parallelization by message passing interface (MPI)

• Non-isothermal studies using a double distribution function

• Particle-particle and particle-wall interaction by spring force and lubrication models



Chapter 2

Lattice Boltzmann Method

2.1 Historical background

Fluid mechanics is a branch of physics that involves the study of fluids and forces on them.

Generally, there are three approaches to simulate the transport equations of the fluid. These

mathematical models can be categorized based on the available time and length scales of

the physical problem. The first one is the continuum (top-down) approach, which involves a

continuum description of macroscopic phenomena, by deriving partial or ordinary differential

equations for conservation of mass, momentum and energy in the system. The Navier-Stokes

equations for a continuum, e.g., an incompressible fluid flow are often used in this respect to

represent the conservation of momentum. Given the complexity of real phenomena, it is very

difficult to solve analytically these differential equations. Therefore, alternative methods like

finite difference, finite volume or finite element are employed to convert the differential equations

into a system of algebraic equations. The algebraic equations are solved iteratively by applying

the boundary and initial conditions. The simulation can continue until reaching a convergence

criteria in case of steady problems. Conventional computational fluid dynamic (CFD) techniques

follow this methodology.

On the other side, the fluid is composed of a large number of atoms or molecules that

collide with each other and have a random motion. This scale of study of single atoms is called

microscopic (bottom-up) approach. In this regard, the inter-particle forces are identified and

each particle position is updated by solving an ordinary differential equation. The multi-scale

expansion of statistical mechanics is used to relate the molecular and the macroscopic properties.

For instance, temperature and pressure are related to the kinetic energy of the particles and

frequency of particles collisions with the walls, respectively. Transport properties of the fluid

(viscosity, thermal conductivity, etc.) can also be measured from linear response theory using

Einstein expression or the Green-Kubo relation. Because of the large number of particles present

in a small portion of the fluid, this method is only applicable to very small volumes, usually of

sub-micrometer size. This makes the analysis of large systems almost impossible.

The lattice Boltzmann method (LBM) locates at the middle of both mentioned techniques.

Boltzmann aimed to connect micro- and macro-scales by not considering each single particle

5
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behavior but the behavior of a collection of particles instead. The distribution function acts as

the single variable that represents the collection of particles in contrast to the traditional CFD

methods where the macroscopic variables are solved through conservation equations. LBM is

able to recover the Navier-Stokes equations in the limit of nearly incompressible fluid flows. The

scale of LBM is the so-called meso-scale.

The LBM was originally developed from lattice gas automata (LGA) in the late 1980’s.

LGA tracks the motion of discrete gas particles residing on a regular lattice where particles

can stream and collide. It assumes that fluid behavior at macroscale is based on the statistical

collective behavior of fluid molecules. It follows certain rules to assure that mass, momentum

and energy are conserved during collision and streaming. The first LGA model was introduced

by Hardy et al. [4] and is known as HPP model after the names of the authors. In this model

which is based on a square lattice, velocity of particles change when they encounter head-on

collision. This model lacks sufficient symmetry and does not lead to the Navier-Stokes equations

in the macroscopic limit. This issue was relieved by the introduction of FHP model, which has

hexagonal symmetry [5]. This model was able to model different 2D geometries, such as fluidized

beds [6]. However, development of both FHP and HPP models to 3D studies was a tedious

task. This issue was addressed later by Frisch et al. [7]. The FHP model still has some major

limitations. A fundamental one is the statistical noise due to its Boolean nature. The second

one is the non-Galilean invariance property due to the density dependence of the convection

coefficient of the Navier-Stokes equation. Finally, the pressure that is given via an equation of

state has an explicit and unphysical velocity dependence [8, 9]. Therefore, the Boolean variable

of LGA was later replaced with a real-valued distribution function that can take a real value

between 0 and 1, instead of only 0 or 1 [10]. McNamara and Zanetti were the first to propose

using the lattice Boltzmann equation (LBE) as a separate numerical method. To overcome the

problem of excessive memory and computational cost associated with nonlinear LB equation a

linear collision operator was proposed by Higuera and Jimenez [11]. Higuera et al. [12], who

used a linearized expression for the collision term, suggested the enhanced collisions model

(HSB model) to remove the LBE limitation to low Reynolds number flows and to make the LB

collision operator independent of any LGA model. The equilibrium distribution function still

came from LGA. Moreover, the problems of density-dependent convection coefficient (lack of

Galilean invariance) and velocity-dependent pressure were still unsolved because the authors

used Fermi gases. This issue was solved by using a Maxwell-type distribution [8, 13]. Thus,

they obtained noise-free models with Galileian invariance and a velocity-independent pressure.

Koelman [14] and Chen et al. [15] further simplified the collision operator by using a constant

value known as relaxation parameter. This form of LBM is the well-known single relaxation

time (SRT)-LBM with BGK operator [16]. The choice of the BGK collision operator should

conserve mass, momentum and energy and satisfies H -theorem as well. He and Luo [17] later

derived LBM directly from the Boltzmann equation.

Thus, LBM is proven as a robust method that is free from both the statistical noise of

LGA and the complexity of solving the exact Boltzmann equation and is widely used in various
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research fields including multiphase and multi-component flows [18, 19], porous media [20, 21],

non-Newtonian fluids [22, 23], heat transfer [24, 25], suspended particles [26, 27], turbulent flows

[28, 29], microfluidics [30, 31], and blood flow [32, 33], to cite a few.

2.2 LBM description

2.2.1 Boltzmann transport equation

Considering only mono-atomic gases, a given particle state depends on its position and velocity.

Therefore, instead of a 3D physical space, at any given time the particle state can be defined

in a 6D space composed of 3 physical dimensions and 3 phase dimensions. Based on this and

starting from the microscopic representation of the system one can choose either the Newton

or Hamilton equations to describe the motion of the fluid. Governing Newton equations are

written as

dxi
dt

=
pi
m
, (2.1)

dpi
dt

= Fi, (2.2)

where i = 1, · · · , N , denotes particle index, xi is the position of the ith molecule, pi = mξ the

linear momentum of molecule and Fi the external force due to intermolecular interactions or

external fields such as gravity or magnetic field.

The Hamiltonian of the system (H) represents the total energy of the system including

the kinetic and potential energy due to molecular interactions. Using H, the motion of fluid

molecules can be expressed as

ẋi =
∂H
∂pi

, ṗi = −∂H
∂xi

, i = 1, 2, · · · , N. (2.3)

These equations are helpful but limited to very small systems because of the large number

of molecules present in real configurations. For example, 1 cm3 of ideal gas contains 2.69× 1019

molecules at standard pressure and temperature.

The next level of description of such systems in a higher level is known as the

mesoscopic description. For a system of N particles, where N is much smaller than the

real number of molecules, the state of the system is represented by the distribution function

fN(p1, q1, ...,pN , qN) where q and p are the generalized position and momentum vectors,

respectively. fN(x1,p1, ..xN ,pN , t)dx1, dp1...dxN , dpN is the probability of finding particle N

in the interval [x1,x1 + dx1] × [p1,p1 + dp1] × · · · × [xN ,xN + dxN ] × [pN ,pN + dpN ]. The

distribution function is a function of all particle coordinates in the phase space and contains
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various correlations between particles. fN obeys the Liouville equation [34]:

∂fN
∂t
−

3N∑
j=1

(
∂H
∂xj

∂fN
∂pj
− ∂H
∂pj

∂fN
∂xj

)
= 0. (2.4)

The reduced form of the distribution function (Fs) is obtained by integrating over part of

the phase space:

Fs(x1,p1, ..., ,xs,ps) = V s

∫
fN(x1,p1, ...,xN ,pN)

N∏
j=s+1

dxjdpj. (2.5)

where Vs is a normalization factor. Bogoliubov, Born, Green, Kirkwood and Yvon showed that

a coupled system of differential equations for reduced density distributions (Fs) is equivalent to

Eq. (2.4) [35]. This system of equations is known as the BBGKY hierarchy.

In Eq. (2.5), the single particle distribution function time evolution equation has one term

defined by the two-particle distribution function. Iterating over all levels of description up to the

N -particle distribution function one would see that each level has a collision term defined through

the next-level distribution function. Therefore the BBGKY hierarchy has to be truncated at

some point to get approximate solutions. The famous Boltzmann equation has been derived

through such a truncation of the BBGKY hierarchy by the assumption of two-particle local

collisions with uncorrelated velocities before collision and free of external forces.

Under such assumptions, the BBGKY hierarchy can be truncated to the single particle

distribution function f(x, ξ, t) ∝ F1(x1,p1, t) giving the Boltzmann transport equation:

∂f

∂t
+ ξ · ∇xf +

F

m
· ∇ξf = Ω(f, f), (2.6)

where Ω(f, f) is the two-body collision term and
F

m
is the acceleration depending only on space

and time. Thus, the Boltzmann equation describes the evolution of the particle distribution

function.

Density ρ and velocity u are the moments of the distribution function that can be calculated

by integrating over the phase space:

ρ =

∫
f(x, ξ, t)dξ, (2.7)

ρu =

∫
ξf(x, ξ, t)dξ. (2.8)

Similar to Eqs. (2.7), (2.8), the energy density can be defined as a second-order moment of

the distribution function:

ρ(x, t)E(x, t) =

∫
1

2
ξ2f(x, ξ, t)dξ, (2.9)
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where E(x, t) is the total energy. It is worth mentioning that Eq. (2.9) is only valid for

mono-atomic components as we have assumed that translational movement is the only source of

kinetic energy. For poly-atomic gases there would also be contributions from rotational and

vibrational movement. By introducing the relative velocity u which is the deviation of the

particle velocity from the local mean velocity (v = ξ − u) we get:

ρ(x, t)e(x, t) =

∫
1

2
|v|2f(x, ξ, t)dξ, (2.10)

where e(x, t) is the internal energy. Therefore, the total and internal energy densities are related

by ρe = ρE − 1

2
ρ|u|2. In kinetic theory, the internal energy can also be expressed as,

e =
Df

2
RT =

Df

2
NAkBT, (2.11)

where Df , NA , and kB are the number of degrees of freedom of a particle, Avogadro’s number,

and the Boltzmann constant, respectively. The pressure (or stress tensor) can also be defined

through the following second-order moment:

p =

∫
(ξ − u)⊗ (ξ − u)f(x, ξ, t)dξ. (2.12)

(ξ − u)⊗ (ξ − u) represents the tensor product such that for example (cc)ij = cicj.

2.2.2 Collision term

The collision operator in the Boltzmann equation has a number of properties. One of these

properties is that it conserves the three first moments of the distribution function. These

conserved quantities are also known as collision invariants (ψk(ξ)). Mathematically, the preceding

is expressed as: ∫
Ω(f, f)ψk(ξ)dξ = 0, (2.13)

where ψ0 = 1, (ψ1, ψ2, ψ3) = ξ and (ψ4) = ξ2. In terms of macroscopic quantities, this means

that the collision operator conserves mass, momentum and energy. Another fundamental

property of this collision operator was shown in 1872 by Boltzmann. This property, known

as H-theorem states that for any distribution function, f(x, ξ, t), the H-function, defined by

H(t) =
∫
f lnfdxdξ, should decrease with time , i.e.,

dH

dt
≤ 0. (2.14)

This condition is satisfied only and if only the system moves toward the equilibrium state, which

is the Maxwell-Boltzmann equilibrium distribution. The H-theorem states that entropy never

decreases spontaneously.

Due to the complicated nature of the collision operator of Boltzmann transport equation,
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a number of simpler alternatives have been proposed. Simpler collision operators should

respect two constraints of conserving the collision invariants, and shifting the system towards a

Maxwellian distribution (H-theorem). Both of these constraints are fulfilled by a model known

as the BGK approximation, proposed by Bhatnagar, Gross and Krook in 1954 [16]. In the

context of this approximation, the collision operator is expressed as:

Ω(f, f) = −1

λ
[f(x, ξ, t)− f (eq)(x, ξ, t)], (2.15)

where λ is the relaxation time due to collision and f eq(x, ξ, t) is the equilibrium distribution

function (EDF). Based on this model the system relaxes to the equilibrium state as a result of

collisions. This model is known as single relaxation time (SRT) BGK model; it conserves mass,

momentum and energy equations and satisfies the H-theorem.

2.3 Single relaxation time model

As we have seen, the Boltzmann equation is the starting point of the LBM. This equation is

used to find the statistical distribution of particles within a fluid (f(x, ξ, t)) instead of tracing

each single particle. The Boltzmann equation with BGK approximation (without external force

term) is written as

∂f(x, ξ, t)

∂t
+ ξ · ∇f(x, ξ, t) = −1

λ
[f(x, ξ, t)− f eq(x, ξ, t)] . (2.16)

The BGK model considers only two-body collisions without introducing significant error in the

results. The equilibrium distribution function in the above equation is the Maxwell-Boltzmann

distribution function because it minimizes the Boltzmann entropy (H),

f eq =
ρ

(2πRT )(Ds/2)
exp

(
−(ξ − u)2

2RT

)
, (2.17)

where R = kB/m is the ideal gas constant with kB the Boltzmann constant, m the molecular

mass of gas particles, Ds the dimension of the space, and ρ, u, T the macroscopic density

of mass, velocity, and temperature, respectively. The macroscopic variables, ρ, u, T are the

microscopic velocity moments of the distribution function, f . The Taylor series expansion of

f eq up to second order of velocity (to recover the Navier-Stokes equation) reads [14]

f eq(x, ξ, t) =
ρ

(2πRT )(Ds/2)
exp

(
− ξ2

2RT

)[
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− |u|

2

2RT

]
+O(u3). (2.18)

In the next step, Eq. (2.16) is discretized in phase space. Thus, instead of an infinite number

of velocity directions, a finite number of velocities {ci} is used. To do so, equilibrium distribution

function is represented as f eqi (x, t) = Wif
eq(x, ci, t). Then, following Gaussian-type quadrature
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of the expanded EDF approximates:∫
ξkf eqdξ =

∑
i

Wic
k
i f

eq(ci), 0 ≤ k ≤ 3, (2.19)

where ci is the discrete velocity set and Wi is the weight associated with the velocity ci. In

order to calculate the hydrodynamic moments of the distribution function, an approximation by

quadratures is needed: ∫
Φ(ξ)f eqdξ =

∑
i

WiΦ(ci)fi(x, t), (2.20)

where Φ(ξ) is a polynomial of ξ [36]. Using an effective discrete distribution function of

fi(x, t) = Wif(x, ci, t) also satisfies the conservation relations (Eqs. (2.7), (2.8)) and leads to

∂fi
∂t

+ ci · ∇fi = −1

λ
[fi(x, t)− f eqi (x, t)] . (2.21)

A discretization of the Boltzmann equation in time and space, and the conversion of the

space of velocities ξ into a finite set of velocities {ci} within which the particles are allowed to

move in the lattice and integrating Eq. (2.21) from t to t+ ∆t with the assumption of constant

collision term in this interval, finally leads to the well-known lattice Boltzmann discretized

SRT-BGK model [17]:

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −1

τ
[fi(x, t)− f eqi (x, t)] , (2.22)

where fi is the distribution function of particles moving with speed {ci} and the right-hand

side accounts for the SRT collision term with τ ≡ λ/∆t being the non-dimensional relaxation

time. Incorporating the bracket coefficients of Eq. (2.18) into weight coefficients leads to the

following form of equilibrium distribution function in the isothermal case:

f eqi = ωiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

]
, (2.23)

with

ωi =

Wi exp

(
− c2

i

2c2
s

)
(2πc2

s)
(Ds/2)

, (2.24)

and sound speed cs =
√
RT is model-dependent. For isothermal models, RT is constant, and

hence, cs is constant as well. The weight coefficients and cs values depend on the space dimension

and number of discrete velocities (Sec. 2.4). The macroscopic velocity u in Eq. (2.23) must

satisfy the requirement for low Mach number, i.e. |u| /cs = Ma� 1. Under condition of low

Mach and Knudsen number, LBM recovers the NS equation for a weakly compressible flow by

means of a Chapman-Enskog analysis [5, 37].
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Macroscopic quantities including density and velocity are defined by the 0th, and 1st moments

of the probability distribution function, respectively:

ρ =
∑
i

fi, (2.25)

ρu =
∑
i

cifi. (2.26)

Conceptually, the SRT-LBM algorithm is implemented in two steps: first, the collision

of particles, which controls the relaxation toward equilibrium; and in the second step, the

streaming of particles in which distribution functions are shifted along the lattice directions to

the neighboring lattice cells.

collision : f
′

i (x, t) = fi(x, t)−
1

τ
[fi(x, t)− f eqi (x, t)] , (2.27)

streaming : fi(x+ ci∆t, t+ ∆t) = f
′

i (x, t), (2.28)

where the relaxation parameter (τ) in Eq. (2.27) is related to the kinematic lattice viscosity, ν,

through:

ν =

(
τ − 1

2

)
c2
s∆t, (2.29)

and pressure is related to density via the equation of state:

p = ρc2
s. (2.30)

2.4 Two- and three-dimensional stencils

It was shown in Sec. 2.3 that a continuous equilibrium distribution function can be represented

by a discrete one in which weight coefficients must be selected. Determination of weight factors

is based on a third-order Hermite formula [17, 38].

In the final discretized form of LB equation, the physical space is covered by regular lattices

that are populated by discrete particles. Particles jump from one lattice node to another with

discrete particle velocities ci, and collide with each other at these nodes. The set of discrete

velocities is often denoted by DmQn, where m and n are the spatial dimension and the total

number of the lattice velocities, respectively. Among different available stencils, in this thesis

the 9-velocity model on a 2D square lattice, known as the D2Q9 model, and the 19-velocity

model on a 3D cubic lattice, denoted as the D3Q19 model are used. These two discrete velocity

models are depicted in Fig. 2.1.
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(a) (b)

Figure 2.1: Velocity direction vectors of (a) D2Q9 structure; (b) D3Q19 structure

The velocity vectors for D2Q9 model ci = [cix, ciy] are given by

ci =


(0, 0), i = 0

(±1, 0), (0,±1), i = 1, · · · , 4

(±1,±1). i = 5, · · · , 8

(2.31)

The corresponding weight coefficients are

ωi =


4/9, i = 0

1/9, i = 1, · · · , 4

1/36. i = 5, · · · , 8

(2.32)

The D3Q19 model has the velocity vectors ci = [cix, ciy, ciz] where

ci =


(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, · · · , 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1). i = 7, · · · , 18

(2.33)

The weight coefficients for this model are:

ωi =


1/3, i = 0

1/18, i = 1, · · · , 6

1/36. i = 7, · · · , 18

(2.34)

The sound speed for both stencils is equal to cs = ∆x/(
√

3∆t).
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2.4.1 The Chapman-Enskog expansion

In order to use LBM for modeling fluid flow, it is necessary to show that the LB equation

recovers the NS equation in the limit of low Mach and Knudsen numbers. To do so, a multi-scale

analysis is carried out. In this type of analysis, known as Chapman-Enskog multi-scale expansion,

different terms in the LB equation are written as power series with a small coefficient (ε) related

to the Knudsen number. Using a Taylor series expansion of the distribution function together

with the Chapman-Enskog analysis lead to terms with different powers of ε. By regrouping

and equating the terms of the same order of ε and calculating the moments of distribution

functions, mass conservation and NS equation are preserved. The Chapman-Enskog expansion

of SRT-LBM is presented in Appendix A.

2.4.2 SRT-LBM advantages and limitations

In this part, the advantages and limitations of LBM will be discussed in more detail. The

advantages of LBM can be explained as follows:

• The advection term (streaming) is linear compared to the non-linear operator in NS

equations;

• Pressure is simply calculated through an equation of state, while NS-based solvers rely on

a Poisson equation that cannot be solved efficiently on parallel computers;

• In LBM, the distribution function at each node depends only on its own PDF and those of

the adjacent nodes. Hence, LBM can be used to solve the fluid flow in complex structures

such as porous media. Parallelization would be then quite straightforward for LB solvers.

For large domains of porous media or direct numerical simulation of turbulent flows

parallelization is unavoidable but is very efficient for LBM;

• LBM is a mesoscopic approach and thus more suitable to incorporate the microscopic

physics. It is based on the Boltzmann equation, which is one of the fundamental equations

in statistical physics;

• According to Guo and Shu [39], due to better rotational symetry of LBM compared to

classical second order finite-difference and finite-volume schemes, LBM may result in more

accurate results.

On the other side, there are some limitations using LBM:

• LBM is inherently an unsteady flow solver and therefore steady-state computations are

not possible. For these cases, one should wait until the initial conditions converge to the

final steady solution which might be time-consuming;
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• The standard LBM is not suitable for body-fitted coordinates due to using only square

or cubic lattices. In this case, the curved boundary treatment [40–42] or using immersed

boundary method [43] is recommended. The methods of curved boundary interpolate

distribution function at the real location of the wall. The immersed boundary methods

rely on the Cartesian grids but use some mapping points on the surface of solid walls.

Force and velocity data are exchanged between fluid and solid nodes using discrete delta

functions;

• The next point that must be noticed is that, in case of D2Q9 and D3Q19 models, the

SRT-LBM can only handle isothermal flows. Treating non-isothermal flows requires using

a separate distribution function that solves the advection-diffusion equation of energy

transfer. The method is usually recognized as double distribution function (DDF) model

[44–46]. An alternative would be using the so-called multi-speed approach [47–49] with

higher number of discrete velocities, for example D2Q21 stencil. Higher-order velocity

terms are also kept in the equilibrium distribution function to recover the energy equation

at the macroscopic level. Boundary condition implementation and parallelization of

multi-speed methods are not as straightforward and as efficient as common stencils. The

Prandtl number is also fixed and numerical instability may occur when only one distribution

function is used. Hybrid models are another option [50, 51], in which temperature field

is solved through an external solver rather than LBM, such as with a finite-difference

method;

• The Prandtl number in SRT-LBM (regardless of number of discretized velocities) is fixed

at 1 because all moments relax at the same rate. This issue can be circumvented using an

ellipsoidal statistical BGK model [52] or again using a separate distribution function for

energy transfer (DDF). So, the energy equation has a separate relaxation parameter which

is linked with the thermal diffusivity of the fluid. Using a multi relaxation time (MRT)

model together with multi-speed approach and an equilibrium distribution function with

u3 terms is another alternative for treating non-unity Prandtl numbers when only one

distribution function is utilized. But using only one of these methods without others

cannot solve unity Prandtl number issue [53];

• Another issue with LBM is the compressibility error due to ignoring the change of density

in the continuity equation and in the momentum equation, since the density variation

is proportional to Ma2, i.e., ρ(x, t) = ρ0 +O(Ma2). Therefore, LBM can be viewed as a

compressible solver for incompressible Navier-Stokes equations. In this regard, keeping

the velocity in the range of Ma = u/cs � 1 is of great importance for incompressible

regimes. To reduce the compressibility error for incompressible flows, some models have

been introduced so far. They mostly change the equilibrium distribution function so

that instead of ∇ · (ρu), only ∇ · (u) will appear in the continuity equation, as in an

incompressible flow [54, 55]. Some others try to decrease the effect of this error by
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keeping O(u3) terms in equilibrium distribution function and using a more complex lattice.

However, there is still one error of O(Ma2) due to bulk viscosity term [56];

• LBM is generally limited to low Mach number flows. Low velocity assumption is used in

the expansion of equilibrium distribution function and in the Chapman-Enskog expansion.

In the formulation of equilibrium distribution function (Eq. (2.23)) only velocity terms

up to u2 are kept and the truncation error of u3 terms grows as macroscopic velocity

increases. Therefore, modeling high speed compressible flows in shock waves and detonation

phenomena is challenging. During recent years some compressible LB approaches are

proposed using either a flexible sound speed [57], variable lattice velocity [58], combination

of DDF and multi-speed approaches [59], introducing additional viscosity [60] or using

entropic LBM [61];

• In LBM, bulk viscosity (also known as the volume viscosity or second viscosity) is fixed

and has a non-zero value. It must be noted that bulk viscosity has different definitions

among different people. Some name the total combination of (µ′ − 2
3
µ) the bulk viscosity.

Here, we only refer to bulk viscosity by term µ′. The general (compressible) Navier-Stokes

equations is written in the form:

∂tρ+∇ · (ρu) = 0, (2.35)

∂t(ρu) +∇ · (pI + ρuu) = ∇ · σ′. (2.36)

The deviatoric stress has the generic form

σ′ab = µ

(
∂αuβ + ∂βuα −

2

3
δαβ∇ · u

)
+ µ′δαβ∇ · u. (2.37)

In incompressible Navier-Stokes equation, the effect of bulk viscosity is automatically

eliminated because ∇ · u is zero based on the continuity equation. Therefore, the real

value of bulk viscosity is not important for an incompressible Navier-Stokes solver. In

LBM, however, Eq. (2.35) is solved for mass conservation. This equation can be written

as

(∂t + u · ∇)ρ+ ρ∇ · u = 0, (2.38)

where the terms proportional to ∇ · u are O(Ma2). Therefore, in SRT-LBM neither ∇ · u
nor µ′ are zero. Dellar [56] showed that in LBM, µ′ = 2µ/3, that eliminates the last two

terms of Eq. (2.37). This result is satisfactory for isothermal flows. For non-isothermal

cases with large density variations or in compressible regimes, the term (µ′ − 2
3
µ)∇ · u

should be kept in the equations. Dellar [56] proposed an extra term in the equilibrium

distribution function to solve the issue;

• SRT-BGK model faces numerical instability at zero-viscosity limit. It would be thus

difficult to model very high Reynolds number or turbulent flows. To improve the numerical
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stability and reach high Reynolds numbers, several methods have been proposed. Among

them, the MRT collision operator [62, 63], cascaded LB method [64], entropic [65] and

the cumulant model [66] are widely used;

• The no-slip boundary condition in LBM is usually implemented by getting the missing

populations from the post-collision ones of the opposite direction (half-way bounce-back).

