
Simulative Analysis of Coloured
Extended Stochastic Petri Nets

Von der Fakultät für MINT - Mathematik, Informatik, Physik,
Elektro- und Informationstechnik

der Brandenburgischen Technischen Universität
Cottbus–Senftenberg

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

Diplominformatiker

Christian Rohr
geboren am 07.01.1979 in Altdöbern

Gutachter: Prof. Dr.-Ing. Monika Heiner
Gutachter: Prof. Dr. rer. nat. Wolfgang Marwan
Gutachter: Prof. Dr. David Gilbert
Tag der mündlichen Prüfung: 10.01.2017

Thanks to all who made it possible.

Zusammenfassung
Stochastische Modellierung von biochemischen Reaktionsnetzwerken wird im-
mer populärer. Im Laufe der letzten Jahrzehnte hat sich sowohl die Größe als
auch die Komplexität typischer biologischer Modelle immer weiter erhöht, der
Grund dafür sind die Fortschritte in System- und Molekularbiologie, insbeson-
dere durch die Hochdurchsatz-Technologien. Hier werden biochemische Netz-
werke unterschiedlicher Detailebenen modelliert, beginnend mit einfachen che-
mischen Reaktionen und Signaltransduktionsnetzwerken, bis zu einzelnen Zel-
len und ganzen Organismen. Ein zweiter Bereich von Interesse ist die Entwick-
lung von zuverlässigen Hard- und Softwaresystemen, die zunehmend an Be-
deutung in unserer hochtechnisierten Gesellschaft gewinnen, weil IT-Systeme
heute in allen Bereichen eingesetzt werden. Validierung und Zuverlässigkeitsbe-
wertung des Systems sollte bereits in der Planungsphase durchgeführt werden,
wenn es sich um kritische Systeme wie in der Medizin, Automobilindustrie oder
der Kontrolle von Industrieanlagen handelt, um sicherzustellen, dass definierte
Toleranzen eingehalten werden oder keine ungültigen Systemzustände erreicht
werden können. Dadurch erhöht sich die Nachfrage nach leistungsfähigen Ana-
lyseverfahren. Eine Modellierungsumgebung basierend auf Petri-Netzen ist in
der Lage, alle diese Szenarien zu bedienen.
Ein Petri-Netz ist eine mathematische Modellierungssprache für die Beschrei-
bung des nebenläufigen Verhaltens von verteilten Systemen. Ein Vorteil ist
die einfache Skalierbarkeit der Modelle sowohl in Bezug auf die Struktur des
Netzes als auch auf ihren Zustandsraum. Um die Zuverlässigkeit des Modells
und damit des modellierten Systems sicherzustellen ist es notwendig, mehre-
re Analysen durchzuführen. Es gibt etablierte Methoden zur qualitativen und
quantitativen Analyse von Petri-Netzen. Zu den qualitativen Analysen zäh-
len die Berechnung von Invarianten, und wenn möglich, die Erzeugung des
Erreichbarkeitsgraphen. Mit Hilfe dessen die temporalen Logiken Computa-
tion Tree Logic (CTL) oder Linear-time Temporal Logic (LTL) angewendet
werden können, beispielsweise um die Erreichbarkeit bestimmter Zustände zu
gewährleisten. All dies geschieht jedoch unabhängig von der Zeit. So kann
man nur Aussagen machen, ob ein Ereignis eintritt oder nicht. Aber man kann
nicht sagen, wie wahrscheinlich es ist. Dieser Aspekt wurde mit der Einfüh-
rung von Zeit in den stochastischen Petri-Netzen berücksichtigt. Jetzt können

Wahrscheinlichkeiten für das Auftreten von bestimmten Ereignissen oder die
Erreichbarkeit von Zuständen bestimmt werden. Numerische Methoden, die
den gesamten Zustandsraum des Petri-Netzes in Betracht ziehen, stehen für
diese quantitative Analyse zur Verfügung. Ein begrenzter Zustandsraum mit
bis zu 1 × 109 Zuständen (nach aktuellem Stand der Speichertechnologie) ist
eine Voraussetzung dafür. Systeme mit mehr Zuständen oder sogar unbegrenz-
tem Zustandsraum können numerisch nicht innerhalb einer angemessenen Zeit
analysiert werden. An diesem Punkt kann eine Analyse nur durch stochastische
Simulationsalgorithmen durchgeführt werden.

In dieser Arbeit stellen wir verschiedene stochastische Simulationsalgorithmen
vor, sowohl exakte wie auch approximative Verfahren. Darüber hinaus stellen
wir einen Ansatz vor, um die Effizienz der stochastischen Simulation für große
und dichte Netzwerke durch einen neuen approximativen stochastischen Si-
mulation Algorithmus, genannt discrete-time leap method, zu verbessern. Wir
zeigen das breite Spektrum der simulativen Analysen komplexer stochasti-
scher Systeme von der Pfaderzeugung bis zur Berechnung von transienten
Lösungen und stationärer Verteilungen. Wir legen erweiterte Analysen von
stochastischen Modellen mit Hilfe von simulativer Modellprüfung dar. Wir
integrieren die Continuous Stochastic (Reward) Logic (CS(R)L) und die Pro-
babilistic Linear-time Temporal Logic with contraints (PLTLc) für die simu-
lative Modellprüfung. Simulative Modellprüfung hat einige Einschränkungen
im Vergleich zu den numerischen Methoden, so ist es im Prinzip möglich, ver-
schachtelte probabilistische Formeln in CS(R)L zu betrachten, aber es ist nicht
praktikabel, da die Berechnung in einer angemessenen Zeitspanne nicht mög-
lich ist. Neben der Transientenanalyse ist oftmals die Analyse der stätionären
Verteilung von Interesse, deshalb haben wir zwei Methoden zur Erkennung
des stationären Zustandes implementiert. Die erste basiert auf einem “sample
batch means” Algorithmus und wird in der linearen temporalen Logik verwen-
det. Die zweite approximiert die stationäre Verteilung und prüft auf Konver-
genz. Wir wenden die oben genannten Techniken auf mehrere Fallstudien aus
Systembiologie und technischen Systemen an.

Der größte Beitrag dieser Arbeit zum aktuellen Stand von Wissenschaft und
Technick liegt in der Entwicklung der discrete-time leap method zur Simulation
stochastischer Modelle, der Approximationen transienter Lösungen und statio-

närer Verteilungen mittels stochastischer Simulation für stochastische Modelle
und Markov-Rewardmodelle, der Entwicklung eines nicht zeitbeschränkten Al-
gorithmus zur simulativen Modellprüfung, der die stationäre Eigenschaft für
PLTLc und CSL ausnutzt, und des ersten Algorithmus zur simulativen Mo-
dellprüfung für CSRL, der Zustands- und Impulsrewards enthält. Alle vor-
gestellten Algorithmen und Methoden sind in dem Analyse-Tool MARCIE
implementiert.

Schlagwörter: gefärbte erweiterte stochastische Petri Netze, stochastische Si-
mulation, δ-leaping, simulatives Modelchecking

Abstract
Stochastic modelling of biochemical reaction networks is getting more and more
popular. Throughout the past decades typical biological models increased
in their size and complexity, because of advances in systems and molecular
biology, in particular through the high-throughput omic technologies. Here
biochemical networks of different levels of detail are modelled, starting with
simple chemical reactions and signal transduction networks, up to individual
cells and entire organisms. A second area of interest is the design of reliable
hardware and software systems, which is becoming increasingly important in
our highly technological society, because IT systems are now used in all areas.
Validation and reliability assessment of the system should be done already in
the design phase, if it is too critical systems such as in medicine, the automotive
industry or the control of industrial plants, in order to ensure that defined
tolerances are met or no invalid system states can be reached. This increases
the demand for efficient analysis methods. A modelling framework based on
Petri nets is able to serve all of these scenarios.
A Petri net is a mathematical modelling language for the description of concur-
rent behaviour of distributed systems. Its advantage is the ease of scalability
of the models, which relates to the network’s state space, as well as the struc-
ture of the network itself. To ensure the reliability of the model and therefore
of the modelled system, it is necessary to perform several analyses. There
are established methods for qualitative and quantitative analysis of Petri nets.
The qualitative analyses include the calculation of invariants, and if possible
the generation of the reachability graph, by means of which temporal logics
such as computation tree logic (CTL) or linear-time temporal logic (LTL) can
be applied, for example, to ensure reachability of certain states. All of this
happens, however, independent of time. So one can only make statements if
an event occurs or not. But one can not say how likely it occurs. With the
introduction of time in the stochastic Petri nets this aspect was taken into
account. Now, probabilities can be determined for the occurrence of certain
events or the reachability of states. Numerical methods, which consider the
entire state space of the Petri net, are available for this quantitative analysis.
A bounded state space with up to 1×109 states (the state of the current mem-
ory technology) is a prerequisite for this. Systems with more states, or even

unbounded state space can not be analysed numerically within a reasonable
amount of time. At this point, an analysis can only be carried out by means
of stochastic simulation algorithms.
In this work, we recall several stochastic simulation algorithms, e.g., exact as
well as approximate methods. Furthermore, we introduce an approach to im-
prove the efficiency of stochastic simulation for large and dense networks by
a new approximate stochastic simulation algorithm called discrete-time leap
method. We depict the wide range of simulative analyses of complex stochas-
tic systems ranging from trace generation to the computation of transient
solutions and steady state distributions. We set forth advanced analysis of
stochastic models by means of simulative model checking. For the use of sim-
ulative model checking, we integrate the continuous stochastic (reward) logic
(CS(R)L) and the probabilistic linear-time temporal logic with constraints
(PLTLc). Simulative model checking has some limitations compared to the
numerical methods, e.g., in principle it is possible to consider nested prob-
abilistic formulas in CS(R)L, but not practical, since the calculation is not
feasible in a reasonable period of time. In addition to the transient analysis,
the steady state analysis is often of interest, therefore we have implemented
two on-the-fly steady state detection methods. The first one is based on a
“sample batch means” algorithm and is used in the linear-time temporal logic.
The second approximates the steady state distribution and checks for conver-
gence. We apply the aforementioned techniques to several case studies from
systems biology and technical systems.
The main contributions of this thesis to scientific knowledge are the develop-
ment of the discrete-time leap method for the simulation of stochastic models,
the approximations of transient solutions and steady state distributions by use
of stochastic simulation for stochastic models and Markov reward models, the
development of an infinite time horizon model checking algorithm exploiting
the steady state property for PLTLc and CSL, and the first simulative model
checking algorithm for CSRL incorporating state and impulse rewards. All
presented algorithms and methods are implemented in the advanced analysis
tool MARCIE.

Keywords: coloured eXtended Stochastic Petri Nets, stochastic simulation,
δ-leaping, simulative model checking

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Petri Net . 7
2.2 Reachability Graph . 12
2.3 Extended Petri Net . 13
2.4 Marking-dependent Extended Petri Net 16
2.5 Stochastic Petri Net . 19
2.6 Continuous-Time Markov Chain 21
2.7 Generalised Stochastic Petri Net 22
2.8 Extended Stochastic Petri Net 24
2.9 Coloured Petri Net . 26
2.10 Closing Remarks . 27

3 Stochastic Simulation 29
3.1 Stochastic Simulation Algorithm 30
3.2 Direct Method . 33
3.3 Optimised Direct Method . 35
3.4 First Reaction Method . 38
3.5 Next Reaction Method . 39
3.6 Tau-Leaping Method . 39
3.7 Discrete-Time Leap Method . 41

3.7.1 Transition firing . 42
3.7.2 Dependent Subnets . 45
3.7.3 Algorithm . 47
3.7.4 Caveat . 48

i

3.8 Extensions . 49
3.8.1 Immediate Transitions 50
3.8.2 Deterministic and Scheduled Transitions 51

3.9 Random Number Generation . 53
3.10 Closing Remarks . 54

4 Simulative Analysis 57
4.1 Trace Generation . 58
4.2 Transient Solutions . 61
4.3 Steady State Distribution . 65
4.4 Observers . 69
4.5 Closing Remarks . 72

5 Simulative Model Checking 73
5.1 Simulative PLTLc Model Checking 74

5.1.1 Time-bounded Formula 76
5.1.2 Time-unbounded Formula 78
5.1.3 Steady State Operator 82

5.2 Simulative CSL Model Checking 84
5.2.1 Nested Probabilistic Operator 87
5.2.2 Time-bounded Formula 87
5.2.3 Time-unbounded Formula 89
5.2.4 Steady State Operator 91

5.3 Simulative Reward Computation 92
5.4 Simulative CSRL Model Checking 97
5.5 Closing Remarks . 100

6 Case Studies 101
6.1 RKIP inhibited ERK pathway 102
6.2 Mitogen-activated Protein Kinase 106
6.3 Angiogenesis . 111
6.4 Simplified Repressilator . 115
6.5 E.coli K-12 Metabolic model . 118

6.5.1 Reduced E.coli K-12 Metabolic model 118
6.5.2 E.coli K-12 Genome Scale Metabolic model 120

6.6 Flexible Manufacturing System 121
6.7 Cyclic Server Polling System . 125
6.8 Closing Remarks . 131

7 Conclusions and Outlook 133
7.1 Conclusions . 133
7.2 Outlook . 136

A Appendix 139
A.1 ANDL Syntax of RKIP inhibited ERK pathway 139
A.2 ANDL Syntax of Mitogen-activated Protein Kinase 141
A.3 ANDL Syntax of Angiogenesis 145
A.4 CANDL Syntax of Repressilator 152
A.5 CANDL Syntax of Flexible Manufacturing System 153
A.6 CANDL Syntax of Cyclic Server Polling System 156

Bibliography 159

List of Figures

2.1 Elements of a Petri net. 10
2.2 Producer & Consumer as PN 10
2.3 Reachability graph of Example 1 13
2.4 Additional arc types of an extended Petri net. 15
2.5 Producer & Consumer as XPN 16
2.6 Reachability Graph of Producer & Consumer XPN 16
2.7 Producer & Consumer as MXPN 19
2.8 Reachability Graph of Producer & Consumer MXPN 19
2.9 Additional elements of an extended stochastic Petri net. 26
2.10 Overview of net classes defined in this section, with the exten-

sions leading from one net class to the other. 28

3.1 Averaged number of tokens of Example 6 with B = 1 and m0 =
(0, 1, 0, 1, 0, 1) after 10 000 simulation runs. 33

3.2 First order reaction: P1→ P2 44
3.3 Second order reaction: P1 + P2→ P3 44
3.4 Conflict: P1→ P2 and P1→ P3 45
3.5 Sequence: P1→ P2→ P3 . 46
3.6 Simplified birth-death process, it shows the results for different

rate constants of T2, i.e., cT2 = 1 (blue) and cT2 = 0.5 (green) . 48

4.1 Mean and standard deviation over time of Example 6 with B =
1 and m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs. 60

4.2 Averaged number of transition firings of Example 6 with B = 1
and m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs. 61

4.3 Transient solutions up to τ = 100 of Example 6 with B = 1 and
m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs. 65

v

4.4 Averaged waiting time for consumer to receive a token up to
τ = 100 of Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1)
after 10 000 simulation runs. 72

5.1 Stochastic Petri net demonstrating the issue of not terminating
verification of time-unbounded until formulas. 80

6.1 Stochastic Petri net of the RKIP inhibited ERK pathway, in-
cluding textual representation of the chemical reactions [HDG10].
. 103

6.2 SPNERK with N = 100 and 1 000 000 simulation runs 104
6.3 Transient analysis for different initial markings N of SPNERK .

The total run-time is given for several number of workers. 105
6.4 Steady state analysis for different initial markingsN of SPNERK .

The total run-time is given for different numbers of workers. . . 106
6.5 Stochastic Petri net of the mitogen-activated protein kinase [HGD08].

. 107
6.6 SPNMAP K with N = 100 and 1 000 000 simulation runs 108
6.7 Transient analysis up to time point τ = 1 for different initial

markings N of SPNMAP K . The total run-time is given for
several number of worker threads after 6 634 234 simulation runs. 110

6.8 Steady state analysis for different initial markingsN of SPNMAP K .
The total run-time is given for different numbers of workers after
128 simulation runs. 110

6.9 Stochastic Petri net of the angiogenesis process [Nap+09]. . . . 112
6.10 Transient analysis for different initial markings N of SPNANG.

The total run-time is given for several number of workers. 113
6.11 Steady state analysis for different initial markingsN of SPNANG.

The total run-time is given for different numbers of workers. . . 114
6.12 Coloured Stochastic Petri Net of the simplified Repressilator. . . 115
6.13 Stochastic simulations of the simplified repressilator for 1 copy,

1000 copies per gene and for 1, 1000 simulation runs. 116
6.14 Probabilities of the value ranges on the places pi up to time

point τ = 10 000. 117

6.15 Steady state probability distribution of the number of tokens on
place p1. 117

6.16 Petri net (a) and connectivity (b) of the reduced E.coli K-12
core model. 119

6.17 E.coli core with N = 1000 and 1 000 000 simulation runs 119
6.18 Petri net (a) and connectivity (b) of the E.coli K-12 genome

scale metabolic model. 120
6.19 E.coli K-12 with N = 100 and 100 000 simulation runs 121
6.20 Coloured Stochastic Petri net of the flexible manufacturing sys-

tem. 123
6.21 Transient analysis up to time point τ = 1 for different number of

items N of GSPN F MS. The total run-time is given for several
number of workers after 6 634 234 simulation runs. 124

6.22 Steady state analysis for different number of itemsN of GSPN F MS.
The total run-time is given for different numbers of workers after
128 simulation runs. 125

6.23 Coloured Stochastic Petri Net of the Cyclic Server Polling System.126
6.24 Transient analysis up to time point τ = 10 for different number

of stations N of SPN C
CSP S. The total run-time is given for

several number of workers after 6 634 234 simulation runs. 128
6.25 Steady state analysis for different number of stationsN of SPN C

CSP S.
The total run-time is given for different numbers of workers after
128 simulation runs. 129

6.26 Reward analysis for different number of stationsN of SPN C
CSP S.

The total run-time is given for different numbers of workers after
6 634 234 simulation runs. 130

6.27 Performability analysis for different number of stations N of
SPN C

CSP S. The total run-time is given for different numbers
of workers after 6 634 234 simulation runs. 131

7.1 The peak memory consumption is given for transient analysis
up to different time points τ for N = 10 stations of SPN C

CSP S

using simulative CSL and PLTLc model checking. 135

List of Tables

2.1 The rate functions and parameters of the „Producer & Con-
sumer” SPN . 21

6.1 The size of the state space for different initial markings of SPNERK

computed with MARCIE’s symbolic state space generation. . . 102

6.2 Comparison of run-times for the direct method and δ-leaping.
SPNERK was parametrised withN and simulated with 1 000 000
simulation runs. 104

6.3 Steady state analysis for different initial markingsN of SPNERK .
The probability Pr is computed by the numerical engine and the
confidence interval CI by the simulative engine. 105

6.4 The size of the state space for different initial markings of SPNMAP K

computed with MARCIE’s symbolic state space generation. . . 106

6.5 Comparison of run-times for the direct method and δ-leaping.
SPNMAP K was parametrised withN and simulated with 1 000 000
simulation runs. 108

6.6 Transient analysis up to time point τ = 1 for different number
of stations N of SPNMAP K . The probability Pr is computed
by the numerical engine and the confidence interval CI by the
simulative engine after 6 634 234 simulation runs. 109

6.7 Steady state analysis for different number of stationsN of SPNMAP K .
The probability Pr is computed by the numerical engine and the
confidence interval CI by the simulative engine after 128 simu-
lation runs. 111

ix

6.8 The size of the state space for different initial markings of SPNANG

computed with MARCIE’s symbolic state space generation. The
places Akt, DAG, Gab1, KdStar, Pip2, P3k, Pg and Pten

carry initially N tokens. 111

6.9 Transient analysis for different initial markings N of SPNANG.
The probability Pr is computed by the numerical engine and
the confidence interval CI by the simulative engine. 113

6.10 Steady state analysis for different initial markingsN of SPNANG.
The probability Pr is computed by the numerical engine and the
confidence interval CI by the simulative engine. 114

6.11 Comparison of run-times for the direct method (a) and δ-leaping
(b). SPNCORE was parametrised with N and simulated with
several number of simulation runs. † is placed, if the simulation
did not finish in reasonable time (>40 days). 119

6.12 Comparison of run-times for the direct method (a) and δ-leaping
(b). SPNECOLI was parametrised with N and simulated with
several number of simulation runs. † is placed, if the simulation
did not finish in reasonable time (>40 days). 121

6.13 The size of the state space for different initial markings of GSPN F MS

computed with MARCIE’s symbolic state space generation. . . 122

6.14 Transient analysis up to time point τ = 1 for different number
of items N of GSPN F MS. The probability Pr is computed
by the numerical engine and the confidence interval CI by the
simulative engine after 6 634 234 simulation runs. 122

6.15 Steady state analysis for different number of itemsN of GSPN F MS.
The probability Pr is computed by the numerical engine and the
confidence interval CI by the simulative engine after 128 simu-
lation runs. 124

6.16 The size of the state space for different number of stations N
of SPN C

CSP S computed with MARCIE’s symbolic state space
generation. 127

6.17 Transient analysis up to time point τ = 10 for different number
of stations N of SPN C

CSP S. The probability Pr is computed
by the numerical engine and the confidence interval CI by the
simulative engine after 6 634 234 simulation runs. 127

6.18 Steady state analysis for different number of stationsN of SPN C
CSP S.

The probability Pr is computed by the numerical engine and the
confidence interval CI by the simulative engine after 128 simu-
lation runs. 128

6.19 Reward analysis for different number of stationsN of SPN C
CSP S.

The expected reward value R is computed by the numerical en-
gine and the confidence interval CI by the simulative engine
after 6 634 234 simulation runs. 129

6.20 Performability analysis for different number of stations N of
SPN C

CSP S. The probability Pr is computed by the numerical
engine and the confidence interval CI by the simulative engine
after 6 634 234 simulation runs. 130

List of Algorithms

1 Generic stochastic simulation algorithm 32
2 Direct method . 34
3 Optimised direct method using 2D - search 37
4 First reaction method . 38
5 Next reaction method . 40
6 Weighted random shuffle . 46
7 δ-leaping algorithm . 47
8 Check immediate transitions . 50
9 Check deterministic and scheduled transitions 52
10 Evaluate time-bounded formula 79
11 Evaluate time-unbounded formula 81
12 Steady state computation for one simulation run 84
13 Evaluate time-bounded path formula 88
14 Evaluate state formula . 89
15 Evaluate time-unbounded path formula 90
16 Steady state computation for one simulation run 92
17 Evaluate reward formula . 96
18 Evaluate time-bounded reward path formula 99

xiii

Chapter 1

Introduction

The traditional approach to investigate the time evolution of biochemical re-
action networks is by solving a set of coupled ordinary differential equations.
One equation per species; each equation embodies the change of the specie’s
concentration over time with respect to the stoichiometry and kinetic rate
constants of the chemical reactions it is involved in. This deterministic formu-
lation is valid in most situations, but there are cases, e.g., non-linear systems,
where it is not. In such cases stochastic formulation of the chemical kinetics
gives correct results. Moreover, the stochastic approach is valid in the same
situations as the deterministic approach, but it is sometimes even valid, when
the deterministic is not, see [OSW69; Kur72]. Therefore, stochastic modelling
has become an important tool to fully understand the system behaviour of such
reaction networks. Moreover, biochemical reactions are inherently stochastic
at the molecular level, thus the application of stochastic modelling is most
natural.