Luo et al. [67] showed that wall location depends on the value of relaxation time and wall

locates at ∆ = 0.5 if and only if ν = 1/(2
√

6) (or τ = 1.1123). Ginzbourg and Adler [68]

expressed that the exact location of the wall is one-half lattice between the fluid and the

solid wall if and only if the relaxation times are different and properly selected. Use of

different relaxation times is not possible in SRT. MRT eases the problem. This issue is

more important when the interaction of solid wall and the fluid is handled by momentum

exchange method which is based on the bounce-back principle or when flow in porous

media is simulated. For straight walls, the effect is negligible and SRT model would be

the right choice.

In spite of above mentioned limitations, SRT-LBM is still the most popular LB approach for

a variety of flow regimes and conditions and will be used throughout this thesis unless otherwise

stated.

2.5 Multi-relaxation time model (MRT)

In MRT model, different moments of the distribution function relax at different rates, while

in SRT model, all moments relax at the same rate. MRT allows us to choose lower relaxation

times for non-hydrodynamic moments, providing the maximum degrees of freedom to optimize

LBM stability. Proper selection of relaxation parameters solves the issue of instability at low

relaxation times, or of reduced accuracy at high relaxation times occurring for SRT-LBM.

For this purpose, in MRT, the evolution takes place in a moment space instead of the velocity

space. The MRT-LBM equation without a force term is written as:

f(x+ ci∆t, t+ ∆t) = f(x, t)−M−1 (S [m−meq]) , (2.39)

with m = Mf and meq = Mf eq. Here, M is the transformation matrix, f is the matrix of

moments, and S is a diagonal matrix in the moment space, which contains relaxation time of

each moment. In this thesis, MRT is used for 3D porous media simulation and turbulent flow

initialization. The corresponding relaxation matrix in 3D is:

S = diag [0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16] , (2.40)

where s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, s9 = s13 = 1/τ , and s16 = 1.98 [63]. In SRT all
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elements of this matrix are 1/τ . The transformation matrix M in D3Q19 model is given by

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


(2.41)

In 3D studies, four components of m are density and momentum in x, y and z directions.

For zeroth moment, for example, m0 =
∑

iM0,ifi. Other components of matrix m are specified

by using Hermite polynomials or Gram-Schmidt procedure. This procedure ensures that rows

of matrix M are orthogonal vectors and, therefore, they are unique. Hence, moments can relax

to equilibrium ones independently of each other. The 19 orthogonal moments in the D3Q19

stencil are:

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz). (2.42)

The equilibrium moments are defined as

ρeq = ρ, (2.43)

eeq = −11ρ+ 19(j2
x + j2

y + j2
z ), (2.44)

εeq = wερ+
wεj
ρ0

(j2
x + j2

y + j2
z ), (2.45)

qeqx = −2

3
jx, qeqy = −2

3
jy, qeqz = −2

3
jz (2.46)

peqxx =
1

3ρ0

[
2j2
x − (j2

y + j2
z )
]
, peqww =

1

ρ0

[
2j2
y − j2

z

]
, (2.47)

peqxy =
1

ρ0

jxjy, peqyz =
1

ρ0

jyjz peqxz =
1

ρ0

jxjz (2.48)

πeqxx = wxxp
eq
xx, πeqww = wxxp

eq
ww, (2.49)

meq
x = meq

y = meq
z = 0, (2.50)



Summary 19

where wε, wεj and wxx are free parameters in the D3Q19 model. d’Humières et al. [63] suggested

using wε = 3, wεj = −11/2 and wxx = −1/2.

2.6 Summary

In this chapter, the lattice Boltzmann method was introduced, including its history, formulation,

advantages and shortcomings. Moreover, different architectures of LBM consisting of SRT and

MRT were explained. In the rest of this dissertation, multiphase flows will be modeled. To

do so, LBM will be used as the flow solver because of numerous advantages. In particular,

linear convective term, locality of calculations and high parallel efficiency are fascinating. In

our simulations, we only deal with incompressible regimes of low Mach number and small

temperature variations. Thus, standard SRT-LBM is satisfactory and is utilized unless otherwise

stated. For non-isothermal cases (Chapter 4), DDT model will be implemented to have freedom

on the choice of Prandtl number at a reasonable computational cost. For high Reynolds flows

(Chapter 6), MRT will be used to increase the stability for the initialization of turbulence. After

turbulence establishment, SRT will be utilized.

Next chapter will go deeper into the modeling of laminar particulate flows by means of LBM.

Fluid-particle interaction forces are taken into account by IBM, which will be explained with

validation and application cases.



Chapter 3

Laminar Particulate Flows

3.1 Introduction

Particulate flows are present in many natural and industrial applications such as filtration,

pollution control, blood clogging, fluidized bed, crystallization, or chemical reactors involving

catalyst particles. For many years, the study and design of particle systems were limited to

empirical and experimental research. During the past decades and as a result of increased

computational capability and advanced modeling techniques, the numerical analysis of particulate

flows has attracted the attention of many research groups. Three major numerical approaches

can be identified in this regard. The first approach is the two-fluid model (as special case of

the multi-fluid model) in which the properties of the particles are assumed to be continuous,

like those of a pure fluid. Thus, conservation equations of mass, momentum and energy are

developed through an averaging process and the constitutive relations for the solid phase are

usually closed using the kinetic theory of granular flow. These equations are discretized at each

computational node and solved through a procedure similar to that used for the fluid [3, 69].

The interaction between the two phases is described by drag force correlations. This model is

an Eulerian-Eulerian approach that does not properly model all details of particle-particle and

particle-fluid interactions.

The second approach is the Lagrangian point-particle model. This method is appropriate for

sufficiently small particles in dilute regimes. This method fails to give an accurate prediction of

the flow behavior when these conditions are not met. In this model, each particle is treated

as a point and its position is determined via Newton’s equations of motion. This model is an

Eulerian-Lagrangian approach and estimates the force acting on each particle by an empirical

drag force.

The third approach of handling particles, is the so called fully-resolved simulation, which is

the most accurate method. Here, the Eulerian grid is typically an order of magnitude smaller

than the size of the particles, so that the fluid flow behavior around and between particles is also

computed. In this case, no correlation is required and both particle-particle and particle-fluid

interactions can be modeled in a realistic way [70].

The fully-resolved simulation methods fall into two categories: boundary-fitted and

20
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non-boundary fitted. In the boundary-fitted techniques, the generated computational grid fits

the particle surface. This type of mesh is usually unstructured for complex surface geometries.

This implies that mesh generation is computationally expensive and troublesome, especially

when treating moving objects. The arbitrary Lagrangian-Eulerian (ALE) approach locates in

this group [71]. This method loses its efficiency in case of 3D geometry or in the presence of

numerous particles. Non-boundary fitted approaches are then easier to implement. The main

methods in this category are: the distributed Lagrange multiplier or fictitious domain method

(DLM/FDM, see [72]) and the immersed boundary method (IBM). IBM was first introduced

by Peskin [43, 73] in order to model blood flow in the heart. In IBM, the fluid equations are

discretized on a fixed Eulerian grid over the entire domain and the immersed boundary is

discretized on a moving Lagrangian mesh.

In this chapter, the lattice Boltzmann method is employed to simulate different laminar

particulate flows with solid rigid particles. The first popular way to calculate the interaction

force between the particle and the fluid in LBM is the so-called momentum exchange method.

This method is based on balancing the momentum of the fluid at the obstacle surface using

bounce-back technique. It has been widely used in the literature [74–77]. One other promising

approach is the IBM, where the boundary shape is taken into account. Since both IBM and

LBM are based on a Cartesian grid, a combination can be readily applied to simulations of

moving boundary problems. This combination is denoted as IB-LBM in what follows. In IBM

the force density is evaluated at each Lagrangian point using either the penalty method [43],

the momentum exchange method [78] or the direct forcing (DF) method [79, 80].

Feng and Michaelides [81] first developed an IB-LBM coupled model and applied it to

simulate the sedimentation of a large number of particles in an enclosure. In their approach

(penalty method) the particle boundary was treated as a deformable medium with high stiffness.

This method has the drawback that it requires a priori selection of the stiffness parameter, based

on the specific problem to be solved. One year later they developed the direct IB-LBM model

[82] based on what was originally proposed by Mohd-Yusof [79] for fixed complex boundaries.

In the direct forcing method, the force density term is naturally determined in the calculation

process and there is therefore no need to use a free parameter for the stiffness coefficient. Niu et

al. [78] proposed an IB-LBM approach called the momentum-exchange-based IB-LBM. Dupuis

et al. [83] proposed a direct-forcing IB-LBM without solving the Navier-Stokes equations for

the evaluation of boundary force density. Their method is considered as a pure direct-forcing

IB-LBM.

IB-LBM has been applied in recent years to an increasing variety of flow conditions. Kang

and Hassan [84] used a DF IB-LBM based on the split-forcing LBM with various interface

schemes for flow problems with stationary complex boundaries. They suggested using the

IB-LBM with a sharp interface scheme for stationary boundary problems but stated that for

moving boundary cases, the diffuse interface scheme is more suitable because it produces a

smooth evolution of forcing points. In the diffuse interface scheme, forcing points are located on

the immersed object boundary.
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Suzuki and Inamuro [85] investigated the internal mass effect for various particle Reynolds

numbers through the IB-LBM simulations of a moving body in a fluid. They found that the

internal mass effect is fairly small for Reynolds numbers about 1, but grows as the Reynolds

number increases. The effect becomes distinct for a Reynolds number over 10. Later, the

authors proposed a LBM combined with a higher-order IBM using a smooth velocity field near

boundaries, to expand the velocity field smoothly into the body domain across the boundary

[86].

The chapter is organized as follows. First, the governing equations of DF-IBM together with

the discretized equations are presented. Then, simulation results of moving rigid particles for

different 2D and 3D flows of increasing complexity are discussed. Results of this chapter have

been partly published in [87, 88].

3.2 Numerical formulation

3.2.1 Immersed boundary method

Here the direct-forcing IBM is used to couple the fluid and particle phases. In IBM, the fluid

equations are discretized on a fixed Eulerian grid over the entire domain and the immersed

boundary is discretized on a moving Lagrangian mesh [43, 79].

The momentum equation for an incompressible viscous flow field reads

∂u

∂t
+ u · ∇u = − 1

ρf
∇p+ νf∇2u+ f , (3.1)

where u , ρf , and νf are the fluid velocity, density, and kinematic viscosity, respectively.

Parameters p and f are the pressure and a force density due to presence of particles.

In order to use the direct-forcing IBM, the discretized form of Eq. (3.1) is rewritten as:

un+1 − un

∆t
= RHSn + fn, (3.2)

where ∆t is the time step, n and n+ 1 are the present and next time steps, and RHSn includes

convective, viscous and pressure terms. Following the method proposed by Uhlmann [80], the

force density term at any Lagrangian point (Xl) is evaluated from the desired velocity (U d)

fnl =
U d − unoF

∆t
, (3.3)

where unoF means the velocity at step n+ 1 without being forced and is calculated regardless

of the existence of any forcing term. It is calculated in 3D simulations by Eq. (3.4) based on

the velocity at the Eulerian nodes (ui,j,k):

unoF =
∑
i,j,k

ui,j,kD(xi,j,k −Xl)(∆h)3, (3.4)



Numerical formulation 23

where ∆h is the lattice size (= 1) and Xl denotes the location of the Lagrangian point. The

desired velocity at each Lagrangian point reads

U d = Up +Ωp × (Xl −Xc), (3.5)

where Up and Ωp are the translational and angular velocity of the particle, respectively, and Xc

is the location of the particle center. The discrete Dirac delta function in Eq. (3.4) is defined

for 3D cases as follows (2D formulation is similarly derived):

D(xi,j,k −Xl) =
1

(∆h)3
dh

(
x− xl

∆h

)
dh

(
y − yl

∆h

)
dh

(
z − zl
∆h

)
, (3.6)

and the following 4-point delta function is used to estimate dh(r) in the present study [89]:

dh(r) =


1

8

(
3− 2 |r|+

√
1 + 4|r| − 4r2

)
0 ≤ |r| < 1

1

8

(
5− 2 |r| −

√
−7 + 12|r| − 4r2

)
1 ≤ |r| < 2

0 |r| ≥ 2

, (3.7)

Finally, the force term that is exerted on each Eulerian point is calculated by spreading the

Lagrangian force term:

fi,j,k =
∑
i,j,k

flD(xi,j,k −Xl)∆Sl∆h, (3.8)

where ∆Sl is the area (in 3D) of the of the surface boundary at a Lagrangian point l.

3.2.2 Newton’s equations of motion

For the simulation of a moving particle, the equations of motion for each particle must be

considered. Newton’s equation of particle translational velocity (Up) reads:

Mp
dUp

dt
= −

∫
S

σ · dS + (ρp − ρf )Vpg + F c, (3.9)

where, ρp, Vp and Mp are the particle density, volume and mass respectively, σ is the fluid

stress tensor and Up is the translational velocity of particle. Subscripts f and p indicate the

fluid and the particle, respectively. Here, S denotes the control surface. The first term on the

right-hand side of Eq. (3.9) is the interaction force between the particle and the surrounding

fluid, the second term is the buoyancy force and the third term (F c) includes particle-particle

and particle-wall collision forces. The first term on the RHS consists of stationary surface force

and internal fluid mass term:

−
∫
S

σ.dS = −ρp
∫
fldV +Mf

dUp

dt
. (3.10)

In the present study the approach already suggested by Feng and Michaelides [90] is adopted



24 Chapter 3. Laminar Particulate Flows

to evaluate internal fluid mass effect wherever this effect is considered. This method is useful

when fluid and particle have the same density. Therefore, the particle velocity can be updated

at each iteration via the following equation:

Mp
dUp

dt
= −ρp

Nl∑
l=1

fl∆Vl +Mf
dUp

dt
+ (ρp − ρf )Vpg + F c, (3.11)

Above equation is discretized as:

Un+1
p = Un

p +
1

Mp

(
−ρp

∑
b

fnl ∆Vl

)
∆t+

Mf

Mp

(
Un
p −Un−1

p

)
+

1

Mp

(Mp −Mf ) g∆t+
1

Mp

F c∆t,

(3.12)

where Mf = Mpρf/ρf . Newton’s equation of angular particle motion reads

T = Ip ·
dΩp

dt
+Ωp × (I ·Ω) , (3.13)

where Ωp is the angular velocity of the particle, T is the total torque exerted on particle center

and Ip is the mass moment of inertia of particle. In case of circular, elliptical and spherical

particles, I is constant and is equal to 0.5MpR
2, 0.25Mp(R

2
1 +R2

2) and 0.4MpR
2, respectively.

Here, R denotes the radius of circle or sphere and R1 and R2 are the radii of an ellipse. Therefore,

the second term on the right hand side of Eq. (3.13) can be omitted and this equation can be

rearranged as:

−
∫
S

(Xl −Xc)× σ · dS = Ip
dΩp

dt
. (3.14)

In the above equation Xl and Xc are the position vectors of a Lagrangian boundary surface

point and the center of particle, respectively. Equation (3.14) can be discretized as:

Ωn+1
p = Ωn

p + (
1

Ip
)

[
−
∑
l

(Xl −Xc)× fnl ∆Vl

]
∆t+

(
If
Ip

)(
Ωn
p −Ωn−1

p

)
. (3.15)

For spheroidal particles the second term on the right hand side of Eq. (3.13) must be

maintained. For this case, the concept of quaternions is used to solve this equation, as will be

described later in Chapter 7. After calculating the particle translational velocity at n+ 1, one

can update the particle new center position:

Xn+1
c = Xn

c + 0.5
(
Un+1
p +Un

p

)
∆t. (3.16)

The particle orientation is updated by using the appropriate 2D or 3D rotation matrix. The

value of U d for each Lagrangian point is then determined by:

U d(Xl) = Up +Ωp × (Xl −Xc) . (3.17)
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3.2.3 Collision model

When simulating particles in the fluid, collision models are required to prevent particles from

penetrating into other particles or walls. In this thesis the well-known repulsive force model of

Glowinski [72] and Feng and Michaelides [82] is adopted. For circular and spherical particles,

the repulsive force on the ith particle from the jth particle reads

F p−p
i,j =



0, dij > Ri +Rj + ζ
cij
εp

(
dij−Ri−Rj−ζ

ζ

)2 (
xi−xj

dij

)
, Ri +Rj < dij ≤ Ri +Rj + ζ cij

εp

(
dij−Ri−Rj−ζ

ζ

)2

+
cij
Ep

(
Ri+Rj−dij

ζ

)
(xi−xj

dij

)
, dij ≤ Ri +Rj

(3.18)

where xi and xj are the particles center position vector; the parameter cij is the force scale

that is chosen to be the buoyancy force on the body for the case of particle sedimentation; εp is

the stiffness parameter for particle-particle collisions; Ep is also a stiffness parameter but has

a lower value than εp to ensure a larger repulsive force in order to avoid unphysical behavior

during particle overlap; Ri and Rj are the radii of the particles, ζ is the range of the repulsive

force and dij = |xi − xj| is the distance between particle centers. A similar formula is used for

particle-wall collision:

F p−w
i =



0, d′i > 2Ri + ζ
cij
εw

(
d′i−2Ri−ζ

ζ

)2 (
xi−x′

i

d′i

)
, 2Ri < d′i ≤ 2Ri + ζ cij

εw

(
d′i−2Ri−ζ

ζ

)2

+
cij
Ew

(
2Ri−d′i

ζ

)
(xi−x′

i

d′i

)
, 2Ri < d′i ≤ 2Ri + ζ

(3.19)

where x′i is the coordinate vector of the center of the nearest imaginary particle located on the

other side of the wall boundary and d′i = |xi − x′i| is the distance to this imaginary particle. As

previously, εw is the stiffness parameter for particle-wall collisions and Ew is another stiffness

parameter with a lower value than εw.

3.2.4 LBM with force term

In order to take into account fluid-particle interactions, a force term needs to be added to the

flow solver part. The regular formulation of SRT-LBM without a force term is given by

collision : f
′

i (x, t) = fi(x, t)−
1

τ
[fi(x, t)− f eqi (x, t)] , (3.20)

streaming : fi(x+ ci∆t, t+ ∆t) = f
′

i (x, t), (3.21)
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where fi is the distribution function of particles moving with speed {ci}, τ is the non-dimensional

relaxation time and ∆t is the time step. The equilibrium distribution function f eqi is defined as:

f eqi = ωiρf

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

]
, (3.22)

where ωi is the weight coefficient and macroscopic quantities including density and velocity are

defined by the 0th and 1st moments of the probability distribution function, respectively:

ρf =
∑
i

fi, (3.23)

ρfu =
∑
i

cifi. (3.24)

In the present study three schemes will be considered to describe the force term in the

simulations. Scheme 1. Guo et al. [91] proposed the split-forcing LBM, which enables the

LBM to recover the NSE (mass and momentum conservation equations) with second-order

accuracy (compared with lumped forcing). In this formulation, the force term is first added to

LBM collision step:

f ′i(x, t) = fi(x, t)−
1

τ
[fi(x, t)− f eqi (x, t)] + Fi(x, t)∆t, (3.25)

where Fi(x, t) is defined by

Fi(x, t) =

(
1− 1

2τ

)
ωi

[
3
ci − u(x, t)

c2
s

+9
ci · u(x, t)

c4
s

ci

]
· F (x, t). (3.26)

In the second step (after streaming), the macroscopic velocity is calculated through

ρfu =
∑
i

cifi +
∆t

2
F . (3.27)

Scheme 2. As suggested by Shan and Chen [18], Eq. (3.20) is used but the equilibrium velocity

in Eq. (3.22) is shifted using v instead of u:

v = u+
τ

ρf
F . (3.28)

Scheme 3. Originating from the lattice gas automata [7, 92], a force term is introduced into

Eq. (3.25) with the following form

Fi(x, t) = 3∆xωici · F (x, t). (3.29)
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3.2.5 Numerical approach

In order to be able to implement the numerical schemes discussed previously, the following

computation algorithm is used, involving 8 steps:

1. Set the initial value of u(x, 0), F (x, 0) and ρf(x, 0) and compute the initial values of

fi(x, 0) by Eq. (3.22). Assign Up(0) and Ωp(0).

2. Perform LBM calculations (sequence for scheme 1: Eqs. (3.26), (3.25), (3.21), (3.23),

(3.27); scheme 2: Eqs. (3.28), (3.20), (3.21), (3.23), (3.24); scheme 3: Eqs. (3.29), (3.25),

(3.21), (3.23), (3.24).

3. Calculate the Lagrangian velocity unoF (Xl, t) by interpolation from u(x, t) using Eq. (3.4).

4. Calculate collision forces by Eqs. (3.18) and (3.19) for all particles.

5. Compute Lagrangian force f(Xl, t) by Eq. (3.3).

6. Spread forces of step 5 from Lagrangian to Eulerian nodes by Eq. (3.8).

7. Use equations of motion to update particle center position and orientation as well as

translational and angular velocities (see Section 3.2.2).

8. Loop back to step 2 until end of simulation.

3.3 Simulation results

In this section, simulation results for different particle shapes and geometries are presented for

problems of increasing complexity. The accuracy of the developed numerical tool is checked by

comparison with benchmarks, involving both numerical and experimental results from other

groups.

3.3.1 Sedimentation of a single circular particle in 2D

The first validation case is the sedimentation of a single circular particle under gravity in a

vertical channel, following the configuration described in [93]. The domain size is 2 × 6 cm2

and the particle radius is 0.25 cm. The fluid density (ρf ) and dynamic viscosity (µf ) are 1000

kg/m3 and 0.01 Pa·s, respectively, and the particle density (ρp) is 1250 kg/m3. The fluid and

the particle are initially at rest. The particle starts its motion at the location [1.0, 4.0] cm from

the bottom left corner of the domain. For this test case a lattice size of 50 µm is employed

(400 × 1200 grid points) and the relaxation parameter is set to τ = 0.53. Figure 3.1 depicts

the results obtained with different schemes for the vertical particle velocity versus time, when

considering the internal fluid mass effect. It can be observed that our results are identical to

that obtained by Kang [93] using the IB–LBM. This is a first confirmation of the accuracy of
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Figure 3.1: Time evolution of a single 2D circular particle vertical velocity computed with
three force schemes and compared to those of Kang for settling in a closed square under gravity
(Sec. 3.3.1)

the direct–forcing IB–LBM for moving particles. Furthermore, the results of the three schemes

cannot be distinguished, showing that all three can be equally employed for this particular

configuration. By comparing the computational time for the three cases on a standard desktop

PC (Core i5, 3.3 GHz CPU, 16 GB RAM) it was observed that scheme 2 [18] is slightly faster

than scheme 3, while scheme 1 is the slowest one.

3.3.2 Sedimentation of two circular particles in 2D

In this section, we investigate the sedimentation of two circular particles in a viscous fluid,

considering the well–known case of “drafting, kissing, and tumbling” (DKT) motion [94]. Physical

conditions and numerical parameters are summarized in Tables 3.1 and 3.2, respectively, and

follow the setup considered in [93]. Particle positions are relative to an origin set at the

left-bottom corner of the computational domain. Initially, the first particle is 10 µm off the

channel center and the second particle is −10 µm off the channel center, 0.5 cm below the

first particle. Both particles and the fluid have zero initial velocities. Figure 3.2 shows the

variation in the vertical velocity of the two particles with time, compared with the results of

Uhlmann [80] obtained by an explicit diffuse DF scheme applied on the NS equation. Before the

collision of the particles (∼0.17 s), all results are identical. The slightly different vertical velocity

variations observed after particle kissing for different schemes can be attributed to differences in

the numerical approach and the particle collision models employed. Considering now the three

different schemes used, Fig. 3.2 shows that the results of Scheme 3 indicate a noticeable and

increasing deviation for the second particle compared with the two other schemes at the end

of the process. Figure 3.3 depicts the vertical fluid velocity contour in the domain. Note that

the leading particle creates a wake of low pressure. The trailing particle is caught in this wake
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Table 3.1: Physical conditions for the sedimentation of two circular particles in 2D

Channel
size [cm]

Particles
diameter

[cm]

Particle
density
[kg/m3]

Initial position
[cm]

Fluid density
[kg/m3]

Fluid
viscosity

[Pa·s]

6× 2 0.25 1500
1: (5, 1.001)

2: (4.5, 0.999)
1000 0.001

Table 3.2: Numerical parameters for the sedimentation of two circular particles in 2D domain

Lattice
size [µm]

Time step
[µs]

Domain
size

Relaxation time
Collision

threshold (ζ)

Collision
stiffness
(εp, Ep)

50 25 1200× 400 0.53 2 0.1, 0.05
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Figure 3.2: Settling velocity U of (a) particle 1, and (b) particle 2 as a function of time t for
the DKT test case of two circular particles computed by three force schemes and validated by
NS based simulations of Uhlmann (2005) (Sec. 3.3.2)

and therefore falls faster than the leading one (drafting). The increased velocity of the trailing

particle creates a kissing contact with the leading particle. During contact, the two particles

form an elongated body along the streaming direction. This state is unstable, and as a result,

the particles tumble under the influence of a coupling force that brings them into a stable state.