Beyond that the field of performance evaluation is traditionally based on
stochastic modelling. Complex technical systems usually comprise multiple
processes that act concurrently. They may precede each other or synchro-
nise in certain situations. Many of them compete with different priorities for
limited resources, what can be modelled stochastically [Haa04]. In addition
communication protocols, manufacturing systems or concurrent programs were
modelled and analysed stochastically [CT93; Ajm+95; Ger01]. Hence stochas-
tic modelling is getting more and more popular.

This increases the demand for efficient analysis of such models. While small

1

2

and medium-sized models can be analysed numerically, we focus on large or
unbounded models. Our method of choice is stochastic simulation to overcome
the problem of state space explosion.

We use stochastic Petri nets (SPN) [Ajm+95; Ger01] as modelling paradigm,
which gives us a completely formalised and standardised framework, as well as
an intuitive way of modelling concurrent behaviour. The semantics of such a
SPN is defined as continuous-time Markov chain (CTMC).

The dynamic behaviour of stochastic models can be analysed in different ways.
We showed in [Hei+10] that numerical analysis is efficient up to 1× 109 states
with current computer techniques. Beyond this limit, stochastic simulation
remains the only possible technique. Stochastic simulation may be performed
with approximate or exact methods. But approximate methods are of lim-
ited use for simulative model checking, because we need to know the exact
occurrences of each transition, that means the simulation has to compute real
(exact) paths through the state space of the net. Therefore, exact simulation
algorithms are more suitable for the purpose of simulative model checking,
like Gillespie’s direct method [Gil76] or the next reaction method by Gibson
& Bruck [GB00].

Simulative model checking of time-bounded temporal formulas is well known
and produces reasonable results and performs well in comparison to numerical
methods [Hei+10]. The main issue with verifying time-unbounded formulas is:
“When to stop the simulation trace?” Naive solutions like a fixed, large number
of simulation steps or a fixed, long end time for the simulation trace, are not
suitable. To compute the transient probability of the formula P=?[ϕ1 Uϕ2]
in state s means to compute the probability distribution starting in s and
making states absorbing, which satisfy ¬ϕ1 ∨ ϕ2. The resulting linear system
of equations can be solved numerically by iterative methods like Gauss-Seidel
or Jacobi. There are several tools available that support such solvers, among
them MARCIE [SRH11]. The drawback of numerical solvers is their restriction
to bounded CTMCs. On the other hand they compute an “exact” result. The
same methods were used to compute the steady state distribution of bounded
CTMCs for computing the steady state probability of formulas like S=?[ϕ].

Statistical model checking [Bal+09; BGH09; YCZ11] is a quite similar ap-
proach to simulative model checking, but differs in some details. Hypothesis

3

testing, i.e., sequential probability ratio test (SPRT), has good performance
compared to the computation of point estimates, but it can only check formu-
las like P▷◁ x. In the end, the user gets a result of true or false and has no idea
of the scale of the estimated probability.
Rabih et al. [RP09] developed a different simulation-based approach to verify
time-unbounded Until formulas. Their algorithm is based on perfect simula-
tion. The approach works well if the CTMC is monotone. In the other case the
algorithm is practically useless. The authors did not show, how to determine,
whether a CTMC is monotone or not. Therefore it is not clear whether this
approach is generally applicable or not.
The on-the-fly probabilistic model checker MIRACH, developed by Koh et
al. [Koh+11], implements simulation-based PLTL model checking of quan-
titative pathway models, defined in SBML [Huc+03]. The model checking
capabilities are limited to an upper time bound, due to the requirement of
specifying a time limit for the trace generation.
The Monte Carlo Model Checker MC2 [DG08b] computes a point estimate of
a Probabilistic LTL logic (with numerical constraints) formula to hold for a
model. MC2 does not include any simulation engine, but works off-line by
taking a set of sampled trajectories generated by any simulation engine or
ODE solver, or even time lines measured in the wet lab.
Last not least, a combination of discrete event simulation and reachability
analysis were used to compute time-unbounded formulas in [YCZ11; Zap08].
But this approach suffers from the same restrictions of bounded state spaces
as the numerical methods.

Contribution

The research in this thesis will focus on stochastic simulation algorithms, sim-
ulative analysis and model checking of coloured extended stochastic Petri nets.
We introduce an approach to improve the efficiency of stochastic simulation
for large and dense networks by a new approximate stochastic simulation algo-
rithm called discrete-time leap method. This algorithm enables us to simulate
genome scale metabolic models in a reasonable amount of time. Moreover, we
present simulative analysis of stochastic Petri nets and we show that simu-
lative analysis is not restricted to trace generation. We are able to compute

4

approximations of transient solutions and steady state distributions. In case
of transient solutions, we introduce some optimizations to make the compu-
tation more efficient. The computation of derived measures (observers) paves
us a way to a whole new class of models, namely Markov reward models. We
develop an infinite time horizon model checking algorithm plus steady state
operator for probabilistic linear-time temporal logic. In addition, we show
simulative model checking algorithms of continuous stochastic logic formulas
including reward extensions and time-unbounded temporal operators. To the
best of our knowledge, we develop the first simulative continuous stochastic
reward logic model checking algorithm. Five biochemical case studies and
two technical systems are going to demonstrate the capabilities of simulative
analysis and simulative model checking.
The material of the thesis has been organised in a textbook style, to make it
self-contained and easy to read without any pre-knowledge.
In the following we emphasize the novel contributions to scientific knowledge
made throughout the thesis:

1. We introduce a new approximate stochastic simulation algorithm called
discrete-time leap method, see Section 3.7.

2. We show how to compute approximations of transient solutions and
steady state distributions by use of stochastic simulation. We intro-
duce some optimizations to make the computation of transient solutions
more efficient, see Section 4.2 and 4.3.

3. We show how to apply simulative analysis to Markov reward models, see
Section 4.4.

4. We exploit the steady state property to develop an infinite time horizon
model checking algorithm including steady state operator for probabilis-
tic linear-time temporal logic, see Section 5.1.

5. We make use of the steady state property to develop an infinite time
horizon model checking algorithm including steady state operator for
continuous stochastic logic, see Section 5.2.

6. We develop the first simulative model checking algorithm for continu-
ous stochastic reward logic. It incorporates state and impulse reward

5

functions, see Section 5.4.

Publications

We list the publications of the thesis’ author, which are grouped by their im-
pact to the content of the thesis. We start with the highest impact publications
that were written solely by Christian Rohr.

[Roh10]: This publication sets the starting point in developing simulative
model checking algorithms presented in this thesis. It contains an algo-
rithm for model checking continuous stochastic logic formulas with the
following constraints: no nested formulas, no steady state operator and
only time bounded temporal operators.

[Roh12]: This paper comprises an infinite time horizon model checking algo-
rithm plus steady state operator for probabilistic linear-time temporal
logic.

[Roh13]: This follow-up publication extends the previous one by additional
explanations and experimental results.

[Roh16]: The new approximate stochastic simulation algorithm discrete time
leap method is introduced in this paper.

The next group of publications [RMH10; Hei+10; SRH11; MRH12; Hei+12;
HLR14] were written in collaboration and present methods and tools for stochas-
tic modelling and analysis. Christian Rohr was responsible for any aspects
involving stochastic simulation.
The last group of publications [Blä+13; Blä+14; BR15; Hei+16] is not related
to the contents of the thesis and presents additional research interests.

Outline

The thesis is organised as follows:

Chapter 2: In this chapter we give the necessary definitions of the used Petri
net classes. We focus on the stochastic Petri net classes and on their
coloured counterpart. This includes stochastic Petri nets, generalized
stochastic Petri nets and extended stochastic Petri nets.

6

Chapter 3: We give an overview on the existing stochastic simulation algo-
rithms. There are two kinds of algorithms, the exact simulation algo-
rithms that compute an exact path through the continuous-time Makrov
chain and the approximate algorithms that leap over states and thus
have better computational performance, but at the expense of exact-
ness. Furthermore, we present a new approximate stochastic simulation
algorithm, called discrete-time leap method. We show that the approxi-
mation is very close to the exact simulation algorithm. This algorithm
allows us to simulate genome scale metabolic models in reasonable time.

Chapter 4: When talking about simulative analysis, trace generation is the
most common technique. But there is much more possible, as we show
in this chapter. We demonstrate how to compute transient solutions and
steady state distribution. Moreover, we enrich the simulative analysis by
the addition of observers.

Chapter 5: Simulative model checking is an advanced analysis technique,
which we present in this chapter. We use the probabilistic linear-time
temporal logic with numerical constraints and extend it by means of the
steady state operator. Besides that, we demonstrate how to apply sim-
ulative model checking to continuous stochastic (reward) logic formulas.
Stochastic simulation based techniques can compute just finite paths,
so time unbounded properties can not be verified easily. We apply the
steady state property on our model checking procedure to overcome this
issue.

Chapter 6: We exemplify the presented simulative analysis techniques on
several case studies in this chapter. Furthermore, we compare the run-
time performance of the introduced discrete-time leap method with the
well known and widely used direct method on models of different size. We
use models ranging from just a few nodes and arcs up to some thousand
nodes and tens of thousand arcs. The models originate from different
areas, e.g., systems biology, technical systems.

Chapter 7 This chapter summarises the achieved results and provides some
ideas for future research.

Chapter 2

Preliminaries

In this chapter we describe the Petri net formalism used throughout this thesis.
We give the definitions of all net classes and needed supplementaries.
The beginnings of the Petri net theory go back to the dissertation of Carl
Adam Petri [Pet62]. He described the basic ideas from which place/transition
nets, also known nowadays as Petri nets, emerged. They are well suited to
model asynchronous, concurrent, non-deterministic or parallel systems.
Since its creation, there have been many extensions of Petri nets. The list
of extensions ranges from additional arc types (e.g., read, inhibitor and reset
arcs), via Petri nets with priorities, timed Petri nets (e.g., deterministically and
stochastic) to coloured Petri nets. They have been used in many areas to model
and analyse systems, e.g., academia, technical systems, protocol engineering,
software design, systems biology, and work flow management.
Petri nets have an intuitive graphical representation even favouring its use by
non-experts. They provide an unambiguous framework for interdisciplinary
collaboration with profound mathematical foundation.

2.1 Petri Net

A Petri net is a weighted, directed, bipartite graph. It consists of two types
of nodes, called places and transitions. Transitions can be seen as events that
may occur, a rectangle is their typical graphical representation. Places can be
seen as conditions for the events, they are usually shown as circles. A place
can carry an arbitrary number of tokens, they are represented by dots or as a

7

8

digit on this place. The number of tokens on all places of a network is called
marking, and it defines the current state of the network. Places and transitions
are connected by directed arcs which show the way of token flow. Arcs go only
from places to transitions or vice versa, never between nodes of the same type.
The arc inscription denotes the amount of tokens that flows over it.
A transition becomes enabled if the amount of tokens on its pre-places is
greater or equal than the respective arc inscription. If a transition is enabled
then it may fire and it consumes the number of tokens from its pre-places with
respect to the arc inscription and produces as many tokens on its post-places as
denoted by the particular arc inscription. After firing a transition the network
reaches a new marking (state), this reflects the dynamics of the network. The
initial state is defined by the initial marking. The dynamic behaviour of the
network may be represented by the set of markings reachable from the initial
marking.

Definition 1 (Net). A net is a 3-tuple N = (P, T,A) where:

1. P = {p1, p2, . . . , pm} is a finite set of places.

2. T = {t1, t2, . . . , tn} is a finite set of transitions.

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅.

4. A : ((P × T) ∪ (T × P))→ N0 is a multi-set of arcs. It assigns a natural
number (arc weight, multiplicity) to every arc of the net. «

From now on, we consider only those elements of A with A(x, y) > 0 as arcs.
The flow relation is the set of arcs F = {(x, y) | A(x, y) > 0}. The arcs of the
net describe the pre- and post-sets of a net.

Definition 2 (Pre- and Post-set). Let N = (P, T,A) be a net. For a node
x ∈ P ∪ T two sets of nodes are defined:

1. •x = {y ∈ P ∪ T | A(y, x) > 0} is the pre-set of x,

2. x• = {y ∈ P ∪ T | A(x, y) > 0} is the post-set of x. «

In summary we get four types of node sets:

• •t, the pre-places, input places of transition t,

9

• t•, the post-places, output places of transition t,

• •p, the pre-transitions of place p, producing tokens on p,

• p•, the post-transitions of place p, consuming tokens from p.

For a set of nodes X ⊆ P ∪T we define the set of all pre-nodes •X = ⋃
x∈X

•x

and the set of all post-nodes X• = ⋃
x∈X x•.

Places of a net are marked with zero or more tokens. The distribution of tokens
over the places of the net is called marking or state of the net.

Definition 3 (Marking). Let N = (P, T,A) be a net. Any marking m is a
mapping

m : P → N0 .

It maps the set of places onto the set of natural numbers, where m(p) defines
the number of tokens in place p ∈ P . The set of all possible markings is
denoted by M = N|P |

0 . «

If appropriate and the context precludes confusion, we treat a place like a
(integer) variable and write simply p instead of m(p).
A place p ∈ P with m(p) = 0 is called clean or unmarked in m, otherwise it is
called marked in m. A net is called clean if all of its places are clean, otherwise
marked.
Any marking of the net can be represented as a vector

m = (m(p1),m(p2), . . . ,m(pm)) ∈ N|P |
0 .

For simplicity we do not differentiate between these two representations any
more. For vectors we define comparison and addition place-wise:

m1 ≤ m2 ⇐⇒ ∀p ∈ P : m1(p) ≤ m2(p)

m1 < m2 ⇐⇒ m1 ≤ m2 and ∃p ∈ P : m1(p) < m2(p)

m = m1 +m2 ⇐⇒ ∀p ∈ P : m(p) = m1(p) +m2(p) .

Definition 4 (Submarking). Let N = (P, T,A) be a net, m a marking of
N , and Q a subset of P . We define the submarking mQ with Q ⊆ P as

mQ : Q→ N0 .

10

The set of all submarkings is denoted by MQ = N|Q|
0 . «

Definition 5 (Petri net). A Petri net (PN) is a tuple PN = (P, T,A,m0)
where:

1. N = (P, T,A) is a net.

2. m0 is an initial marking. «

Figure 2.1 shows the typical graphical representation of Petri net elements.
Places are represented as circles, transitions as rectangles, and they are con-
nected via directed arcs. An arc weight of 1 is usually omitted; that means
an arc showing up in a net without an arc weight has a multiplicity of 1. The
number of tokens on a place are represented by the same amount of • inside
the circle, but if m(p) > 4 the actual number is given.

Place Transition Arc

Figure 2.1: Elements of a Petri net.

Example 1. The classical „Producer & Consumer” with a buffer of size B ∈
N+ modelled as a Petri net is shown in Figure 2.2. The Petri net is defined

producer consumerbuffer

receivesendproduce consume

producer cap buffer cap

B

consumer cap

Figure 2.2: Producer & Consumer modelled as Petri net.

with:

• P = {producer, producer_cap, buffer, buffer_cap, consumer,
consumer_cap}

• T = {produce, send, receive, consume}

11

• A(producer, send) = 1, A(producer_cap, produce) = 1,
A(buffer_cap, send) = 1, A(buffer, receive) = 1,
A(consumer_cap, receive) = 1, A(consumer, consume) = 1,
A(produce, producer) = 1, A(send, producer_cap) = 1,
A(send, buffer) = 1, A(receive, consumer) = 1,
A(receive, buffer_cap) = 1, A(consume, consumer_cap) = 1,
in all other cases A(x, y) = 0

• m0 = (0, 1, 0, B, 0, 1), B ∈ N+

After defining the structure of Petri nets, we discuss their dynamic behaviour
now.

Definition 6 (Enabling and firing vectors). Let PN = (P, T,A,m0) be
a Petri net. For every transition t ∈ T we define the following mappings for
every place p ∈ P :

t−(p) = A(p, t)

t+(p) = A(t, p)

∆t(p) = t+(p)− t−(p).

For a Petri net PN with places P = {p1, p2, . . . , pm}, the mappings can be
considered as vectors

t− ∈ N|P |
0 , t+ ∈ N|P |

0 and ∆t ∈ N|P |
0 . «

Definition 7 (Enabling condition). Let PN = (P, T,A,m0) be a Petri net
and m a marking of PN . A transition t ∈ T is called enabled in marking m,
if m ≥ t−. «

Definition 8 (Firing rule). Let PN = (P, T,A,m0) be a Petri net and m a
marking of PN . If a transition t ∈ T is enabled in m, it may fire. When t in
m fires, a new marking m′ = m+ ∆t is reached. This is denoted by m t−→ m′.
The firing itself does not consume any time and takes place atomically. «

The firing of a transition t occurs in two parts. First, the transition removes
the amount of tokens t−(p) from each of its pre-places. Second, it adds the

12

amount of tokens t+(p) to each of its post-places. Please note that a transition
is never compelled to fire.

Definition 9 (Reachability relation). Let PN = (P, T,A,m0) be a Petri
net and m a marking of PN . We denote a firing sequence of transitions as
δ = ⟨ti1 , ti2 , . . . , tin⟩ such that M

ti1−−→ m1∧m1
ti2−−→ m2∧ . . .∧mn−1

tin−−−→ mn.
The set of all firing sequences, including the empty sequence ϵ, is denoted as
δ⋆. The reachability relation ⋆−−→ for two markings m and m′ of PN is now
defined as m ⋆−−→ m′ iff ∃δ ∈ δ⋆ : m δ−→ m′. A marking m′ is called reachable
from m iff m

δ−→ m′. «

Definition 10 (Reachability set). Let PN = (P, T,A,m0) be a Petri net.
We define the reachability set of PN as RPN (m0) = {m′ | m0

⋆−−→ m′}. It
shall be called state space, too. «

Example 2. The set of reachable markings of the Petri net from Example 1
with B = 1 and m0 = (0, 1, 0, 1, 0, 1) is

RPN (m0) = {(0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 1, 0),

(1, 0, 0, 1, 0, 1), (1, 0, 1, 0, 0, 1), (1, 0, 0, 1, 1, 0), (1, 0, 1, 0, 1, 0)} .

2.2 Reachability Graph

A reachability graph represents the dynamic behaviour of a Petri net with
respect to the interleaving semantics. It consists of one type of nodes which are
connected with directed arcs. Each node contains a marking m ∈ RPN (m0)
and an arc between two nodes m and m′ is labelled with transition t ∈ T if
m

t−→ m′. We call two transitions t1, t2 ∈ T parallel, iff m t1−−→ m′∧m t2−−→ m′.
Without loss of generality, we do not allow parallel transitions, because they
don’t bring new behaviour w.r.t. the interleaving semantics.

Definition 11 (Reachability graph). Let PN = (P, T,A,m0) be a Petri
net. A reachability graph (RG) of a Petri net PN is a tuple RGPN =
(RPN (m0),R,m0). with RPN (m0) denoting the state space of the underlying
net and m0 the initial state.

R : RPN (m0)×RPN (m0)→ T ∪ {0}

13

R(m,m′) =

⎧⎪⎨⎪⎩
t ∃ t ∈ T : m t−→ m′

0 otherwise.

«

Example 3. The Reachability graph of the Petri net from Example 1 with
B = 1 and m0 = (0, 1, 0, 1, 0, 1) is shown in Figure 2.3.

m0

(0,1,0,1,0,1)

m1

(1,0,0,1,0,1)

m2

(0,1,1,0,0,1)

m3

(0,1,0,1,1,0)

m4

(1,0,0,1,1,0)

m5

(0,1,1,0,1,0)

m6

(1,0,1,0,1,0)

m7

(1,0,1,0,0,1)

produce

send

receive

consume produce

send

produce

consume

receive

consume

produce

consume

Figure 2.3: Reachability graph of the Petri net from Example 1 with B = 1
and m0 = (0, 1, 0, 1, 0, 1).

2.3 Extended Petri Net

An extended Petri net (XPN) builds on PN enriched by four special arc
types: read, inhibitor, equal, and reset. They always go from a place to a
transition. The first three arcs establish additional side conditions for the
enabledness of a transition, but upon firing, the marking on the tested place is
not changed. Contrary, the reset arc does not influence the enabledness, but
upon firing all tokens on the tested place are removed.

Definition 12 (Extended Petri net). An extended Petri net (XPN) is a
tuple XPN = (P, T,A,m0) where:

1. P = {p1, p2, . . . , pm} is a finite set of places.

2. T = {t1, t2, . . . , tn} is a finite set of transitions.

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅.

4. A = As ∪ Ar ∪ Ai ∪ Ae ∪ Az is a multi-set of arcs with:

14

• As : ((P × T) ∪ (T × P))→ N0 a set of standard arcs,

• Ar : (P × T)→ N0 a set of read arcs,

• Ai : (P × T)→ N0 a set of inhibitor arcs,

• Ae : (P × T)→ N0 a set of equal arcs,

• Az : (P × T)→ {0, 1} a set of reset arcs.

An XPN can be equally well called a Petri net with extended arcs. «

The read arc (sometimes called test arc) enables a transition, if the amount of
tokens on its pre-place is greater or equal than the arc weight. The inhibitor
arc was introduced by Flynn and Agerwala in [FA73]. It switches around the
meaning of the arc weight, in the manner that the transition is enabled if there
are less tokens on the pre-place than the inhibitor arc weight. The equal arc
enables a transition if its pre-place has exactly the same amount of tokens as
the arc weight. In fact the equal arc is syntactic sugar, because this could be
expressed by a combination of a read arc and an inhibitor arc, too. The reset
arc has no impact on the enabledness of a transition, but when the transition
fires all tokens are removed from its pre-place. It holds for the extended arcs
as well that only arc weights of A(x, y) > 0 are considered in terms of the flow
relation.
Special arcs enhance the modelling comfort, but the inhibitor arc brings the
Turing power, which destroys the general decidability of non-trivial behavioural
properties. In models with finite state space, special arcs can be simulated by
standard arcs and some kind of extracting of the tested places. However, this
might lessen the analysis efficiency as discussed in [SH09]. Special arcs do not
cause any trouble for dynamic, i.e. state-space-related analysis techniques for
finite state spaces as long as we consider interleaving semantics.
The typical graphical representation of the additional arc types of an extended
Petri net is shown in Figure 2.4. Read arcs end with a black filled circle,
inhibitor arcs with a hollowed circle, equal arcs with two black filled circles,
and reset arcs end with two black arrows.
The enabling vectors (Def. 6), the enabling condition (Def. 7) and the firing
rule (Def. 8) need to be adapted for the new arc types.

15

Read Arc Inhibitor Arc Equal Arc

Reset Arc

Figure 2.4: Additional arc types of an extended Petri net.

Definition 13 (Extended enabling vectors). Let XPN = (P, T,A,m0) be
an extended Petri net. We adapt the mappings of Def. 6 for every transition
t ∈ T :

t−(p) = As(p, t)

t+(p) = As(t, p)

t−r (p) = Ar(p, t)

t−i (p) =

⎧⎪⎨⎪⎩
Ai(p, t) if Ai(p, t) > 0

∞ otherwise

∆t(p) = t+(p)− t−(p).

«

There is no need to define a mapping for the equal arcs, because they will be
treated as a combination of read and inhibitor arcs. Indeed

Ae(p, t) = n ≡ Ar(p, t) = n ∧ Ai(p, t) = n+ 1 .

Definition 14 (Extended enabling condition). Let XPN = (P, T,A,m0)
be an extended Petri net and m a marking of XPN . A transition t ∈ T is
called enabled in marking m, iff m ≥ t− ∧m ≥ t−r ∧m < t−i . «

Definition 15 (Extended firing rule). Let XPN = (P, T,A,m0) be an
extended Petri net and m a marking of XPN . If a transition t ∈ T is enabled
in m, it may fire. When t in m fires, a new marking m′ is reached. This takes
place in the following way:

m′(p) =

⎧⎪⎨⎪⎩
t+(p) if Az(p, t) > 0

m(p) + ∆t(p) otherwise.

«

16

Example 4. The Petri net from Example 1 can be modelled as an extended
Petri net using inhibitor arcs. Figure 2.5 shows the adapted net. The places

producer consumerbuffer

receivesendproduce consume
B

Figure 2.5: Producer & Consumer modelled as extended Petri net using in-
hibitor arcs.

defining the capacities were removed and inhibitor arcs are used to model
the capacities. The reachability graph of this net with B = 2 is shown in
Figure 2.6.

m0

(0,0,0)

m1

(1,0,0)

m2

(0,1,0)

m3

(1,1,0)

m4

(0,2,0)

m5

(1,2,0)

m6

(0,0,1)

m7

(1,0,1)

m8

(0,1,1)

m9

(1,1,1)

m10

(0,2,1)

m11

(1,2,1)

produce

send produce send produce

receive

consume produce

receive

send

consume

receive

send

produce

produce

receive

consume consume consume consume

Figure 2.6: Reachability graph of Producer & Consumer XPN with B = 2.

2.4 Marking-dependent Extended Petri Net

The need for marking-dependent arc weights arises, if one wants to model, e.g.,
the diffusion of tokens or the transfer of, e.g., all tokens from one place to an
other place in one step. It is possible to model this for a known finite number
of tokens on that place by taking each possible marking into account. But this
blows up the net structure and is an error-prone and inefficient approach. If
the maximum number of tokens on that place is not known, e.g., it is infinite,
this is not possible at all.
Valk introduced an extension to Petri nets, called self-modifying nets [Val78].
Using this extension it’s now possible to model the above mentioned cases.
Example 5 shows usage of marking-dependent arc weights for the transfer of
all tokens on the place buffer in one step to the place consumer. Later on,
Ciardo presented a hierarchy of nets with marking-dependent arc weights and
showed that such nets are Turing-equivalent [Cia94]. The definitions of Ciardo
and Valk allow the use of any place of the net for marking-dependent arc

17

weights, but we restrict this to the pre-places of each transition. We added
this to make the dependencies clearly visible in the net. In the end, it is no
restriction at all, because one can overcome it by adding a read arc from the
needed place with an arc weight set to this place.1

Definition 16 (Marking-dependent arc weight). Given the set of all
markings M , we define a marking-dependent (m-dependent for short) arc
weight as

g : M → N0 .

A m-dependent arc weight will be restricted to the pre-places of the connected
transition t ∈ T . Therefore gt will be defined on the submarkings M•t as

gt : M•t → N0 .

The set of all marking-dependent arc weights is denoted by

G =
⋃
t∈T

gt . «

We permit as definition of marking-dependent arc weights arithmetic functions
over the pre-places of a transition.

Definition 17 (Marking-dependent extended Petri net). An extended
Petri net with marking-dependent arc weights (MXPN) is a tupleMXPN =
(P, T,A,G,m0) where:

1. P = {p1, p2, . . . , pm} is a finite set of places.

2. T = {t1, t2, . . . , tn} is a finite set of transitions.

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅.

4. m0 is an initial marking.

5. G is the set of marking-dependent arc weights.

6. A = As ∪ Ar ∪ Ai ∪ Ae ∪ Az is a multi-set of arcs with:
1In Section 2.5 we introduce modifier arcs for that purpose.

18

• As : ((P × T) ∪ (T × P)) → G a set of m-dependent standard arcs
and
As(p, t) = As(t, p) = gt,

• Ar : (P × T)→ G a set of m-dependent read arcs and
Ar(p, t) = gt,

• Ai : (P × T)→ G a set of m-dependent inhibitor arcs and
Ai(p, t) = gt,

• Ae : (P × T)→ G a set of m-dependent equal arcs and
Ae(p, t) = gt,

• Az : (P × T)→ {0, 1} a set of reset arcs. «

The definition of MXPN (Def. 17) incorporates XPN as a special case. To
be specific, if all arc weights are constant functions, we get an extended Petri
net. As soon as one arc weight is depending on a place, we get a marking-
dependent XPN .

Definition 18 (M-dependent enabling and firing vectors). LetMXPN =
(P, T,A,G,m0) be a marking-dependent extended Petri net. We extend the
mappings of Def. 13 for every transition t ∈ T :

t−m(p) = As(p, t)(m
•t)

t+m(p) = As(t, p)(m
•t)

t−mr
(p) = Ar(t, p)(m

•t)

t−mi
(p) =

⎧⎪⎨⎪⎩
Ai(p, t)(m) if Ai(p, t)(m

•t) > 0

∞ otherwise

∆tm(p) = t+m(p)− t−m(p). «

Example 5. We modify Example 4 in the way that the Consumer receives
the whole buffer contents in one step, no matter how much tokens the buffer
contains. Therefore the arcs from buffer to receive and from receive to con-
sumer need a marking-dependent arc weight. In our case, it’s just the label
buffer. The reachability graph of this net with B = 2 is shown in Figure 2.8.
If we compare the reachability graph of this net (RGMX PN) with the one from
the XPN version (RGX PN in Figure 2.6), we see that RGMX PN has fewer

19

producer

consumer

buffer

receive

sendproduce

consume

buffer
buffer

B

Figure 2.7: Producer & Consumer modelled as m-dependent XPN using
marking-dependent arc weights.

states, because the whole buffer contents will be received in one step, rather
than one token after the other.

m0

(0,0,0)

m1

(1,0,0)

m2

(0,1,0)

m3

(1,1,0)

m4

(0,2,0)

m5

(1,2,0)

m6

(0,0,1)

m7

(1,0,1)

m8

(0,1,1)

m9

(1,1,1)

m10

(0,2,1)

m11

(1,2,1)

m12

(0,0,2)
m13

(1,0,2)

produce

send produce send produce

receive

consume produce

receive

send

consume

send

produce

produce

consume consume consume consume

receive

receive

receive
receive

consume

consume

Figure 2.8: Reachability graph of Producer & ConsumerMXPN with B = 2.

2.5 Stochastic Petri Net

A stochastic Petri net (SPN) builds on PN , but transitions have an ex-
ponentially distributed firing delay, characterised by the firing rate λ. A tran-
sition may lose its enabledness while waiting for the delay to expire. The
firing itself does not consume time and follows the standard Petri net firing
rule. The firing rates are typically transition-specific and marking-dependent
and defined by stochastic firing rate functions, also known as propensity or
hazard functions. The mapping V : T → H, where H is the set of hazard
functions, associates to each transition a function ht from H. We deal with
biologically interpreted stochastic Petri nets; thus we consider besides arbi-
trary arithmetic functions specifically propensity functions representing mass
action semantics and level interpretation semantics. All these functions have
in common that the domain is restricted to the pre-places of the correspond-
ing transition; see [GHL07]. Additionally, modifier arcs are introduced to keep
the locality principle of Petri nets. The modifier arc does neither restrict the

20

enabledness nor does it change the tokens upon firing. But the firing rate may
depend on the current marking of the connected place. Keeping the locality
principle is crucial for the efficiency of our analysis tools.

Definition 19 (Marking dependent function). Given the set of all mark-
ings M , we define the marking-dependent function as

h : M → R+
0 .

A marking-dependent function will be restricted to the pre-places of the asso-
ciated transition t ∈ T . Therefore ht will be defined on the submarking M•t

as
ht : M•t → R+

0 .

The set of all marking-dependent functions is denoted by

H =
⋃
t∈T

ht . «

Mass-action kinetics can be achieved by using the following rate function [HGD08]:

ht = ct ·
∏

p∈•t

(
m(p)
f(p, t)

)
, (2.1)

where ct is the real-valued, transition-specific rate constant. The binomial
coefficient describes the number of unordered combinations of the required
f(p, t) molecules, out of the m(p) available ones.

Definition 20 (Stochastic Petri net). A stochastic Petri net (SPN) is a
tuple SPN = (P, T,A, V,H,m0) where:

1. (P, T,A,m0) is a Petri net.

2. A = As ∪ Am is a multi-set of arcs with:

• As : ((P × T) ∪ (T × P))→ N0 a set of standard arcs,

• Am : (P × T)→ {0, 1} a set of modifier arcs.

3. H is the set of marking-dependent functions.

4. V : T → H assigns to each transition a stochastic firing rate functions
V (t) = ht.

21

Table 2.1: The rate functions and parameters of the „Producer & Consumer”
SPN .

Transition Rate function Parameter Value
produce p_rate p_rate 0.1

send s_rate ∗ buffer_cap s_rate 0.2
receive r_rate ∗ buffer r_rate 0.2

consume c_rate c_rate 0.3

The semantics of a SPN is a continuous time Markov chain (CTMC), intro-
duced in the next section. «

Example 6. We extend Example 1 to an SPN by adding stochastic firing
rate functions to each transition. The rate functions are shown in Table 2.1.
The transitions produce and consume got a constant rate function, i.e., the
firing rate of these transitions is constant over time and does not depend on
the current marking. In contrast, the transitions send and receive got marking
dependent rate functions, i.e., the firing rate of these transitions changes with
respect to the current marking. To be precise, the firing rate of send increases
while the number of tokens on buffer decreases and the firing rate of receive
increases while the number of tokens on buffer increases.

2.6 Continuous-Time Markov Chain

A continuous-time Markov chain (CTMC) represents the dynamic be-
haviour of a stochastic Petri net. It is a stochastic process with an exponential
probability distribution that has the Markov property. That means, its future
behaviour depends only on its current state and not on former behaviour. The
definition of a CTMC is comparable with the reachability graph, except that
the arcs are labelled with the stochastic firing rate of the transition. We forbid
parallel transitions here as well as for the reachability graph.

Definition 21 (Continuous-time Markov chain). A continuous-time Markov
chain (CTMC) of a stochastic Petri net is a tuple CTMCSPN = (RSP N(m0),Q,m0)
with RSP N(m0) denoting the state space of the underlying net and m0 the ini-

22

tial state.

Q : RSP N(m0)×RSP N(m0)→ R+
0

Q(m,m′) =

⎧⎪⎨⎪⎩
ht(m) ∃ t ∈ T : m t−→ m′

0 otherwise .

Q(m,m) = −E(m)

E(m) =
∑

m′∈RSP N (m0)
Q(m,m′), exit rate of state m .

Let
1− e−Q(m,m′)·n (2.2)

be the probability of a transition t enabled in state m to fire (which results in
state m′) within n time units. «

Example 7. The continuous-time Markov chain regarding to the SPN in Ex-
ample 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1) contains the same set of states
as the reachability graph in Example 3. The difference lays in the labelling of
the arcs, i.e., they are labelled with the stochastic firing rate of the transitions.
The transition rate matrix of the CTMC is given below.

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 m1 m2 m3 m4 m5 m6 m7

m0 −E(m0) p_rate
m1 −E(m1) s_rate
m2 −E(m2) r_rate p_rate
m3 c_rate −E(m3) p_rate
m4 −E(m4) s_rate c_rate
m5 c_rate −E(m5) p_rate
m6 −E(m6) c_rate
m7 r_rate −E(m7)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.7 Generalised Stochastic Petri Net

A generalised stochastic Petri net (GSPN) builds on SPN enriched by
extended arc types (Def. 12) and immediate transitions. Immediate transitions
have a zero firing delay. Thus, they fire immediately after getting enabled
and always prior to stochastic transitions. Consequently, getting enabled and
the firing itself coincide, if not prevented by another competing immediate

23

transition. Immediate transitions have a weight function associated with them,
defining the relative amount of probability mass, transferred by itself. Conflicts
between them are solved according the transitions weights. As for stochastic
transitions, the firing follows the standard Petri net firing rule. A cyclic system
behaviour involving only the firing of immediate transitions corresponds to an
infinite behaviour without time progress – we get a new type of modelling fault,
the time deadlock. Immediate transitions may help to avoid stiff systems by
using them for transitions with extremely high rates (non-significant delay)
compared to the other transitions in the system.

Definition 22 (Generalised stochastic Petri net). A generalised stochas-
tic Petri net (GSPN) is a tuple GSPN = (P, T,A, V,m0) where:

1. P is a finite set of places

2. T = Ts ∪ Ti is a finite set of transitions with:

• Ts a set of stochastic transitions

• Ti a set of immediate transitions

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅

4. m0 is an initial marking

5. A = As ∪ Ar ∪ Ai ∪ Ae ∪ Az ∪ Am is a multi-set of arcs

6. H is the set of marking-dependent functions

7. V = Vs ∪ Vi is a set of functions with:

• Vs : Ts → H assigns to each stochastic transition a stochastic rate
function Vs(t) = hts ,

• Vi : Ti → H assigns to each immediate transition a weight function
Vi(t) = hti

.

The semantics of a GSPN is semi-Markovian. «

The addition of immediate transitions in GSPN leads to two different kinds of
states in the underlying stochastic process. We distinguish between transient
(vanishing) and non-transient (tangible) states. A system never spends time in

24

a transient state before changing into another state. Thus, the time spent (so-
journ time) in transient states is always zero, and not exponentially distributed
any more. Consequently, the underlying semantics is not a continuous-time
Markov chain any more. It is called semi-Markovian, because the transient
states may be removed, under certain conditions, such that the reduced reach-
ability graph corresponds again to a continuous-time Markov chain [Ajm+95].

2.8 Extended Stochastic Petri Net

An extended stochastic Petri net (XSPN) builds on GSPN enriched by
marking-dependent arc weights (Def. 16) and deterministically timed transi-
tions, which come in two flavours.
Deterministic transitions fire after a deterministic firing delay. The delay is al-
ways relative to the time point where a transition gets enabled. The transition
may lose its enabledness while waiting for the delay to expire. Deterministic
transitions may be useful to reduce networks, e.g. by replacing a linear se-
quence of stochastic transitions by one deterministic transition with the delay
set to the sum of the expectation values of the transition sequence.
Scheduled transitions fire according to a schedule specifying absolute time
points of the simulation time. A schedule can specify just a single time point,
or equidistant time points within a given interval, triggering the potential firing
(if the transition is enabled) once or periodically. They support the straight-
forward modelling of wet-lab experiment scenarios. The core model can be
disturbed at well-defined time points as it is done experimentally with the ac-
tual biological system under investigation in the wet-lab. Scheduled transitions
can be simulated by net components deploying immediate and deterministic
transitions, see [Hei+09].
There is a standard firing rule, applying equally to all XSPN transition types;
specifically, a transition may lose its enabledness while waiting for the delay
to expire, and the firing itself does never consume time. Both transition types
have a higher priority than stochastic transitions, but a lower priority than im-
mediate transitions. Conflicts between deterministic and scheduled transitions
are solved non-deterministically.
When referring to XSPN , we do not usually distinguish whether a model

25

incorporates marking-dependent arc weights or not, but if one wants to make it
explicit, the appropriate name isMXSPN (XSPN with marking-dependent
arc weights).

Definition 23 (Extended stochastic Petri net). An extended stochastic
Petri net (XSPN) is a tuple XSPN = (P, T,A,G, V,H,m0) where:

1. P is a finite set of places.

2. T = Ts ∪ Ti ∪ Td is a finite set of transitions with:

• Ts a set of stochastic transitions,

• Ti a set of immediate transitions,

• Td a set of timed transitions with a deterministic time delay,

• Tp a set of scheduled transitions, which may fire at predefined time
points.

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅.

4. m0 is an initial marking.

5. G is the set of marking-dependent arc weights.

6. A = As ∪ Ar ∪ Ai ∪ Ae ∪ Az ∪ Am is a multi-set of arcs.

7. H is the set of marking-dependent functions.

8. V = Vs ∪ Vi ∪ Vd ∪ Vp is a set of functions with:

• Vs : Ts → H assigns to each stochastic transition a stochastic rate
function Vs(t) = hts ,

• Vi : Ti → H assigns to each immediate transition a weight function
Vi(t) = hti

,

• Vd : Td → H assigns to each deterministic transition a deterministic
time delay Vd(t) = htd

,

• Vp : Tp → R+
0 assigns to each scheduled transition an absolute time

point.

The semantics of an XSPN is non-Markovian. «

26

The addition of transitions with deterministic time delays destroys the Markov
property and thus the underlying process is non-Markovian. Nevertheless, it
is possible to analyse extended stochastic Petri nets, for details see [Ger01;
Haa03; Hei+09]. In this thesis we focus on simulative techniques.
Figure 2.9 shows the graphical representations of the net elements of an ex-
tended stochastic Petri net.

Stochastic Transition Immediate Transition

Deterministic Transition Scheduled Transition

Modifier Arc

Figure 2.9: Additional elements of an extended stochastic Petri net.

2.9 Coloured Petri Net

The need for high-level description of complex systems arose over the time.
Therefore Kurt Jensen introduced coloured Petri net in [Jen81] as a high-level
description of Petri nets.
We briefly recall the definition of coloured Petri nets according to [Liu12].

Definition 24 (Coloured Petri net). A coloured Petri net (PN C) is a tuple
PN C = (P, T,A,Σ, C, g, f,m0), where:

1. P = {p1, p2, . . . , pm} is a finite set.

2. T = {t1, t2, . . . , tn} is a finite set.

3. P and T satisfy P ∪ T ̸= ∅ and P ∩ T = ∅.

4. A is a finite set of directed arcs.

5. Σ is a finite, non-empty set of colour sets.