3.3.3 Sedimentation of an elliptical particle in 2D

In this section, the sedimentation of an elliptical particle is considered in a 2D flow, as previously

studied in [85], [95], and [96]. The configuration is depicted in Fig. 3.4, where a and b are the

lengths of the major and minor axes, respectively. In physical units, a and b are 0.1 and 0.05 cm,

respectively, the gravitational constant is 9.8 m/s2, acting along the x-axis, and H the width

of the channel (here set to 0.4 cm). The variable θ represents the orientation of the particle,

which is initially equal to 45◦. The kinematic viscosity of the fluid is 10−6 m2/s. Three density
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Figure 3.3: Contours of vertical velocity and particles position at t = 0.025, 0.125, 0.175, and
0.3 s (from left to right) for a 2D-DKT simulation in a closed box (Sec. 3.3.2)

Figure 3.4: Schematic of an elliptical particle settling under gravity in a channel with particle
initial inclination angle θ and aspect ratio a/b

ratios (particle to fluid) of ρr = 1.01, 1.1, and 1.5 are considered. The computational domain is

3500× 200 and τ is set to 0.6364 for all three cases. The center of the elliptical particle starts its

motion at the initial position of (xc, yc) = (0, 0.5H), where the origin of coordinates is located

at distance 2.5H from the upper wall of the channel. Halfway bounce-back boundary condition

is applied to the channel walls. On the boundary of the ellipse, 250 Lagrangian nodes are

placed. In Figs. 3.5–3.7, comparisons are shown concerning particle trajectory and orientation

using Scheme 1. Clearly, the results obtained are in excellent agreement with other published

numerical results. For a density ratio of ρr = 1.5 , the elliptical particle shows oscillations

around the centerline; for lower density ratios, the particle angle rapidly goes to zero.
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Figure 3.5: (a) Orientation angle θ with respect to the horizontal axis, and (b) location of
an elliptical particle settling under gravity in a long channel as a function of particle center
x–position (ρr = 1.01) compared to simulation results of Suzuki and Inamuro (2011) (Sec. 3.3.3)
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Figure 3.6: (a) Orientation angle θ with respect to the horizontal axis, and (b) location of
an elliptical particle settling under gravity in a long channel as a function of particle center
x–position (ρr = 1.1) compared to simulation results of Suzuki and Inamuro (2011) (Sec. 3.3.3)

3.3.4 Sedimentation of a single sphere

After successful comparisons of 2D flows, 3D flows were then considered. First, the sedimentation

of a sphere in an enclosure was modeled, comparing the results obtained with the available

experimental data of Ten Cate et al. [97]. The test case (see Fig. 3.8) involves a box of size

10× 10× 16 cm3, and a spherical particle of diameter Dp = 1.5 cm and density ρp = 1120 kg/m3.

The fluid is initially at rest and the particle is released at a height of 12 cm from the bottom

of the enclosure, before falling under gravity (g = 9.8 m/s2). For this simulation, the domain

is divided into a 200× 200× 320 lattice grid. The number of Lagrangian force points on the

sphere is Nl = 2828 and the area allocated to each Lagrangian point is calculated using the
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Figure 3.7: (a) Orientation angle θ with respect to the horizontal axis, and (b) location of
an elliptical particle settling under gravity in a long channel as a function of particle center
x–position (ρr = 1.5) compared to simulation results of Suzuki and Inamuro (2011) (Sec. 3.3.3)

Figure 3.8: Schematic of the simulation domain for spherical particle sedimentation (Sec. 3.3.4)

method of Uhlmann [80]:

∆Vl =
π∆x

3Nl

(
12

(
Dp

2

)2

+ (∆x)2

)
. (3.30)

A uniform distribution of the Lagrangian points on the spherical surface of the particles is

established using the explicit spiral set proposed by Saff and Kuijlaars [98]. Based on the particle

sedimentation velocity in an infinite domain, four particle Reynolds numbers are considered.

The fluid density varies in these cases from 960 to 970 kg/m3 and its dynamic viscosity ranges

from 0.058 to 0.373 Pa·s. Particle collisions with the walls are determined using Eq. (3.19)

with εp = 0.1, Ep = 0.01 and ζ = 1. Physical and numerical conditions for this simulation are

listed in Table 3.3. Internal fluid mass has been included in our simulations. The notion of
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Table 3.3: Fluid properties in the experiment and simulation for sedimentation of a single sphere
(Dp = 1.5 cm) in a closed box

Case Re ρf [kg/m3] µf × 103 [Pa·s] τ

1 1.5 970 373 1.1
2 4.1 965 212 0.8
3 11.6 962 113 0.6
4 32.2 960 58 0.6
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Figure 3.9: Settling velocity of a single spherical particle vs. time computed for different Reynolds
numbers and compared to the experimental data of Ten Cate et al. (2002) (Sec. 3.3.4)

Table 3.4: Comparison of the computational time for single sphere sedimentation

Scheme Scheme 1 Scheme 2 Scheme 3

Duration of 50 iterations (s) 146 84 108

corrected radius is used as well. The forcing points then reside on a spherical surface of radius

rb = 3

√
r3+(r−∆x)3

2
.

Figure 3.9 depicts our results for the particle vertical velocity, compared with the experimental

data. Obtained results agree almost perfectly with the experimental measurements, highlighting

again the validity of the numerical procedure. Finally, with Re = 32.2, Table 3.4 compares the

computational times for each of the three schemes; Scheme 2 is again the fastest and Scheme 1

the slowest.

3.3.5 DKT motion in 3D

To further assess the performance of the developed IB-LBM approach, the case of two spheres

falling in a closed container is considered using the configuration considered in [99, 100]. A DKT

motion similar to that described in 2D case is observed. The same configuration was also studied

by Breugem [101] using IBM combined with NS equations. The author investigated the effect of
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Figure 3.10: Vertical velocity U of two particles vs. time for a 3D DKT motion compared to
the available NS simulations of Breugem (2012) (Sec. 3.3.5)

internal fluid mass and corrected radius using multi–DF. For our test, the container dimension

is 0.04 m × 0.01 m × 0.01 m in the x-, y- and z–direction, respectively. Gravity acts in the

x-direction (g = 9.8 m/s2). Both particles have a diameter of Dp = 1.67× 10−3 m and density

of ρp = 1140 kg/m3. The density of the fluid is ρf = 1000 kg/m3 and its kinematic viscosity is

ν = 10−6 m2/s. At t = 0 s, the two spheres are placed in the container above each other at a

distance xc = 0.035 and xc = 0.0316 m from the container bottom wall, respectively. To initiate

the DKT motion, the particles are again placed slightly off center. Therefore, the upper sphere

is positioned at yc = zc = 0.505 cm, whereas the lower sphere is placed at yc = zc = 0.495 cm.

The fluid and the spheres are initially at rest. For the simulation, a computational domain of

384× 96× 96 lattice units is used and a relaxation parameter of τ = 0.6 is retained. To model

collisions, the parameters εp = 2, Ep = 0.1, and ζ = 1 are used.

In Fig. 3.10, DF IB-LBM results for the particle sedimentation velocity are compared with

those of Breugem [101]. In both cases, internal fluid mass and corrected radius are taken into

account. Our simulation reproduces correctly the DKT behavior, and in particular, before

collision, an excellent agreement is found. After kissing, different behaviors are expected and

indeed observed in consequence of the different collision models and collision factors employed

in both studies. Figure 3.11 compares the results obtained for the settling velocity of the upper

particle with and without internal fluid mass, as well as with and without corrected radius.

When either internal fluid mass or corrected radius is neglected, the particle falls more slowly.

For the same reason, the kissing time (first collision time) shifts to later times if internal fluid

mass and/or corrected radius are not included in the simulation. This effect of internal fluid

mass has been previously observed in the simulations of Kang [93]. Having found that for a

single particle these two effects must be included to reproduce the experimental results, there is

a strong inference that internal fluid mass and corrected radius must also be taken into account

for 3D simulations of multiple particles.
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Figure 3.11: Effect of internal fluid mass (IM) and corrected radius (CR) on settling velocity U
of the initially upper particle in DKT motion of two spherical particles versus physical time of
simulation (Sec. 3.3.5)

3.4 Summary

In this chapter, the DF IB-LBM approach has been implemented and successfully applied to

different cases of increasing complexity involving 2D and 3D flows. The LBM was used for the

fluid and the IBM used to take into account particles in the fluid. In the DF-IBM, the force

density term was naturally determined as part of the calculation. To transfer the force term from

the Lagrangian to the Eulerian nodes, discrete delta functions are used. By comparison with

published reference data, the motion of circular and elliptical (in 2D), and spherical particles

(in 3D) can be accurately computed with the resulting code, ALBORZ. Three different force

schemes have been considered in the LBM, for which computational speed and accuracy were

compared. Shan-Chen model was found to be faster than others. Also both internal fluid

mass and corrected radius (i.e., retraction of the Lagrangian grid from the surface toward the

interior of the particles) lead to significant changes in the predicted particle velocity, and should

therefore be taken into account. The internal fluid mass should have even more impact at higher

density ratios. Further tests show that the corrected radius has less impact at very fine grid

resolution.

Up to now, the flow regime in all cases was laminar and isothermal. After this successful

validation, the current code can be used for more complicated applications by including heat

transfer or turbulence in the computations. The simulation of non-isothermal and turbulent

particle-laden flows is the subject of Chapters 4 and 6, respectively. Next chapter concerns

particulate flows with heat transfer to/from particles. The topic is important and relevant to

many chemical and natural processes.



Chapter 4

Non-isothermal Particulate Flows

4.1 Introduction

The main goal of this chapter is the extension of the developed LB solver to different

non-isothermal flows with the main focus on two-phase flows with suspended particles. The

numerical simulation of particulate flows is already quite complex. This complexity increases

even further when heat transfer must be taken into account. Although there has been an

increasing interest for corresponding studies in recent years, only few publications can be found.

Gan et al. [102] used the ALE-finite element method to model the motion of particles having

heat transfer with surrounding fluid; however, this method was computationally expensive. Yu

et al. [103] extended the DLM/FDM to simulate two dimensional (2D) particulate flows with

heat transfer. They considered particles of constant or varying temperature. Kim and Choi

[104] and Pacheco [105] applied IBM to heat transfer between a fluid and stationary objects.

Feng and Michaelides [106] developed an IB finite-volume technique and applied this approach

to heat transfer in particle-laden flows, where particles were moving. They verified their results

by comparison with those of Yu et al. [103]. They were also able to use this approach at

ρrCp,r = 1 (ρr: particle to fluid density ratio; Cp,r: particle to fluid specific heat ratio) and

tackle the instability problems appearing around this threshold. However, they assumed a

uniform temperature inside the particle, which is only valid for high thermal conductivities of

the solid particle. Dan and Wachs [107] used the DLM method to model heat transfer problems

in 3D with constant particle temperature. Kang and Hassan [108] applied two types of thermal

IB-LBM, a hybrid model and a simplified double-population method to simulate heat transfer

between particles and the fluid. However, the simulation was limited to 2D and particles had a

fixed temperature. Wachs [109] studied the rising of 3D catalyst particles using a parallelized

DNS-IBM with a fictitious domain method. Deen [110] implemented DNS-IBM to study the

heat transfer in both stationary beds and fluidized beds. Ström and Sasic [111] used volume of

fluid approach and modeled the motion of solid stationary and moving particles in the presence

of heat transfer effects in both 2D and 3D domains. Weiwei [112] developed a novel IBM under

the framework of NS solver and applied it to non-isothermal flows in the presence of solid

particles. Xia et al. [113] modeled heat transfer from 3D moving spheres using a ghost-cell based

36
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IBM. Recently, Zhang et al. [114] proposed a combined thermal LBM-IBM-DEM and simulated

heat transfer between single and multiple particles with carrier fluid.

Therefore, the combination of thermal IBM with LBM is an interesting topic. In this work

we aim to extend this approach to 3D cases in which fully-resolved spherical particles are moving

while having heat exchange with surrounding fluid flow; the issue that has not been addressed

by above mentioned articles. The case of variable particle temperature will be studied as well;

both in two- and three dimensional simulations. For this purpose, a force density and an energy

density term are introduced into the LBM equations. These force and energy terms are evaluated

through a direct-forcing and direct-heating IBM, respectively. Part of the results of this chapter

have been published in [115].

4.2 Model formulation

4.2.1 Thermal LBM

The formulation of LBM for isothermal flows has been presented in Chapters 2, 3. In this

chapter, the flow hydrodynamics will be described by the same formulation

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = − 1

τf
[fi(x, t)− f eqi (x, t)] , (4.1)

where fi is the distribution function of particles moving with speed {ci}, τf is the non-dimensional

relaxation time and ∆t is the time step. The equilibrium distribution function f eqi is defined as:

f eqi = ωiρf

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

]
, (4.2)

where ωi is the weight coefficient and macroscopic quantities including density and velocity are

defined by the 0th and 1st moments of the probability distribution function, respectively:

ρf =
∑
i

fi, (4.3)

ρfu =
∑
i

cifi. (4.4)

There are generally two types of thermal LBM to model heat transfer. One approach is

to use a double-distribution function; the second one is a hybrid model. In the former one

two distribution functions are considered, one for the momentum transport and one for energy

transport. Different methodologies have been proposed in this regard including passive scalar

model [25], internal energy distribution function [45, 46] , and total energy distribution function

[44]. In the hybrid scheme one has to add another numerical method like finite difference to

compute the temperature field while a hydrodynamic LBM model is used for the flow field. In

the present study, the model proposed by Peng et al. [45] is used. It relies on a simplified form
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of the internal energy distribution function model. Therefore, in a similar way to the flow field,

the temperature field can be described using a separate distribution function (g) and its relevant

relaxation time τg:

gi(x+ ci∆t, t+ ∆t)− gi(x, t) = − 1

τg
[gi(x, t)− geqi (x, t)] . (4.5)

The equilibrium distribution function for the temperature field is defined as [116]:

geqi = ωiρfT

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

]
, (4.6)

Thermal diffusivity, α, is defined in terms of its relaxation times:

α =

(
τg −

1

2

)
(∆x)2

∆t
. (4.7)

After evaluation of each distribution function at lattice nodes, temperature is calculated via:

ρfT =
∑
i

gi (4.8)

When the effects of compression work and the viscous heat dissipation are negligible, the above

formulation recovers the energy equation. In this study, the Boussinesq approximation is applied

to calculate the buoyancy force term (FB) for the flow field equation. It assumes the buoyancy

term to depend linearly on the temperature difference with the bulk flow, which leads to the

coupling of the energy and momentum equations as:

FB = ρf,refgβ(T − Tref ), (4.9)

where β is the coefficient of thermal expansion, g is the acceleration due to gravity, Tref is

the reference (bulk) temperature and ρf,ref is the fluid density at Tref . In this chapter, we

use the Shan–Chen approach [18] to apply the buoyancy force, FB, and volume force due to

particle-fluid interactions, F , into Eq. (4.1). Thus, the equilibrium velocity in Eq. (4.2) is shifted

by using v instead of u:

v = u+
τf
ρf

(FB + F ). (4.10)

In the rest of this chapter, following non-dimensional parameters are used to discuss

hydrodynamic or thermal properties. Prandtl number (Pr) relates kinematic viscosity (ν)

and thermal diffusivity (α)

Pr =
ν

α
, (4.11)
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Grashof and Rayleigh numbers are defined respectively via Eqs. (4.12) and (4.13).

Gr =
gβ∆TL3

ch

ν2
, (4.12)

Ra = Gr · Pr, (4.13)

where Lch is the characteristic length and ∆T is the temperature difference. Wherever density

(or heat capacity) ratio is discussed, it denotes particle density (or heat capacity) divided by

the corresponding fluid property. The Reynolds number (Re) reflects the flow regime based on

the characteristic length, Lch, and velocity, Uch, and reads

Re =
UchLch
ν

. (4.14)

4.2.2 IBM for heat source term

Details of the immersed boundary method for hydrodynamic force interaction between particle

and fluid can be found in Sec. 3.2.1. Similarly, IBM for heat exchange is applied. Energy

transfer in an incompressible fluid with constant properties is given by:

∂T

∂t
+ u · ∇T = α∇2T + q, (4.15)

where q = Q/(ρfCp,f) is the heat source due to heat exchange with particles. In order to

calculate the heat source term at each Lagrangian node of particle, one can write:

qnl =
T d − T noH

∆t
, (4.16)

with T noH defined in a 3D study by

T noH =
∑
i,j,k

Ti,j,kD(xi,j,k −Xl)(∆h)3. (4.17)

Thus, the heat source on the Eulerian nodes would be

qi,j,k =
∑
i,j,k

qlD(xi,j,k −Xl)∆Sl∆x. (4.18)

The Eulerian heat source term is applied into LBM after modifying Eq. (4.5) by the method of

Seta [117]:

gi(x+ ci∆t, t+ ∆t)− gi(x, t) = − 1

τg
[gi(x, t)− geqi (x, t)] + wiρfq(x, t)∆t. (4.19)

Finally, in case of particles with varying temperature, the particle transient temperature is

updated by solving the following differential equation, which is obtained from the energy balance



40 Chapter 4. Non-isothermal Particulate Flows

for the particle

(ρpCp,p − ρfCp,f )Vp
dTp
dt

=

∫
QpdV −

∫
QldV , (4.20)

where Cp stands for the specific heat, Qp is the heat source inside the particle (e.g., due to

chemical reaction) and Ql is the exchanged heat between the particle and fluid. In order to avoid

difficulties associated with the case of ρfCp,f ' ρpCp,p that may lead to a wrong estimation of

particle temperature in Eq. (4.20), the approach suggested by Feng and Michaelides [106] is

used, which results in the following discretized form of the evolution equation for the particle

temperature:

ρpCp,pVp
T n+1
p − T np

∆t
= ρfCp,fVp

T np − T n−1
p

∆t
+

∫
QpdV −

∫
QldV . (4.21)

In this study relying on thermal IBM, no points are distributed inside the particles. This

means that each particle has a uniform temperature. This approximation holds for high thermal

conductivity ratio between the particle and the fluid. In other words, the Biot number (Bi = hDp

kp
)

must be sufficiently small.

4.3 Numerical validation

In order to verify the robustness of the developed thermal IB-LBM, different two- and

three-dimensional simulations have been conducted, considering either particles of constant or

varying temperature. In 2D conditions, the natural convection from an eccentrically located

cylinder in a square box is first studied. In the second case, the sedimentation of a cold particle

in a hot fluid is investigated. The third case considers the motion of a circular catalyst particle

of variable temperature in a closed box. In 3D, the developed method is validated for the motion

of a single spherical catalyst particle with heat generation inside the particle.

4.3.1 Eccentrically located cylinder in a square enclosure

First, natural convection from a hot cylinder, eccentrically located in a square box, is simulated.

A schematic representation of the problem is shown in Fig. 4.1. Enclosure sides are of an equal

length L and the cylinder diameter is D = 0.4L. Half-way bounce-back boundary condition

is applied on the solid walls for this and the following test cases. The cylinder is off-center in

y direction and the eccentric distance is m = 0.1L. A no-slip condition is considered on the

walls. Adiabatic boundary condition is imposed on the top and bottom walls while the side

walls are kept at constant non-dimensional temperature of Tw = 0. In D2Q9 model the unknown

temperature distribution functions on side walls are obtained similar to the bounce back method

for momentum transport distribution functions [45, 118]. For instance, unknown distribution
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Figure 4.1: Schematic diagram of the simulation domain for heat transfer from an eccentric
hot cylinder (D = 0.4L) in a closed box with adiabatic and zero-temperature walls (wall length
= L) under the effect of gravity (g) (Sec. 4.3.1)
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Figure 4.2: Local Nusselt number Nu along the side wall for a 400 × 400 domain of Fig. 4.1
compared to the data of Pacheco et al. (2005) (Sec. 4.3.1)

functions on the west wall are evaluated as:

g1= Tw(w1 + w3)− g3,

g5= Tw(w5 + w7)− g7,

g8= Tw(w8 + w6)− g6.

(4.22)

A first-order extrapolation scheme is used to obtain the values of unknown thermal
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Figure 4.3: Isotherms distribution (colored by temperature) for heat transfer from a hot
stationary eccentric cylinder in a 2D box to the surrounding fluid under the effect of natural
convection (Sec. 4.3.1)

Figure 4.4: Streamlines (colored by temperature) for heat transfer from a hot stationary eccentric
cylinder in a 2D box to the surrounding fluid under the effect of natural convection (Sec. 4.3.1)

distribution functions for the upper and lower walls. The non-dimensional flow numbers

are: Prandtl number, Pr = 10, Grashof number, Gr = 105. The cylinder is stationary during

the simulation and holds a constant non-dimensional temperature of Tcyl = 1. The surrounding

fluid is initially at T = 0. This temperature difference results in the onset of natural convection.

As the fluid near the cylinder gradually gets warm, it moves upward and the cold fluid near the

side walls moves downward.

For the thermal IB-LBM simulation, a domain size of 400× 400 is selected. Preliminary tests

have shown that this is fine enough to capture the flow field. The flow relaxation parameter in

LBM is τf = 0.53 and 1500 surface nodes are placed on the perimeter of the cylinder. Note that

gβ value is set to zero for the nodes that are located inside the cylinder. This is valid as well for
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all the following test cases. Here, the obtained results are compared to those from Pacheco et

al. [105] who used a 250× 250 domain. Figure 4.2 compares the local Nusselt number along the

side walls, which is defined as

Nu = − Lc
Th − Tc

∂T

∂x

∣∣∣∣
x=0

. (4.23)

It is seen that the present study yields good agreement with those of Pacheco et al. [105]. Slight

differences are observed near y = L, probably due to the superior resolution used in the present

study, since our tests did not deliver grid independence for a coarser, 250× 250 grid.

Figures 4.3 and 4.4 illustrate the isotherms and streamlines in the domain, respectively. It is

clear from Fig. 4.3 that isotherms show a higher concentration on the lower side of the cylinder

and also in the region close to the upper corners, denoting fast changes in temperature, as

expected in this test case. Figure 4.4 illustrates the streamlines in the domain. Around the hot

cylinder, fluid is heated and therefore moves upwards while near the walls it is cooled down and

tends to move downward.

4.3.2 Cold 2D particle sedimentation in a long channel

In this section, sedimentation of a cold particle with constant temperature in a long wall-

bounded vertical channel is computed. This test case was first investigated by Gan et al. [102]

using a boundary-fitted ALE method, considering a particle starting its motion from the channel

center. Later, Yu et al. [103] investigated the problem by means of a fictitious domain method

and assumed the particle being initially located off channel centerline. This case has been

revisited by other researchers in recent years [106, 108, 109, 112, 119]. These studies have shown

that particle behavior and its sedimentation pattern depend strongly on the Grashof number.

A particle with diameter Dp is located in a channel of width 4Dp. The channel is long

enough so that the lateral equilibrium position of the particle can be observed. The Reynolds

number based on the reference velocity (Uref ) is 40.5, with:

Re =
UrefD

ν
, (4.24)

Uref =

√
π

(
Dp

2

)
g(ρr − 1). (4.25)

In LBM, the gravitational force is calculated from Eq. (4.25) based on the selected relaxation

parameter and Reynolds number. In the current study Dp = 60∆h (with ∆h: lattice size) and

τf = 0.53 are considered. A total of 350 Lagrangian nodes are distributed over the particle

perimeter. Particle temperature is constant and equal to T = 0 during the simulation. A

constant hot temperature condition of T = 1 (non-dimensional value) is applied on the side

walls. The fluid inside the channel is initially at rest at the same hot temperature of 1. A no-slip

boundary condition is applied on the walls. Prandtl number and particle to fluid density ratio
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Figure 4.5: Lateral position of a cold particle vs time for particle settling under gravity in hot
fluid computed for different Grashof numbers demonstrating different settling regimes (Sec. 4.3.2)

are respectively: Pr=0.7 (corresponding to air), ρr = ρp/ρf = 1.00232. The particle is initially

placed a half-diameter away from the centerline. For the isothermal case (i.e., Gr = 0) the

Reynolds number (based on the terminal settling velocity) is ReT = uTDp

ν
= 20.92, which shows

very good agreement with the value of 21 reported in [102], and 21.2 in [103]. Yu et al. [103]

identified six different regimes for particle lateral equilibrium positions and wake structure

behind the particle depending on the Grashof number:

• Regime A (0 < Gr < 500): particle settles steadily along the centerline and the flow and

temperature fields are steady and symmetric;

• Regime B (500 < Gr < 810): particle oscillates periodically about the centerline and

vortex shedding occurs behind the particle;

• Regime C (810 < Gr < 2150): particle first exhibits an oscillating behavior but the

oscillation gradually dies out and particle reaches finally a steady-state sedimentation

close to one of the walls;

• Regime D (2150 < Gr < 3500): particle sediments steadily along the centerline and

symmetric wake vortices are observed behind the particle, but vortex shedding disappears;

• Regime E (3500 < Gr < 4300): particle moves periodically around the centerline with

low-amplitude oscillations and vortex shedding is observed;

• Regime F (Gr > 4500): particle shows regular oscillations with a large amplitude around

the centerline.

Figure 4.5 depicts the time history of the particle lateral position for various Grashof numbers.

The obtained results confirm as a whole the flow regimes previously discussed. However, similar
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Figure 4.6: Instantaneous temperature field of a settling cold cylinder in a hot fluid for different
Grashof numbers; From left to right: Gr = 200, 564, 2000, 4500, 6000 (Sec. 4.3.2)
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Figure 4.7: Reynolds number (based on the terminal settling velocity) plotted as a function
of Grashof number Gr and compared to other simulations for the case of single cold particle
settlement in a hot vertical channel (Sec. 4.3.2)

to the observations of Wachs [109] and Haeri and Shrimpton [119] and in contrary to those of

Yu et al. [103], it is found that at Gr = 4500 the particle does not experience large-amplitude

oscillations yet. In our simulations, the turbulent-like flow in which the particle oscillates

strongly (Regime F) does not occur at Gr = 4500 but at noticeably larger values.

Figure 4.6 presents the temperature field for Grashof numbers ranging from 200 to 6000.