27

6. C : P → Σ is a colour function that assigns to each place p ∈ P a colour
set C(p) ∈ Σ.

7. g : T → EXP is a guard function that assigns to each transition t ∈ T
a guard expression of the Boolean type.

8. f : A → EXP is an arc function that assigns to each arc a ∈ A an arc
expression of a multiset type C(p)MS, where p is the place connected to
the arc a.

9. m0 : P → EXP is an initialization function that assigns to each place
p ∈ P an initialization expression of a multiset type C(p)MS. «

The other definitions of coloured net classes can be found in [Liu12]. Every
Petri net with respect to [Liu12] can be unfolded into an uncoloured Petri net.
This enables us to analyse each coloured Petri net with the same methods as an
uncoloured Petri net that includes the methods presented in this thesis. The
prerequisite for this is that the unfolding time is negligible compared to the
analysis’ run-time. In order to achieve this we recently developed an efficient
unfolding method based on Interval Decision Diagrams (unpublished). Details
are beyond the scope of this thesis. That means, if we refer to a specific Petri
net class, e.g., stochastic Petri nets, then everything said applies to its coloured
pendant as well.

2.10 Closing Remarks

Petri nets are a mathematical formalism to model and analyse concurrent
systems. Due to several extensions they could be used in a wide range of sce-
narios, e.g., systems and synthetic biology [Nap+09; Blä+14; Bal+10; BP03;
Cha07; Doi+99; GP98; GH06; HGD08; HDG10; HG11; LH14; Pec98], techni-
cal systems [Dur+04; GBC07; HDS99; IT90; ADN89; YV99], business pro-
cesses [ADO00; TFZ09; HB03; DDO08] or software development [ACR01;
Bal+04; ZC06] to name a few.
In this chapter, we defined the net classes used in this thesis. They range
from standard Petri nets and stochastic Petri nets, via more expressive, but
less common extended Petri nets and generalized SPN , to rather unusual
marking-dependent XPN and XSPN .

28

PN XPN MXPN
read arc, inhibitor arc,

equal arc, reset arc

m-dependent arc weight

SPN GSPN XSPN

stochastic transition,
modifier arc

immediate transition deterministic transition,

scheduled transition

Figure 2.10: Overview of net classes defined in this section, with the extensions
leading from one net class to the other.

Modelling and simulation of the net class MXSPN (XSPN with marking
dependent arc weights) goes far beyond the standard expressibility of stochastic
models; it is supported by Snoopy, but not by MARCIE; so not all material
covered in this chapter is available in MARCIE.MXSPN have been used in
a couple of case studies, not reported in this thesis; see [HSH13]. Figure 2.10
gives an overview on the presented net classes and shows the extensions leading
from one net class to the other, starting with Petri nets in the upper left.
The analysis of Petri nets based on the reachability graph and of stochastic
Petri nets based on the continuous-time Markov chain is mostly limited to
finite state spaces. Even there, the RG or the CTMC may be too large to
be computed. Symbolic techniques based on decision diagrams [Tov08; Sch14]
have extended the limit, but there is still and will always be a limit. In order
to analyse Petri nets with a huge state space (|R| ≫ 1010) or an infinite state
space we have to use simulation techniques. In the next chapter we recall the
most common stochastic simulation algorithms, introduce a new approximate
stochastic simulation algorithm and discuss several optimizations and pitfalls.

Chapter 3

Stochastic Simulation

The traditional approach to investigate the time evolution of biochemical re-
action networks is by solving a set of coupled ordinary differential equations.
One equation per species; each equation embodies the change of the specie’s
concentration over time with respect to the stoichiometry and kinetic rate
constants of the chemical reactions it is involved in. This deterministic formu-
lation is valid in most situations, but there are cases, e.g., non-linear systems,
where it is not. In such cases, stochastic formulation of the chemical kinetics
gives correct results. Moreover, the stochastic approach is valid in the same
situations as the deterministic approach, but it is sometimes even valid, when
the deterministic is not, see [OSW69; Kur72]. Therefore, stochastic modelling
has become an important tool to fully understand the system behaviour of such
reaction networks. A summary of the various stochastic approaches and appli-
cations to chemical reaction networks was published by McQuarrie [McQ67].
That article gave rise to what is known today as the chemical master equation
(CME) and the stochastic simulation algorithm (SSA) [Gil76].

In the following sections we review the stochastic simulation algorithm and its
various derivatives, namely the first reaction method, the direct method, the
next reaction method and the τ -leaping method, as well as several optimisation
techniques applied to the SSA. Afterwards, we introduce the discrete-time
leap method for the efficient simulation of stochastic Petri nets, developed by
Christian Rohr. It is an approximate simulation method in the same sense
as tau-leaping. Moreover, we show how to extend the stochastic simulation
algorithms in order to handle not only SPN but GSPN and XSPN . The

29

30

important topic of random number generation closes this chapter.

3.1 Stochastic Simulation Algorithm

In biochemical reaction networks, the molecular reactions between the species
are random processes, because it is impossible to predict the time at which
the next reaction will occur. The stochasticity can be described in a time-
dependent manner by the chemical master equation [Gil76]. Gillespie pub-
lished a rigorous derivation of the chemical master equation (3.1) and showed
how the stochastic simulation algorithm fits into it [Gil92].

δ

δτ
P (m, τ | m0, τ0) =

∑
t∈T

[ht(m−∆t)P (m−∆t, τ | m0, τ0)

− ht(m)P (m, τ | m0, τ0)]
(3.1)

In probability theory, this identifies the evolution as a continuous-time Markov
chain (CTMC), with the integrated master equation obeying a Chapman-
Kolmogorov equation [PP02]. This leads to the following joint density function
for the two random variables time to next firing and index of the next transi-
tion:

P (τ, t | m)dτ ≡ probability that, given X(τ) = m, transition t

will fire next in the interval [τ, τ + dτ) .
(3.2)

When working with biological systems modelled as SPN , it may be infeasible
to set up the CTMC as the state spaceRSPN can be very large or even infinite.
The largeness of CTMCs makes simulation an important analysis technique:
instead of computing the CTMC directly, simulation aims at imitating the
CTMC by generating different paths of it.
A path of the CTMC is generated in the following way. Starting from the
initial marking m0, one has to repeatedly fire transitions. In order to fire a
transition, one must answer two questions:

1. When will the next transition fire?

2. Which transition will fire next?

31

So, the enabled transitions in the net compete in a race condition. The fastest
one determines the next marking and the simulation time elapsed. In the new
marking, the race condition starts anew.
A path through the possibly infinite CTMC is a sequence of discrete random
variables X(τ). The discrete random variable Xp(τ) describes the number of
tokens on place p ∈ P present at time τ . The system state (marking) at time τ
is thus a discrete n-dimensional random vector X(τ) = (Xp1(τ), . . . , Xpn(τ)) ∈
X . The time ∆τ to the next transition is an exponentially distributed random
variable with mean 1/E(m); the probability density function (pdf) is

P (∆τ | m) = E(m) · e−E(m)·∆τ . (3.3)

The next transition to fire is a discrete random variable with probability mass
function (pmf):

P (t | m) = ht(m)
E(m) . (3.4)

Given the system is in state X(τ), the probability that a transition t ∈ T will
occur in the time interval [τ, τ + ∆τ) is given by:

P (∆τ, t | m) = E(m) · e−E(m)·∆τ · ht(m)
E(m)

= ht(m) · e−E(m)·∆τ .
(3.5)

Although in principle known a long time before, Gillespie was the first who
developed a supporting theory for stochastic simulation of chemical kinet-
ics [Gil76; Gil77]. He presented the Stochastic Simulation Algorithm (SSA;
often also called Gillespie’s algorithm), which is a Monte Carlo procedure for
numerically generating CTMC. Since Gillespie’s seminal work, several vari-
ants and different implementations and optimisations of the SSA have been
proposed. Basically, each variant performs the steps shown in Algorithm 1.
Determining the next time step ∆τ (Algorithm 1 line 6) requires to generate
a unit-interval uniform random number r1 and let ∆τ be

∆τ = −ln(r1)
E(m) . (3.6)

Selecting the next transition (Algorithm 1 line 7) requires to generate a unit-

32

Algorithm 1 Generic stochastic simulation algorithm
Require: SPN with initial marking m0, time interval [τ0, τmax]
Ensure: marking m at time point τmax

1: initRand(seed)
2: time τ ← τ0
3: marking m← m0
4: while τ < τmax do
5: compute transition’s rate function
6: determine next time point τ ← τ + ∆τ
7: select transition tj to fire depending on current marking m
8: perform firing of transition tj and update marking m
9: end while

interval uniform random number r2 and find the first transition tj for which

j−1∑
i=1

hti
(m) < r2 · E(m) ≤

j∑
i=1

hti
(m). (3.7)

The SSA simulates every state transition event, one at a time, and updates
the system after each state transition. It is worth mentioning here that the
generated sequence of state transitions is exact in the sense that the system
remains in its current state until the end of the interval and then changes
instantaneously. It is not a finite approximation of an infinitesimal time step,
as in a standard differential equation solver.

Algorithm 1 generates one possible path through the CTMC, but reliable
statements about the system behaviour (variance) can only be made based
on many simulations runs. Different realisations of the stochastic process are
obtained by different initialisations of the random number generator (Algo-
rithm 1 line 1). After performing N simulation runs and recording the system
state at predefined time points τout, the average, mean or expected number of
tokens at τout is

X̄(τout) = (1/N) ·
N∑

n=1
X(n, τout) (3.8)

One can set the number of simulation runs manually and check whether the
results withstand the needs. An alternative and more sophisticated approach
to determine the required number of simulation runs is the confidence interval
method as described in [SM08]. The confidence interval is specified by defining
the confidence level 1 − α, usually 90%, 95% or 99%, the maximum relative

33

error β, e.g., 0.1, and the estimated accuracy γ of the results, e.g., 10−3 or 10−4.
The required number of simulation runs to achieve this confidence interval is
calculated by

N ≥
z2

1−α/2

β2 · 1− γ
γ

. (3.9)

To give an example, using a confidence level of 99%, a maximum relative
error of 0.1, the required number of simulation runs to achieve the estimated
accuracy of 10−5 is N ≥ 3.8× 107. Please note that Equation (3.9) shows, the
number of required simulation runs increases exponentially with the accuracy.
Accelerating simulations is therefore desirable without changing the basic ideas
of the algorithm.

Example 8. We demonstrate stochastic simulation on the SPN in Example 6
with B = 1 and m0 = (0, 1, 0, 1, 0, 1). Figure 3.1 shows the averaged number
of tokens on the places buffer, consumer and producer after 10 000 simulation
runs.

Figure 3.1: Averaged number of tokens of Example 6 with B = 1 and m0 =
(0, 1, 0, 1, 0, 1) after 10 000 simulation runs.

3.2 Direct Method

The direct method, introduced by Gillespie in [Gil76], is an exact stochastic
simulation algorithm, because it simulates every transition firing (basically by

34

using Equation (3.5)) one at a time, and keeps track of the current marking.
Therefore every trace computed by the algorithm is an exact path through the
corresponding CTMC. The algorithm is shown in Algorithm 2.

Algorithm 2 Direct method
Require: SPN with initial marking m0, time interval [τ0, τmax]
Ensure: marking m at time point τmax

1: initRand(seed)
2: time τ ← τ0
3: marking m← m0
4: while τ < τmax do
5: E(m)← 0
6: for all transitions t ∈ T do
7: Et(m)← ht(m)
8: E(m)← E(m) + Et(m)
9: end for

10: r1 ← uniformRandomReal((0, 1))
11: ∆τ ← − ln (r1) /E(m)
12: τ ← τ + ∆τ
13: r2 ← uniformRandomReal((0, 1])
14: u← E(m) · r2
15: for all transitions t ∈ T ∧ u > 0 do
16: u← u− Et(m)
17: end for
18: m← m+ ∆t
19: end while

The idea of the direct method is to generate two random numbers {r1, r2} uni-
formly distributed on (0, 1). The first random number r1 is used to determine
an exponential distributed random variable that gives the time increment ∆τ .
The time increment ∆τ is computed according to Equation (3.3) using the in-
version method (Algorithm 2 line 11). The second random number r2 is used
to select the next transition to fire (Equation (3.4)), this is done by a linear
search over the transitions propensities. The random number is scaled by the
sum of transition rates E(m) (Algorithm 2 line 14). Now the scaled random
number u is used to find the transition. Therefore u is subtracted by the rate
of each transition and the transition, in which u becomes non-positive, is the
requested one (Algorithm 2 line 15 - 17). This is called the chop-down search,
because the value of u is chopped-down until it becomes non-positive.

35

Computational complexity

In stochastic Petri nets we allow only pre-places of a transition to be part of
the transition’s rate function. So assuming a loose coupling of the net reveals
a complexity of O (1) for computing the rate function ht. The computation
of all transitions rate functions is O (n) , n = |T |. The linear search requires
iterating over all transitions and so the complexity is O (n) too. In summary
the overall time complexity of the algorithm is O (n), because of the linear
search used to find the next transition to fire and recomputing the propensities
of all transitions in each step.

3.3 Optimised Direct Method

Gillespie roughly described a part to reduce the computational complexity
of the direct method already [Gil76], i.e., storing the sum of all propensities
and only updating the depended propensities and thus the sum of them while
running the simulation. As he remained very vague in this topic, Gibson
and Bruck [GB00] introduced a dependency graph for the transitions that
declares which propensities have to be updated after a certain transition fires,
whereas all others are reused. That reduces the average cost of recomputing
the propensities from O (n) to O (1).
Many variants of the SSA aim at reducing the computational cost of selecting
the next reaction that will occur. Cao et al. [CGP07] statically reordered
the list of transitions to keep the transitions with larger propensities at the
beginning of the list. The position of each transition in the list is thereby
determined after some pre-simulations. McCollum et al. [McC+06] maintain
a loosely sorted order of the reactions as the simulation proceeds. However,
the time to manage the advanced data structures partially compensates the
speed-up due to faster search [CLP04]. The logarithmic direct method was
developed by Li and Petzold [LP06]. It maintains a list of partial sums of the
propensities and uses binary search on this list to find the next transition to
fire. Whereas the binary search has O (log n), updating the partial sums has
O (n). Therefore the computational complexity remains O (n).
Slepoy et al. [STP08] introduced the composition rejection method to achieve
a computational complexity independent of the number of transitions. They

36

achieve this by grouping the transitions depending on the propensities. Let
pmin be the minimum possible propensity greater then zero. The first group has
an upper bound on the propensities of 2·pmin and contains all transitions having
a propensity in the interval (0, 2 · pmin]. The second group covers the interval
(2 ·pmin, 4 ·pmin]. So the interval of the nth group is (2n−1 ·pmin, 2n ·pmin]. The
number of groups G can be determined using the maximum possible propensity
pmax byG = log2(pmax/pmin). But it is not possible to compute pmax in advance
in any case, e.g., having a unbounded SPN leads to pmax = ∞ and even for
bounded nets the computation of maximum number of tokens in a place is
infeasible sometimes. In such cases the number of groups grows dynamically
while the simulation takes place. The selection of the next transition to fire is
done in two steps. First the group is selected using linear search as in the direct
method. Therefore the sum of all propensities and the sums of each group are
needed. After selecting the group, the rejection method is used to find the
transition. That means, a transition in the group is chosen randomly and if
its propensity is greater than a randomly selected portion of the group’s upper
bound, the transition will be selected. If not this is repeated until a transition
is selected. On average, this is 2 times necessary, because the propensities in
the groups are at least half their upper bound. While updating the transition
rates they may be relocated in a different group and the group’s sum have
to be updated. The efficiency of the composition rejection method heavily
depends on the fact that the number of groups is much less than the number
of transitions. If that’s the case the computational complexity of this method
is O (G) , G≪ |T |.

Mauch et al. [MS11] presented another transition selection approach the 2D
search. The propensities are stored in a 2D array with

√
|T | elements per row

and an array containing the row sums is needed. The next transition to fire
is determined with two linear searches. The first looks for the row and the
second searches for the transition in the selected row. The update of the row
sum is constant as it is for the total sum, thus the computational complexity
of the 2D search is O

(√
|T |
)
.

An overview on the different transition selection approaches including compar-
ison of the run-time behaviour is given in [MS11].

37

Algorithm 3 Optimised direct method using 2D - search
Require: SPN with initial marking m0, time interval [τ0, τmax], 2D array E

with l←
√
|T | transitions per row

Ensure: marking m at time point τmax

1: initRand(seed)
2: time τ ← τ0
3: marking m← m0
4: R← 0 ▷ array of row sums
5: E(m)← 0
6: for all transitions t ∈ T do
7: Et(m)← ht(m)
8: E(m)← E(m) + Et(m)
9: Rt/l(m)← Rt/l(m) + Et(m)

10: end for
11: while τ < τmax do
12: r1 ← uniformRandomReal((0, 1))
13: ∆τ ← − ln (r1) /E(m)
14: τ ← τ + ∆τ ▷ next time point
15: r2 ← uniformRandomReal((0, 1])
16: u← E(m) · r2, i← 0
17: for i← 0, |R| ∧ u > 0 do
18: u← u−Ri

19: end for
20: for i← i · l, |T | ∧ u > 0 do
21: u← u− Ei(m)
22: end for
23: m← m+ ∆ti ▷ fire transition
24: for all transitions t ∈ T affected by ti do
25: E(m)← E(m)− Et(m) + ht(m)
26: Rt/l(m)← Rt/l(m)− Et(m) + ht(m)
27: Et(m)← ht(m)
28: end for
29: end while

Computational complexity

From this set of optimizations we’ve incorporated the 2D search for transition
selection, sparse arrays for transition firing and the dependency graph for
transition updates in our optimized direct method (Algorithm 3). Thus the
overall time complexity of the algorithm is O

(√
|T |
)
.

38

3.4 First Reaction Method

Gillespie introduced an alternate algorithm in [Gil76], the first reaction method.
It is an exact stochastic simulation algorithm, like the direct method, because
it differs only in the way of computing the random deviates. Therefore every
trace computed by the algorithm is an exact path through the corresponding
CTMC.
The time ∆τ to the next transition (Equation (3.3)) can be rewritten for each
transition. So that

Pt(∆τ | m) = ht(m) · e−ht(m)·∆τ (3.10)

is the probability that transition t occurs in the time interval (τ, τ+∆τ) under
the assumption that no other transition fires in the time interval (τ, τ + ∆τ).
This provides us a preliminary transition firing time ∆τt for each transition
according to Equation (3.10). We use the inversion method to compute the
preliminary times for all transitions (Algorithm 4 line 8). From these prelimi-
nary times, the smallest time will be the next time step (Algorithm 4 line 14)
and the corresponding transition will fire next (Algorithm 4 line 15).

Algorithm 4 First reaction method
Require: SPN with initial marking m0, time interval [τ0, τmax]
Ensure: marking m at time point τmax

1: initRand(seed)
2: time τ ← τ0
3: marking m← m0
4: while τ < τmax do
5: ∆τmin ←∞
6: for all transitions t ∈ T do
7: r ← uniformRandomReal((0, 1))
8: ∆τt ← − ln (r) /ht (m)
9: if ∆τt < ∆τmin then

10: ∆τmin ← ∆τt

11: tmin ← t
12: end if
13: end for
14: τ ← τ + ∆τmin

15: m← m+ ∆tmin

16: end while

39

Computational complexity

The first reaction method has to compute |T | random numbers in each step.
The overall time complexity of the algorithm is O (n) , n = |T |, because the
propensities and the time steps for each transition are recomputed in each
step.

3.5 Next Reaction Method

The next reaction method introduced by Gibson & Bruck in [GB00] is an
adaptation of the first reaction method. It computes the time at which each
transition will occur, just like the first reaction method. But in contrast to it,
times are not computed anew at each time step, but re-used, if the transitions
were not affected in the last step. Only these transitions are updated, where
the amount of tokens on their pre-places had changed. This is achieved by the
use of a dependency graph to determine the affected transitions. The transition
times and indices are stored in an indexed priority queue, where transitions are
ordered according to their time and the root element has always the minimal
time. The next reaction method’s algorithm is given in Algorithm 5.

Computational complexity

We assume a loose coupling of the net, this reveals a complexity of O (1)
for computing the rate function ht and the transition times τt. Inserting or
changing a value in the priority queue has a time complexity of O (log n).
Getting the next time point is O (1), because it’s the root of the queue. The
index of the root element represents the transition, which means selecting the
next transition is O (1), too. Therefore the overall time complexity of the next
reaction method is O (log n).

3.6 Tau-Leaping Method

An approximate speedup to the SSA is provided by τ -leaping [Gil01], in which
time t is advanced by a preselected amount τ and the numbers of firings of the
individual transitions during the time interval [t, t + τ) are approximated by

40

Algorithm 5 Next reaction method
Require: SPN with initial marking m0, time interval [τ0, τmax], indexed pri-

ority queue PQ, propensities vector a, times vector τ
Ensure: marking m at time point τmax

1: initRand(seed)
2: time τ ← τ0
3: marking m← m0
4: for all transitions t ∈ T do
5: Et(m)← ht(m)
6: r ← uniformRandomReal((0, 1))
7: τt ← − ln (r) /Et(m)
8: PQ.insert (t, τt)
9: end for

10: while τ < τmax do
11: t, τt ← PQ.minimumElement ()
12: τ ← τt

13: m← m+ ∆t
14: for all transitions k ∈ T \ t affected by t do
15: τk ← (Ek(m)/hk(m)) · (τk − τ) + τ
16: Ek(m)← hk(m)
17: PQ.update (k, τk)
18: end for
19: Et(m)← ht(m)
20: r ← uniformRandomReal((0, 1))
21: τt ← − ln (r) /Et(m) + τ
22: PQ.update (t, τt)
23: end while

Poisson random numbers. Thus, instead of (sequentially) tracing every single
state transition, several reactions are executed in parallel. With τ -leaping, it
is assumed that all propensity functions are approximately constant in [t, t +
τ), which is referred to as the leap condition. Approximating the number of
transition firings by Poisson random numbers has to be done very carefully,
because the Poisson distribution is infinite. So, it may compute transition
firings greater than the enabledness of the transition, which result in incorrect
markings. To ensure this, it is important to select τ sufficiently small, but
also large enough to accelerate simulation. Several improvements were done
in selecting an appropriate τ , see [CGP06; CGP07]. Approximative stochastic
simulation is an ongoing research subject and besides τ -leaping, other leaping
methods arose, e.g., binomial leap methods [TB04], R-leaping [ACK06] or K-

41

leaping [CX07].

Computational complexity

The computational complexity of the τ -leaping method is hardly comparable
with the exact SSA’s, because it leaps over certain steps, whereas the oth-
ers take one step after the other. The single step complexity of τ -leaping is
O (|T |), because for each transition the number of firings in the leap have to be
computed. But the advantage of this method is reducing the number of steps
needed to finish the simulation and thus it should take less run time than the
exact methods.

3.7 Discrete-Time Leap Method

The discrete-time leap method developed by Christian Rohr [Roh16] (δ-leaping
for short) aims at the simulation of stochastic Petri nets used for modelling
biochemical reaction networks. In an attempt to decrease the time complexity
of the simulation algorithm, we exploit the uniformization of the underlying
CTMC in combination with the maximum firing rule.

The idea of converting a CTMC into a DTMC goes back to [Jen53]. Simi-
lar methods are known as uniformization or randomization, see [Ste94]. The
DTMC is defined stochastically identical to the CTMC, i.e., the original CTMC
is represented by a DTMC where the times are implicitly driven by a Pois-
son process. It can be shown that this DTMC behaves equivalently to the
CTMC [San08].

Generating paths through the DTMC is as expensive as for the CTMC and we
would not gain any efficiency by doing it in an exact way. That’s why, we are
leaping over several states. That means, all enabled transitions that are not
mutually exclusive, are forced to fire within one leap. When the net is filled
up with tokens, every transition will fire within every leap. Furthermore, we
embody the maximum firing rule and let each transition fire concurrently to
itself.

42

3.7.1 Transition firing

How often a transition is allowed to fire concurrently depends on its enabled-
ness degree and is determined randomly at each step.

firing rate ≊ random[0, enablness degree] (3.11)

The construction of the DTMC induces that the times between transitions
are all exponentially distributed. Hence, these times are randomized by a
Poisson process. Since for the uniformized DTMC the number of transitions
in any time interval of length δ has a Poisson distribution with rate λ. The
Poisson distribution with rate λ is an approximation of the bounded discrete
binomial distribution with two parameters k and pr according to the Poisson
limit theorem:

λ = k · pr . (3.12)

The binomial distribution is used to model the number of successes in a se-
quence of k independent yes/no experiments with a probability pr to suc-
ceed. In our case, the enabledness degree corresponds to the sequence’s length
k = edt. The success probability pr is deduced from Equation (2.2), because of
the exponentially distributed times between transitions. Given out of edt max-
imum firings and a firing rate ht, we compute the probability pr for transition
t in marking m for δ units of time as follows

pr =

⎧⎪⎨⎪⎩
1− e− ht(m)

edt(m) ·δ edt(m) > 0

0 otherwise.
(3.13)

Thus the number of transition firings in the discrete-time leap method is a
sample value of the binomial random variable B(edt, 1− e− ht(m)

edt(m) ·δ) under the
condition

0 ≤ ht(m)
edt(m) · δ ≤ 1 . (3.14)

This leads us to a good approximation of the exact stochastic simulation re-
sults. Even a violation of the condition in Equation (3.14) would not lead to
negative values or incorrect markings (states), i.e., in any case a marking is
reached that is part of the model’s state space. But the temporal behaviour

43

of the model, simulated with δ-leaping, would not coincide anymore with the
behaviour of exact stochastic simulation algorithms. This may be an indica-
tion for one of two situations. First, the model’s time-scale is smaller than the
chosen δ, i.e., reducing the δ would gain better approximation. Second, some
transition’s rate functions are not scaled correctly, i.e., stochastic reaction rates
have to be scaled with respect to their reaction order, see [Wil06].

Comparing stochastic simulation results is difficult, because each run is some-
what different due to the inherent randomness. But we can apply the law of
large numbers that states, the sample average converges to the expected value

X̄n → µ when n→∞ . (3.15)

This holds for exact as well as approximate stochastic simulation algorithms
and we can use the sample mean X̄ to calculate the approximation error.
For that reason we computed the average of 1 000 000 simulation runs for the
comparison. Now, the approximation error of δ-leaping compared to exact
stochastic simulation algorithms is determined by the absolute error

ϵ = |X̄exact − X̄approx| (3.16)

and by the relative error

η = ϵ

X̄exact

for X̄exact ̸= 0 . (3.17)

We compute the approximation error for each place at each observed time
point and are able to observe the development of it over time. In most cases
the relative error gives meaningful results, but if the average number of tokens
is close to zero the absolute error is suited better. There is surely space for
discussion on how significant the reported approximation error is and the in-
terpretation may be subjective, but a relative error below 0.05 can be seen as
sufficiently good.

We compare the simulation results of δ-leaping, with δ = 0.1, against the
direct method [Gil76] on the most common reaction types in biochemical re-
action networks, i.e., first and second order reactions. The first order reaction
P1 → P2 is shown in Figure 3.2. It uses mass-action kinetics with rate con-

44

stant 1. The results of δ-leaping match the results of the direct method. The
approximation error is very close to zero for place P2 and below 0.02 for place
P1. The increase of the relative error for P1 is caused by P1 approaching
zero. A place having an average number of tokens close to zero is meant to be
part of rare events. Thus, an increase in the number of simulation runs, would
reduce the approximation error even further.

P1

T1

P2

(a) PN (b) simulation results (c) approximation error

Figure 3.2: First order reaction: P1→ P2

The second order reaction P1 + P2 → P3 uses mass-action kinetics with
rate constant 0.1. The results shown in Figure 3.3 are quite as good as in
Figure 3.2. The approximation error for place P1 and P3 goes down to zero
and it is slightly higher for place P2, but still very small.

P1 P2

T1

P3

(a) PN (b) simulation results (c) approximation error

Figure 3.3: Second order reaction: P1 + P2→ P3

45

3.7.2 Dependent Subnets

We discussed the firing of single and independent transitions, but a typical
model consists of much more than that. There are two types of subnets that
need some attention: conflicts and sequences.
A conflict exists inside a Petri net, if two or more transitions share a pre-place,
see Figure 3.4. If the amount of tokens on this place is just as much as the arc
weights, one has to determine, which transition will fire. This is not an issue
in the stochastic simulation algorithm. In an exact stochastic simulation only
one transition is selected at a time and there is no need for further conflict
resolution. As in the standard conflict resolution for Petri nets, we have to
choose a transition non-deterministically. The standard conflict resolution
proposes a non-deterministic selection according to a uniform distribution on
the number of affected transitions. But this is not the best solution for us,
because this does not pay attention to the firing rates of the transitions. We
are aiming at a weighted non-deterministic selection, which accounts for the
firing rates of transitions as well.

P1

T1

2

P2

2
T2

P3

(a) PN (b) simulation results (c) approximation error

Figure 3.4: Conflict: P1→ P2 and P1→ P3

The handling of transition sequences, see Figure 3.5, is closely related to the
conflict resolution. We embody the maximum firing rule and force every tran-
sition to fire (if enabled) in one time step. We shuffle the transitions and let
them fire (if enabled) sequentially to approximate the stochastic behaviour.
Luckily, we can treat both issues, transitions in conflict or in sequence, in
one solution. We generate a weighted random sequence of all transitions t ∈
T in each step and let them fire (if enabled) sequentially. The serial firing

46

P1

T1

P2

T2

P3

(a) PN (b) simulation results (c) approximation error

Figure 3.5: Sequence: P1→ P2→ P3

precludes additional attempts to solve conflicts. Our algorithm is based on
the modern version of the Fisher–Yates shuffle [F+63] introduced in [Dur64].
Algorithm 6 incorporates Bernoulli sampling to realize a shuffling in accordance
to transition weights. The weight computation in Equation (3.19) is based on
a conflict marking, i.e., each place contains the minimal number of tokens so
that each of its post-transitions becomes enabled. Then the transition weight
is derived from the transition rate function evaluated on the conflict marking.

mw(p) = maxt∈p• (f(p, t)) (3.18)

wt = ht(mw) (3.19)

Algorithm 6 Weighted random shuffle
Require: transition sequence T , transition weights W , |T | = |W | = n
Ensure: shuffled transition sequence

1: procedure weightedRandomShuffle(transitions T , weights W)
2: for i = n; i > 1; i← i− 1 do
3: r ← uniformRandomInteger([1, i− 1])
4: t1 ← Tn−i, t2 ← Tn−i+r

5: w ← Wt2/(Wt1 +Wt2)
6: if bernoulliSampling(w) = 1 then
7: swap(Tn−i, Tn−i+r)
8: end if
9: end for

10: return T
11: end procedure

We get quite meaningful results using our weighted random shuffle algorithm

47

for the simulation of conflicts (Figure 3.4) and sequences (Figure 3.5). The
results for sequences are very close to exact stochastic simulation, but the
approximation error for conflicts is higher than in any other case before, but
still acceptable. This gives us the order to continue working on this subject
and to refine it further.

3.7.3 Algorithm

So far, we discussed the essential steps of the discrete-time leap method. Here,
we integrate the various steps in one algorithm, which is given in detail in
Algorithm 7.

Algorithm 7 δ-leaping algorithm
Require: SPN with initial marking m0, time interval [τ0, τmax], time step δ,

runs rmax, weights W
Ensure: marking m at time point τmax

1: for r = 0; r < rmax; r ← r + 1 do
2: time τ ← τ0
3: marking m← m0
4: Tr ← T
5: while τ ≤ τmax do
6: Tr ← weightedRandomShuffle(Tr)
7: for all transitions tj ∈ Tr do
8: k ← enablednessDegree(tj,m)
9: h← firingRate(tj,m)

10: if k > 0 then
11: f ← binomialSampling(a, (1− e− h

k
·δ))

12: m← m+ f ·∆tj
13: end if
14: end for
15: generateResultPoint(τ,m)
16: τ ← τ + δ
17: end while
18: end for

Each simulation run starts with the initialization phase (Algorithm 7, line 2–
4), where the simulation time, the marking, and the transition sequence are
set. The next step is the generation of the weighted random sequence of transi-
tions using the weightedRandomShuffle algorithm (Algorithm 7, line 6). After
that for each transition the following steps are done (Algorithm 7, line 7–14),

48

compute the enabledness degreek, the firfing rateh, and pfick a random num-

berfaccordfing to the bfinomfial dfistrfibutfion defined bykand Equatfion (3.13),

finally the transfitfion firesf-tfimes. The sfimulatfion tfime fis elapsed byδtfime

unfit. All these steps are performed untfil the end of the sfimulatfion tfime finter-

valτmax fis reached. Just lfike for stochastfic sfimulatfion, one has to do several

sfimulatfion runs, fin order to get reasonable results. The overall result fis the

mean of all runs.

3.7.4 Caveat

The presented results of the dfiscrete-tfime leap method approxfimate the stochas-

tfic sfimulatfion algorfithm qufite well. Thfis mfight not be true for all kfinds of

bfiologfical mechanfisms fin a stochastfic Petrfi net model, as fit fis the case for,

e.g., a sfimplfified bfirth-death process, shown fin Ffigure 3.6. The result of the

P1

T1

T2

2

(a)PN

0 10 20 30 40 50

Tfime

0

20

40

60

80

100

120

Tok

en

P1(delta),c2=0.5

P1(dfirect),c2=0.5

P1(delta),c2=1

P1(dfirect),c2=1

(b) sfimulatfion results

0 10 20 30 40 50

Tfime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
bs
ol
ut
e
er
ro
r

P1

(c) approxfimatfion error

Ffigure 3.6: Sfimplfified bfirth-death process, fit shows the results for dfiferent
rate constants ofT2, fi.e.,cT2=1(blue) andcT2=0.5(green)

stochastfic sfimulatfion usfing mass-actfion kfinetfics wfith a rate constant of 1 shows

a steady state ofP1at the finfitfial markfing. TransfitfionsT1andT2are both

lfikely to fire and thus, fire alternately fin average. The token consumed byT1

fis produced byT2.

Due to the maxfimum firfing rule, the result of the dfiscrete-tfime leap method dfif-

fers. Let us assume an finfitfial markfing of 100 tokens finP1and each transfitfion

consumes50%of the tokens fin each firfing for the purpose of demonstratfion.

There exfist two possfible firfing sequencesS1=[T1,T2]andS2=[T2,T1].

The executfion ofS1results fin the followfing pathm0(100)
T1
−− −→m1(50)

T2
−− −→

49

m2(75) and S2 generates m0(100) T2−−−→ m1(150) T1−−−→ m2(75). Both sequences
decrease the amount of tokens on P1. So P1 approaches zero tokens in the
long term in any case. This contradicts the exact stochastic simulation results.
Equal results can be obtained by adapting the rate constant of the stochastic
transition, i.e., setting the rate constant of T2 to 0.5.

Computational complexity

The computational complexity of the δ-leaping method is comparable with the
τ -leaping method, because it leaps over certain steps, whereas the other takes
one step after the other. The single step complexity of δ-leaping is O (|T |),
because all transitions are shuffled in each step and for each transition the
number of firings in the step has to be computed. But the advantage of this
method is the reduction of the number of steps needed to finish the simulation
and thus it should take less run time than the exact methods. The overall
number of steps in δ-leaping is typically lower than in τ -leaping, because it
can perform wider leaps without the risk of getting negative markings.

3.8 Extensions

The presented stochastic simulation algorithms so far are able to simulate
SPN but not GSPN or XSPN . The simulative processing of immediate,
deterministic and scheduled transitions is rather straightforward, see [Ger01].
In short, the stochastic simulation algorithms need to be extended in two ways.

1. After every firing of a stochastic transition, it needs to be checked whether
immediate transitions got enabled. If so, these have to be processed until
no more immediate transition is enabled. This possibly leads to a time
deadlock, if there exists a cyclic path of immediate transitions.

2. Having calculated the next time step, it needs to be checked whether
a deterministic or scheduled transition is enabled in the time interval
[τ, τ + ∆τ]. If yes, the one closest to τ is processed and the simulation
time will be set to the value of this transition.

50

3.8.1 Immediate Transitions

We introduce the procedure checkImmediateTransitions (Algorithm 8), which
checks for enabled immediate transitions and let them fire according to their
weights. The procedure has to be used on the initial marking and each time
after firing a stochastic transition, e.g., direct method Algorithm 2 line 18,
optimized direct method Algorithm 3 line 23, first reaction method Algorithm 4
line 15 and next reaction method Algorithm 5 line 13.

Algorithm 8 Check immediate transitions
Require: GSPN with vanishing marking m at time point τ
Ensure: tangible marking m at time point τ

1: procedure checkImmediateTransitions(marking m)
2: while ∃t ∈ Ti ∧m ≥ t− ∧m ≥ t−r ∧m < t−i do
3: W (m)← 0
4: for all transitions t ∈ Ti do
5: Wt(m)← ht(m)
6: W (m)← W (m) +Wt(m)
7: end for
8: u← W (m) · uniformRandomReal((0, 1])
9: for all transitions t ∈ Ti ∧ u > 0 do

10: u← u−Wt

11: end for
12: m← m+ ∆t
13: end while
14: return m
15: end procedure

The weights of immediate transitions define the ratio of the probability mass
processed by each of them. The sum of weights of all enabled immediate
transitions in marking m is denoted by

W (m) =
∑
t∈Ti

ht(m) . (3.20)

The next immediate transition to fire is a discrete random variable [Ajm+95]
with probability mass function (pmf):

P (t | m) = ht(m)
W (m) . (3.21)

The discrete random variable (Equation (3.21)) is equivalent to Equation (3.4),

51

thus Algorithm 8 applies a linear search for its computation as in Algorithm 2.
This is an appropriate solution, because usually |Ti| ≪ |Ts|. It may be useful
to apply advanced methods like in Algorithm 3, if necessary.
The sojourn time of vanishing states is always zero, that’s why immediate
transitions can cause a time deadlock (Sec. 2.7), if there exists a cyclic patch
of immediate transitions and one of these gets enabled. This is represented by
Algorithm 8 line 2, resulting in an infinite loop without any progress in time.
Such a modelling fault can be discovered by checking the net structure and
looking for cycles of immediate transitions in the graph [Joh75].

3.8.2 Deterministic and Scheduled Transitions

The simulation of timed (deterministic and scheduled) transitions requires us
to keep track of their timers. Each timed transition has its own timer, which
is deactivated by default. Once a timed transition gets enabled, its timer
becomes activated. The timer is initialized with the time point τ , when the
timed transition got enabled. In case of a deterministic transition td, the timer
runs up τtd

, derived from the enabling time point τ and the deterministic time
delay htd

(m):
τtd

= τ + htd
(m) . (3.22)

If td looses its enabledness, the timer is reset and deactivated until it gets
enabled again. The timer of the scheduled transition tp runs up to the absolute
time point τtp defined in its schedule. If tp looses its enabledness, the timer
is reset and deactivated. The last used time point τtp is removed from tp’s
schedule and the next time point greater than τ ′ in the schedule is used, if tp
gets enabled at τ ′. When the timer runs off, the timed transitions are forced
to fire and if they are still enabled after firing, their timers are restarted,
otherwise reset and deactivated. A conflict, between two or more enabled
timed transitions at the same time point, is solved non-deterministic. If a
timed transition td is in conflict with an immediate transition ti, e.g., htd

= 0,
ti is going to fire, because immediate transitions have a higher priority than
timed transitions. Deterministic transitions having a time delay of zero are
able to cause a time deadlock in the same way as immediate transitions, and
should be used only with special care. Stochastic transitions have a lower

52

priority than timed transitions, i.e., the timed transition will fire in case of a
conflict at time point τ .

Algorithm 9 Check deterministic and scheduled transitions
Require: XSPN marking m at time point τ
Ensure: marking m after firing timed transitions at time point τ ′

1: procedure checkTimedTransitions(marking m, time τ)
2: Λ← ∅
3: τ ′ ← τ
4: for all transitions t ∈ Td ∪ Tp do
5: if finished(ttimer) then
6: if time(ttimer) < τ then
7: τ ′ ← time(ttimer)
8: Λ← t
9: else if time(ttimer) = τ then

10: Λ← Λ ∪ t
11: end if
12: end if
13: end for
14: if Λ ̸= ∅ then
15: τ ← τ ′

16: repeat
17: u← uniformRandomInteger([1, |Λ|])
18: t← Λu

19: if m ≥ t− ∧m ≥ t−r ∧m < t−i then
20: m← m+ ∆t
21: m← checkImmediateTransitions(m)
22: end if
23: Λ← Λ \ t
24: until Λ = ∅
25: end if
26: return m, τ
27: end procedure

We show the procedure checkTimedTransitions in Algorithm 9. It needs to
used after computing the next time step in the stochastic simulation algo-
rithms, e.g., direct method Algorithm 2 line 11, optimized direct method Al-
gorithm 3 line 13, first reaction method Algorithm 4 line 14 and next reaction
method Algorithm 5 line 11.

53

3.9 Random Number Generation

Each of the presented simulation algorithms uses random deviates at some
points, e.g., determining the next time step, selecting the next transition to
fire, shuffling the transition sequence and so on. The results of simulation
algorithms highly depend on the computation of random deviates, both in
terms of correctness and speed.
The random deviates used here are not considered to be truly random, but
are created using Pseudo-Random Number Generators (PRNGs). These are
deterministic algorithms creating a sequence of random numbers without an
external source of entropy. They operate on an internal state (seed), whose
initialization is often crucial to its results. Initializing a PRNG with the same
value leads to the same sequence of random numbers. This is a helpful property
for validating and debugging simulation algorithms. The internal state of a
PRNG is finite and thus the sequence of random deviates is periodic and
repeats at some point. The period of the PRNG should be several orders of
magnitude greater than the expected number of necessary random deviates.
The most widely used algorithms for PRNGs are linear congruential generators
(LCG). They are computed with

Xn+1 = (a ·Xn + b)mod m (3.23)

for constants a and b. An efficient implementation can be achieved by using
modulus m as a power of 2. The constants a and b have to be chosen carefully
to avoid problematic cases and achieve maximum period [Knu97]. LCGs are
fast and require only small amounts of memory. That is why they are widely
supported, e.g., rand() in C/C++ with m = 231 and JAVA’s java.util.Random
with m = 248. But they are not suitable for stochastic simulation algorithms,
because of their rather short period and the serial correlation among other
things. In summary, much research work prior to the 21st century that relied
on random deviates computed with LCGs, is much less reliable than it might
have been as a result of using poor-quality PRNGs [Pre+07, chap. 7].
Generators based on linear recurrences were a major advance. In 1997 Mat-
sumoto and Nishimura developed the Mersenne Twister algorithm [MN98]. It
became the most widely used general-purpose PRNG, not only in scientific

54

research. It avoids most of the problems of earlier generators. They pub-
lished two versions of the Mersenne Twister, MT11213 and MT19937. We
use MT19937, which is the most common used. It has a very long period of
219937 − 1 (approximately 4.3 · 106001), which is close to impossible to reach.
It is proven to be equidistributed in up to 623 dimensions. Thereby it is sur-
prisingly fast (faster than most LCGs) [Mar15], but needs about 2.5 KiB of
memory to hold its internal state. This might be an issue for some systems
having limited memory. The Mersenne Twister algorithm is available in many
programming languages, e.g., C/C++, Java, FORTRAN, Lisp and so on.
In 2006 Panneton, L’Ecuyer, and Matsumoto introduced the well-equidistributed
long-period linear algorithms (WELL) [PLM06] that is based on linear recur-
rences modulo 2. They come in different period sizes for 2n and n = 512, 521,
607, 800, 1024, 19937, 21701, 23209, and 44497. These algorithms produce
higher-quality random deviates with better equidistribution than MT19937
and improve upon “bit-mixing” properties. It is supposed to be a replacement
of the Mersenne Twister and we are investigating their use in our simulation
algorithms.