Different flow patterns can be seen. The particle does not contact the wall for any of the
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Figure 4.8: Normalized vertical velocity U/Uref of a 2D catalyst particle with non-constant
temperature in a closed box plotted against dimensionless time t∗ for Cp,r = 1.0 (Sec. 4.3.3)

considered situations. Figure 4.7 shows a comparison of the Reynolds numbers (ReT ) obtained

here with those discussed in previous publications. One can see that the obtained results are in

good agreement with other studies. The observed small differences can be attributed to slightly

different computational algorithms.

4.3.3 Single 2D catalyst with a freely varying temperature

In this test case, a single catalyst particle with a time-dependent temperature is placed in

an enclosure. Remember that, in the current simulations, the whole particle has a uniform

temperature, which is valid for high particle thermal conductivities. Heat is generated inside the

particle at a constant rate, mimicking the effect of an exothermic reaction. The computational

domain is taken to be of size 8Dp × 16Dp where Dp is the catalyst particle diameter. Initially,

the particle is located at the center of the enclosure and all velocities as well as the temperature

are set to zero. Walls are also kept at Tw = 0 during the simulation. The simulation parameters

are: Reref = 40; ρr = 1.1; Gr = 1000; Pr = 0.7; Cp,r = Cp,p/Cp,f = 1.0; Qp = 1. The Reynolds

number is defined by Eq. (4.24) and the normalized heat generation (per particle unit area)

reads

Qp =
QpDp

ρfCp,fUref (Tm − T0)
. (4.26)

It must be noted that the non-dimensional temperature Tm is set to 1 in Eq. (4.26) and in the

definition of the Grashof number as well. In the present LBM study, Dp = 90∆h is employed.

The obtained results are compared to those of Yu et al. [103] and Wachs [109]. Wachs [109]

assumed a unique temperature over the particle surface, while in the simulations of Yu et

al. [103], the temperature distribution within the particle area is calculated based on the particle

thermal conductivity. Figure 4.8 depicts the time evolution of the particle vertical velocity.

As the particle is released in the domain, it is initially cold and settles down under gravity.
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Figure 4.9: Effect of heat capacity ratio Cp,r on normalized vertical velocity U/Uref of a
2D catalyst with variant temperature due to heat generation inside the particle for different
dimensionless times t∗ (Sec. 4.3.3)
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Figure 4.10: Normalized catalyst particle vertical position Y/D versus dimensionless time t∗

for Cp,r = 0.8 during the heat transfer from the particle to the surrounding fluid due to heat
generation inside the particle (Sec. 4.3.3)

The temperature inside the particle gradually increases due to heat generation, so that the

surrounding fluid becomes warmer as well, leading to the onset of natural convection. Thus,

while still moving in downward direction, its acceleration gets to zero at t∗ = 2.84. It continues

its motion in negative direction (downward) until t∗ = 6.74. At this point, natural convection

acting upward finally overcomes gravity and the particle moves in the upward direction until

it experiences resistance by the upper wall. At t∗ = 20.51 the particle moves again toward

the bottom. It can be concluded from the comparisons plotted in Fig. 4.8 that the obtained

results correctly predict the particle behavior. They are very close to the data of Wachs [109].
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Figure 4.11: Velocity field and velocity vectors at different time steps t∗ = tUref/D for the
vertical motion of a single catalyst particle in a fluid considering heat generation inside the
particle (Sec. 4.3.3)

Figure 4.12: Temperature field at different time steps t∗ = tUref/D for the vertical motion of a
single catalyst particle in a fluid considering heat generation inside the particle (Sec. 4.3.3)

However, as in [109], the present study predicts the maximum velocity with a slight shift, which

is justified by the assumption of uniform particle temperature.

The influence of the heat capacity ratio on particle behavior is investigated in Fig. 4.9.

As expected, the lower the heat capacity of the particle, the sooner the particle reaches its

maximum velocity. This is justified by the faster increase of the particle temperature. On the

other hand, for Cp,r = 1.2 the process is slower and the particle reaches its maximum velocity

later. Furthermore, the maximum particle velocity is slightly higher at larger heat capacity

ratios.
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Figure 4.10 illustrates the particle vertical position versus time for Cp,r = 0.8; the interesting

particle levitation motion can be seen there. It can be observed that the particle reaches a

stationary state near the upper wall where the lift and drag forces are in equilibrium; the particle

never touches the upper wall.

Figures 4.11 and 4.12 represent the velocity and temperature fields at three non-dimensional

time steps, respectively, where the particle behavior at different stages can be better observed.

Velocity vectors are also shown in Fig. 4.11. These results demonstrate that the thermal IBM in

conjunction with LBM can be accurately applied to physical cases where non-isothermal effects

are dominant. Moreover, the effect of differing thermophysical properties and varying particle

temperature can be taken into account.

4.3.4 Motion of a spherical catalyst in an enclosure

In this part, the heat and fluid flow fields around a spherical catalyst particle in a box are

considered. The particle has diameter Dp and is located in a box of 8Dp × 8Dp × 16Dp. Similar

to the 2D case (see Sec. 4.3.3) particle and fluid are initially at T = 0. A constant cold

temperature is imposed on the surrounding walls. The particle is located at domain center

at t = 0. Heat is gradually generated inside the particle, mimicking the effect of a chemical

reaction. Non-dimensional parameters are set to (Reref , Pr, Gr, Cp,r, ρr, Qp)= (40, 0.7, 1000,

1.0, 1.1, 1.0). The non-dimensional heat source in the particle is 1 and the reference velocity in

3D reads

Uref =

√
4

3
Dpg(ρr − 1). (4.27)

The particle is resolved with 24 nodes along its diameter in the simulations. The obtained

results are compared with those of Wachs [109], Störm and Sasic [111] and Xia et al. [113] in

Figs. 4.13, 4.14.

It is observed that all simulations are qualitatively identical and lie quantitatively close

to each other. The slight quantitative differences observed between the results are probably

the consequence of slightly different numerical algorithms. Since no experimental data and

no “golden truth” solution are available, it is unclear which result might be closer to reality.

Qualitatively, the particle behaves similar to the 2D case. Considering the particle velocity

and position it can be seen that in the 3D simulation the particle zero velocity is induced

by the collision with the upper wall (at t∗ ' 22), while in the 2D case the particle reaches

zero velocity when natural convection and gravity are in equilibrium, which occurs at a small

distance below the upper wall. It is also clear from Fig. 4.13 that after experiencing the highest

velocity, the spherical particle decelerates suddenly due to collision with the wall while in 2D,

the deceleration is slower and is not followed by a wall collision. Obviously, the influence of the

wall on the particle movement is stronger in 2D than in 3D. For the 3D case, after colliding with

the wall, the particle separates again and finally reaches a stable position close to the upper

wall. Comparing to Fig. 4.10, this stable position lies even closer to the wall in 3D.
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Figure 4.13: Vertical velocity U/Uref of a spherical catalyst particle over time t∗ where heat is
constantly generated inside the particle (Sec. 4.3.4)
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Figure 4.14: Vertical position Z/D of a spherical catalyst particle over time t∗ where heat is
constantly generated inside the particle (Sec. 4.3.4)

4.4 Applications

In this section, thermal IB-LBM approach is first applied to the well-known drafting, kissing

and tumbling (DKT) case with heat transfer effects. Next, the motion of single and multiple

spherical particles is modeled and finally 60 catalyst particles that are moving and interacting

with each other are taken into account in 3D simulation.
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Figure 4.15: Effect of Grashof number on the sedimentation velocity of two cylindrical particles
(P1, P2) over time for non-isothermal DKT test case (Sec. 4.4.1)

4.4.1 DKT motion with heat transfer

Now, 2D simulations are extended to consider circumstances where more than one particle

is present. This allows investigations involving relative particle motion and particle-particle

collisions. The classical benchmark of DKT motion is considered here. Two circular particles

(Dp = 0.25 cm) are located in an enclosure (2 cm×6 cm) with solid walls on all boundaries.

The isothermal case was simulated by Uhlmann [80]. The upper particle (P1) is initially

10 µm off the channel center while the lower one (P2) is −10 µm off the channel center and

0.5 cm below the first particle. Flow density and dynamic viscosity are 1000 kg/m3 and 0.001

Pa·s, respectively. Particle density is constant and equal to 1500 kg/m3. Particles and fluid

are initially at zero velocity. In the current LBM study the particle diameter is discretized by

50 lattices. Different Grashof numbers, as defined using the particle diameter as the reference

length scale, are considered: a) isothermal particles (Gr=0); b) hot particles with Gr = 2000,

10000; and c) cold particles with Gr = −2000, −10000. Particles are assumed to have constant

temperature during sedimentation. In case of positive or negative Grashof numbers, the walls

are kept at a normalized temperature of Tw = 0 and Tw = 1, respectively. The Prandtl number

in non-isothermal cases is 1.0. The time evolution of the particles settling velocity is plotted in

Fig. 4.15. It is obvious that after the collision stage, thermal convection is more dominant for

particle P2 (initially lower) compared to P1. The reason is that this particle shows a stronger

lateral movement toward the wall. It is also observed that natural convection effect is strongest

after t = 0.26 s. Before this time, the two particles are nearly aligned, resulting in a lower

projected frontal area. After this point the two particles separate and the structure of the flow

behind them changes completely.

It is also clear that a colder particle generally settles down faster than a hot particle. This is

particularly true at low Re numbers, because the fluid around a cold particle is heavier than the

bulk fluid and therefore tends to settle down by itself. This results in a lower drag force and
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Figure 4.16: Temperature field evolution during a non-isothermal DKT case for Gr = −10000
(Sec. 4.4.1)

consequently a higher settling particle velocity. This phenomenon is seen for the pre-collision

stage in Fig. 4.15 and is more evident for Gr = −10000. However, the flow structure of this

case involving two particles is far more complex, since hydrodynamics and particles are affected

by collisions and by wake effects, which strongly modify the particulate flow after collision.

Moreover, the figure shows that positive values of Gr postpone particles collision. Figure 4.16

shows the particles position and temperature field for the case of cold particles at Gr = −10000

where drafting, kissing and tumbling stages are illustrated.



Applications 53

−0.08

−0.06

−0.04

−0.02

0

0 1 2 3 4 5

U
[m

/s
]

t [s]

Gr=0

Gr=100 fixed temp.

Gr=100 var. temp.

Gr=−100 fixed temp.

(a) Pr = 1

−0.08

−0.06

−0.04

−0.02

0

0 1 2 3 4 5

U
[m

/s
]

t [s]

Gr=0

Gr=100 fixed temp.

Gr=100 var. temp.

Gr=−100 fixed temp.

(b) Pr = 5

Figure 4.17: Effect of Grashof and Prandtl number on settling velocity U of a spherical particle
in a closed box versus time t (Sec. 4.4.2)

4.4.2 Effect of heat transfer on single sphere sedimentation

The motion of spherical particles in closed enclosures is an interesting phenomenon to investigate

particle/fluid interaction. This section investigates the influence of various factors including

Grashof number, constant or varying temperature and Prandtl number on the sedimentation

behavior of spheres. A vertical box is considered, in which a solid sphere is released and settles

down under gravity. Domain size is 16 × 10 × 10 cm3. Particle diameter is 1.5 cm and its

density is 1.1ρf . Fluid density is 1000 kg/m3 and its dynamic viscosity is equal to 0.1 Pa·s.
The particle and fluid have equal heat capacities. Domain is discretized by 160 × 100 × 100

grid cells. Different flow regimes based on heat transfer effects will be studied: a) Gr = 0 (no

heat transfer); b) Gr = 100 (hot particle with constant temperature); c) Gr = −100 (cold

particle with constant temperature; d) Gr = 100 (hot particle with non-constant temperature).

Moreover, the effect of Prandtl number (Pr = 1 or 5) will be checked. Temperature of the walls

is constant in all cases (Tw = 0 for positive Grashof numbers and Tw = 1 for negative Grashof

numbers).

Figure 4.17 represents particle velocity versus time for Pr = 1 and Pr = 5. First, it is seen

that hot particle with constant temperature (Gr = 100) settles at a lower speed compared to the

other cases. Heat transfer from the hot particle makes the surrounding fluid warmer. As a result,

this fluid zone will have a lower density and tends to move upward. This increases the drag on

the particle and consequently lowers the particle velocity and increases the settling time. On the

other hand, fluid around cold particle has a higher density and tends to move downwards, which

eases particle downward motion. When a hot particle has a varying temperature, its behavior is

located between those of isothermal and hot temperature cases. However, the velocity profile of

variable temperature particle is much closer to isothermal case rather than to the profile of hot,

constant-temperature particle. This proves that the heat exchange between solid particle and

the fluid plays an important role even at low or moderate Grashof values.
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Figure 4.18: Velocity field and particle position at t = 1.33 s for (from left to right) a) Pr = 1,
Gr = 100, b) Pr = 5, Gr = 100, c) Pr = 1, Gr = −100, d) Pr = 5, Gr = −100; during the
motion of a single spherical particle in a box with heat transfer effects (Sec. 4.4.2)

Effect of Prandtl number on particle velocity can be seen by comparing Fig. 4.17 (a) and (b).

It is seen that a hot particle moves downward slower in a fluid of lower Prandtl number (Pr = 1).

A cold particle (Gr = −100), on the other hand, settles faster in lower Prandtl number fluid. In

case of non-constant particle temperature, the final particle velocities are very close before they

hit the lower wall. Figure 4.18 depicts velocity fields for four different regimes. It is seen that

positive Grashof regimes show a more complex flow structure, with more vortices. In this state,

normally two vortices are formed behind the particle. Depending on time and Prandtl number

two other large vortices can be observed at the side of the particle. For negative Grashof values,

there exist only two main vortices on the two sides of the particle. For Gr = 100 and Pr = 1 a

smaller portion of the fluid, limited to the vicinity of the particle is affected. Below the particle,

part of the fluid tends to move downward while other regions show positive velocity. These

interactions hinder particle motion and therefore lowers particle settling velocity. For negative

Grashof values heat transfer from the fluid to the particle promotes particle downward motion,

increasingly so at lower Prandtl values.

4.4.3 Three spheres in an enclosure with heat exchange effects

In order to conduct further investigation on the effect of heat transfer on the particle behavior,

three spherical particles have been released in a box. Domain size and particle and fluid

properties are similar to previous simulation. Prandtl number is assumed equal to 1. Three

spherical particles are initially located on the corners of a triangle. The length of each triangle

side is 2.795 cm. Upper particle (P1) has initially a vertical distance of 12.75 cm from the bottom

wall. Two other particles (P2, P3) are 2.5 cm below this particle, being symmetrically located

on two sides of P1. Three cases are considered, namely: Gr = 0, −100, 100 corresponding to

isothermal, cold and hot particles.

Figures 4.19 and 4.20 depict respectively the variation of particles vertical velocity and
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Figure 4.19: Settling velocity U of three spherical particles in a box as a function of time t for
different Grashof numbers (Sec. 4.4.3)
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Figure 4.20: Vertical position of three spherical particles in a box measured from the bottom
wall as a function of time t for different Grashof numbers (Sec. 4.4.3)

their distance from the bottom wall with time. First comparing subfigures (a) and (b), one

can observe that, as expected, cold particles have higher velocity and reach the bottom of the

enclosure faster. It is also seen that in isothermal and cold particle simulations, all particles tend

to reach the lower wall almost together. This means that, the initial vertical distance between

P1 and the two other particles decreases gradually and the three particles hit the bottom wall

almost simultaneously. This is explained by the lateral motion of P2 and P3 compared to only

vertical motion of P1. For Gr = −100, it is interesting to see that P1 can even overtake P2

and P3 and hit the wall sooner i.e., the effect of negative Grashof value on particle velocity

is more dominant for P1. In case of Gr = 100 (subfigures b), P2 and P3 reach the bottom

wall after 3.45 s, which is much larger time than the required time for their counterparts at

Gr = 0 or Gr = −100. The behavior of P1 at Gr = 100 is quite noticeable. This particle never

hits the bottom wall. It first moves downward with nearly the same velocity as the two other
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(a)

(b)

(c)

Figure 4.21: Particles position and distribution of (a) velocity at Gr = 0 (b) temperature at
Gr = −100 and (c) temperature at Gr = 100; during the motion of three spherical particles in a
closed box shown on the middle plane (Sec. 4.4.3)

particles and its velocity magnitude reaches a maximum value at t = 0.41 s. From this point and

because of strong upward flow around P1, particle velocity approaches zero (t = 2.15 s). Then

it starts an upward motion before being stopped close to the top wall as a result of near-wall
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flow structures. For the rest of the simulation, the upward buoyancy force keeps the particle at

a fixed position (around H = 11.3 cm).

Evolution of velocity and temperature fields with time is presented in Fig. 4.21 along the

central plane. Velocity vectors are shown as well. Due to symmetry, velocity vectors are only

depicted on half the central plane. In isothermal case, the motion of upper particle pushes the

two other particles away. However, the height of the box is not long enough so that P1 cannot

overtake P2 and P3. At Gr = −100, the lateral motion of P2 and P3 is greater compared to

Gr = 0. This allows P1 to reach the bottom wall sooner. For Gr = 100 two vortices beside

the center part of the box push P2 and P3 to the center. The strong temperature field formed

above P2 and P3 is clearly seen in Fig. 4.21 at t = 3 s.

4.4.4 Considering 60 spherical catalyst particles in an enclosure

Finally, the developed methodology is used to simulate the movement of 60 spherical catalyst

particles in an enclosure. The size of the enclosure is 8D × 8D × 19D and particles are initially

randomly placed in the lower section of the box. However, it is ensured that all particles have

initially a minimum distance of 3∆h from the wall or from any other particle. During the

simulation, the particles experience a repulsive force represented by a spring–force model when

they have a distance of ∆h or less from another particle or from the wall. The simulation

parameters are set to (Reref ,Pr,Gr, Cp,r, ρr, Qp)= (40, 0.7, 1000, 1.0, 1.1, 3.88). The fluid is

initially at the cold temperature and the walls are always maintained at the cold temperature of

T = 0. A mesh size of ∆h = D/24 is considered, leading to a grid number of 192× 192× 456.

Figure 4.22 depicts the isotherms in the center plane and the distribution of particles in

the domain at four different time steps. It is seen that, similar to the single particle case

(Subsec. 4.3.4), the particles tend to move upward due to strong natural convection. However,

because of the movements of the relatively large number of particles in the domain, strong

hydrodynamic modifications and vortical structures appear. Sometimes, individual particles are

trapped into these structures. As a result they may move upward even faster than the single

particle, or on the contrary be convected back toward the bottom wall. As a result, the arrival

time of the particles at the upper wall now shows a broad distribution.

The average vertical position of 60 particles is depicted in Fig. 4.23. Particles initially show

for a short time a downward motion, then rapidly accelerate towards the upper wall. They

finally reside at a position close to the upper wall while being separated from the upper and

side walls and from other particles by the implemented repulsive force. The curves concerning

maximum and minimum location of particles illustrate that the particles experience a vast

range of location before getting stable near the upper wall. This test case demonstrates that

the developed thermal IB–LBM tool can simulate the motion of multiple particles involving

heat transfer, as found in many configurations of practical interest. This simulation required

1304 seconds for every 100 iterations (11.8 h for the whole process) and 12.1 GB RAM using a

standard desktop PC (Core i5, 3.3 GHz CPU, 16 GB RAM).
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Figure 4.22: Temperature distribution in the center plane and time evolution of particles
position at t∗ =6.9, 18.5, 30.1 and 47.4, from left to right and top to bottom for the motion of
60 non-isothermal spherical particles in a closed box (Sec. 4.4.4)
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Figure 4.23: Average vertical position of the 60 particles (black), together with the position
of the highest (red) and lowest (blue) particle in the box, illustrating the disparity of the
instantaneous positions (Sec. 4.4.4)

4.5 Summary

A thermal immersed boundary lattice Boltzmann method has been presented and implemented

in the in-house LB solver. It allows resolving the motion of solid particles in the fluid, even in
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presence of large heat transfer effects. The continuous fluid is discretized on an Eulerian frame

while particle motion is modeled based on the Lagrangian approach. The force (resp. heat)

density in the LB equation is calculated using a direct-forcing (resp. direct-heating) approach.

The effect of temperature variation on the flow field is taken into account through the Boussinesq

approximation. Particle translational and angular velocity is updated at each time step using

Newton’s equation of motion, assuming a homogeneous temperature inside each particle in

this study. Different configurations of increasing complexity have been considered both in 2D

and 3D geometries. The accuracy of the simulations has been first validated by comparing the

obtained results to previously published studies. A very good agreement has been observed,

both for stationary and moving particles. In addition to particles at constant temperature,

the developed approach is also able to take into account flows involving particles with varying

temperature. Finally, it has been shown that many interacting particles can be considered using

the same approach with acceptable computational requirements. Thus, thermal IB-LBM can

now be used to investigate a variety of practical configurations, for instance chemical reactors

and reactive fluidized beds. In the next chapter, fluid flow in complex geometries is considered.

For this purpose, flow in porous structures will be modeled and the effect of SRT and MRT

models will be studied.
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Porous Media Flow

5.1 Introduction

Flow through porous media is a very attracting engineering subject due to wide practical

applications, ranging from aquifers and mineral rocks to catalysts, biomedical and filter

simulations. This has led in the last years to an increasing number of investigations on

this subject in chemical, environmental and biological engineering.

Permeability is perhaps the most important property in the study of porous media. It

is a measure of the ability of the structure to transmit fluids, and has been considered in

many experimental studies [e.g., 120–122]. Because of the high cost and long duration of such

experiments it is attractive to determine the permeability by analytical or numerical simulations.

However, analytical approaches are limited to very simple geometries and low Reynolds numbers.

They are usually based on the Stokes equation (only valid for creeping fluid) for simple boundary

conditions. Progress in meshing and also increasing computational power have paved the way

for numerical methods to emerge as a reliable tool concerning many fluid dynamic conditions.

However, standard Navier-Stokes codes fail in many cases to represent the flow behavior in

porous media, due to poor convergence and instability problems. Additionally, sophisticated

meshing strategies are needed for this type of complex geometry. As we discussed before, LBM

has emerged in the recent decades as a promising alternative to the Navier-Stokes equations

[10, 123].

LBM was shown to be equivalent to an explicit, second-order accurate approximation of

the NS equation [124]. Locality of calculations, easy implementation of a no-slip boundary

condition in complex geometries and efficient parallelization make LBM very attractive for flows

in complex geometries [39], like porous media. Using imaging techniques, such as computed

tomography (CT), the structure of the porous media can be captured and directly represented

in the LBM.

One of the first applications of LBM in porous media simulation can be traced back to the

work of Succi et al. [125]. They checked the validity of the lattice Boltzmann model for flow

simulation in complex 3D geometries. From 1989 onwards, many researchers have relied on the

LBM for different cases of single or multiphase porous media flows. For instance, Pan et al. [126]

60
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investigated the effect of single or multiple relaxation time (SRT/MRT). They also studied

the influence of different bounce-back implementations on the accuracy for different packings.

Degruyter et al. [127] combined X-ray microtomography and LBM to study flow characteristics

in samples from different silicic volcanic deposits.

Chukwudozie and Tyagi [128] modeled fluid flow in periodic arrays of sphere packs using

LBM; macroscopic flow parameters such as permeability, tortuosity, and β-factor were calculated.

They also studied the test case of an irregular pack of uniform-diameter spheres constructed

from CT images. Cho et al. [129] investigated the permeability of microscale fibrous porous

media. They concluded that the permeability shows a strong dependence on porosity and a

lower dependence on the fiber arrangement.

Parallel computing allows for a drastically faster simulation of complex phenomena as

compared to serial computing; it is now unavoidable in many cases. In this respect, LBM is an

ideal candidate, since it only requires nearest-neighbor information during computations. This

led to a growing number of studies based on shared or distributed parallel computing during

the last years [e.g., 130, 131].

In the present study, LBM is adopted to calculate the permeability of three-dimensional

porous media. The effect of force scheme, domain resolution and relaxation time will be discussed

for three cases; 1) face-centered cube; 2) body-centered cube; 3) a real geometry constructed

from CT images. Results of this chapter have been partly published in International Journal of

Heat and Fluid Flow [132].

Throughout this chapter SRT or MRT models will be used. MRT model without a force

term has been discussed in Sec. 2.5. In MRT model, different moments of the distribution

function relax at different rates, while in SRT model, all moments relax at the same rate. MRT

allows defining individual relaxation times for all the variables by construction of a collision

matrix, providing the maximal number of degrees of freedom to optimize LBM stability. The

MRT-LBM equation with a force term can now be written as:

f(x + ci∆t, t+ ∆t) = f(x, t)−M−1

(
S [m−meq]−

(
I− 1

2
S

)
mF

)
, (5.1)

with m = Mf , mF = MfF and fF = {Fi}i=0,··· ,18 = (F0, F1, · · · , F18)T in D3Q19 model. Each

forcing term (Fi) has the same form as Eq. (3.26) following Guo’s scheme.

5.2 Parallelization

The current study relies again on the in-house LBM code ALBORZ. It uses in 3D a D3Q19

stencil. The code is parallelized by using message passing interface (MPI), in order to exploit

efficiently the computational power of a large number of processors. Domain decomposition is

carried out in the main flow direction. Each subdomain is then assigned to a unique core. Each

processor core performs the computation within its own subdomain. Distribution functions are

then exchanged between two neighbor subdomains after each LBM streaming step, and before
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applying the boundary conditions.

The parallel speedup of the code has been evaluated for a three-dimensional Poiseuille flow

in a channel discretized with 400× 100× 20 nodes. Using a parallel cluster with AMD opteron

2.1 GHz processors and 16 GB main memory, a simulation involving 100 processors is 4.8 times

faster than when using 20 processors, which corresponds to 96% parallel efficiency.