3.10 Closing Remarks

In this chapter we presented the most widely used stochastic simulation algo-
rithms, i.e., direct method, first reaction method, next reaction method and
τ -leaping. We presented optimizations for the direct method by including the
dependency graph, updating continuously the sum of transitions rates and
adding the 2D search, so that there is only little distance to the next reac-
tion method in terms of run-time performance. Thus it is a matter of taste,
which one to use for simulating stochastic systems. Moreover, we introduced
the discrete-time leap method, a new approximate stochastic simulation algo-
rithm developed by Christian Rohr. We showed that it computes reasonable
results on typical biochemical reactions. In Chapter 6, we will use δ-leaping
on real biochemical models and compare it to the direct method. To put it
directly, the results of δ-leaping are reasonable and it outperforms the direct
method on large and dense networks.
In the literature, stochastic simulation algorithms typically process stochastic

55

models, which correspond to stochastic Petri nets. Christian Rohr’s work built
on previous work by Sebastian Lehrack’s master thesis [Leh07] and adapted the
standard algorithms as described in Section 3.3 and 3.5 to support full XSPN ,
which specifically required to incorporate deterministically timed transitions
(delayed, scheduled). In contrast, the approximative simulation algorithms of
Section 3.6 and 3.7 support only standard SPN ; the idea of jumps over time
steps obviously contradicts the embedding of deterministically timed transi-
tions between the occurrences of stochastic transitions.
In the discussion, but not in the implementation, we neglected one specific
optimization technique for stochastic simulation that is the parallelisation of
the simulation algorithms. It is straightforward to parallelise all algorithms in
the same way, because each one of them computes a single path through the
CTMC and this is a completely independent procedure. Thus, letting several
instances of a stochastic simulation algorithm run in parallel and collect the
results afterwards leads to a speed-up close to the number of instances. There
is only one issue that needs to be taken care of, each instance has to initialise its
pseudo random number generator with a different seed, otherwise they would
generate the same trace. We implemented the parallelisation for two different
scenarios. The first implementation uses multi-threading and is meant for
shared memory machines. The second implementation using multi-processing
is intended for distributed memory environments.
The following stochastic simulation algorithms were implemented by the the-
sis’ author in the advanced analysis tool MARCIE [SRH11]: optimized direct
method with 2D search, next reaction method, τ -leaping and discrete-time
leap method. All simulation algorithms are parallelised for multi-threading
and multi-processing.

56

Chapter 4

Simulative Analysis

We presented some methods for the simulation of stochastic Petri nets in the
previous chapter. Now, we want to analyse the output of these methods, i.e.,
the generated traces. In a first step, we have to observe the running simulation
and save the marking of the net at desired time points. That is equivalent to
an experimentalist taking notes of the state of the experiment at certain time
points. As we are in a stochastic setting, we have to repeat the simulation and
the observation several times to get reliable results. After that, we can apply
several techniques to the observed data to get better insights in the stochastic
behaviour of the simulated model.

In this chapter, we present some analysis methods for simulation of stochas-
tic Petri nets, ranging from trace generation and distribution generation to
observer computation and steady state simulation. Trace generation is the
direct outcome of stochastic simulation and thus the most common analy-
sis technique we present. Probability distributions are typically computed by
numerical methods [Sch14] and not by stochastic simulation. We developed a
method for the approximation of probability distributions by means of stochas-
tic simulation and optimized this method for any time interval. Steady state
simulation is an ongoing area of research, but most of it is related to the
computation of single variate [Paw90; AG07]. We introduce a method for the
approximation of the steady state distribution by use of stochastic simulation.
Last but not least, we apply the above methods to the simulation of derived
measures, i.e., observers (sometimes called rewards, or costs).

57

58

4.1 Trace Generation

The first simulative analysis we discuss is trace generation, which suggests it-
self. We have to apply statistics to our observed data, so we have to declare
some terminology first. When simulating stochastic Petri nets, we are gener-
ating paths through the continuous-time Markov chain. This means, we are
visiting only a subset of all states in general. In terms of statistics, the CTMCs
of the stochastic Petri net at the observed time points represent the statistical
populations. Thus sampling statistics have to be applied to the observed data.
The observed number of tokens of a place p at a certain time point τ is a
random variable x(p). After having done N independent simulation runs, we
get a vector x(p) of independently drawn observations. The sample mean of
the number of tokens of place p can be computed by

x̄(p) = 1
N

N∑
i=1

xi(p) . (4.1)

This can be generalised to all places of the net in the random variable vector
x. Thus, the sample mean vector contains the average of the observations for
each place, and is written

x̄ = 1
N

N∑
i=1

xi . (4.2)

The sample mean x̄(p) is a good estimator of the population mean µ(p), be-
cause it can be computed efficiently and it is unbiased. The population mean
is also referred to as expected value or expectation E(X). It is computed over
all possible values n of the discrete probability distribution by

E(X) =
n∑

i=1
xipi , (4.3)

where xi is a value of the random variable X and pi is its probability. In
contrast to the population mean, the sample mean is a random variable, be-
cause its value is different each time we take new observations from stochastic
simulation. It is distributed with the same distribution as the CTMC at the
observed time point τ .
The weak law of large numbers states that the sample mean x̄ converges in

59

probability towards the population mean µ [Wil06]. That is to say that for
any positive number ϵ,

lim
n→∞

Pr(|x̄− µ| < ϵ) = 1 . (4.4)

The strong law of large numbers states that the sample mean x̄ converges
almost surely to the population mean µ [Wil06]. That is,

Pr(lim
n→∞

x̄ = µ) = 1 . (4.5)

In the end, the sample mean x̄(p) gives us a good estimator of the average
stochastic behaviour of a place p. Putting several sample means, computed at
different time points, together results in a good overview on the behaviour of
the observed places over time.
In addition to the mean, the variance of the observed data may be of interest,
i.e., we want to know how far the values are spread around the mean. Thus we
want to estimate the population variance σ2. As the population mean is un-
known, we have to take special care of the variance, because the (uncorrected)
sample variance is a biased estimator and underestimates the population vari-
ance by a factor of N−1/N . For that reason, we apply Bessel’s correction to get
an unbiased sample variance s2 by

s2 = 1
N − 1

N∑
i=1

(xi − x̄)2 . (4.6)

The computation of the sample variance with Equation 4.6 would require to
compute the sample mean first, while keeping all observation data, and com-
pute the sample variance afterwards. This is inefficient both in terms of run-
time and memory consumption. Thus, we apply the squared deviations from
the mean and use the following short cut

N∑
i=1

(xi − x̄)2 =
[

N∑
i=1

x2
i

]
− 1
N

[
N∑

i=1
xi

]2

(4.7)

to compute the sample variance more efficiently by

s2 = 1
N − 1

⎛⎝[N∑
i=1

x2
i

]
− 1
N

[
N∑

i=1
xi

]2⎞⎠ . (4.8)

60

Now, we can compute the sample variance using Equation (4.8) by just taking
the observed data and in one pass.
The standard deviation can be used to quantify the amount of variation of a
set of values, too. The advantage of having the standard deviation instead of
the variance is that it is in the same unit as the observed data, whereas the unit
of the variance is squared. The standard deviation σ is usually computed as
the square root of the variance σ2. We compute the sample standard deviation
s from the corrected sample variance in the same way

s =

√ 1
N − 1

⎛⎝[N∑
i=1

x2
i

]
− 1
N

[
N∑

i=1
xi

]2⎞⎠ . (4.9)

This yields to a biased estimator of the standard deviation σ, because the
square root is a non-linear function. The reintroduced bias is small, but signif-
icant for values of N ≤ 10 and drops of at 1/N with N increasing. In contrast
to mean and variance, there is no formula for a unbiased sample standard de-
viation that works for all distributions. Therefore, we use Equation (4.9) and
disregard the bias by increasing the number of simulation runs.

Example 9. We show the evolution of mean and standard deviation over
time on Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1). Figure 4.1 shows the
results after 10 000 simulation runs.

(a) mean (b) standard deviation

Figure 4.1: Mean and standard deviation over time of Example 6 with B = 1
and m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs.

Up to now, we discussed the observation of the number of tokens on places

61

at distinct time points. Another measure of interest is the activity of a tran-
sition in a certain time interval, e.g., the interval between the observations
of the number of tokens on places. The activity of a transition is expressed
by the number of firings. This number has to be accumulated, each time the
transition fires. When the observation of the transition’s activity takes place,
the accumulated number of firings is preserved in the random variable x(t)
and the accumulated number of firings of the transition is reset to zero. As
the observed activity of the transition is a random variable from independent
observations, we can apply the sampling statistics to it presented before.

Example 10. We demonstrate the evolution of transition firings over time on
Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1). Figure 4.2 shows the results
after 10 000 simulation runs.

Figure 4.2: Averaged number of transition firings of Example 6 with B = 1
and m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs.

4.2 Transient Solutions

In the previous section, we discussed the analysis of the generated simulation
traces by means of sampling statistics. So we can get an overview of the aver-
aged stochastic behaviour of the model over time. Now, we want to compute
transient solutions of the continuous-time Markov chain. There exist several

62

numeric approaches for this problem, e.g., uniformization [Sch14], matrix de-
composition and Krylov subspace methods [Ste94]. These methods yield very
good results, but rely on finite state spaces with at most 1×109 states [Sch14].
There are approximative numerical methods that are able to compute tran-
sient solutions of CTMCs with larger or infinite state spaces, e.g., fast adaptive
uniformization [Did+09]. But the application of this method is still limited by
the size of the constructed subgraph. We want to approximate the probability
distribution of the CTMC at some time point τ using stochastic simulation.

Let X(τ) be the random variable describing the CTMC at time point τ . Then
πi(τ) is the probability that the system is in state i, i.e.,

πi(τ) = Pr(X(τ) = i) . (4.10)

The probability to be in state i after ∆τ time units is

πi(τ + ∆τ) = πi(τ)
⎛⎝∑

k∈R
qki(τ)πk(τ)

⎞⎠∆τ + o (∆τ) (4.11)

using little-o notation. Then

lim
∆τ→0

(
πi(τ + ∆τ)− πi(τ)

∆τ

)
= lim

∆τ→0

⎛⎝∑
k∈R

qki(τ)πk(τ) + o (∆τ)
∆τ

⎞⎠ , (4.12)

i.e.,
dπi(τ)
dτ) =

∑
k∈R

qki(τ)πk(τ) . (4.13)

In matrix notation, this is

dπ(τ)
dτ

= π(τ)Q(τ) . (4.14)

The solution π(τ) is given by

π(τ) = π(0)eQτ , (4.15)

where π(0) is the initial probability vector.

We can approximate π(τ) by applying Borel’s law of large numbers. It states
that for every experiment, which is repeated N times under identical condi-

63

tions, the occurrence of any specified event approximates the probability of
the event’s occurrence in general. The more repetitions take place, the better
the approximation tends to be. Let any specified event E occur with prob-
ability pr, and N(E) is the number of occurrence of event E throughout N
experiments, then with probability one [Wen91]

N(E)
N

→ pr when N →∞ , (4.16)

i.e.,

Pr

(
lim

N→∞

N(E)
N

= pr

)
= 1 . (4.17)

In addition, this gives us the lower bound of the probability any event can
have that occurs in an experiment. Let N(E) = 1, then the probability for
event E is

pr = 1
N

. (4.18)

Referring back to stochastic simulation, we are able to approximate the prob-
ability of any visited state i at time point τ by

πi(τ) ≈
N∑

n=1

⎧⎪⎨⎪⎩
N−1 X(τ) = i

0 otherwise .
(4.19)

The computation of the probability distribution is straightforward from an
algorithmic point of view. The current marking has to be saved after reaching
time point τ and the probability of this marking has to be increased by 1/N
in each simulation run. After N simulation runs, we have the approximate
probability distribution at time point τ of at most N different states and with
a lower bound on the probability of N−1.

Example 11. We approximate the probability distribution at time point τ =
10 of Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation
runs

π(100) ≈ {0.4363, 0.1532, 0.0592, 0.0263, 0.0084, 0.2633, 0.0522, 0.0011}.

This is quite close to the probability distribution computed by the numerical

64

algorithm

π(100) = {0.4310, 0.1593, 0.0649, 0.0248, 0.0078, 0.2611, 0.0499, 0.0012}.

After being able to approximate the probability distribution at time τ , it
seem likely to compute the probability distributions at several time points
{τ1, τ2, . . . , τj}. In a naive approach, we could use repeatedly the described
method for each of the n time points. This would yield correct results, but
would be very inefficient, because we would have to perform n ·N simulation
runs and we would repeat the simulation for each τj+1 with j > 1 up to τj that
was already done before.

But we can do better. We want to avoid the repeated simulations for the prior
time intervals and want to keep the number of simulation runs close to N .
Therefore, Equation (4.15) can be adapted for any time interval (τj, τj+1) with
j > 0 and τ0 = 0 to

π(τj+1) = π(τj)eQ(τj+1−τj) , (4.20)

because of the memoryless property of a stochastic process, i.e., Markov prop-
erty.

We adapt our approach for Equation (4.20). For the first time interval (τ0, τ1),
we start the stochastic simulation from the initial marking and the probability
vector π(0) consists of one entry for m0, which has probability one. So we
can compute the probabilities of the visited states at τ1 with Equation (4.19).
In the next step, we start with probability vector π(τ1), which almost surely
has more than one entry. We perform simulations for each state in π(τ1)
up to time point τ2. The question is now, how many simulation runs do
we perform for each state. We could do N simulation runs like in the first
step. This would enable us to capture states with a probability of at least
(N · |π(τ1)|)−1, but we would have to perform N · |π(τ1)| simulation runs.
Thus, we decided to perform ⌈N · πi(τ1)⌉ simulation runs for each state i,
which results in slightly more simulation runs, but this is not significant for
the overall run-time. The probability of the reached state at τ2 is then increased
by the quotient πi(τ1)/⌈N ·πi(τ1)⌉ of the probability of the starting state i and
the number of simulation runs, calculated before. We can apply these steps
to the subsequent time intervals and get the probability distributions without

65

any unnecessary simulations.
In general, the probability to be in state i at the end of the time interval
(τj, τj+1) is approximately

πi(τj+1) ≈
|π(τj)|∑
k=1

⌈N ·πk(τj)⌉∑
n=1

⎧⎪⎨⎪⎩
πk(τj)/⌈N · πk(τj)⌉ X(τj+1) = i

0 otherwise .
(4.21)

Example 12. We compute the transient solutions up to τ = 100 of Example 6
with B = 1 and m0 = (0, 1, 0, 1, 0, 1). Figure 4.3 shows the results after 10 000
simulation runs.

Figure 4.3: Transient solutions up to τ = 100 of Example 6 with B = 1 and
m0 = (0, 1, 0, 1, 0, 1) after 10 000 simulation runs.

4.3 Steady State Distribution

As we are able to compute the transient probability distributions at any time
interval, now we are interested in the long run behaviour. A given continuous-
time Markov chain may converge to a limiting stationary distribution, i.e.,
steady state probability distribution.

66

A distribution is called stationary, if ∀i ∈ R it satisfies

0 ≤ πi ≤ 1 ,
∑
i∈R

πi = 1 , πi =
∑
k∈R

πkqki . (4.22)

In matrix notation, this is
πQ = π . (4.23)

A distribution is called limiting, if there exists

lim
τ→∞

π(τ) (4.24)

and we write
π = lim

τ→∞
π(τ) (4.25)

as the limiting distribution. The stationary distribution must not necessarily
be the limiting distribution of a Markov chain [Ste94]. Thus, the existence of
a steady state probability distribution π for a given CTMC depends on the
structure of the generator matrix Q and can be computed with

πQ = 0 . (4.26)

There is no assumption on the starting distribution π(0) in Equation (4.26),
i.e., the CTMC converges to the steady state distribution no matter where it
begins.

In our simulative approach, we are not able to encounter the generator matrix
Q, but we can take advantage of the fact, that if there exists a steady state
distribution, then the rate of change of π(τ) at steady state is zero, i.e.,

dπ(τ)
dτ

= 0 . (4.27)

The steady state distribution π is a property over the entire state space, but it
is also an ergodic property [GS01]. That means we can show how the spatial
property πi of state i relates to the time average of the system. Let Ni(τ) be
the times of being in state i during the time interval (0, τ). The time average
is denoted by

Ni(τ)
τ

. (4.28)

67

We apply the ergodic theorem [Bir31] that assert the existence of a time average
on each trajectory and show that, for any initial state X(0) = k and for every
state i, Equation (4.28) converges almost surely to πi when τ goes to infinity,
i.e.,

lim
τ→∞

Ni(τ)
τ

= πi . (4.29)

Let us consider first the case that i is a transient state. A state i is called
transient if there exists a state k which is reachable from i, i.e., i → k, but
not in the opposite direction, i.e., k ̸→ i. Otherwise, state i is called recurrent.
That means, there is a probability greater than zero to reach state k starting
from i, but it is not possible to return back to state i. Thus, after some finite
time we will almost surely never reach state i, i.e.,

lim
τ→∞

Ni(τ)
τ

= 0 = πi . (4.30)

In the second case that state i is recurrent, let the sequence of successive
visits τ1, τ2, τ3, . . . of state i be independent and identically distributed. By
the definition of Ni(τ) we have

Ni(τ)∑
m=1

τm ≤ τ <
Ni(τ)+1∑

m=1
τm (4.31)

from which we get

∑Ni(τ)
m=1 τm

Ni(τ) ≤ τ

Ni(τ) <
∑Ni(τ)+1

m=1 τm

Ni(τ) + 1
Ni(τ) + 1
Ni(τ) . (4.32)

Applying the strong law of large numbers we have that almost surely

lim
n→∞

∑n
m=1 τm

n
= lim

n→∞

∑n
m=2 τm

n
+ lim

n→∞

τ1

n
. (4.33)

Combining Equation (4.32) with Equation (4.33) get us

lim
τ→∞

τ

Ni(τ) = 1
πi

, (4.34)

from which we obtain Equation (4.28) almost surely.

Referring back to stochastic simulation, the last issue to consider is when to

68

stop the simulation run? We adapt Equation (4.27) and introduce an upper
bound ϵ on the change over time, i.e.,

dπ(τ)
dτ

≤ ϵ . (4.35)

The simulation stops if for all visited states i the change in the probability
is below or equal to ϵ. Thus, we are able to approximate the steady state
probability of any visited state i with only 1 simulation run by

πi ≈
Ni(τϵ)
τϵ

. (4.36)

This works well if the reachability graph has only one terminal strongly con-
nected component, i.e., the Markov chain has only one recurrence class. In case
that there are multiple terminal strongly connected components, i.e., multi-
ple recurrence classes R1, R2, . . . , Rr, each recurrence class has its own steady
state distribution πi, 1 ≤ i ≤ r. These distributions have πi

k = 0 for all states
k /∈ Ri and 0 < πi

k ≤ 1 for all states k ∈ Ri. The family of all the steady
state distributions can be obtained by taking all possible convex combinations
of πi, 1 ≤ i ≤ r. The convex combination X of several distributions Yi is a
weighted sum of its component distributions, this is called a finite mixture
distribution. The probability density function of X is

pX(x) =
n∑

i=1
wi · pYi

(x) (4.37)

with 0 < wi ≤ 1 and ∑n
i=1 wi = 1. Intuitively speaking, the finite mixture

distribution combines the steady state probabilities of each recurrence class
(terminal strongly connected component) with the probability of reaching each
one of them. In our simulative setting, we can achieve this by computing
several simulation runs N and combine the steady state probabilities in the
following way

πi ≈
1
N

N∑
n=1

Ni(τϵ)
τϵ

. (4.38)

Example 13. We approximate the steady state distribution of Example 6

69

with B = 1 and m0 = (0, 1, 0, 1, 0, 1) after 100 simulation runs

π(100) ≈ {0.0309, 0.1857, 0.0926, 0.2774, 0.0104, 0.1085, 0.0620, 0.2322}.

This is quite close to the steady state distribution computed by the numerical
algorithm

π(100) = {0.0309, 0.1856, 0.0928, 0.2784, 0.0103, 0.1082, 0.0619, 0.2320}.

4.4 Observers

Sometimes it may be valuable to observe derived measures. This can be
achieved by enriching the CTMC with an observer, also called reward, cost,
gain or bonus. This adds an extra dimension to the CTMC, while moving on
in time, it accumulates an output. In order to realize this, a reward structure
(ρ, ι) is added to the CTMC. The state reward function ρ : R → R+

0 defines
the rate at which reward ρ(s) is obtained in a state s. That means a reward
of τ · ρ(s) is earned, if the CTMC stays in state s for τ time units. Thus the
accumulated state reward at time point τ in a path ω = ((s0, τ0)(s1, τ1), . . .)
is defined by

Ys(τ) =
n−1∑
i=0

τi · ρ(si) +
(
τ −

n−1∑
i=0

τi

)
· ρ(sn) , (4.39)

if and only if ∑n−1
i=0 τi ≤ τ ∧∑n

i=0 τi > τ . For every state si the state reward
is the product of the state reward function ρ(si) and the sojourn time τi. But
for state n the state reward function is multiplied by the residual time until
time point τ .

The impulse reward function ι : R×R → R+
0 assigns to each transition t from

state s to s′ a reward ι(s, s′), i.e., a reward ι(s, s′) is acquired, if transition t

fires. Thus the accumulated impulse reward at time point τ in a path ω =
((s0, τ0)(s1, τ1), . . .) is defined by

Yi(τ) =
n−1∑
i=0

ι(si, si+1) . (4.40)

70

if and only if ∑n−1
i=0 τi ≤ τ ∧∑n

i=0 τi > τ .

The observer defines a stochastic process Y (τ), τ ∈ R+
0 , which is the state and

impulse rewards accumulated from time point 0 to τ , i.e.,

Y (τ) = Ys(τ) + Yi(τ) . (4.41)

Note that Y (τ) is non Markovian, because its value depends solely on the
past. But Y (τ) is a function of the CTMC, because it is defined over the
same probability space. If the CTMC has reached state n of the path ω at
time point τ , the accumulated reward Y (τ) is the sum of the state reward
accumulated in the preceding states and the impulse reward accumulated on
the firing of each transition in path ω reaching state sn.

A CTMC enriched with a state reward function ρ and an impulse reward
function ι is called a Markov reward model (MRM).

In simulative analysis, we can evaluate directly the reward functions while
the trace ω is generated. So we can efficiently apply the analysis techniques
presented in this chapter to observer as well with just a small adaptation.

The state reward function and the impulse reward function are discrete weight
functions. Generally speaking, a discrete weight function w : A → R+

0 is a
positive function defined on a discrete set A, which is finite or at least count-
able. A weight function w(a) := 1 refers to the unweighted case, where all
elements have equal weights. Let f : A → R be a real valued function, then
the unweighted sum is ∑

a∈A

f(a) . (4.42)

Adding the weight function w, the weighted sum is defined as

∑
a∈A

f(a)w(a) . (4.43)

In addition, the unweighted mean of f

1
|A|

∑
a∈A

f(a) , (4.44)

71

can be replaced with the weighted mean
∑

a∈A f(a)w(a)∑
a∈A w(a) . (4.45)

Which can be simplified to

∑
a∈A

f(a)w′(a) , (4.46)

after normalizing the weights, i.e., ∑a∈A w
′(a) = 1.

Referring back to simulative analysis, the weighted sample mean Ȳ of the
observer, with normalized weights (weights summons to one) is itself a random
variable, and its expected value and variance are related to the expected value
and variance of the observations in the following way.

Let the observations have an expected value from Equation (4.3) then the
weighted sample mean has expectation

E(Ȳ) =
n∑

i=1
xipiyi . (4.47)

The weighted sample variance s2
Ȳ

of the observer is then

s2
Ȳ =

n∑
i=1

s2
i y

2
i . (4.48)

It is easy to see that a state reward function ρ := 1 or an impulse reward func-
tion ι := 1 would lead to the unweighted sample mean and unweighted sample
variance presented in Section 4.1. By having Equation (4.47), it is straight-
forward to compute transient solutions and the steady state distribution of an
observer using stochastic simulation.

Example 14. We demonstrate the computation of an observer for the SPN
in Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1) up to τ = 100. Figure 4.4
shows the averaged waiting time for consumer to receive a token after 10 000
simulation runs. We achieve this by evaluating a state reward function that
earns a reward of 1 in each state where consumer has zero tokens.

72

Figure 4.4: Averaged waiting time for consumer to receive a token up to
τ = 100 of Example 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1) after 10 000
simulation runs.

4.5 Closing Remarks

We presented various simulative analysis techniques in this chapter, ranging
from trace generation to the computation of the transient solutions and the
steady state distribution, and the evaluation of observers. These analysis tech-
niques provide us with a good insight into the behaviour of the network under
investigation.
Trace generation is the most common analysis technique and usually available
in most of the simulation tools. Probability distributions are typically com-
puted by numerical methods and not by stochastic simulation. We developed a
method for the approximation of probability distributions by means of stochas-
tic simulation and optimized this method for any time interval. Furthermore,
we introduced a method for the approximation of the steady state distribution
by use of stochastic simulation. Last but not least, we applied the above meth-
ods to the simulation of derived measures, i.e., observers. We implemented all
analysis techniques presented above in the analysis tool MARCIE [HRS13].
In the next chapter, we present a more advanced analysis technique based on
stochastic simulation, known as simulative model checking.

Chapter 5

Simulative Model Checking

Model checking is an advanced analysis technique to check whether a model
of a system satisfies some properties or specifications. Therefore, temporal
logics are used to specify the properties of interest. Networks modelled as PN
or XPN can be checked with the Computational Tree Logic (CTL) [CE81]
and the Linear-time Temporal Logic (LTL) [Pnu77]. An efficient approach to
verify bounded PN and XPN using CTL and LTL was presented in [Tov08].

Their probabilistic extensions, Probabilistic CTL (PCTL) [HJ94], Continu-
ous Stochastic Logic (CSL) [Azi+00], Continuous Stochastic Reward Logic
(CSRL) [Hav+02] and Probabilistic LTL (PLTL) [Bai98], are used for stochas-
tic models. For the specification of temporal formulas we use PLTLc [DG08b],
because it reasons over paths through the state space of the model and stochas-
tic simulation produces traces through the state space of the model. We extend
PLTLc with time-unbounded temporal operators and incorporate the steady
state operator [Roh13]. Nevertheless, we introduce a simulative model checking
algorithm for time-unbounded CSL as well as the steady state operator with
one restriction, the formula must not have nested operators. Furthermore,
we present simulative reward computation, which enables us to verify CSRL
formulas with the same restriction as for CSL. Thus, we introduce the first
simulative model checking algorithm for CSRL, to the best of our knowledge.

73

74

5.1 Simulative PLTLc Model Checking

For the specification of temporal formulas we define the probabilistic exten-
sion of the Linear-time Temporal Logic (LTL) [Pnu77] with numerical con-
straints [FR07], which is called Probabilistic Linear-time Temporal Logic with
numerical constraints (PLTLc) [DG08b]. The grammar of all PLTLc formulas
is given in Definition 25.

Definition 25. Syntax of the Probabilistic Linear-time Temporal Logic with
Constraints:

ψ := P▷◁ x [ϕ] | P=? [ϕ]

▷◁∈ {<,≤,≥, >} , x ∈ [0, 1]

ϕ := XI ϕ | FI ϕ | GI ϕ | ϕ UI ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | σ
I := [x1, x2] =

{
x ∈ R+

0 | x1 ≤ x ≤ x2
}
, omit I = [0,∞)

σ := ¬σ | σ ∧ σ | σ ∨ σ | value⊴ value | true | false
⊴ ∈ {<,≤,≥, >,=, ̸=}

value := value ∼ value | Place | $V ariable | Int | Real | function
∼∈ {+,−, ∗, /} «

A trace ω fulfils a linear-time temporal logic formula ϕ if the following |=
relations hold.

ω |= XI ϕ ⇐⇒ ω(1) |= ϕ and τ0 ∈ I
ω |= FI ϕ ⇐⇒ ∃τ ∈ I : ω@τ |= ϕ

ω |= GI ϕ ⇐⇒ ∀τ ∈ I : ω@τ |= ϕ

ω |= ϕ1 UI ϕ2 ⇐⇒ ∃τ ∈ I : ω@τ |= ϕ2 and ∀τ ′ < τ : ω(τ ′) |= ϕ1

ω |= ¬ϕ ⇐⇒ ω ̸|= ϕ

ω |= ϕ1 ∧ ϕ2 ⇐⇒ ω |= ϕ1 ∧ ω |= ϕ2

ω |= ϕ1 ∨ ϕ2 ⇐⇒ ω |= ϕ1 ∨ ω |= ϕ2

ω |= v1 ⊴ v2 ⇐⇒ evalState(v1,ω
(i)) ⊴ evalState(v2,ω

(i))

ω |= P▷◁ x [ϕ] ⇐⇒ Pr(ω ∈ Path(s) | ω |= ϕ) ▷◁ x

75

The probability operator P has two different modes. If it is used with the
question mark as P=? [ϕ], then it will return the expected probability Pr(ϕ)
that ϕ is true. We apply sample statistics as presented in Section 4.1, because
Pr(ϕ) is the expected value of a random variable. We approximate the prob-
ability by computing the sample mean of the outcomes of N evaluations with

Pr(ϕ) ≈ 1
N

N∑
n=1

⎧⎪⎨⎪⎩
1 if ϕ is true

0 otherwise.
(5.1)

In simulative model checking, we compute a confidence interval (c.i.), rather
than a single value. For simplicity, we assume the c.i. to have a lower and
an upper bound Bl, Bu ∈ R≥0, such that the probability Pr(ϕ), which is
not known in our case, is Bl ≤ Pr(ϕ) ≤ Bu. A common method for the
computation of a confidence interval for the probability of success is the Wald
interval [Wal92]. It is used in hypothesis testing as well [You+06], but it was
shown in [BCD02] that the Wald interval has unstable coverage characteristics
even for large N . Thus, we decided to incorporate the Wilson score confidence
interval [Wil22], which had shown good coverage characteristics even for small
N and extreme probabilities. It is computed from the expected probability
Pr, the number of simulation runs N and the Z = 1 − α/2 percentile of the
normal distribution with the confidence level α by

[Bl, Bu] = 1
1 + Z2

N

⎛⎝Pr + Z2

2N ± Z
√
Pr(1− Pr)

N
+ Z2

4N2

⎞⎠ . (5.2)

In the second case, P▷◁ x [ϕ] returns true, if Pr(ϕ) ▷◁ x is fulfilled, false other-
wise. We have to introduce an additional return value unknown, because of
the indifference region defined by the confidence interval. It is returned, if the
computed confidence interval covers the probability x, because in that case we
can not decide whether ϕ is true or not. The return value of P▷◁ x[ϕ] is defined

76

as

P▷◁ x[ϕ] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
true if x ▷◁ [Bl, Bu] ∧ x ̸∈ [Bl, Bu]

false if x ̸▷◁ [Bl, Bu] ∧ x ̸∈ [Bl, Bu]

unknown if x ∈ [Bl, Bu] .

The operators ¬, ∧, ∨ are the standard boolean operators not, and, or.
Whereas X, F, G, U denote the temporal operators NEXT, FINALLY, GLOB-
ALLY and UNTIL. The NEXT operator (XI ϕ) refers to true in the next state
and within the time interval I. The UNTIL operator (ϕ1 UI ϕ2) indicates that
a state where ϕ2 holds is eventually reached within the time interval I, while
ϕ1 continuously holds. The FINALLY operator (FI ϕ) means that at some
point within the time interval I a state where ϕ holds is eventually reached.
Whereas the GLOBALLY operator (GI ϕ) refers to the condition ϕ contin-
uously holding true within the time interval I. The latter two are syntactic
sugar, as they rely on the following equivalences [BK08]:

Fϕ ≡ true Uϕ (5.3)

Gϕ ≡ ¬F¬ϕ . (5.4)

State formulas are denoted by σ. They are evaluated for the given marking
and return true or false. The function evalState(v,ω(i)) assigns a numerical
value to the expression v by looking up the tokens that each place x ∈ P (v)
has in state ω(i) of trace ω.
In the next sections we present algorithms to compute time-bounded and time-
unbounded formulas, and afterwards an algorithm to compute steady state
formulas in a simulatively manner.

5.1.1 Time-bounded Formula

Formulas are marked out as time-bounded, if all their temporal operators are
decorated with an interval I = (n,m) with 0 ≤ n ≤ m < ∞. Hence it
requires only a finite simulation trace to verify any time-bounded formula.
Algorithms for simulative model checking of time-bounded formulas are well
known, see [FR07; Bal+09]. A simulation trace, whether computed beforehand
or on-the-fly, approximate or exact, constitutes a linear Kripke structure in

77

which PLTLc formulas can be verified [FR07].

The procedure to evaluate time-bounded formulas is given in Algorithm 10.
We omit the evaluation of FI and GI , because they can be substituted using
Equations (5.3) and (5.4). Algorithm 10 is a forward model checking method
starting from the initial marking and adding states on-the-fly to the trace, if
necessary. This has the advantage of being able to stop the trace generation
as soon as the property is satisfied or falsified. On the other hand backward
model checking algorithms, relying on precomputed traces, can check G by
just looking at the last state of the trace [DG08a].

The verification of a formula ϕ is performed by the function evalFormula. It
takes as arguments a formula ϕ, the current position pos in the trace and the
generated trace ω. The return value of the function is a tuple of the actual
result (true/false) and the position in the trace, where the function finished.
The trace is timed, i.e., an element of the trace consists of the marking and the
entry time. The trace is initialised with the initial marking and the starting
time τ0. Each time the algorithm reaches the end of ω the next state is
generated and is appended to the trace.

State formulas σ are evaluated by the function evalState, taking the formula
σ and the marking of the current position in the trace as parameters. In case
of boolean expressions, evalFormula is called on the sub expression(s) ϕ1(ϕ2)
and the current position in the trace. The result(s) of the sub expression(s)
are then assessed with their boolean operation. Special care has to be taken
of the returned positions pos1 and pos2 for the binary operators ∧ and ∨. For
the ∧-operator we take the minimum of the two positions, because we know
that up to min(pos1, pos2) both sub expressions ϕ1 and ϕ2 must be true or
it is the first position, where at least one sub expression is false. For the ∨-
operator we take the maximum of the two positions, because we ensure that
up to max(pos1, pos2) at least on sub expression ϕ1 or ϕ2 must be true or it is
the first position, where both sub expressions are false.

The temporal operator XI ϕ1 is evaluated in the time interval I. Therefore,
we move to the next element in the trace and check if the time τpos is in the
interval I specified in XI . If that is the case, the result of the evaluation of the
sub expression ϕ1 is returned. Verifying time-bounded until formulas ϕ1 UI ϕ2

is done by creating a trace ω and checking if ω |= ϕ1 UI ϕ2. Therefore we

78

extend ω until a state is reached where ω(pos) ̸|= ϕ1, so that trace ω does not
fulfil our formula, or ω(pos) |= ϕ2, that means trace ω satisfies our formula.
This approach works fine for time-bounded formulas, because it is guaranteed
to terminate with a probability of 1. It either terminates on a positive or
negative observation of our formula or at the end of the greatest time interval
associated with the temporal operators.
It is crucial for simulative PLTLc model checking to hold the complete trace
ω for two reasons. First for the sake of efficiency. Second to avoid branching
that may occur, due to roll-back to a previous state, after the evaluation of
sub formulas.

Example 15. We verify the following PLTLc formula on the SPN in Exam-
ple 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1). We want to know the probabilities
of the number of tokens on place buffer at time point τ = 10. This can be
computed by using a free variable in the following formula

P=?
[
trueU10,10 buffer = $x

]
.

The simulative model checking computes a confidence interval of [1, 1] after
10 000 simulation runs, which is to be expected, because the free variable x
is set to a value so that the formula becomes true. The probabilities for the
number of tokens on x are {(0, 0.777), (1, 0.223)}.

5.1.2 Time-unbounded Formula

The model checking algorithm presented in the previous section works well for
time-bounded formulas, but it is not applicable in the case of time-unbounded
until formulas, because there is no finite time bound, so the algorithm does
not eventually terminate in some cases.
The stochastic Petri net in Figure 5.1 demonstrates the problem of not termi-
nating while verifying time-unbounded until formulas [Roh13].
Consider, for example, the formula

P=? [trueU p3 = 1] .

The corresponding CTMC of the SPN in Figure 5.1 has only one state that

79

Algorithm 10 Evaluate time-bounded formula
Require: ω ← (m0, τ0), τmax

1: procedure evalFormula(ϕ, pos,ω)
2: repeat
3: switch ϕ
4: case σ :
5: return (pos,evalAtomic(σ,ω(pos)))
6: case ¬ϕ1 :
7: (pos1, res1)← evalFormula(ϕ1, pos,ω)
8: return (pos1,¬res1)
9: case ϕ1 ∧ ϕ2 :

10: (pos1, res1)← evalFormula(ϕ1, pos,ω)
11: (pos2, res2)← evalFormula(ϕ2, pos,ω)
12: return (min(pos1, pos2), res1 ∧ res2)
13: case ϕ1 ∨ ϕ2 :
14: (pos1, res1)← evalFormula(ϕ1, pos,ω)
15: (pos2, res2)← evalFormula(ϕ2, pos,ω)
16: return (max(pos1, pos2), res1 ∨ res2)
17: case XIϕ1 :
18: if pos = |ω| then
19: ω ← ω + nextState(ω(pos))
20: end if
21: pos← pos+ 1
22: if τpos ∈ I then
23: return evalFormula(ϕ1, pos,ω)
24: end if
25: case ϕ1U

Iϕ2 :
26: if τpos ∈ I then
27: (pos2, res2)← evalFormula(ϕ2, pos,ω)
28: if res2 = true then
29: return (true, res2)
30: end if
31: end if
32: (pos1, res1)← evalFormula(ϕ1, pos,ω)
33: if res1 = false then
34: return (false, res1)
35: end if
36: pos← pos1

37: end switch
38: if pos = |ω| then
39: ω ← ω + nextState(ω(pos))
40: end if
41: pos← pos+ 1
42: until τpos > τmax

43: return (pos, false)
44: end procedure

80

p5p4

p2

p1

p3

t61

t5

1
t1

1

t2

2
10

t4

7
10

t3

1
10

Figure 5.1: Stochastic Petri net demonstrating the issue of not terminating
verification of time-unbounded until formulas.

satisfies the formula. But any trace ω starting in s0 (Figure 5.1), that does not
fulfil the formula is of infinite length. For this net, the probability of reaching
the satisfying state starting from state s0 and time 0 can be computed as
follows:

Pr (trueU p3 = 1) = 1
10 ·

∞∑
n=0

(2
10

)n

= 1
8 .

Using the algorithm for time-bounded formulas does not work, because it will
not terminate with a probability of 7/8. We need another stopping criteria to
solve this problem.
In Algorithm 11 we present the algorithm for checking time-unbounded until
formulas. It is nearly the same as for time-bounded formulas except that one
has to stop the simulation trace at some time point not known in advance.
The decision of doing that is the crucial part of the algorithm. We assume
that reaching the steady state is a reasonable stopping criteria (line 36). A
system in a steady state has numerous properties that are unchanging in time.
This implies that for any property p of the system, the partial derivative with
respect to time is zero:

∂p

∂t
= 0

If a system is in steady state, then the recently observed behaviour of the
system will continue into the future. In stochastic systems, the probabilities
that various states will be repeated will remain constant. But, if the system
does not have a steady state, e.g., it oscillates, the algorithm will run forever
or until the user stops the program. In the following section, we present the
approach for evaluating whether the current simulation run reached already a
steady state or not.

81

Algorithm 11 Evaluate time-unbounded formula
Require: trace← (m0, τ0)

1: procedure evalFormula(ϕ, pos, trace)
2: steadyStateReached← false
3: repeat
4: switch ϕ
5: case σ :
6: return (pos,evalAtomic(σ, trace(pos)))
7: case ¬ϕ1 :
8: (pos1, res1)← evalFormula(ϕ1, pos, trace)
9: return (pos1,¬res1)

10: case ϕ1 ∧ ϕ2 :
11: (pos1, res1)← evalFormula(ϕ1, pos, trace)
12: (pos2, res2)← evalFormula(ϕ2, pos, trace)
13: return (min(pos1, pos2), res1 ∧ res2)
14: case ϕ1 ∨ ϕ2 :
15: (pos1, res1)← evalFormula(ϕ1, pos, trace)
16: (pos2, res2)← evalFormula(ϕ2, pos, trace)
17: return (max(pos1, pos2), res1 ∨ res2)
18: case Xϕ1 :
19: if pos = |trace| then
20: trace← trace + nextState(trace(pos))
21: end if
22: pos← pos+ 1
23: (pos1, res1)← evalFormula(ϕ1, pos, trace)
24: return (pos1, res1)
25: case ϕ1Uϕ2 :
26: (pos2, res2)← evalFormula(ϕ2, pos, trace)
27: if res2 = true then
28: return (pos2, res2)
29: end if
30: (pos1, res1)← evalFormula(ϕ1, pos, trace)
31: if res1 = false then
32: return (pos1, res1)
33: end if
34: pos← pos1

35: end switch
36: steadyStateReached← checkSteadyState(trace)
37: if pos = |trace| then
38: trace← trace + nextState(trace(pos))
39: end if
40: pos← pos+ 1
41: until steadyStateReached = true
42: return (pos, false)
43: end procedure

82

Example 16. We adapt Example 15 and remove the time interval.