5.3 Results

In this section, the simulation results obtained for FCC and BCC cubes as well as for a real

porous media described by a set of CT images will be presented to calculate permeability and

tortuosity. The permeability of a porous medium, k, can be calculated from Darcy’s law [133] in

the limit of low Reynolds numbers. It is related to the mean flow velocity and applied pressure

gradient:

k = − µU(
dp

dx

) . (5.2)

In Eq. (5.2), U is the mean velocity in the entire flow domain including solid lattices and dp/dx

is the applied pressure gradient. In LBM, a uniform body force bf can be used instead of a

pressure gradient, which produces the same flow rate as the pressure-driven flow. One should

note that Darcy’s law is only valid in the limit of very low Reynolds numbers, typically Re < 1.

Under this condition, permeability is independent of fluid properties like density, viscosity and

pressure gradient. At high Reynolds numbers the contribution of fluid inertia to pressure drop

becomes significant and the permeability varies with flow conditions. In such a case, non-Darcy

effects must be taken into account, which leads to an extra term (Forchheimer drag) in Eq. (5.2).

5.3.1 Case I: Face-centered cube (FCC) structure

First, a FCC cube is considered. As in all further computations, two node types can be

distinguished in the geometry: fluid nodes (index 1) and solid nodes (index 0). In this academic

configuration, solid nodes are automatically set in the LBM code using standard equations of

spheres and half-way bounce back boundary condition is applied on solid walls. The geometry

of the test case is shown in Fig. 5.1. The relation of each cube side size to the sphere diameter

is given in the same figure.

Porosity as defined by the fraction of void space to total space is φ = 0.25952. The

permeability in this FCC cube has been previously determined by solving unsteady Stokes

equations for the microscopic flow by Chapman and Higdon [134]. They have reported a

dimensionless permeability, k∗/D2, of 1.736 × 10−4 (the symbol “*” indicates the reference

permeability).

Initial conditions for the flow simulations are zero velocity and uniform lattice density of 1

throughout the domain. A constant body force is applied along the X direction. The applied
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Figure 5.1: FCC packing structure (domain:
√

2D ×
√

2D ×
√

2D) (Sec. 5.3.1)

Table 5.1: FCC packing results

D k/D2 × 104 Error (%) Re

14.14 1.496 −13.81 1.0× 10−6

70.71 1.699 −2.11 1.1× 10−4

141.42 1.708 −1.61 8.9× 10−4

212.13 1.712 −1.36 3.0× 10−3

boundary condition on solid nodes is the half-way bounce back condition, while a periodic

boundary condition is applied on all cube faces. The simulation continues until reaching steady-

state, defined considering the permeability value between two time steps n and n− 1 using:

steady state :

∣∣∣∣kn − kn−1

kn−1

∣∣∣∣ < 1× 10−8. (5.3)

Table 5.1 reports the calculated permeability for different sphere diameters, corresponding

to different domain resolutions using SRT-LBM. It can be seen that as the domain resolution

increases, dimensionless permeability gets closer to the reference value, k∗/D2 = 1.736× 10−4.

The result at coarse resolution (D = 14.14) is found to be far from the expected value. However,

the results of D = 141.42, and even more for D = 212.13 are very good, with less than 2%

difference from the reference. Figure 5.2 shows the flow field in the FCC geometry. It should

be noticed that to ensure Darcy’s law validity for these calculations, only small body force

values are considered, leading to low Reynolds numbers, defined based on the mean flow velocity,

sphere diameter, D, and kinematic viscosity, ν:

Re =
UD

ν
. (5.4)

By changing the structure of the cube and arrangement of spheres another packing is created

as shown in Fig. 5.3. The porosity is the same as in the former FCC packing (φ = 0.25952).

The permeability value in this structure is calculated and given in Table 5.2, which confirms the
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Figure 5.2: Velocity field in FCC packing

Figure 5.3: Sphere packing (domain: D ×
√

2D ×D) (Sec. 5.3.1)

Table 5.2: Results corresponding to Fig. 5.3 (Sec. 5.3.1)

D k/D2 × 104 Re

20 1.468 1.2× 10−5

50 1.798 2.25× 10−4

100 1.704 1.68× 10−3

200 1.738 1.39× 10−2

importance of domain resolution on the final results. The permeability of this structure is close

to that discussed for FCC packing because both have the same porosity and the same sphere

diameter of D. Also, in both cases the distance of each sphere center to neighboring spheres is

either D or
√

2D which leads to similar flow paths.

Figure 5.4 depicts the steady-state velocity field for D = 100 of this geometry, where the

velocity distribution on the cube sides can be observed. The reported velocity is in LB units and

along X direction. Figure 5.5 illustrates the flow field on a 2D slice at the middle Z-direction of

Fig. 5.4. It is clear that the center of the domain shows a lower velocity compared to the area

between the spheres, where constriction locally leads to flow acceleration.
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Figure 5.4: Flow field detail in the sphere packing of Fig. 5.3

Figure 5.5: Central horizontal slice through Fig. 5.3 (Sec. 5.3.1)

5.3.2 Case II: Body-centered cube (BCC) structure

The second case that is studied here is a BCC structure, as seen in Fig. 5.6. The sphere

diameter is D and the cube length in each direction is
2
√

3

3
D, which results in a porosity of

φ = 0.31983. Initial conditions of the flow field are similar to Case I and the fluid flows through

the sphere pack along X direction due to a small body force. Chapman and Higdon [134]

reported dimensionless permeability value of k∗/D2 = 5.023× 10−4. Tables 5.3-5.6 report the

calculated permeability using three approaches: Shan-Chen SRT (SC-SRT), Guo-SRT (G-SRT)

and Guo-MRT (G-MRT) for 60 different cases. The results are presented for various relaxation

times and domain resolutions.

Figures 5.7-5.11 are plotted using the data of Tables 5.3-5.6 and represent k/k∗ vs. sphere

diameter for different relaxation times. One can see immediately that as the domain resolution

increases, the results get much closer to the reference value. For example the predicted

permeability with G-MRT approach at τ = 1.4 and D = 173.21 shows less than 0.7% error;

while for the coarsest domain (corresponding to D = 17.32) the difference was 10.5%. It is seen

in Figs. 5.7 and 5.8 that for τ = 0.6 and τ = 0.8, the G-SRT model has the highest accuracy

compared to SC-SRT and G-MRT for all domain resolutions. At τ = 1.0, the SC-SRT model is
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Figure 5.6: BCC packing structure (2
√

3
3
D × 2

√
3

3
D × 2

√
3

3
D) (Sec. 5.3.2)

Table 5.3: BCC packing results (D = 17.32)

Case τ Method
k/D2 ×

104 k/k∗
Error
(%)

Re

1 0.6 G-SRT 3.793 0.755 -24.49 1.8× 10−4

2 0.8 G-SRT 4.893 0.974 -2.59 2.5× 10−5

3 1 G-SRT 5.826 1.160 15.98 1.1× 10−5

4 1.2 G-SRT 6.741 1.342 34.21 6.0× 10−6

5 1.4 G-SRT 7.647 1.522 52.25 4.0× 10−6

6 0.6 G-MRT 3.466 0.690 -31.00 1.6× 10−4

7 0.8 G-MRT 3.966 0.790 -21.05 2.1× 10−5

8 1 G-MRT 4.197 0.836 -16.44 8.0× 10−6

9 1.2 G-MRT 4.361 0.868 -13.19 4.0× 10−6

10 1.4 G-MRT 4.493 0.894 -10.55 3.0× 10−6

11 0.6 SC-SRT 3.612 0.719 -28.09 1.69× 10−4

12 0.8 SC-SRT 4.349 0.866 -13.41 2.3× 10−5

13 1 SC-SRT 4.918 0.979 -2.08 9.0× 10−6

14 1.2 SC-SRT 5.470 1.089 8.89 5.0× 10−6

15 1.4 SC-SRT 6.011 1.197 19.67 3.0× 10−6

briefly the most accurate one. However, for τ = 1.2 and τ = 1.4, the G-MRT approach shows

its superiority, especially at higher resolutions, while G-SRT shows the poorest results. Overall,

for the current configuration, a relaxation time of τ = 0.8− 0.9 is found appropriate for SRT

models. However, it is clear that all schemes approach each other and converge toward the

reference value as resolution increases.

It can also be concluded from Figs. 5.7 and 5.8 that G-SRT and SC-SRT tend to underpredict

permeability at τ = 0.6 and τ = 0.8, while at higher τ values, the results of these two models

lead to an overpredicted value. G-MRT model shows underpredicted results for all relaxation

times.

At higher relaxation times, all schemes converge to a steady state solution at a lower number

of iterations. For example, case 55 (τ = 1.4) requires only 7500 time steps to reach the steady

state (Eq. (5.3)), while case 51 (τ = 0.6) needs 55500 iterations. Both cases have less than 3%
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Table 5.4: BCC packing results (D = 43.30)

Case τ Method
k/D2 ×

104 k/k∗
Error
(%)

Re

16 0.6 G-SRT 4.672 0.930 -7.00 3.4× 10−3

17 0.8 G-SRT 5.012 0.998 -0.22 4.1× 10−4

18 1 G-SRT 5.257 1.047 4.66 1.5× 10−4

19 1.2 G-SRT 5.491 1.093 9.31 8.2× 10−5

20 1.4 G-SRT 5.730 1.141 14.08 5.2× 10−5

21 0.6 G-MRT 4.562 0.908 -9.18 3.3× 10−3

22 0.8 G-MRT 4.743 0.944 -5.58 3.8× 10−4

23 1 G-MRT 4.818 0.959 -4.08 1.4× 10−4

24 1.2 G-MRT 4.868 0.969 -3.09 7.3× 10−5

25 1.4 G-MRT 4.906 0.977 -2.33 4.4× 10−5

26 0.6 SC-SRT 4.643 0.924 -7.57 3.4× 10−3

27 0.8 SC-SRT 4.925 0.981 -1.95 3.9× 10−4

28 1 SC-SRT 5.113 1.018 1.79 1.5× 10−4

29 1.2 SC-SRT 5.289 1.053 5.29 7.8× 10−5

30 1.4 SC-SRT 5.471 1.089 8.91 4.9× 10−5

Table 5.5: BCC packing results (D = 86.60)

Case τ Method
k/D2 ×

104 k/k∗
Error
(%)

Re

31 0.6 G-SRT 4.839 0.963 -3.66 2.8× 10−2

32 0.8 G-SRT 5.003 0.996 -0.41 3.2× 10−3

33 1 G-SRT 5.103 1.016 1.59 1.2× 10−3

34 1.2 G-SRT 5.188 1.033 3.28 6.2× 10−4

35 1.4 G-SRT 5.271 1.049 4.94 3.8× 10−4

36 0.6 G-MRT 4.778 0.951 -4.88 2.8× 10−2

37 0.8 G-MRT 4.868 0.969 -3.08 3.2× 10−3

38 1 G-MRT 4.906 0.977 -2.34 1.1× 10−3

39 1.2 G-MRT 4.929 0.981 -1.88 5.9× 10−4

40 1.4 G-MRT 4.946 0.985 -1.53 3.6× 10−4

41 0.6 SC-SRT 4.832 0.962 -3.81 2.8× 10−2

42 0.8 SC-SRT 4.981 0.992 -0.84 3.2× 10−3

43 1 SC-SRT 5.067 1.009 0.87 1.2× 10−3

44 1.2 SC-SRT 5.138 1.023 2.28 6.1× 10−4

45 1.4 SC-SRT 5.207 1.037 3.66 3.7× 10−4

error but there is a large difference between the total number of iterations and consequently

total computational time.

Figures 5.12-5.15 represent k/k∗ versus relaxation time for different D values. It is obvious

that the numerically predicted permeability value increases when increasing the relaxation time

for all three schemes. It can be also seen that for all diameters, G-SRT model shows the highest

difference between the permeability values predicted at τ = 0.6 and at τ = 1.4. In contrast,

the G-MRT model shows the lowest dependence on viscosity at all resolutions, and delivers
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Table 5.6: BCC packing results (D = 173.21)

Case τ Method
k/D2 ×

104 k/k∗
Error
(%)

Re

46 0.6 G-SRT 4.936 0.983 -1.73 2.3× 10−2

47 0.8 G-SRT 5.016 0.999 -0.15 2.6× 10−3

48 1 G-SRT 5.058 1.007 0.70 9.4× 10−4

49 1.2 G-SRT 5.090 1.013 1.34 4.8× 10−4

50 1.4 G-SRT 5.119 1.019 1.91 2.9× 10−4

51 0.6 G-MRT 4.905 0.976 -2.35 2.3× 10−2

52 0.8 G-MRT 4.951 0.986 -1.43 2.5× 10−3

53 1 G-MRT 4.969 0.989 -1.07 9.3× 10−4

54 1.2 G-MRT 4.980 0.991 -0.85 4.7× 10−4

55 1.4 G-MRT 4.988 0.993 -0.69 2.9× 10−4

56 0.6 SC-SRT 4.934 0.982 -1.77 2.3× 10−2

57 0.8 SC-SRT 5.010 0.997 -0.25 2.6× 10−3

58 1 SC-SRT 5.049 1.005 0.53 9.4× 10−4

59 1.2 SC-SRT 5.078 1.011 1.09 4.8× 10−4

60 1.4 SC-SRT 5.103 1.016 1.59 2.9× 10−4

Table 5.7: Computational time for BCC structure

Method Wall clock time (s)
G-SRT 14.4
G-MRT 21.4
SC-SRT 12.8

0.6

0.7

0.8

0.9

1

1.1

0 30 60 90 120 150 180

k
/k
∗

D

τ = 0.6

G-SRT

G-MRT

SC-SRT

Figure 5.7: Dimensionless permeability k/k∗ vs. sphere diameter D for τ = 0.6 based on
different force schemes (Guo-SRT, Guo-MRT, Shan-Chen-SRT) for the BCC packing (Sec. 5.3.2)

therefore the most robust estimate. SC-SRT always locates between the other two schemes.

SC-SRT and G-SRT schemes tend to coincide at fine domains. Furthermore, the results are

more sensitive to relaxation time value for coarser domains; for all three schemes, each curve in
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Figure 5.8: Dimensionless permeability k/k∗ vs. sphere diameter D for τ = 0.8 based on
different force schemes (Guo-SRT, Guo-MRT, Shan-Chen-SRT) for the BCC packing (Sec. 5.3.2)
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Figure 5.9: Dimensionless permeability k/k∗ vs. sphere diameter D for τ = 1.0 based on
different force schemes (Guo-SRT, Guo-MRT, Shan-Chen-SRT) for the BCC packing (Sec. 5.3.2)

Fig. 5.12 has a much higher slope compared to its counterpart from Fig. 5.15 (note the different

scales on the vertical axis).

It is also interesting to compare the computational cost of these methods. For this purpose,

the case with D = 86.6 and τ = 1.0 was selected. Table 5.7 shows the wall clock time for 100

iterations on 20 cores. It can be observed that SC-SRT is 12% and 67% faster than G-SRT and

G-MRT models, respectively. The G-MRT model is almost 50% slower than G-SRT, because

the G-MRT approach includes an additional force term in the calculations and larger matrix

computations are present.

Generally speaking, it is seen that, for the examined BCC configuration, each force scheme

(G-SRT, G-MRT and SC-SRT) may lead to better results in some regions. But when considering
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Figure 5.10: Dimensionless permeability k/k∗ vs. sphere diameter D for τ = 1.2 based on
different force schemes (Guo-SRT, Guo-MRT, Shan-Chen-SRT) for the BCC packing (Sec. 5.3.2)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 30 60 90 120 150 180

k
/k
∗

D

τ = 1.4

G-SRT

G-MRT

SC-SRT

Figure 5.11: Dimensionless permeability k/k∗ vs. sphere diameter D for τ = 1.4 based on
different force schemes (Guo-SRT, Guo-MRT, Shan-Chen-SRT)

the strong dependency of SRT models on the relaxation time it can be concluded that the

proper choice of the force scheme, relaxation time and domain resolution is a trade-off between

the required accuracy and computational cost. From one side, higher resolutions lead to more

accurate results. Also, for higher resolutions a lower dependency of the results on the relaxation

time was observed. But they demand more computational time. On the other hand, higher

relaxation times result in a lower number of iterations to reach the steady state but they may

lead to higher Mach numbers and ultimately violate the validity of LBM beyond a certain point.

The MRT model shows the lowest viscosity dependence in comparison with SRT models but is

slower than SRT.

Flow field detail is shown in Fig. 5.16 for case 42 of Table 5.5. Figure 5.17 depicts the
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Figure 5.12: Dimensionless permeability k/k∗ vs. relaxation time τ for sphere diameter D = 17.3
for the BCC packing (Sec. 5.3.2)
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Figure 5.13: Dimensionless permeability k/k∗ vs. relaxation time τ for sphere diameter D = 43.3
for the BCC packing (Sec. 5.3.2)

streamlines for this case, highlighting the flow topology within the structured packing.

5.3.3 Effect of porosity

In this part, the effect of porosity on the permeability and tortuosity will be investigated. For

this purpose, the permeability over a range of porosity values in both BCC and FCC structure

is calculated. MRT-LBM approach with a domain size of 200× 200× 200 will be used. The

spheres location remains unchanged (Figs. 5.1, 5.6) but the diameter varies to get different

porosities. Overall, 16 geometries are simulated, including 8 BCC and 8 FCC structures.

Tortuosity is a measure of how much the fluid flows on an indirect path as it passes along a

porous medium; it can also be considered as an average elongation of fluid paths. It is defined
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Figure 5.14: Dimensionless permeability k/k∗ vs. relaxation time τ for sphere diameter D = 86.6
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Figure 5.15: Dimensionless permeability k/k∗ vs. relaxation time τ for sphere diameterD = 173.2
for the BCC packing (Sec. 5.3.2)

as the ratio of the actual distance that fluid travels in the domain (Le) to the straight length

along the major flow direction (L):

T = Le/L. (5.5)

Here, we use the following equation to calculate the tortuosity (T ) of the porous medium [135]:

T =

∑
i,j,k umag(i, j, k)∑
i,j,k |ux(i, j, k)|

. (5.6)

Results are illustrated in Figs. 5.18, 5.19. It is first seen that the permeability is less

influenced by the type of geometry. Results of both BCC and FCC geometries follow similar
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Figure 5.16: Flow field detail of BCC packing colored by x-velocity (Case 42) (Sec. 5.3.2)

Figure 5.17: Streamlines through a BCC packing colored by x-velocity (case 42) (Sec. 5.3.2)

trends. Permeability shows a major increase by the increase of porosity, which demonstrates

the importance of porosity. The permeability of FCC structure is lower than BCC one at low

porosities but both are very close at higher porosity values. On the other hand, Fig. 5.19 shows

that tortuosity is significantly influenced by the geometry. FCC packing has generally a higher

tortuosity. This can be attributed to more spherical sections being located in the cube, which

divert the fluid from the straight direction. The graph of the FCC packing is steeper but the

difference between the tortuosity of the two geometries decreases at higher porosity values,

because streamlines get straight. From Fig. 5.18 the Kozeny-Carman (KC) factor (c0) [136, 137]

can be determined as well [138, 139]:

k =
φ3

c0(1− φ2)S2
, (5.7)

where S is the specific surface per unit volume of solid material (= πD2/(πD3/6) = 6/D).
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Figure 5.18: Permeability of FCC and BCC geometries at different porosities φ (Sec. 5.3.3)

Equation (5.7) gives a relation between permeability and porosity. Thus,

k =
φ3D2

36c0(1− φ2)
⇒ k

D2
=

φ3

36c0(1− φ2)
. (5.8)

Values of c0 versus porosity (φ) are shown in Fig. 5.20 based on the data of Fig. 5.18. A

4th-order polynomial fit of the KC factor is found from these simulations as

BCC : c0 = 168.0847φ4 − 309.7246φ3 + 203.5196φ2 − 47.6256φ+ 6.7517, (5.9)

FCC : c0 = 92.9370φ4 − 136.2792φ3 + 67.1633φ2 − 8.8750φ+ 5.1214. (5.10)

This equation can be used to estimate the KC factor knowing the porosity value, and then

find the dimensionless permeability based on the porosity of these cubic structures occupied by

spheres.

5.3.4 Case III: real geometry

In the last test case the real geometry of a 3D porous medium is reconstructed from a set of

2D images. Each image is captured by computed tomography technique. Combining LBM

and CT technique may allow detailed flow simulations in such complex geometries. However,

corresponding computations may require unrealistic resources. Therefore, an acceptable choice

between image resolution and computational requirements must be found.

To investigate the effect of image resolution on the results, the permeability has been

calculated with LBM at three image resolutions of the available geometry: 1151 × 1151,

500× 500 and 200× 200. The number of images for all three cases is chosen as 20, which leads

finally to 26.5, 5.0 and 0.8 million grid cells in the LB simulation, respectively. The simulation

process is as follows: The CT images are first read by an in-house MATLAB script and a
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Figure 5.20: Kozeny-Carman factor c0 of FCC and BCC packings versus porosity φ together
with a 4th curve fit (Sec. 5.3.3)

geometry file (geometry.txt) is constructed over all images. This text file contains only 0 and

1, where 0 represents solid nodes (black in CT image) and 1 represents pore space (white in

CT image). A sample of such CT images in high and low resolutions is shown in Fig. 5.21.

The geometry text file is then read by the LBM code and the computational domain is created

accordingly, before starting the calculation. Then, LBM proceeds until reaching the steady-state

condition.

Table 5.8 shows the calculated permeability (in lattice units) and the error with respect to

the result obtained with the highest resolution, since a theoretical prediction is not available

for this case. The relaxation time was set to τ = 0.8 for all resolutions. Considering the long

computational time needed for this case, even when running on 50 cores of our computer cluster,

the Shan-Chen scheme with a constant body force was finally employed, since it is the fastest one



76 Chapter 5. Porous Media Flow

(a)

(b)

Figure 5.21: Sample image of a real porous media at high and low resolutions: (a) 1151× 1151;
(b) 200× 200 (Sec. 5.3.4)

with good accuracy as shown previously. It can be observed that reducing the image resolution

leads as expected to an increasing error, 4.2 and 19% error for 500× 500 and 200× 200 image

sizes, respectively. Therefore, in similar situations, where the geometry is reconstructed from

CT images, high enough image resolution is a critical factor.

Considering that an error below 5% is still acceptable, the intermediate resolution (500×500)

has been kept for the final, three-dimensional simulation of the whole probe, using additionally

a discretization of 200 in the direction of the CT cuts. Streamlines are shown in Fig. 5.22 as

obtained by LBM in this 200× 500× 500 domain. On 50 cores, this 3D computation required

25 hours of computing time.
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Table 5.8: Calculated permeability in Case III

Domain Permeability (lu2) Permeability ×∆x2 Error (%)
20× 1151× 1151 6.524 4.92× 10−6 –
20× 500× 500 1.282 5.13× 10−6 4.2
20× 200× 200 0.160 4.0× 10−6 −19

Figure 5.22: Streamlines and velocity field through a real porous medium colored by streamwise
velocity (Sec. 5.3.4)

5.4 Summary

Lattice Boltzmann simulations of hydrodynamics in porous media have been used to predict the

permeability value at low Reynolds numbers. Different test cases have been considered, including

reference flow in FCC and BCC packings as well as a real porous media probe reconstructed from

CT images. Two force schemes with single- or multiple relaxation times have been compared.

The results show excellent agreement with analytically predicted value for FCC and BCC

packings. For all three schemes (Guo-SRT, Guo-MRT and Shan-Chen-SRT), the accuracy of the

predicted permeability depends strongly on the domain resolution. As expected, low resolutions

lead to large errors. For a fixed domain size, the predicted permeability increases with the

relaxation time for all studied approaches due to viscosity dependence of bounce-back boundary

condition. As a whole, Guo-MRT shows a lower dependency on relaxation time, thus delivering

a more robust estimate. However, it is also the approach leading to the longest simulations.

Moreover, the impact of relaxation time is larger in coarser domains. Also, higher relaxation

time models need lower number of iterations to reach the steady state solution. The influence

of porosity on permeability and tortuosity was also examined. Permeability of both BCC and

FCC structures follow similar trends when plotted against porosity, but tortuosities behave

more differently. Finally, considering a real geometry, it was shown that LB simulations can

indeed deliver numerical estimates of permeability in very complex configurations from a set of

CT images when a sufficient resolution is used.



Chapter 6

Turbulent Channel Flow with Resolved

Spherical Particles

6.1 Introduction

In many particulate flows, the flow regime is turbulent, which tremendously increases complexity

compared to a laminar flow. In these cases, the inherent stochastic structure of the carrier-phase

together with the random distribution of the particles result in complex particle-fluid interactions.

Addition of small amounts of particles to a turbulent flow can modify the turbulence

characteristics significantly. Gore and Crowe [140] expressed that small particles suppress the

turbulent intensity, whereas large particles enhance it. Small particles will attenuate fluid

turbulence due to the lagging response of the particles with respect to the turbulent fluctuations.

For larger particles, similar effects happen; however, a large particle will additionally cause

wake shedding and, therefore, turbulence intensification was observed. Very small particles

(microparticles) may increase the turbulence due to their fast response to changes in the fluid.

However, high particle concentrations can lead to a completely different behaviour.

Many studies have considered experimental investigation of turbulent particulate flows

[141–147]. Rashidi et al. [148] performed experiments with particles of different sizes in an

open channel. They found that large particles (1100 µm) increase the turbulence intensities

and Reynolds stresses. On the other hand, smaller particles (120 µm) decreased the measured

intensities and Reynolds stresses. These effects were more pronounced by increasing the particle

loading. Kussin and Sommerfeld [141] experimentally investigated a turbulent channel flow with

a wide range of particle sizes. They stated that, large glass beads particles (0.625 and 1 mm)

showed a turbulence augmentation in the core of the channel. However, in the near-wall regions

of the channel, turbulence reduction was observed.

With respect to Lagrangian point-particles, Pan and Banerjee [149] considered a dilute

particle-laden turbulent channel flow with a free surface (φ < 10−4). They used a pseudo-spectral

method to solve the Navier-Stokes equations and point-particles were modeled in a Lagrangian

framework. They observed that particles smaller than the dissipative length scale reduce

78
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turbulence intensities and Reynolds stress.

Mallouppas and van Wachem [150] carried out large eddy simulation (LES) of point-particles

dispersed in a horizontal channel flow with the gravity acting perpendicular to the main flow.

The results were in consistency with the experimental measurements of [141].

Most studies concerning turbulent particle-laden flows do not resolve individual particles.

Another approach is based on fully-resolved simulations. In this case, interactions are modeled

directly and the fluid motion around each moving particle is numerically resolved. Pan and

Banerjee [151] modeled the presence of large particles in an open channel flow. Particles radius

was a = 0.05H or 0.1H with H being the half-channel height. Solid phase volume fraction

was φ ∼ 10−4, which still belongs to the dilute regime. They reported that, the presence of

large particles alters the turbulence properties, particularly in the near-wall region. They found

that particles increase turbulence intensities and Reynolds stress; this observation was more

dominant for larger particles. Lashgari et al. [152] studied laminar to turbulent transition in

a channel flow in the presence of small amounts of finite-size particles. They found that the

critical Reynolds number beyond which laminar to turbulent flow transition occurs is reduced

as compared to a single-phase flow. Kajishima et al. [153] simulated an upward turbulent flow

in a vertical channel including solid particles (dp/H = 0.125, φ ∼ 10−3). They reported a strong

modification of velocity and vorticity fluctuations. It was observed that, particles tend to move

up mostly in the region close to the wall. It was also seen that the particles hinder the upward

flow motion by reducing the mean velocity. On the other hand, velocity fluctuations showed an

increase. Uhlmann [154] performed DNS of fully-resolved particles in a vertical channel flow

(φ = 4.2× 10−3). Formation of large-scale elongated streak-like structures was reported. It was

mentioned that turbulence intensity and the normal stress anisotropy were strongly increased

with respect to the single-phase flow at the same bulk Reynolds number. This enhancement

was attributed to an increase in the streamwise velocity fluctuations.

If the solid phase volume fraction is increased beyond the dilute regime, in the so-called

dense regime, a four-way coupling model is required to accurately model all interactions.

Corresponding studies are very challenging and, therefore, limited in number. Shao et al. [155]

used a direct-forcing fictitious domain method (DF/FDM) and simulated a horizontal turbulent

channel flow with finite-size solid particles at up to 7% solid-phase volume fraction. This

method assumes that the interior of the particle is also filled with the fluid. They found that

neutrally-buoyant particles decrease the maximum root mean square (rms) of the streamwise

velocity fluctuation, while increasing it in the region very close to the wall and in the center

region. The rms of normal and spanwise fluctuating velocities increased near the wall. Picano

et al. [156] observed that overall drag reduction for very dense mixtures at high Reynolds

number is probably due to a significant reduction of the turbulent drag that contributes to

total shear stress. Recently, Fornari et al. [157] used immersed boundary method to investigate

DNS of a particle-laden flows with spherical particles. The simulation was built on top of an

incompressible Navier-Stokes equation solver and the effect of volume fraction and particle size

was investigated.
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In recent years, the lattice Boltzmann method has been successfully applied to various flow

regimes including particulate flows, heat transfer phenomena, medical flows, porous media, etc.

However, the application of LBM to DNS of particle-laden turbulent flows is quite new and

limited. DNS is challenging, since it requires a proper resolution of all relevant scales in time

and space [158]. Banari et al. [159] used LBM to model suspensions of rigid spherical point

particles and observed changes in mean flow properties. Wang et al. [160] simulated a turbulent

particle-laden flow, in which particle-fluid interactions were modeled by a Galilean-invariant

momentum exchange method. The simulation was carried out for a single volume fraction and

particle size, with neutrally-buoyant particles.

This chapter aims at numerically investigating the effects of fully-resolved particles in a

turbulent channel flow concerning turbulence modulation, using four-way coupling. The LBM is

used to resolve the fluid flow, while considering the effect of the particles by IBM. The influence

of different parameters including particle size, volume fraction and density is investigated by

varying these parameters. To the best of our knowledge, the current work is the first IBM-LBM

publication concerning particle-laden pressure-driven turbulent channel flows. The rest of this

chapter is organized as follows. First, the test case is described. It is followed by the validation

of single-phase (unladen) turbulent channel flow against available DNS benchmarks. Then, the

simulation results for fully-resolved particles interacting with the turbulent flow are presented.

The effect of these particles on various turbulent flow characteristics is finally analyzed and

discussed, before listing the most important observations. Results of this chapter have been

partly published in [161].

6.2 Flow configuration

In this study, SRT-LBM based on the force scheme of Shan-Chen [18] is used to model the fluid

flow and particle-fluid force and velocity interactions are modeled by IBM. Details of the model

can be found in Chapters 2 and 3. A turbulent flow between two parallel flat walls is considered.

A schematic of the computational domain is shown in Fig. 6.1. Domain size is Lx = 4.6H,

Ly = 2H and Lz = 2H, corresponding to the streamwise x, normal y, and spanwise z directions,

respectively, and H is half the channel height. No-slip boundary condition is applied on the

upper and lower walls, whereas the streamwise and spanwise directions correspond to periodic

boundary conditions.

To accelerate the computations, the numerical domain is decomposed in x direction into

several smaller blocks and the code is parallelized in this direction using the message-passing

interface. Each processor core handles its own domain part and the particles whose center is

located within the domain. After each time step, all the necessary fluid and particle data are

exchanged between neighbouring processors.

In order to stick to the low Mach number requirement of the LBM, friction velocity (uτ ) is
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Figure 6.1: Schematic of the geometry of a turbulent channel flow with spherical particles, where
G represents the flow-driving force (here, pressure gradient) (Sec. 6.2)

first calculated by:

uτ =
U0

κ ln Reτ +B
, (6.1)

where κ is the von Kármán constant and is equal to 0.4. Parameters B = 5.5 and U0 = 0.1

are used in Eq. (6.1) to calculate the maximum probable flow velocity in the channel center

[162]. Subsequently, a constant driving force is applied along the x direction, which is given by

G = ρfg = −dp/dx = ρfu
2
τ/H. The Reynolds number based on the friction velocity is defined

by Reτ = uτH/ν = 180, where ν is the kinematic viscosity and uτ = (τw/ρf )0.5. Here, τw is the

shear stress at the wall. The corresponding bulk Reynolds number based on the bulk velocity

(Ub) is equal to Reb = Ub2H/ν = 5600 and the domain is uniformly discretized by 600×260×260

grid points along x, y and z directions. Based on this mesh size, the viscous length scale is

equal to lτ = νf/uτ = 0.72, which results in a non-dimensional mesh size ∆+ = ∆/lτ = 1.38.

The large-eddy turnover time is given by H/uτ . Mean properties are calculated from the flow

field and stored on disk every 0.04 large-eddy turnover time.

In order to avoid the long computational time required for transition from laminar to

turbulent regime, the flow is initialized by one of our prior DNS results for a single phase

flow. The results of the single-phase and particle-laden flows will be later compared at the

same driving force. Another possible approach would be to keep the same flow rate, which

is not used in the present study. In both particle-laden and particle-free cases, the data are

collected when the turbulent flow is fully developed and statistically reaches the steady-state.

For particle-laden flow, the particles are initially randomly positioned throughout the domain,

avoiding any overlapping. The results will be presented in wall (inner) units, unless otherwise

stated, and the velocity values are all scaled by uτ . The root mean square of the velocity

fluctuations is defined by urms = u′u′
1/2

and is obtained by urms =
√
u2 − u2. The other

diagonal components, vrms and wrms are defined similarly. All fluid statistics are computed

excluding the Eulerian nodes that are located inside the particles.
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Figure 6.2: Comparison of normalized mean streamwise fluid velocity u+ versus normalized
distance from the wall y+ for a turbulent single-phase channel flow with the benchmark data of
Moser, Kim and Mansour (1999) and Vreman and Kuerten (2014) (Sec. 6.3.1)

In the case of particle-laden flow, considered particles are rigid and spherical, with a particle

size of either a/H = 0.06 or 0.1, where a is the particle radius. This corresponds to 15.6 and

26 Eulerian grid points along particle diameter, respectively. Small and large particles are

discretized by 765 and 2124 Lagrangian points on their surface, respectively. Two types of

particles have been considered: neutrally-buoyant (ρp = ρf ), and heavy (ρp = 1.2ρf ). The solid

phase volume fraction is either φ = 1.5, 3, or 6%.

6.3 Results and discussion

As shown in previous chapters, the code has been already thoroughly validated concerning

laminar particulate flows. Therefore, only the ability of the tool to describe turbulence must be

validated. For this purpose, benchmark data for a single-phase turbulent flow is employed. The

same code will then be used to simulate turbulent particulate flows.

6.3.1 Single-phase flow

A turbulent channel flow at a frictional Reynolds number of Reτ = 180 is considered. The

results of mean and fluctuating velocity components obtained by ALBORZ will be compared

to the documented benchmark data of Moser, Kim and Mansour [163] (written MKM) and

Vreman and Kuerten [164] (written VK).

The results of this comparison are presented in Figs. 6.2-6.4. The streamwise, normal, and

spanwise velocity components are shown by u, v, and w, respectively. All have been normalized

by friction velocity. The profile of the normalized mean streamwise velocity u+ = u/uτ versus

y+ = yuτ/ν is depicted in Fig. 6.2. The mean value at each point y1 is the average of mean
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Figure 6.3: Comparison of rms of fluid velocity fluctuations as a function of distance from the
wall in a single-phase turbulent channel flow with the data of Moser, Kim and Mansour (1999)
and Wang et al. (2014)
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Figure 6.4: Comparison of normalized Reynolds shear stress as a function of distance from the
wall in a single-phase turbulent channel flow with the data of Moser, Kim and Mansour (1999)

velocity at y = y1 and 2H − y1. A very good consistency in terms of mean streamwise velocity

along the whole channel height is observed.

Figure 6.3 shows the normalized rms of velocity fluctuations in all three directions, where

u+
rms = urms/uτ , v

+
rms = vrms/uτ and w+

rms = wrms/uτ . The results are in good agreement with

those from MKM. However, slight deviations are observed, in particular concerning the peak

value of u+
rms. These differences are a direct result of the relatively low accuracy of LBM, which

is only second-order in space [124]. It can be seen that our results are very close to those of

Wang et al. [165], who also used a LBM solver for similar conditions and a similar resolution of

512× 256× 256. At the same time, the agreement concerning the xy-component of the Reynolds
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Figure 6.5: Mean streamwise velocity u+ profile as a function of distance from the wall y+

for single-phase and particle-laden flow for different solid-phase volume fractions (a/H = 0.1,
ρr = 1.0)

shear stress is excellent, as demonstrated in Fig. 6.4. Considering that the focus is set here on

comparisons between single-phase and two-phase flows more than on the absolute values, and

keeping in mind that this single-phase simulation already takes 8 days of computing time using

150 processors (AMD opteron 2.1 GHz and 16 GB main memory), the employed resolution of

600× 260× 260 will be kept, since it already leads to a good agreement with the reference data.

From now on, the numerical setup remains always the same, and particles will be added to the

flow, before comparing the results obtained for single-phase and particle-laden conditions.

6.3.2 Particle-laden flow

Now, the simulation results obtained for turbulent particle-laden flows under different conditions

of concentration, particle size, and particle density will be discussed.

Effect of particle concentration

First, the influence of particle concentration on different flow parameters will be investigated.

In this subsection, particle radius and density are always set at a/H = 0.1 (large particles) and

ρp = ρf (neutrally-buyoant), respectively. The mean streamwise velocity profile for various

concentrations of solid phase is reported in Fig. 6.5. It can be seen immediately that mean

velocity decreases by addition of particles and this effect is more pronounced at higher volume

fractions. An average velocity reduction of 3.0, 5.0 and 7.9% for volume fractions of φ = 1.5, 3

and 6% was observed respectively, in our simulations. It is interesting to see that, in all volume

fractions, the maximum reduction of mean flow velocity occurs at y+ ≈ 30. It will be later

shown that this point corresponds to the maximum local volume fraction of particles. At this

location, the maximum velocity reduction stands at 4.3, 8.0 and 12.0% for φ = 1.5, 3 and 6%,
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Table 6.1: von Kármán constants for u+ = κ ln y+ +B as a function of particle volume fraction
φ for (a/H = 0.1, ρr = 1.0)

Case φ(%) κ B

1 0 2.5 5.6
2 1.5 2.65 4.5
3 3.0 2.79 3.45
4 6.0 2.9 2.5
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Figure 6.6: RMS of velocity fluctuations for single-phase and particle-laden flow for different
solid-phase volume fractions (a/H = 0.1, ρr = 1.0)

respectively. It is also seen that, all profiles coincide in the region close to the wall due to using

the same driving force. The particle-laden profiles are shifted downward. To interpret the data

in terms of log-law profile, different von Kármán constants (κ,B) are reported in Table 6.1. The

coefficient κ increases with volume fraction, but at a reducing rate from φ = 1.5% to 3% and

then to 6%. On the other hand, the coefficient B is decreasing rapidly when increasing φ.

Figure 6.6 shows the rms of velocity fluctuations. The maximum value of streamwise velocity

fluctuations is significantly reduced when adding particles. Again, larger volume fractions

lead to a stronger reduction. Shao et al. [155] attributed this reduction to a lower intensity of

streamwise vortices. By increasing the volume fraction, the peak point is also shifted closer to

the channel wall. At the same time, it is observed that streamwise velocity fluctuations increase

in the near-wall region. In the core region, minor enhancement of u+
rms value is observed again.

Because of small vortices that are created close to the wall, both v+
rms and w+

rms increase at

y+ < 40. In the center region, normal and spanwise velocity fluctuations show little changes

compared to a single-phase flow. Since the main motion of particles occurs in the streamwise

direction, their influence is more pronounced in this direction compared to the other ones. It is

also clear that the particle-laden cases are more isotropic than the single-phase one; velocity

fluctuations become closer to each other in all three directions. Isotropy increases with increasing

particle loading.
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Figure 6.7: Reynolds stress profile for single-phase and particle-laden flow for different solid-phase
volume fractions (a/H = 0.1, ρr = 1.0)

Figures 6.7 and 6.8 compare the results of Reynolds stress and turbulent kinetic energy

(TKE), respectively. As expected from the previous velocity fluctuations, both parameters

are generally reduced except for the near-wall region. Therefore, turbulence activity is overall

reduced, mainly due to the change in streamwise velocity rms. Close to the channel center,

xy-Reynolds stress and turbulent kinetic energy are almost identical to those of the single-phase

flow. It is worth noting that a reduction of turbulence intensity does not necessarily mean that

the flow rate increases because of the contribution from particle-induced stresses in the system.

Different components of streamwise momentum budgets (in wall units) are shown in Fig. 6.9,

where τ = τV + τR+ τP . Here, τV = du+/dy+ is the viscous stress, τR = u′v′
+

is the xy-Reynolds

stress and τP is particle-induced stress. The single-phase flow graph (Fig. 6.9a) shows that,

the calculated total stress (τ = τV + τR) follows almost exactly the analytical solution of

τ+ = 1− y+/Reτ which is derived from streamwise momentum balance equation:

d

dy

(
u′v′ + ν

du

dy

)
=
G

ρ
=
u2
τ

H
, (6.2)

which leads to

u′v′
+

+
du+

dy+
= 1− y

H
= 1− y+

Reτ
. (6.3)

This consistency proves again the accuracy of these calculations. Particle-laden data are shown

in Fig. 6.9b for φ = 6%. It can be seen that, the xy-Reynolds shear stress is shifted downward.

Viscous stress shows minor change. In this particle-laden case, particle stress (τP ) is not

negligible and it contributes to total stress. The effect of particle-induced stresses on total

pressure drop was also observed by Picano et al. [156].

Next, the distribution of particles in different regions of the channel is investigated. The
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Figure 6.8: Distribution of turbulent kinetic energy for single-phase and particle-laden flow for
different solid-phase volume fractions (a/H = 0.1, ρr = 1.0)
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Figure 6.9: Streamwise momentum budget for (a) single-phase flow; (b) particle-laden flow
versus distance from the wall (ρr = 1.0, φ = 6%)

local volume fraction occupied by particles at each y position and each time step is computed as

φj =

Nx∑
i=1

Nz∑
k=1

δik(xijk)

Nx ×Nz

, (6.4)

where δik(xijk) is 1 if the domain point is located inside the particle and is 0 if it is within

the fluid region. This computation is carried out for all the 260 j-planes in y-direction. The

resulting particle volume fraction is shown in Fig. 6.10. A clear peak is observed close to the wall

at y+ ≈ 30, with the local peak value being quite close to the overall particle volume fraction,

in particular at low particle concentration. Many particles thus appear to be trapped in the

region close to the wall. As discussed before, this is also the point where maximum velocity
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Figure 6.10: Distribution of local particle volume fraction as a function of distance from the
wall y/H for different volume fractions (a/H = 0.1, ρr = 1.0)

reduction occurs. High concentration of particles near the wall leads to more particle-wall

collisions. These collisions lead to higher rms of velocity fluctuations in Fig. 6.6. Therefore, at

higher concentrations, the curve of rms of all velocity fluctuations is shifted upward.

If the local maximum value is normalized by the overall particle-phase volume fraction in

each individual case, the lowest volume fraction (φ = 1.5%) shows the highest local peak of

103%, compared to only 90% for φ = 6%. It means that, when increasing volume fraction, more

particles tend to move toward channel center, and the local peak around y+ ≈ 30 becomes less

pronounced in relative manner. Based on Fig. 6.10, the local peak is followed by a minimum

point before increasing again up to channel center. This accumulation of particles in the region

close to the wall in wall-bounded flows was already observed in dilute regimes [see 154, 166, 167],

although the peak was generally higher. At lower volume fractions, the path of the particles is

mainly determined by the fluid. Therefore, a higher portion of particles are shifted from the

channel center toward the wall. When increasing the volume fraction, particles penetrate in

large-scale vortices and reduce their size and strength. Thus, such vortices have less energy and

cannot carry the particles toward the wall as efficiently as before. Additionally, the importance

of collisions redistributing the particles throughout the channel increases.

Figure 6.11 illustrates the average y-location of particles (averaged over both sides of the

channel in y-direction) for φ = 6%. Since these particles are neutrally-buoyant, they tend

to distribute symmetrically around channel center. Computing the average y-position of all

particles over the total computational time, the obtained value is almost at channel center

(yp/H = 0.991).

Figure 6.12 compares the mean streamwise velocity of particles and fluid. It is observed that

the particles have a noticeably higher velocity than the fluid close to the wall. This phenomenon

was also reported in experimental studies of Kiger and Pan [168] for the dilute regime. Near

the channel center, fluid and particle have similar velocities. There is a small region between
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Figure 6.12: Mean velocity of particles (P) and of fluid (F) against distance from the wall for
different particle concentration (a/H = 0.1, ρr = 1.0)

these two zones, again around y+ ≈ 30, where fluid velocity is slightly higher than particle

velocity; local particle accumulation coincides with a particle velocity lower than that of the

flow. The rms of particle and fluid velocity fluctuations for φ = 6% is depicted in Fig. 6.13.

Particle velocity fluctuations are in general much smaller than those found in the fluid. This

is probably due to the lower tendency of the particles for motion, preventing fast changes in

velocity. Exceptions are only observed very close to the wall.

Figure 6.14 shows an arbitrary snapshot with the distribution of all particles together with

the streamwise velocity. Since these particles are neutrally-buoyant, particle distributions in the

lower and upper half of the channel are similar.

Figure 6.15 depicts the side view of the iso-surfaces of the second invariant of the velocity
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Figure 6.14: Instantaneous snapshot of particle distribution and turbulent flow structure, colored
by streamwise velocity (a/H = 0.1, ρr = 1.0, φ = 1.5%)

gradient tensor, Q, which is classically used to visualize the vortices in the flow field [169]. The

Q-criterion is defined using Einstein summation convention as

Q =
1

4
(ωiωi − 2sijsji) , (6.5)

where ωi = εijk∂juk is the vorticity field, sij is the strain rate of the velocity fluctuations and εijk

is the Levi-Civita symbol. Figure 6.16 shows the instantaneous snapshots of Q iso-surfaces on

the lower-half of the channel, when removing the particles for an easier visualization. A visual

analysis of both figures reveals that the presence of particles reduces the occurrence of large

streamwise vortices, increasingly so at higher particle concentration. For all conditions, coherent

flow structures and hairpin vortices can still be detected in the figures, though smaller-scale,

nearly isotropic structures appear to play an increasing role at higher particle loading (see

Fig. 6.16c).

It is interesting to examine the effect of particles based on particle Stokes number and volume
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(a)

(b)

Figure 6.15: Iso-surface of Q/ (u4
τ/ν

2) = 0.006 colored by streamwise velocity; (a) without
particles; (b) particle-laden flow (a/H = 0.1, ρr = 1.0, φ = 1.5%)

fraction. Particle Stokes number is defined as the particle response time to the fluid characteristic

time scale. A particle with low Stokes number responds quickly to the flow. Characteristic time

scale of the flow can be either the Kolmogorov (τK =
√
ν/ε) or the near-wall scale (τν = ν/u2

τ ).

In this study, the latter approach is employed, considering the local accumulation of particles in

the near-wall region around y+ ≈ 30.

Neutrally buoyant particles of density ρr = 1.0 and radius a/H = 0.1 have Stokes number

larger than 10. Elghobashi [170, 171] presented a classification map of dilute particle-laden

flows based on the particle volume fraction and Stokes number. This map shows whether

the turbulent kinetic energy will increase or decrease. For dilute suspension of rigid particles

(10−6 < φ < 10−3) he recognized two main zones based on the Kolmogorov Stokes number

(StK = τp/τK). Normally, for very low Stokes numbers (i.e., microparticles) TKE increases. For

StK & 1 particles do not respond immediately to velocity fluctuations of the surrounding fluid.

Thus, reduction of both TKE and dissipation relative to the single-phase flow is reported. For

StK & 10, due to vortex shedding behind the particle, TKE increases. The latter effect was

confirmed in the simulations of Uhlmann [154]. However, it is helpful to discuss the dense regime

as well, such as found in the test cases of the current study. In dense regime with particles of

large Stokes number, the present results show that, in contrast to the observations of the dilute

regime, TKE is reduced (see again Fig. 6.8). This is due to the strong impact of the particles

on turbulent vortices, altering their structure and leading to increased dissipation.

In contrast to TKE, whose changes can be directly predicted based on the solid phase volume
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Figure 6.16: Iso-surface of Q/ (u4
τ/ν

2) = 0.006 on the lower-half of the channel colored by
streamwise velocity; (a) Single-phase; (b) a/H = 0.1, ρr = 1.0, φ = 1.5%; (c) a/H = 0.1,
ρr = 1.0, φ = 3%. For a better visualization, the particles are not shown.

fraction and Stokes number, the observed changes in pressure drop show strong dependency

on particle shape and Reynolds number. Hence, a reduction of turbulence intensity does not

necessarily lead to drag reduction; other parameters must be considered due to particle-induced

stresses in the flow. In the present study, although TKE and Reynolds stress show a reduction

when adding particles, a lower streamwise velocity is observed. Furthermore, it is possible that
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Figure 6.17: Effect of particle size and density on mean fluid velocity (φ = 1.5%) (LH: Lower-half,
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two particles of the same Stokes number and at the same volume fraction have different effects

on the mean flow velocity due to different shapes, as will be discussed in the next chapter.

Effect of particle density and size

Now, the impact of using small or heavy particles at φ = 1.5% is presented. The two effects are

investigated separately. Small particles have a radius a/H = 0.06. Heavy particle density is set

to ρp/ρf = 1.2; in that case, particle settling will occur, competing with particle redistribution

by turbulence and collisions. The Galileo number quantifies the importance of gravity, as defined

by

Ga =

√
∆ρ

ρf

gd3
p

ν2
. (6.6)

where ∆ρ = ρp − ρf . In this study, Ga = 28 and gravity (g) is acting in −y direction. This

Galileo number leads to gravity (g) in the same order of magnitude as applied driving force (G).

First, we investigate the effect of particle size and density on mean and rms of velocity profile.

The results are shown and compared in Fig. 6.17. It is seen that small particles reduce the mean

flow velocity more than larger particles (by 5.0% compared to 3.0%, respectively), at the same

overall volume fraction. Thus, small particles (St+ = 26) have a higher drag enhancement effect.

The higher velocity reduction effect can be attributed to the larger total projected area of the

smaller particles at the same volume fraction; the number of small particles in the domain at

φ = 1.5% is 305, which is considerably more than the 66 larger particles. The drag force on the

particle is directly related to its projected area. Hence, smaller particles should have in general

a stronger effect on vortices when keeping the volume fraction constant.

For the case of heavy particles, the velocity distribution on upper and lower half of the
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(φ = 1.5%) (LH: Lower-half, UH: Upper-half)

channel are different. For representation, each one has been normalized by its relevant friction

velocity. The mean streamwise velocity in the lower part of the channel is lower than for the

upper part. An average velocity reduction of 4.8 and 2.3% is found for lower and upper parts,

respectively, compared to the single-phase flow. In the upper part, far less particles are present

and this brings all curves closer to their single-phase counterparts, while the high concentration

of particles in the lower-half (due to settling) reduces mean velocity to a lower value.

Figures 6.18-6.20 depict the rms of fluid velocity fluctuations. Again, for heavy particles,

the lower-half data show noticeably larger difference compared to single-phase data. Concerning

the upper half, it is interesting to notice that w+
rms becomes even slightly lower than the clear

channel far away from the wall.
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Figure 6.21: Effect of particle size and density on Reynolds shear stress (φ = 1.5%) (LH:
Lower-half, UH: Upper-half)

When comparing now the results of two different particles sizes, the maximum streamwise

velocity fluctuations of small particles is lower. For spanwise and normal directions, the curves

for small particles locate above those of the larger particles close to the wall, i.e. y+ . 30.

Note, however, that the differences become less noticeable in the channel center region. Particle

size effect on Reynolds shear stress is shown in Fig. 6.21. Looking closely around the peak

region, it is seen that the small-particles profile has a slightly higher maximum value than the

large-particles curve, showing that smaller particles enhance production of turbulent fluctuations

compared to larger ones. It is expected that, choosing even smaller particles (still in the range

of finite-size particles) would further increase the Reynolds shear stress. The peak value of

Reynolds shear stress for heavy particles is slightly lower than for neutrally-buoyant particles,
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0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1

y+ = 30

v
ol
.
f
ra
c.

y/H

LH, a/H = 0.1, ρr = 1.2

UH, a/H = 0.1, ρr = 1.2

a/H = 0.06, ρr = 1.0

a/H = 0.1, ρr = 1.0

Figure 6.23: Local distribution of spherical particles along the channel height in a turbulent
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due to their higher Stokes number. Turbulent kinetic energy of small particles is again lower

(Fig. 6.22). Moreover, heavy particles show as expected different curves on the lower and upper

parts of the channel . For all cases, turbulent kinetic energy is reduced in the two-phase flow.

The distribution of particles is depicted in Fig. 6.23. When particle density is higher than

fluid density, particle settlement leads to a very uneven distribution of particles in the lower

and upper sections of the channel. Far more particles are present in the lower part; still, a peak

in local particle concentration around y+ ≈ 30 is observed for both sections.

In the case of smaller, neutrally-buoyant particles, the local peak of particles distribution

moves closer to the wall, at y+ ≈ 22. The maximum particle volume fraction occurs at y ≈ dp

for small particles and y ≈ 0.8dp for larger ones. This is partly due to the weaker effect of
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particle-wall collisions due to the lower weight of small particles. Furthermore, it is observed

that the volume fraction of smaller particles is more homogeneous. Small particles have less

inertia to escape from the near-wall, low-velocity region. In contrary, larger particles lead to a

steady increase of volume fraction beyond y/H = 0.25.

6.4 Summary

A systematic study of turbulent particulate flows has been performed using Immersed

boundary-lattice Boltzmann Direct Numerical Simulation. The configuration is a straight

channel at frictional Reynolds number of Reτ = 180. After investigating the single-phase case,

the resulting flow has been seeded with fully-resolved particles. Effect of particle concentration,

size and density has been investigated. Based on the results, following conclusions can be drawn:

• IB-LBM is a robust method for the simulation of turbulent particulate flows in the

dense regime. The combination of IBM and LBM captures the main characteristics of

particle-laden flows.

• Addition of fully-resolved particles decreased mean velocity and consequently flow rate

compared to the single-phase flow. Mean streamwise velocity is reduced by 3.0 and 7.9%

for solid-phase volume fractions of φ = 1.5 and 6%, respectively, when particle radius is

set to a/H = 0.1.

• Maximum root mean square of streamwise velocity fluctuations is attenuated by addition

of particles of a/H = 0.1. The peak is also slightly shifted toward the channel wall. On

the other side, streamwise velocity fluctuations are increased in the region close to the wall

and in the core zone. Enhancement of near-wall rms fluctuations is observed for normal

and spanwise directions. Maximum Reynolds shear stress and turbulent kinetic energy

are reduced.

• It was also observed that there is an equilibrium position close to the wall (y+ ≈ 22 −
30 depending on particle size) where local particle concentration shows a peak before

experiencing some reduction and increasing again up to channel center. If the local peak

value is normalized by particle volume fraction, lower mean volume fraction profile has a

higher peak in comparison with higher volume fractions.

• By comparison of mean velocity of particles and fluid, a large lag of particle velocity close

to the wall is observed. In the channel center, particle and fluid have approximately the

same velocity. In the intermediate region, flow velocity is slightly higher than particles’

velocity.

• Effect of particle density was investigated as well. Heavy particles (ρr = 1.2) show

noticeably different velocity profiles in the upper and lower parts of the channel, breaking
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the symmetry. Increase in particle density leads to sedimentation of many particles in the

lower region.

• Smaller neutrally-buoyant particles (a/H = 0.06) reduced the mean velocity more than

larger ones at the same concentration. It is thus expected that, further decreasing of

particle size (but still in the scope of finite-size particles) would lead to more velocity

reduction.

• It should be finally pointed out that, effect of fully-resolved particles on flow characteristics

can be noticeably influenced by many parameters. Particle concentration and Stokes

number play the main role in this regard. Based on the present simulations in the dense

regimes, when particle Stokes number is large Reynolds shear stress is reduced; maximum

streamwise velocity fluctuations and TKE reduce as well. By decreasing the Stokes number,

Reynolds stress starts increasing and a stronger velocity reduction is observed. With

respect to mean velocity variations, it would be advantageous to study now the effect of

particle shape. In the dilute regimes, it is known that particles of the same Stokes number

can have different effects on mean velocity [172]. Checking the impact of particle shape in

the dense regime will be the topic of next chapter.



Chapter 7

Two-Phase Flows with Prolate

Spheroidal Particles

7.1 Introduction

Although numerical simulations of particle-laden flows mainly consider spherical particles

(because of easier treatment of particle motion), most particles have a non-spherical shape in

practical cases. In this chapter, we study the effect of prolate spheroids on laminar and turbulent

flow fields. A spheroid is an ellipsoid with two diameters being equal; and a prolate spheroid is

obtained by rotating an ellipse about its major axis. With respect to non-spherical particles,

most publications deal with laminar flows and a single suspended particle [173–176].

Jeffery [177] first derived an analytical solution for the rotation of an ellipsoid in simple

shear flow at zero Reynolds number. Ding and Aidun [173] used lattice Boltzmann method

(LBM) to investigate the effect of fluid inertia on the behavior of a single suspended ellipsoid in

planar Couette flow with Re ≤ 90. Qi and Luo [174] modeled the rotation of a neutrally-buoyant

spheroidal particle at moderate Reynolds numbers (Re < 467). They identified different modes

of particle rotation depending on the Reynolds number. Yu et al. [175] used the distributed

Lagrangian multiplier based fictitious domain (DLM/FD) to test the rotation of oblate and

prolate spheroids. They reported various rotation modes including Jeffery orbit, tumbling,

quasi-Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid by increasing particle

Reynolds number. Huang et al. [176] extended the Reynolds number limit to 700. The effect of

particle Reynolds number and its initial orientation on final mode of rotation was discussed. The

simulations were based on a momentum exchange LBM. For a prolate spheroid, a motionless

mode at Re > 445 was reported. They later simulated sedimentation of an ellipsoid in narrow

and infinitely long tubes [178].

The effect of finite-size particles on turbulence has been the subject of many studies [2, 155,

179, 180]. However, these studies are mostly concerned with spherical particles (see Chapter 6).

The motion of non-spherical particles is inherently complex even in laminar flows. In turbulent

regimes, the problem will be even more intriguing. During the last years, some researchers

99
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have modeled turbulent flows with non-spherical particles [181–183]. However, in most of these

studies, particle size is smaller than the Kolmogorov length scale (the so-called point particles).

Moreover, only one-way or two-way coupled simulations were performed, which only hold for

low volume fractions of the solid phase. Thus, particle-particle interactions are mainly ignored.

Zhang et al. [184] used DNS to compute the transport and deposition of ellipsoidal particles in

dilute turbulent channel flows. The simulation was carried out by one-way coupling assumption.

The accumulation of particles in the viscous sublayer and their alignment with the flow direction

was reported in this work. Mortensen et al. [185] studied the distribution and orientation of

small spheroids by means of DNS. The simulation was performed in an Eulerian-Lagrangian

framework. Forces and torques were computed under creeping flow condition (Stokes flow)

which is valid for low particle Reynolds number. A preferential orientation of elongated particles

in the streamwise direction was reported. Later, Marchioli et al. [186] studied a turbulent

channel flow with long particles and concluded that the aspect ratio has a minor effect on

clustering, preferential distribution, and segregation of particles. Andersson et al. [187] showed

drag reduction effect of point particles with an aspect ratio of 5. Zhao and van Wachem [188]

investigated the behavior of elongated particles in a turbulent channel with frictional Reynolds

number of Reτ = 150. Particle-particle and particle-wall collisions were modeled in this work.

However, the flow was in dilute regime and the particles were smaller than the Kolmogorov

length scale. Drag enhancement by particles was reported. They later showed that, in dilute

regimes, point particles of high aspect ratio and moderate Stokes number have minor drag

reduction effect [172]. The only work that addresses the effect of finite-size non-spherical particles

(cylindrical fibers) on turbulent flow was performed by Quang et al. [189]. They employed

external boundary force method implemented by the lattice Boltzmann method to model the

effect of rigid rods with a cylindrical shape for volume fractions up to 0.004.

DNS of fully-resolved spheroids in turbulent wall-bounded dense flows using LBM has not

been performed yet to our knowledge. This issue is the purpose of this chapter. Modeled

particles are larger than the Kolmogorov scale and their volume fraction corresponds to the

dense regime. Moreover, particle-particle and particle-fluid interactions are taken into account

(four-way coupled). The outline of this chapter is as follows: Sec. 7.2 describes particle dynamics.

The validation is presented in Sec. 7.3. Section 7.4 presents laminar sedimentation of a spheroid

in a long square tube, before considering a turbulent channel flow seeded with prolate spheroids.

Finally, conclusions are driven in Sec. 7.5. Results of this chapter are partly published in [190].

7.2 Particle dynamics

A spheroid surface (Fig. 7.1) is described by the following equation

x′2

a2
+
y′2

b2
+
z′2

b2
= 1, (7.1)

where (x′, y′, z′) denotes a body-fixed coordinate system and a and b are the radii of the

particle. In this study, a prolate spheroid is considered, i.e., a > b, with particle aspect ratio
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Figure 7.1: Spheroid geometry with semi major-axis a and semi minor-axes b

of λ = a/b. In order to use IBM, we need Lagrangian points that are distributed over particle

surface. To distribute the points on the spheroid, a new procedure was implemented. The

developed approach enables the exact surface of the ellipsoid to be retrieved; this avoids errors

associated with methods that try to enforce a uniform distribution of points over the surface.

For this purpose, the spheroid surface is first divided into a user-defined number of strips. These

strips are placed along the particle major axis, such that their cross-section is always of circular

shape. Using this property, it is possible to arrange a uniform distribution of points over each

strip. Finally, assuming for instance that the particle major axis is initially parallel with the

x–direction (the particle orientation can be changed through rotation after distributing the

points), the location of each Lagrangian point is specified using procedure

for i = 1 : ns

θ = i× π/ ns;
nps [i] = [cir factor × ns× sinθ];
α = 0;

for j = 1 : nps [i]

α = α + 2× π / nps [i] ;

Node y = yc + b× cosα× sinθ;
Node z = zc + b× sinα× sinθ;
Node x = xc + a× cosθ;

end;

end;

where ns is the total number of strips, nps the number of points per each strip, and cir factor is

a parameter used to adjust the number of points on each strip and in practice is larger than 0.5.

Node x, Node y, Node z are the final coordinates of each Lagrangian point, and xc, yc, and zc

denote the location of particle center in inertial coordinate. The parameter θ is used to adjust

each strip location and α to adjust each point location on the strip. In the above procedure,

two parameters (cir factor and ns) must be specified by the user, and nps is deduced from

cir factor. By fixing cir factor, the number of points over all strips (nps) is automatically

obtained. Higher cir factor values result in a higher number of points on each strip.
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In order to calculate the surface area associated to each surface node, Eq. (7.2) is first used

to obtain the surface area of the strip that lies between x1 and x2:

S = 2πb

∫ x2

x1

√
1− (a− b) (a+ b)x2

a4
dx =

2πb

s

arcsin(sx)

2
+
sx
√

1− (sx)2

2

x2
x1

, (7.2)

s =

√
(a− b) (a+ b)

a4
. (7.3)

If x1 = −a and x2 = a then S is the total surface area of the prolate spheroid. Finally, dividing

S by the number of points on the corresponding strip, the area associated with each surface

node of the prolate spheroid is obtained. Nevertheless, a and b cannot be the same and must

be slightly different to prevent the integration from yielding a non-real result. For an initial

check of this procedure, we employed it to recompute the results for the case of single sphere

sedimentation. Using a relative difference of 0.001% between a and b, the new procedure gives a

negligible difference with the results already discussed for sphere model, as can be seen from

Fig. 7.2 for the test case of Sec. 3.3.4.

Let us now consider the general equations of motion of particles:

Mp
dUp

dt
= −ρp

Nl∑
l=1

fl∆Vl +Mf
dUp

dt
+ (ρp − ρf )Vpg + F c, (7.4)

T = Ip
dΩp

dt
+Ωp × (IpΩp) . (7.5)

Equations (7.4) and (7.5) demonstrate the translational and rotational motion of the particle,

respectively. Translational motion of the particle is updated by using the discretized form of
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Figure 7.3: Euler angles

Eq. (7.4) (see Eq. (3.12)). To describe now the rotation of a prolate spheroid, two coordinate

systems are employed: the inertial frame and the body-fixed frame. The inertial frame,

x = 〈x, y, z〉, is the frame that spans the computational domain (Eulerian framework). The

particle frame, x′ = 〈x′, y′, z′〉, is attached to the particle with its origin at the particle

mass center. The x′-axis of this coordinate is aligned with the principal axis of the particle.

Equation (7.5) can be written in the body-fixed frame:

I ′xx
dΩ′x
dt
−Ω′yΩ′z(I ′yy − I ′zz) = T ′x, (7.6)

I ′yy
dΩ′y
dt
−Ω′zΩ′x(I ′zz − I ′xx) = T ′y, (7.7)

I ′zz
dΩ′z
dt
−Ω′xΩ′y(I ′xx − I ′yy) = T ′z. (7.8)

In the above and next equations, all variables labeled with a prime are referenced with respect

to the body-fixed coordinate. The principal moments of inertia in the body-fixed coordinate are

I ′xx = 2Mpb
2/5, I ′yy = Mp(a

2 + b2)/5 and I ′zz = Mp(a
2 + b2)/5. To solve Eqs. (7.6)-(7.8), four

quaternion variables are introduced:

q0 = cos (0.5θ) cos (0.5 (φ+ ψ)) , (7.9)

q1 = sin (0.5θ) cos (0.5 (φ− ψ)) , (7.10)

q2 = sin (0.5θ) sin (0.5 (φ− ψ)) , (7.11)

q3 = cos (0.5θ) sin (0.5 (φ+ ψ)) , (7.12)

where (θ, φ, ψ) are the Euler angles (see Fig. 7.3). The transformation from the inertial coordinate

to the body-fixed frame is done by: first, a rotation by an angle φ about the z-axis; second, a

rotation by an angle θ about the new x-axis (shown by N), and third, a rotation by an angle ψ

about the z′-axis. The transformation matrix from the inertial to the body-fitted coordinate
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reads

M =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 , (7.13)

and therefore

T ′ = MT, (7.14)

Ω′ = MΩ. (7.15)

These two relations are used to map the hydrodynamic moment vectors and the angular

velocity vectors between the inertial and rotating (body-fixed) frames. The evolution of the

quaternion parameters is governed by

q̇ =


q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

Ω′x
Ω′y
Ω′z

 . (7.16)

In our CFD code, the torques are first transformed from the inertial to the body-fixed coordinate

using Eq. (7.14). Then, Eqs. (7.6)–(7.8) together with Eq. (7.16) (7 equations in total) are solved

using a 4th-order Runge-Kutta integration algorithm to obtain each quaternion (q) and angular

velocity (Ω′) in the body-fixed coordinate system. Next, the angular rotation velocity in the

inertial coordinate (Ω) is obtained by Eq. (7.15) using the inverse of matrix M . Quaternions are

then normalized. Finally, the location of each Lagrangian point can be updated by X = M−1X ′.

7.3 Validation

In order to validate the correct rotation of a spheroid based on the equations presented in

Sec. 7.2, comparison with analytical data for a single spheroid in Couette flow at small Reynolds

numbers is provided (see Fig. 7.4). Then, higher Reynolds numbers will be tested as well. Both

test cases concern a neutrally-buoyant spheroid suspended between two parallel plates. The

spheroid particle is placed between these two parallel plates that are located at y = 0 and

y = Ny, and move in opposite directions with velocities U and −U along the x–direction. The

resulting non-dimensional shear rate is G = 2U/Ny. Periodic boundary conditions are applied

in the x– and z–directions. For the pure rotation of the particle around the z-axis, the Reynolds

number is defined as:

Rep =
4Ga2

ν
. (7.17)

Jeffery [177] showed that, the rotation angle, ϕ, and the angular rate of rotation, ϕ̇, when one of

the principal axes of the ellipsoid is kept parallel to the vorticity vector in a shear flow without
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Figure 7.4: Schematic of a spheroid in Couette flow with moving walls (Sec. 7.3)
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Figure 7.5: Rotational speed Ω/G vs. time for a single spheroid in a 3D Couette flow with small
Reynolds number (Sec. 7.3)

inertia (Rep = 0) read

cotϕ = −λ cot

(
λG t

λ2 + 1

)
, (7.18)

ϕ̇ = − G

λ2 + 1

(
λ2 sin2 ϕ+ cos2 ϕ

)
. (7.19)

For the first simulation set-up, the computational domain is discretized by 120× 120× 60

lattice nodes. The Reynolds number is Rep = 0.5 and the particle radii are a = 6 and b = 4.5,

and the relaxation parameter is set to τ = 0.6. The particle is located at the domain center.

There is no constraint on particle translation and rotation but the simulation proved that the

particle only rotates around z-axis without any translational motion. Results of the rotational

speed of the particle are shown in Fig. 7.5. Our simulation results agree very closely with the

analytical solution.

Now the accuracy of the results for higher Reynolds numbers is examined. Two domain

resolutions are used: (Nx, Ny, Nz)= (40, 40, 40) and (80, 80, 80). Particle semi-major and

semi-minor length are 12 and 3, respectively. The Reynolds number varies between 30 and 100
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Figure 7.6: Comparison of rotation periods of a spheroid for different particle Reynolds numbers
in two domain sizes (Nx = 40, 80) compared to the data of Rosén et al. (2014) (Sec. 7.3)

and the shear rate is G = 1/600. Figure 7.6 illustrates G · Tr values (Tr: period of a complete

tumbling motion of the particle) versus Reynolds number. For both domain resolutions, our

results are compared with the data of Rosén et al. [191]. The results are quite close and minor

differences can be attributed to different numerical approaches since there is no golden truth in

this case. Therefore, the developed direct forcing IB-LBM approach together with the technique

implemented to distribute the Lagrangian points and calculate the surface area can be applied

to spheroidal particles in next simulations.

7.4 Results

It this part the simulation results for both laminar and turbulent flows are presented.

7.4.1 Spheroid sedimentation in long narrow channels

Different sedimentation modes of a spheroid in a square tube are studied here. The geometry

is shown in Fig. 7.7. A spheroid with particle radii of a = 15 and b = 7.5 is located in a long

narrow square tube. Particle starts its motion with zero velocity and settles down under gravity.

Galileo number is defined as

Ga =

√
∆ρ

ρf

gD3
eq

ν2
, (7.20)

where Deq is the equivalent diameter of a sphere of the same volume. The domain is assumed to

be very long with stationary wall on top and zero gradient boundary condition at the bottom. All

other sides are stationary walls. To prevent using a very long channel in numerical simulations,

increasing the computational cost, we always keep the particle with a certain distance from upper

and lower boundaries. During the simulations, when the particle moves one lattice downward,
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Figure 7.7: Single spheroid in a long tube settling under gravity g (Sec. 7.4.1)

Table 7.1: Sedimentation modes of spheroid

ρr Ga B = 0.9 1.16 1.33 1.5 1.67 2

1.16 6.9 OM OM IOO IO IO HC
1.5 11.9 OM IOO IO HC HC HC
3 23.8 OM HC HC HC HC HC
4 29.1 OM HCO HC HC HC HC

Table 7.2: Description of sedimentation modes

Type Description

OM Oscillatory Motion (beside the wall)
IOO Inclined Off-center with Oscillations
HC Horizontal at Center without oscillation
HCO Horizontal at Center with Oscillation
IO Inclined Off-Center without oscillation

one row is eliminated from the top and one row is added to the bottom of the domain. In all

tests, the velocity field is initialized as zero in the whole domain.

Different sedimentation modes of the particle for different blockage ratios B = W
2a

are

investigated. Density ratio changes between 1.16 to 4 and blockage ratio from 0.9 to 2. This

leads to Galileo numbers of 6.9 to 29.1. Different sedimentation modes of the particle are

reported in Table 7.1 with the definition of each term given in Table 7.2. It is interesting to

note that, the particle gradually moves to the diagonal plane and all sedimentation modes are

occurring there. Graphical representation of each mode is exemplified in Fig. 7.8.

At the lowest examined blockage ratio (B = 0.9), the particle shows an oscillatory motion

around the centerline for all density ratios. For B = 1.16, four different regimes are observed.

The particle has an OM at Ga = 6.9. By increasing density ratio, sedimentation regime varies

from IOO at Ga = 11.9 to HC at Ga = 23.8 and finally to HCO at Ga = 29.1. When blockage

ratio is increased to B = 1.33, the OM does not take place at all. HCO motion also disappears.
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Figure 7.8: Different sedimentation modes of a single prolate spheroid in a long tube. From left
to right: OM, IOO, HC, HCO, IO (dimensions not to scale) (Sec. 7.4.1)

Table 7.3: Characteristics of particles

Particle Shape a/∆x b/∆x Deq/∆x λ ρp/ρf

P1 Spheroid 15.8 7.9 20.0 2.0 1.0
P2 Sphere 10.0 10.0 20.0 1.0 1.0

However, a new mode of sedimentation is introduced, IO; at B = 1.33 and Ga = 11.9 particle

settles down inclined at an off-center position without exhibiting any oscillation. By further

enhancement of blockage ratio to B = 1.5, only two modes are observed. One is IO motion at

Ga = 6.9 and HC for all higher density ratios. For relatively wide channels (B = 2), the particle

settles horizontally at center for all density ratios.

7.4.2 Turbulent channel flow with fully-resolved spheroids

In this part, the effect of fully-resolved spheroids on turbulent flow properties in a straight

channel will be investigated, and comparison with spherical particles will be provided.

Simulation set-up

We use exactly the same configuration as in Sec. 6.2. In both particle-laden and particle-free

cases, the data are collected when the turbulent flow is fully developed and statistically reaches

steady-state. The results will be presented in wall (inner) units, unless otherwise stated, and

the velocity values are all scaled by uτ . All fluid statistics are computed excluding the Eulerian

nodes that are located inside the particles.

In the case of particle-laden flow, particles are rigid. Two particle types are tested: one

spheroidal (P1) and one spherical (P2). Particles size, aspect ratio are listed in Table 7.3.
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Figure 7.9: Snapshot of spheroidal particles in a turbulent channel at φ = 1.5%, colored by
streamwise velocity (Sec. 7.4.2)
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Figure 7.10: Mean normalized streamwise fluid velocity u+ versus normalized distance from the
wall y+ for turbulent flow laden with spheroidal (P1) and spherical (P2) particles; (a) φ = 0.75%;
(b) φ = 1.5% (Sec. 7.4.2)

Fluid statistics

Figure 7.9 shows a snapshot of P1 particles distribution together with the velocity field on three

boundary planes for φ = 1.5%. The turbulent nature of the velocity field is seen in the figure.

Particles are distributed in the whole channel. An accurate estimation of particles concentration

in each part of the domain needs consideration of all simulation time steps and will be presented

later.

To quantitatively investigate the effect of particles on turbulence, we start with fluid mean

velocity along the channel height. Figure 7.10 compares the mean streamwise fluid velocity for

two volume fractions of φ = 0.75 and 1.5%. It is seen that both particle types decrease the

mean streamwise velocity. However, velocity reduction by spheroids (P1) is less than that for

spherical ones. At φ = 1.5%, P1 reduces the mean velocity by only 2% compared to 4.6% for

P2. For volume fraction of φ = 0.75%, velocity reduction of 1.0% and 3.0% for P1 and P2 was
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Figure 7.11: Rms of fluid velocity fluctuations based on the distance from the wall y+ at
φ = 1.5% for turbulent flow laden with spheroidal (P1) and spherical (P2) particles; (a) u+

rms;
(b) v+

rms; (c) w+
rms

observed, respectively. This again proves that particle Stokes number (almost similar for P1 and

P2) is not the only factor that contributes to pressure drop. Particle shape is another important

parameter. In the region close to the wall all profiles coincide due to using the same driving

force. Comparing the profile of P1 at φ = 0.75 and 1.5% shows that by increasing the volume

fractions, mean fluid velocity is reduced in the region of 15 < y+ < 90 but increases beyond this

region toward the channel center (90 < y+ < 180). For spherical particles, reduction in both

areas is seen from the graph.

Particle effect on rms of velocity fluctuations for three different orthogonal directions at

φ = 1.5% is shown in Fig. 7.11. Adding the particles reduces the maximum streamwise velocity

fluctuation for both particle types. However, the turbulence attenuation effect is more obvious

for spherical particles. The profiles of spheroid particles (P1) are always closer to a single-phase

flow. In the core region, P2 slightly increases streamwise velocity fluctuation while P1 has

damping effect. With respect to normal (v+
rms) and spanwise (w+

rms) directions, behavior of
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Figure 7.12: Reynolds stress of the fluid based on the distance from the wall y+ for flow laden
with spheroidal (P1) and spherical (P2) particles at φ = 1.5%

fluid-phase with spheroidal particles is again closer to a single-phase flow; however, the effect

is less pronounced compared to streamwise direction. Enhancement of velocity fluctuations in

the vicinity of the wall is observed for all directions due to small-scale vortices generated in

this region. Furthermore, for all directions, the peak point of rms velocity is shifted toward the

wall by adding the particles. This arises from local concentration of particles near the wall, in

particular for spherical particles, as discussed later.

It must be noted that, the effect of finite-size particles on velocity fluctuations can be

different in dilute and dense regimes. Uhlmann [154] reported enhancement of streamwise

velocity fluctuations and reduction of normal and spanwise velocity fluctuations for finite-size

spheres in dilute regimes. This phenomenon was attributed to vortex shedding behind the

particles. In the dense regime, particles are able to change the structure of large vortices and

generate small-scale vortices as well. This leads to a different behavior. Inertial point particles

are also shown to augment streamwise intensity in numerical simulations of Zhao et al. [172]

and Mortensen et al. [185].

The profile of Reynolds shear stress is not significantly influenced by particles for this volume

fraction (Fig. 7.12). However, values of Reynolds shear stress for P1 are less than P2 far from

the wall. By comparing these results to those of point spheroids from Zhao et al. [172], point

particles are found to have a more obvious effect on velocity fluctuations and Reynolds shear

stress, even at low volume fractions. In their study, spheroids of St+ = 30 at volume fraction of

φ = 0.022% shifted the profile of velocity fluctuation noticeably.

Turbulent kinetic energy for single- and multiphase cases are depicted in Fig. 7.13. Based on

the definition of TKE (k = 1
2
(u′2x + u′2y + u′2z )) and Fig. 7.11, this quantity is mainly affected by

streamwise velocity fluctuations. Therefore, its peak point is shifted downward for particle-laden

cases. Again, the reduction for spheroidal particles is less than for spherical ones. Regions close

to the wall and channel center remain almost unchanged.
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Figure 7.13: Turbulent kinetic energy of the fluid based on the distance from the wall y+ for
turbulent flow laden with spheroidal (P1) and spherical (P2) particles at φ = 1.5%
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Figure 7.14: Local volume fraction of solid phase based on the distance from the wall for
turbulent flow laden with spheroidal (P1) and spherical (P2) particles

Particle statistics

Now particles distribution, orientation and velocity statistics are considered. To do so, each

Eulerian point, which is located inside a particle is treated with the relevant particle data such

as its translational or rotational velocity.

Local volume fraction of particles for two volume fractions of φ = 0.75 and 1.5% is shown in

Fig. 7.14. As clearly seen in Chapter 6, spherical particles have a local peak of distribution close

to the wall. The peak point corresponds to y+ = 26 for P2. For spheroids, there is no clear

local peak. Moreover, for both volume fractions, P2 has a higher volume fraction near the wall.

Particle P1, at φ = 0.75%, reaches a maximum volume fraction at y/H ' 0.2 before

decreasing toward channel center. At φ = 1.5%, this particle reaches its maximum and then
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from the wall y+ for turbulent flow laden with spheroidal (P1) and spherical (P2) particles for
φ = 1.5%

shows a quite uniform volume fraction beyond y/H = 0.2. This point corresponds to about

0.8lmaj with lmaj being particle major length (= 2a). This means that spheroidal particles do

not have a preferential concentration near the wall, when volume fraction is sufficiently high.

Spherical particles on the other hand stay mainly trapped close to the wall. Since the drag

on spherical particles can be larger than that of spheroids, spherical particles cannot easily

escape near wall streaks. Another factor that helps spheroids to move away from the wall is

their collision with the wall, that generates a torque on the particle leading to particle rotation

and changing near wall vortices.

Normalizing each profile of Fig. 7.14 by overall volume fraction, P1 at φ = 1.5% shows

φ(y)/φ ≈ 1 far from channel wall. For volume fraction of φ = 0.75%, we observe φ(y)/φ < 1

close to the channel center. Thus, particles tend to move toward channel center when increasing

volume fraction.

Figure 7.15 illustrates particles velocity in comparison with relevant fluid velocity for P1 and

P2 at φ = 1.5%. In the viscous sublayer and part of the buffer layer (y+ . 20), both particle

types move faster than the fluid. In this area, fluid velocity is low. Since particles have finite

size, part of the particles might be located in higher velocity regions. This results in higher

average velocity of particles compared to local fluid layers. Moreover, P1 moves faster than P2

in this region due to its lower projected area. It is later shown that spheroids tend to align

themselves in streamwise direction. Lower projected area and streamwise alignment lead to

higher velocity of spheroids. In the center region, fluid and particles have the same velocity.

Furthermore, it is seen that P1 always move faster than the fluid before reaching the same speed

in the center. In contrast, P2 tends to move slower than the fluid in 18 < y+ < 33. This can be

justified by the local maximum concentration of spheres around this limit, while spheroids have

no preferential concentration at φ = 1.5% (see Fig. 7.14). This effect is better seen in Fig. 7.16
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Figure 7.17: Profiles of rms of velocity fluctuations versus distance from the wall for φ = 1.5%;
(a) Spheroid (P1); (b) Spheric (P2)

where relative mean velocities are displayed and slip velocities are observed.

Figure 7.17 displays the rms of particle velocity fluctuations. Both P1 and P2 have generally

lower velocity fluctuations than the relevant fluid due to their finite size, except for a small region

very close to the wall. It is also observed by comparing Fig. 7.17a and b that spherical particles

have higher streamwise fluctuations than spheroids. Normal and spanwise velocity fluctuations

are less affected by particle shape. However, spheroids have higher wall-normal intensity near

the wall compared to spheres. This is probably due to stronger effect of particle-wall collisions

on spheroids.

Another important issue for spheroids is their orientation. Particle orientation has major

influence on particle-fluid interactions. This issue has been investigated in the literature for
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Figure 7.19: Angles between the major axis of the spheroid, x′, and the inertial axes

point-size prolate and oblate spheroids [186, 188, 192–194]. It is generally found that the

orientation of tracer and inertial spheroids is completely different near the wall. Tracer prolate

spheroids (fibers) orient with their symmetry axis in the streamwise direction, whereas the

symmetry axis of oblate spheroids (disks) align in the wall-normal direction. However, inertial

point fibers demonstrate tumbling motion with the symmetry axis in the wall-normal/streamwise

plane, while disks orient with their symmetry axis perpendicular to the wall-normal direction

[194]. Orientation of finite-size prolates needs investigation.

Figure 7.18 depicts the absolute mean direction cosines |cos θi| of P1 versus distance from the

wall for x, y and z directions based on the definitions of Fig. 7.19, where θi is the angle between

the symmetry axis of the spheroid and the relevant direction of the inertial reference frame. It

can be immediately seen that finite-size spheroids tend to be aligned with their symmetry axis

along streamwise direction, in particular close to the wall, where particles exhibit very strong

preferential orientation in the streamwise direction (x). Higher velocity fluctuations might be
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Figure 7.21: (a) Mean and (b) rms of angular velocity of spheroidal particles (P1) versus distance
from the wall for φ = 1.5%

responsible for particle alignment along x-direction [185, 195]. The peak point corresponds

θx = 41◦ for P1. The probability of particles being oriented in spanwise and wall-normal

directions is lower than in streamwise direction. Particle orientation along wall-normal direction

(y) is the least probable one except for a very narrow region in the vicinity of the wall due to

particle-wall collisions. Low values of |cos θy| means that spheroids are mainly confined in x-z

plane when they are near the walls. Orientation of spheroids in the spanwise direction (z) shows

a plateau after y+ ' 40.

In the core region, the orientations are more isotropic and random orientation is more

probable. This effect is due to higher isotropy of the flow field fluctuations in channel center.

However, the preferential orientation is still present, but is weaker. Alignment of finite-size

spheroids is qualitatively similar to inertial point particles as reported in [186, 188].
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(a) (b)

Figure 7.22: Iso-surfaces of Q-criterion at Q/(u4/ν2) = 0.006 for (a) single-phase and (b)
particle-laden flow with spheroids (P1) at φ = 1.5%

The probability density functions of the direction cosine of the particle orientation angle,

pdf(|cos θi|), is shown in Fig. 7.20. Solid lines are a 3rd-order curve fit. This figure confirms the

tendency of particles to be aligned in the streamwise direction. It is interesting to see that P1

has the same probability of alignment in all directions at |cos θ| ≈ 0.6 or θ = 53◦. Before this

point, pdf(|cos θy|) is higher than the two other directions. Beyond this point, the probability of

alignment along x-direction suddenly rises.

The mean and rms values of the absolute particle angular velocities are presented in

Fig. 7.21. The rotation rate in spanwise direction is higher than streamwise and normal

directions (Fig. 7.21a). This is mainly due to particle collisions with the walls and high shear

rates near the walls. The rotation velocities are quite isotropic far from the wall. High rotation

rate of P1 around z-direction together with particle alignment along x-direction implies that

tumbling is the most frequent rotation mode of P1 near the wall. At the same time, particle has

a kayaking rotation. Close to channel center, particle rotation is more complex and a unique

rotation mode cannot be identified. Rms of spanwise angular velocity is still higher than the

two other directions (Fig. 7.21b). The general behavior is similar to the mean component and

isotropy is observed at channel center.

The structure of vortices in particle-free and particle-laden flows is illustrated in Fig. 7.22.

Q-criterion is used to plot the iso-surfaces at Q/(u4/ν2) = 0.006. It is seen that, addition of

particles introduces many small-scale vortices.

7.5 Summary

IB-LBM has been used to simulate laminar and turbulent flows seeded with finite-size prolate

spheroids. With respect to laminar flows, different particle behaviors were observed concerning

rotation and sedimentation of particles. A turbulent channel flow at Reτ = 180 with spheroids

of aspect ratio of 2 has been modeled as well. Comparing the results with spherical particles it
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is found that:

• Finite-size spheroids have less drag enhancement effect compared to spheres. At volume

fraction of φ = 1.5%, spheroids reduced mean velocity by only 2% compared to 4.6% for

spheres with the same equivalent diameter.

• Streamwise turbulence attenuation occurs for both particle types. However, the effect is

more pronounced for spherical ones.

• Although spheres show a local peak of volume fraction near the wall, it is not clearly the

case for spheroids. Local volume fraction of spheroids increases gradually and reaches a

plateau at increasing distance from the wall.

• Spheroids are mainly aligned along the streamwise direction. This preferential orientation

is stronger close to the walls. Near channel center, particles show much less preferential

orientation.



Chapter 8

Conclusions and Outlook

8.1 Conclusion

Numerical simulation of multiphase flows is inherently complex and challenging. Most published

numerical studies are based on solving the Navier-Stokes equations. Lattice Boltzmann method

has emerged and developed during the last three decades as an efficient mesoscopic solver of

macroscopic phenomena. Despite recent advances in LBM, many questions are still unsolved.

Efficient LB-simulations of laminar and turbulent particulate flows need further investigation.

The current thesis aimed to extend LBM applications to new, complex and state of the art

test-cases. For this purpose, an efficient LB environment (ALBORZ) was developed during

this work. First, immersed boundary method was combined with LBM to model laminar

particulate flows. Both LBM and IBM are based on Eulerian grids; thus, their combination is

quite advantageous. The fluid phase is discretized on an Eulerian frame, while particle motion

is modeled based on the Lagrangian approach. For laminar particulate flows, different particle

shapes (circle, ellipse, sphere and spheroid) can be modeled by the current code. A thorough

validation involved a variety of configurations.

Then, non-isothermal flows were modeled. In this case, heat transfer to/from particles

happen. Heat exchange is modeled in a similar way as particle-fluid force interaction, by the

so-called direct-heating approach. The effect of temperature variation on the flow field was taken

into account through the Boussinesq approximation. Simulation for stationary and moving

particles as well as constant and variable particle temperatures was performed; leading to the

first 3D thermal IB-LBM simulation of particulate flows. Catalyst reactors and reactive fluidized

beds are possible applications for future studies.

LB simulations of hydrodynamics in porous media have been carried out to predict the

permeability value at low Reynolds numbers. Permeability is the measure of flow velocity with

respect to applied pressure gradient in porous media. Modeled test cases include FCC and BCC

packings. Two force schemes with single- or multiple relaxation times have been compared. It

was shown that low resolutions lead to large errors in permeability. Moreover, for a fixed domain

size, the predicted permeability increased with the relaxation time for all approaches. Guo-MRT

showed low dependency on relaxation time, thus delivering a more robust estimate. However, it

119
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is also the approach leading to the longest simulations. Finally, it was shown that permeability

of both BCC and FCC structures follow similar trends when plotted against porosity, while

tortuosities behave differently. A correlation was derived to predict the permeability in such

structures when knowing porosity values.

The central aspect investigated in this work is the numerical simulation of turbulent

particulate flows. The core configuration is a particle-laden flow between two parallel walls. After

validation of the single-phase case, the flow was first seeded with fully-resolved spherical particles.

Effect of particle concentration, size and density have been investigated. It was observed that,

addition of fully resolved spheres decreased mean velocity compared to the single-phase flow.

Also, rms of streamwise velocity fluctuations was overall attenuated by addition of particles, but

it is increased in the region close to the wall and in the core zone. It is interesting to observe

a point of local accumulation of particles near the wall. Finally, smaller neutrally-buoyant

particles reduced the mean velocity more than larger ones at the same concentration, while

heavy particles generated non-symmetrical distributions in the upper and lower part of the

channel.

Finally, laminar and turbulent flows with finite-size spheroids have been simulated. In the

laminar regime, particles showed different sedimentation modes when released in a vertical

channel. Then, a turbulent particle-laden flow with spheroids of aspect ratio of 2 was computed.

Finite-size spheroids have less drag enhancement effect compared to spheres. Streamwise

turbulence attenuation occurred for spheroids as well. However, the effect was more pronounced

for spherical ones. In contrast to spheres, spheroids did not show a clear local maximum

concentration close to the wall; their local volume fraction increases gradually and reaches a

plateau when increasing distance from the wall. Finally, spheroids were mainly aligned along the

streamwise direction; the preferential orientation is even stronger close to the walls. Tumbling

and kayaking motion were the most probable modes of particle rotation.

8.2 Highlights

Main novelties of current thesis can be summarized as:

• Development of a new LBM tool (ALBORZ) from scratch, that can accurately handle

different laminar and turbulent two-phase flows;

• Using LBM to simulate the motion of circular, elliptical, spherical and spheroidal particles

in laminar flows;

• Developing a non-isothermal LBM tool to model the motion of fully-resolved particles by

considering complete particle-particle and particle-fluid interactions;

• Immersed boundary-lattice Boltzmann (IB-LB) simulation of turbulent particle-laden

pressure-driven flows for spherical particles;

• First LBM computation of finite-size prolate spheroids in turbulent flows;
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8.3 Outlook and recommendations

In future works, several developments can be carried out to extend applications of IB-LBM for

particulate and multiphase flows. For:

Turbulent particulate flows:

• Test spheroidal and cylindrical particles of large aspect ratio and compare their influence

on turbulent flow field. This, however, requires a fine enough resolution to capture the

flow field. This would finally open the door to drag reduction studies;

• Use LES to reduce the computational cost of particulate flow simulations. In this manner,

high Reynolds number regimes will be accessible which might change the nature of the

interactions;

Laminar non-isothermal flows:

• Develop a method to account for non-uniform temperature distribution inside the particles,

as found for non-negligible Biot numbers;

• Extend the non-isothermal applications to conduction in solid phase, which is relevant for

conjugate heat transfer applications;

• Develop the model toward high Prandtl number regimes;

Laminar porous media flows:

• Extend the current code to account for curvature of solid boundaries, using relevant LBM

curved-boundary treatments;

• Model heat transfer to/from solid surface, opening the door for modeling drying and

evaporation phenomena.
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Appendix A

Chapman-Enskog Expansion

Let us consider the SRT-LBM equation governed by

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −1

τ
[fi(x, t)− f eqi (x, t)] , (A.1)

with the equilibrium distribution function given by a Maxwellian one in order to recover the

Navier-Stokes equation:

f eqi = ωiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− |u|
2

2c2
s

]
. (A.2)

The left-hand side of Eq. (A.1) can be expanded by a second-order Taylor series as follows:

fi(x+ ci, t+ 1) = fi(x, t) + (∂t +∇ · ci) fi +
1

2

(
∂2
t + 2∂t∇ · ci +∇∇ : cici

)
fi (A.3)

In the next step, the time scale of different physical phenomena should be separated.

∂t = ε∂t1 + ε2∂t2 +O(ε3) (A.4)

The space derivative is expanded in the same manner:

∇ = ε∇1 + ε2∇2 +O(ε3) (A.5)

The particle distribution functions are also expanded, starting with a zeroth order. It means

that the non-equilibrium part of the distribution function is considered as small perturbation

from equilibrium state, with the scale of Knudsen number (O(ε)).

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3) (A.6)

where f (0) is the equilibrium distribution function. According to Latt [196], the ε is the Knudsen

number and as a result of truncated multi-scale expansion, the LB equation is only valid

for a continuum phase (low Kn numbers). The expansion up to second order satisfies the
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Navier-Stokes equation. However, making the expansion up to higher orders can recover the

Burnett equation. By replacing Eqs. (A.3)-(A.6) into Eq. (A.1) we would have

(
ε∂t1 + ε2∂t2 + ε∇1 · ci + ε2∇2 · ci

) (
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
+

1

2

(
ε∂t1 + ε2∂t2

) (
ε∂t1 + ε2∂t2

) (
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
+

1

2

(
2
(
ε∂t1 + ε2∂t2

) (
ε∇1 · ci + ε2∇2 · ci

)) (
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
+
(
ε∇1 · ci + ε2∇2 · ci

) (
ε∇1 · ci + ε2∇2 · ci

) (
f

(0)
i + εf

(1)
i + ε2f

(2)
i

)
= −1

τ

(
εf

(1)
i + ε2f

(2)
i

)
(A.7)

Keeping only the terms up to second order and equating the terms with the same power of ε

leads to the following equation

ε (∂t1 +∇1 · ci) f (0)
i = −1

τ
εf

(1)
i (A.8)

Similar approach holds for the terms with ε2 coefficient

ε2
(

(∂t1 +∇1 · ci) f (1)
i + (∂t2 +∇2 · ci) f (0)

i +
1

2

(
∂2
t1 + 2∂t1∇1 · ci +∇1∇1 : cici

)
f

(0)
i

)
= −ε

2f
(2)
i

τ
(A.9)

The moments of Eqs. (A.8) and (A.9) now need to be calculated with the following properties

based on the selected equilibrium distribution of Eq. (A.2).∑
i

f
(0)
i = ρ (A.10)∑

i

cif
(0)
i = ρu (A.11)∑

i

cicif
(0)
i = Π(0) + ρc2

sI (A.12)∑
i

f
(m)
i = 0 for m 6= 0 (A.13)∑

i

cif
(m)
i = 0 for m 6= 0 (A.14)

Mass conservation: Now computing the zeroth moment of Eq. (A.8):

∂t1
∑
i

f
(0)
i +∇1 ·

∑
i

cif
(0)
i = −1

τ

∑
i

f
(1)
i (A.15)

⇒ ∂t1ρ+∇1 · (ρu) = 0 (A.16)
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Then we compute the zeroth moment of Eq. (A.9). To do so, it should be noted that the zeroth

moment of the third parenthesis on the LHS of Eq. (A.9) is equal to zero because(
∂2
t + 2∂t∇ · ci +∇∇ : cici

)∑
i

f
(0)
i = (∂t1 +∇1 · ci) (∂t1 +∇1 · ci)

∑
i

f
(0)
i

A.15
==⇒

(
∂2
t + 2∂t∇ · ci +∇∇ : cici

)∑
i

f
(0)
i = −1

τ
(∂t1 +∇1 · ci)

∑
i

f
(1)
i

A.13
= 0 (A.17)

Then we have

∂t1
∑
i

f
(1)
i +∇1 ·

∑
i

cif
(1)
i + ∂t2

∑
i

f
(0)
i +∇2 ·

∑
i

cif
(0)
i + 0 = −1

τ

∑
i

f
(2)
i (A.18)

The first two terms on the LHS of above equation and the RHS are zero (see Eqs. (A.13),

(A.14)). Based on this, above equation can be simplified as

∂t2ρ+∇2 · (ρu) = 0 (A.19)

In the final step, Eqs. (A.16) and (A.19) are multiplied by ε and ε2, respectively, and are summed

up to recover the continuity equation:

∂tρ+∇ · (ρu) = 0 (A.20)

Momentum conservation: In order to recover the Navier-Stokes equation, the first-order

moments are required. The first-order moment of Eq. (A.8) is calculated as:

∂t1
∑
i

cif
(0)
i +∇1 ·

∑
i

cicif
(0)
i = −1

τ

∑
i

cif
(1)
i = 0 (A.21)

⇒ ∂t1(ρu) +∇1 ·
∑
i

cicif
(0)
i = 0 (A.22)

⇒ ∂t1(ρu) +∇1 ·
(
Π(0) + ρc2

sI
)

= 0 (A.23)

Equation (A.23) is the well-known Euler equation. The first-order moment of Eq. (A.9) is

calculated as well:

(∂t1 +∇1 · ci)
∑
i

cif
(1)
i + (∂t2 +∇2 · ci)

∑
i

cif
(0)
i

+
1

2

(
∂2
t1 + 2∂t1∇1 · ci +∇1∇1 : cici

)∑
i

cif
(0)
i = −1

τ

∑
i

cif
(2)
i

(A.24)

Similar to what was observed before and by using Eqs. (A.8) and (A.14) the third parenthesis
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of the LHS is calculated

1

2

(
∂2
t1 + 2∂t1∇1 · ci +∇1∇1 : cici

)∑
i

cif
(0)
i =

1

2
(∂t1 +∇1 · ci) (∂t1 +∇1 · ci)

∑
i

cif
(0)
i

=
−1

2τ
(∂t1 +∇1 · ci)

∑
i

cif
(1)
i = 0− 1

2τ
∇1 ·

∑
i

cicif
(1)
i (A.25)

Therefore,

∂t1
∑
i

cif
(1)
i +∇1 ·

∑
i

cicif
(1)
i +∂t2

∑
i

cif
(0)
i +∇2 ·

∑
i

cicif
(0)
i −

1

2τ
∇1 ·

∑
i

cicif
(1)
i = 0 (A.26)

Above equation is further simplified as:

0 +

(
1− 1

2τ

)
∇1 ·

∑
i

cicif
(1)
i + ∂t2(ρu) +∇2 ·

(
Π(0) + ρc2

sI
)

= 0 (A.27)

The second-order moment of f
(1)
i in Eq. (A.27) is calculated from the second-order moment of

Eq. (A.8):

∂t1
∑
i

cicif
(0)
i +∇1 ·

∑
i

cicicif
(0)
i = −1

τ

∑
i

cicif
(1)
i (A.28)

⇒ ∂t1(Π(0) + ρc2
sI) +∇1 ·

∑
i

cicicif
(0)
i = −1

τ

∑
i

cicif
(1)
i (A.29)

Based on the Eq. (A.16):

∂t1ρ = −∇1 · (ρu) (A.30)

By replacing Eq. (A.30) in Eq. (A.29):

∑
i

cicif
(1)
i = −τ

(
∂t1Π

(0) −∇1 · (ρu)c2
sI +∇1 ·

∑
i

cicicif
(0)
i

)
(A.31)

Now, the term with time derivative in Eq. (A.31) can be converted to a space derivative by:

∂t1Π
(0) = ∂tρuiuj = ui∂tρuj + uj∂tρui − uiuj∂tρ

A.23
= −ui

∂

∂xk

(
ρc2

sδjk + ρujuk
)
− uj

∂

∂xk

(
ρc2

sδik + ρuiuk
)

+ uiuj
∂(ρuk)

xk

= −uic2
s

∂ρ

∂xj
− ujc2

s

∂ρ

∂xi
− ui

(ρujuk)

xk
− uj

(ρuiuk)

xk
+ uiuj

∂(ρuk)

xk

= −uic2
s

∂ρ

∂xj
− ujc2

s

∂ρ

∂xi
− (ρuiujuk)

∂xk
,

(A.32)
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and for the last term on the RHS of Eq. (A.31)

∇1 ·
∑
i

cicicif
(0)
i =

∂

∂xk

∑
α

cicjckf
(0)
α =

∂

∂xk

[
ρc2

s (δijuk + δikuj + δjkui)
]

= c2
sδij

∂(ρuk)

∂xk
+ ujc

2
s

∂ρ

∂xi
+ c2

sρ
∂uj
∂xi

+ uic
2
s

∂ρ

∂xj
+ c2

sρ
∂ui
∂xj

.

(A.33)

Substituting Eqs. (A.33) and (A.32) into Eq. (A.31), we get:

∑
cicjf

(1)
i = −τ

[
ρc2

s

(
∂uj
∂xi

+
∂ui
∂xj

)
− ∂

∂xk
(ρuiujuk)

]
. (A.34)

and then replacing Eq. (A.34) in Eq. (A.27) and combining the resulting equation with Eq. (A.23)

we have:

∂t(ρu) +∇ ·
(
Π(0) + ρc2

sI
)

=

(
1− 1

2τ

)
τc2

s∇ ·
(
ρ∇u+ ρ∇uT

)
+O(Ma2) (A.35)

We rearrange the equation in the final form:

∂t(ρu) +∇ · (ρuu) = −∇ · (ρc2
sI) +

(
1− 1

2τ

)
τc2

s∇ ·
(
ρ∇u+ ρ∇uT

)
+O(Ma2) (A.36)

Above equation is similar to Navier-Stokes equation if density variations are small and if we

choose

ν = (τ − 0.5)c2
s∆t (A.37)
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