P=? [trueU buffer = $x] .

The simulative model checking computes a confidence interval of [1, 1] after
10 000 simulation runs, which is to be expected, because the free variable x is
set to a value so that the formula becomes true. In the time-unbounded setting
the two possible number of tokens on place buffer are reached eventually. Thus
the probabilities are {(0, 1.0), (1, 1.0)}.

5.1.3 Steady State Operator

In steady state simulation, the measures of interest are defined as limits, as
the length of the simulation goes to infinity. There is no natural event to
terminate the simulation, so the length of the simulation is made large enough
to get “good” estimates of the quantities of interest. Steady state simulation
generally poses two problems:

1. The existence of a transient phase may cause the estimate to be biased.

2. The simulation runs are long, and usually one cannot afford to carry out
many independent simulations.

There are several methods that allow to cope with these problems to some
extent. Among them are: the batch means method, the method of indepen-
dent replicas, and the regeneration method. Each of these methods have its
advantages and disadvantages. Additionally, we presented an approach to ap-
proximate the steady state distribution in Section 4.3, but this approach is
not suitable best in the case of linear-time temporal logic, because we have to
have the complete trace instead of the distribution. That is why we use in our
implementation a sample batch means algorithm to compute the steady state.
We choose Skart [Taf+08], which is an automated sequential procedure for
on-the-fly steady state simulation output analysis, because it is specifically
designed to handle observation-based statistics and usually requires a smaller
initial sample size compared with other well-known simulation analysis proce-
dures [TW10]. This algorithm partitions a long simulation run into batches,

83

computes an average statistics for each batch and constructs an interval es-
timate using the batch means. Based on this interval estimate Skart decides
whether a steady state is reached or more samples were needed. A detailed
description of the algorithm is given in [Taf+08].

We extend PLTLc with the steady state operator S in [Roh12] and the syntax
is defined in Definition 26. The return values are the same as for the probability
operator P . But inside of S only state formulas are allowed, i.e., no temporal
operators.

Definition 26. Extension of PLTLc with steady state operator S.

ψ := P▷◁ x [ϕ] | P=? [ϕ] | S▷◁ x [σ] | S=? [σ]

▷◁∈ {<,≤,≥, >} , x ∈ [0, 1] «

Steady-state formulas are computed with Algorithm 12. At first the simulation
trace is created until the steady state is reached (line 4 – 8). To get an unbi-
ased result, we cut off the first n states, which bias the steady state (line 9).
The remaining states are now checked whether the steady state property holds
or not and the occupation time τo of the fulfilling states and the simulation
time τs are summed up (line 11 – 19). The steady state probability is now the
ratio τo/τs (line 19). But this gives correct results only for those Petri nets,
where the reachability graph consists of only one strongly connected compo-
nent (SCC). The complexity of this decision is the same as for constructing
the reachability graph. In symbolic model checking the strongly connected
components and the probabilities of reaching them are computed first. After
that the probabilities within each SCC are computed and these are weighted
with the probability of reaching the SCC. In that way the correct steady state
probability is calculated. To solve this problem in simulative model checking,
one has to make several simulation runs (steady state computations) and aver-
age the results. In that way the individual steady state estimates are weighted
according to the strongly connected components.

Example 17. We verify the following PLTLc formula on the SPN in Exam-
ple 6 with B = 1 and m0 = (0, 1, 0, 1, 0, 1). We want to know the probabilities
in the steady state for the number of tokens on place buffer. This can be

84

Algorithm 12 Steady state computation for one simulation run
Require: ω ← (m0, τ0)

1: procedure evalSteadyState(σ)
2: steadyStateReached← false
3: pos← 0
4: repeat
5: ω ← ω + nextState(ω(pos))
6: pos← pos+ 1
7: steadyStateReached← checkSteadyState(ω)
8: until steadyStateReached = true
9: cutOff ← getSteadyStateCutOff

10: τo ← 0, τs ← 0
11: for i← cutOff, |ω| do
12: (si, τi)← ω(i) ▷ state si, sojourn time τi in si

13: τs ← τs + τi

14: res← evalState(σ, si)
15: if res = true then
16: τo ← τo + τi

17: end if
18: end for
19: return τo/τs

20: end procedure

computed by using a free variable in the following formula

S=? [buffer = $x] .

The simulative model checking computes a confidence interval of [1, 1] after
1000 simulation runs, which is to be expected, because the free variable x is set
to a value so that the formula becomes true. The probabilities for the number
of tokens on place buffer in the steady state are {(0, 0.665), (1, 0.335)}.

5.2 Simulative CSL Model Checking

In Section 5.1, we presented simulative PLTLc model checking for verify-
ing properties on stochastic Petri nets. Now, we discuss an simulative ap-
proach for model checking CSL. The Continuous Stochastic Logic (CSL) in-
troduced in [Azi+00] and extended in [Bai+00a] is a stochastic adaptation
of the Computation Tree Logic (CTL) [CGP01] to formulate properties of

85

CTMCs. We adapted the definition of CSL in [Bai+00a] by removing nested
operator P▷◁ x [.]. We discuss this issue in Section 5.2.1.
The syntax of our adapted CSL is given in Definition 27.

Definition 27. Syntax of the Continuous Stochastic Logic:

ψ := P▷◁ x [ϕ] | P=? [ϕ] | S▷◁ x [σ] | S=? [σ]

▷◁∈ {<,≤,≥, >} , x ∈ [0, 1]

ϕ := XI σ | FI σ | GI σ | σUI σ | σ
I := [x1, x2] =

{
x ∈ R+

0 | x1 ≤ x ≤ x2
}
, omit I = [0,∞)

σ := ¬σ | σ ∧ σ | σ ∨ σ | a | true | false
a := value⊴ value

⊴ ∈ {<,≤,≥, >,=, ̸=}
value := value ∼ value | Place | Int | Real | function

∼∈ {+,−, ∗, /} «

The probability operator P has the same characteristic as in PLTLc. It either
returns the probability Pr(ϕ) that ϕ is true. Or it returns true, false or
unknown, if Pr(ϕ) ▷◁ x is satisfied, falsified or not decidable, because x falls into
the computed confidence interval. We use again the Wilson score confidence
interval, described in Section 5.1. The probability operator P reasons over path
formulas ϕ that contain temporal operators {X,F,G,U}. We apply again the
equivalences in Equation (5.3) and Equation (5.4), and do not discuss F and G.
In contrast to [Bai+00a], our temporal operators assert only state formulas and
no probability operators. The operator S asserts the steady state probability
for a state formula. A state formula is denoted by σ. It evaluates atomic
propositions a with boolean operators {¬,∧,∨} in the given state. Atomic
propositions compare values derived from the number of tokens on the places
in the given state by comparison operators {<,≤,≥, >,=, ̸=}. These values
can be combined by arithmetic operators {+,−, ∗, /}.
The subset of CSL formulas, we defined, can be expressed equivalently by a
subset of PLTLc. So the question may arise, what are the reasons for having
it. The first answer is for the sake of efficiency. PLTLc verifies over paths and
it is necessary to keep track of the path in general. Our adapted CSL evaluates

86

paths too, but it is not necessary to keep track of the whole path. We can verify
CSL formulas by evaluating the current state of the path and can disregard
the already passed states. This reduces the memory requirements for model
checking time-bounded CSL formulas to O (1) instead of O (|ω|) for PLTLc
formulas. For model checking time-unbounded CSL formulas, the memory
requirement is O (S), where S is the number of distinct states visited, which
is typically much smaller than the length of the generated path. The second
answer is, because it is a by-product of the continuous stochastic reward logic
(CSRL) presented in Section 5.4.
A CSL state formula is satisfied in state s, if the following |= relations hold.

s |= a ⇐⇒ s |= evalAtomic(a, s)

s |= ¬σ ⇐⇒ s ̸|= σ

s |= σ1 ∧ σ2 ⇐⇒ s |= σ1 ∧ s |= σ2

s |= σ1 ∨ σ2 ⇐⇒ s |= σ1 ∨ s |= σ2

s |= P▷◁ x [ϕ] ⇐⇒ Pr(ω ∈ Path(s) | ω |= ϕ) ▷◁ x

s |= S▷◁ x [σ] ⇐⇒
∑

s′|=σ

πs(s′) ▷◁ x

The function evalAtomic(a, s) evaluates the atomic proposition a by looking
up the tokens that each place x ∈ P (a) has in state s.
A path formula is satisfied for any path ω ∈ Path(s), if the following |=
relations hold.

ω |= XI σ ⇐⇒ ω(1) |= σ and τ0 ∈ I
ω |= FI σ ⇐⇒ ∃τ ∈ I : ω@τ |= σ

ω |= GI σ ⇐⇒ ∀τ ∈ I : ω@τ |= σ

ω |= σ1 UI σ2 ⇐⇒ ∃τ ∈ I : ω@τ |= σ2 and ∀τ ′ < τ : ω(τ ′) |= σ1

We discuss nesting of probabilistic operators in the context of simulative model
checking and describe the algorithms used to verify CSL formulas in the fol-
lowing sections.

87

5.2.1 Nested Probabilistic Operator

The continuous stochastic logic is a branching-time logic like the computation
tree logic. In the setting of simulative model checking it is possible to verify
efficiently properties of states and paths, because the simulator generates paths
through the state space of the model starting from an initial state. It is
much more expensive in terms of run-time and memory consumption to verify
properties of paths starting from a sets of initial states, as it happens to be
in the case of nested probabilistic operators. This branching is theoretically
possible in simulation context, see [YS02], but it becomes infeasible in terms
of run-time. Let the expected number of simulation runs (samples) for each
probabilistic operator be ni with 0 ≤ i < N , N is the number of nested
operators, i = 0 represents the outer probabilistic operator and i > 0 any
nested probabilistic operator. The expected total number of simulation runs
n is

n =
N∏

i=0
ni , (5.5)

which grows rapidly with the number of nested probabilistic operators. That
is why we leave it to future work to find a simulative method with feasible
run-time behaviour. Nevertheless, the statistical model checker Ymer supports
nested probabilistic operator, but due to the already mentioned run-time issue,
they suggest to use numerical methods for sub formulas and to use simulation
only for the top formula [You+06].

5.2.2 Time-bounded Formula

A CSL formula is meant to be time-bounded if the time interval associated
with any temporal logic operator is (n,m) with 0 ≤ n ≤ m < ∞. Thus,
the formula can be verified within finite time. The algorithm for evaluating
time-bounded formulas is a forward model checking algorithm. This way it is
able to stop the trace generation as soon as a decision was made. It is divided
in two procedures, namely Algorithm 13 for the evaluation of path formulas
and Algorithm 14 for the evaluation of state formulas.
Algorithm 13 starts from the initial state and evaluates the path formula on
the current state. In case of operator XI σ, the successor state s′ of the current
state s is generated, if the transition from state s to s′ takes place in the time

88

Algorithm 13 Evaluate time-bounded path formula
1: procedure evalPathFormula(ϕ,m0, τ0, τmax)
2: (s, [τs, τs+1))← initialState(m0, τ0)
3: repeat
4: switch ϕ
5: case XI σ1 :
6: if τs+1 /∈ I then
7: return false
8: end if
9: (s, [τs, τs+1))← nextState(s, τs+1)

10: return evalStateFormula(σ1, s)
11: case σ1 UI σ2 :
12: if τs ∈ I then
13: res2 ← evalStateFormula(σ2, s)
14: if res2 = true then
15: return true
16: end if
17: end if
18: res1 ← evalStateFormula(σ1, s)
19: if res1 = false then
20: return false
21: end if
22: end switch
23: (s, [τs, τs+1))← nextState(s, τs+1)
24: until τs+1 > τmax

25: return false
26: end procedure

interval I, i.e., τs+1 ∈ I. The state formula σ is going to be evaluated by
Algorithm 14. Verifying operator σ1 UI σ2 is done by evaluating σ1 until a
state s is reached such that s ̸|= σ1 or s |= σ2 and state s is reached within
the time interval I. If there was no decision made, the algorithm generates
the next state s and the corresponding sojourn time interval [τs, τs+1) until a
state is reached those exit time τs+1 is greater than τmax. In this case the path
formula is returned to be false, because it was not possible to decide whether
a state satisfied or falsified the path formula in the given interval I.

The evaluation of state formulas in Algorithm 14 is straight forward. The
algorithm gets the state formula ϕ and the state s that the formula is to
be evaluated on. Therefore, the procedure evalStateForumla is called recur-
sively on all sub formulas. The function evalAtomic(a, s) evaluates the atomic

89

Algorithm 14 Evaluate state formula
1: procedure evalStateFormula(σ, s)
2: switch σ
3: case a :
4: return evalAtomic(a, s)
5: case ¬σ1 :
6: return ¬evalStateFormula(σ1, s)
7: case σ1 ∧ σ2 :
8: res1 ← evalStateFormula(σ1, s)
9: res2 ← evalStateFormula(σ2, s)

10: return res1 ∧ res2

11: case σ1 ∨ σ2 :
12: res1 ← evalStateFormula(σ1, s)
13: res2 ← evalStateFormula(σ2, s)
14: return res1 ∨ res2

15: end switch
16: return false
17: end procedure

proposition a by looking up the tokens that each place x ∈ P (a) has in state
s.

Example 18. We verify the following CSL formula on the SPN in Example 6
with B = 1 and m0 = (0, 1, 0, 1, 0, 1). We want to know how likely it is that
producer and consumer have one token at time point τ = 10

P=?
[
trueU10,10 producer = 1 ∧ consumer = 1

]
.

The expected probability computed by the numerical engine is 2.6036e-02.
The simulative model checking computes a confidence interval of [2.4862e-02,
2.7461e-02] after 100 000 simulation runs, which is covering well the expected
value.

5.2.3 Time-unbounded Formula

Simulative model checking of time-unbounded CSL formulas suffers from the
same issues as described in Section 5.1. In the context of statistical CSL
model checking, there were several approaches to tackle this issue. A method
based on perfect simulation was presented in [RP09], but this method is only

90

applicable if the model under study is monotone. In addition, the authors do
not discuss how to decide the monotonicity of a model. Another interesting
approach may be the computation of termination-probability using rare-event
simulation [LDT06], but there is still some work to do to make this applicable
to simulative model checking. A method suitable for models of finite state
space was presented in [YCZ11]. It incorporates reachability analysis using
symbolic data structures and the results are very promising, but it is restricted
to finite state spaces. Thus, we apply the approach, presented in Section 5.1,
of detecting the steady state as a sufficient stopping criteria.

Algorithm 15 Evaluate time-unbounded path formula
1: procedure evalUnboundedPathFormula(ϕ)
2: steadyStateReached← false
3: (s, [τs, τs+1))← initialState(m0)
4: repeat
5: switch ϕ
6: case X σ1 :
7: (s, [τs, τs+1))← nextState(s, τs+1)
8: return evalStateFormula(σ1, s)
9: case σ1 Uσ2 :

10: res2 ← evalStateFormula(σ2, s)
11: if res2 = true then
12: return true
13: end if
14: res1 ← evalStateFormula(σ1, s)
15: if res1 = false then
16: return false
17: end if
18: end switch
19: steadyStateReached← checkSteadyState(s)
20: (s, [τs, τs+1))← nextState(s, τs+1)
21: until steadyStateReached = true
22: return false
23: end procedure

Algorithm 15 is mostly identically to Algorithm 13, but we omited the check
for the time intervals and added the steady state detection. The steady state
detection is internally somewhat different to PLTLc, this is described in the
next section.

91

Example 19. We adapt Example 18 and remove the time interval.

P=? [trueU producer = 1 ∧ consumer = 1] .

In this case a state that satisfies producer = 1 ∧ consumer = 1 is eventually
reached at some time. The expected probability computed by the numerical
engine is 1. The simulative model checking computes a confidence interval of
[1, 1] after 100 000 simulation runs, which is covering well the expected value.

5.2.4 Steady State Operator

The steady state operator S was introduced in CSL in [Bai+00a] and de-
scribes the steady state behaviour of the CTMC. The formula S=? [σ] is used
to compute the probability to be in a state satisfying σ in a long-run. For the
evaluation of steady state formulas, we want to keep the memory consumption
as low as possible, i.e., we do not want to keep the complete trace in memory
as in Section 5.1.3. That is why we apply the approach described in Section 4.3
for computing the steady state distribution using stochastic simulation. This
approach has two advantages. First, the number of unique states in the steady
state distribution is usually smaller than the length of the path generated, be-
cause states are usually visited not only once. Thus the memory consumption
is lower. Second, there is no need to cut off some states, because the transient
states are neglected in the steady state distribution.
Algorithm 16 shows the computation of the probability for steady state formula
S=? [σ]. At first the steady state distribution is computed by generating a
path and adding the visited states s and their sojourn time τs+1 − τs to the
distribution π. While the path is generated, the sojourn times of each state
are accumulated. The accumulated sojourn times are used to compute the
steady state probability by Equation (4.36) and the steady state is reached if
Equation (4.35) holds for all visited states. After reaching the steady state we
iterate over all states and accumulate the probability of all states in which σ

holds. In this way we get the steady state probability for irreducible CTMCs,
if the CTMC is reducible we got the probability for only one recurrence class.
So we have to repeat Algorithm 16 several times and average the resulting
probabilities to take the recurrence classes into account.

92

Algorithm 16 Steady state computation for one simulation run
1: procedure evalSteadyState(σ)
2: steadyStateReached← false
3: (s, [τs, τs+1))← initialState(m0)
4: π ← (s, τs+1 − τs)
5: repeat
6: (s, [τs, τs+1))← nextState(s, τs+1)
7: π ← π + (s, τs+1 − τs)
8: steadyStateReached← checkSteadyState(π, ϵ)
9: until steadyStateReached = true

10: pr ← 0
11: for i← 0, |π| do
12: (si, pri)← πi ▷ state si, probability pri

13: res← evalStateFormula(σ, si)
14: if res = true then
15: pr ← pr + pri

16: end if
17: end for
18: return pr
19: end procedure

Example 20. We verify the following CSL formula on the SPN in Example 6
with B = 1 and m0 = (0, 1, 0, 1, 0, 1). We want to know how likely it is in the
long run that producer and consumer have one token.

S=? [producer = 1 ∧ consumer = 1] .

The expected steady state probability computed by the numerical engine is
7.2165e-02. The simulative model checking computes a confidence interval of
[6.5817e-02, 7.9159e-02] after 10 000 simulation runs, which is covering well the
expected value.

5.3 Simulative Reward Computation

The Continuous Stochastic Logic has been extended in [KNP07] by special op-
erators to compute the expectations of instantaneous and cumulative rewards.
In order to realize this, a reward structure (ρ, ι) is added to the CTMC, see
Section 4.4.
The syntax of the reward extension of CSL is given in Definition 28.

93

Definition 28. Syntax of the reward extension of CSL:

R▷◁ r

[
C≤τ

]
| R=?

[
C≤τ

]
| R▷◁ r [I=τ] | R=? [I=τ] |

R▷◁ r [Fσ] | R=? [Fσ] | R▷◁ r [S] | R=? [S]

▷◁∈ {<,≤,≥, >} , r, τ ∈ R+
0 «

The reward operator R has two different modes. If it is used with the question
mark as R=? [ψ], then it will return the expected reward E(ψ). We apply
sample statistics as presented in Section 4.1, because E(ψ) is the expected
value of a random variable. We approximate the probability by computing the
sample mean of the outcomes of N evaluations with

E(ψ) ≈ Ȳ = 1
N

N∑
n=1

Yn . (5.6)

As well as the probabilistic operator, the reward operator returns a confidence
interval instead of a single value. In this case it is not possible to use the
Wilson score confidence interval, Equation (5.2), or the Wald confidence in-
terval, because both are defined for values in the interval (0, 1). According to
the central limit theorem [SM08], the confidence interval [Bl, Bu] is computed
from the sample mean Ȳ and the sample variance s2 of the expected reward
E(ψ), the number of simulation runs N and the Z = 1−α/2 percentile of the
normal distribution with the confidence level α by

[Bl, Bu] = Ȳ ± Z
√
s2

N
. (5.7)

The second case is mostly common with the probabilistic operator, R▷◁ x [ψ]
returns true, if E(ψ) ▷◁ x is fulfilled, false otherwise. We have to introduce
an additional return value unknown, because of the indifference region defined
by the confidence interval. It is returned, if the computed confidence interval
covers the value x, because in that case we can not decide whether E(ψ) ▷◁ x

94

is true or not. The return value of R▷◁ x[ψ] is defined as

R▷◁ x[ψ] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
true if x ▷◁ [Bl, Bu] ∧ x ̸∈ [Bl, Bu]

false if x ̸▷◁ [Bl, Bu] ∧ x ̸∈ [Bl, Bu]

unknown if x ∈ [Bl, Bu] .

A formula, defined in Definition 28, is satisfied in state s, if the following |=
relations hold.

s |= R▷◁ x

[
C≤τ

]
⇐⇒ E(s, YC≤τ) ▷◁ x

s |= R▷◁ x [I=τ] ⇐⇒ E(s, YI=τ) ▷◁ x

s |= R▷◁ x [Fσ] ⇐⇒ E(s, YF σ) ▷◁ x

s |= R▷◁ x [S] ⇐⇒ lim
τ→∞

τ−1 · E(s, YC≤τ) ▷◁ x

The expected value of the random variable Y for any path ω ∈ Path(s) is
denoted by E(s, Y).

The random variable YC≤τ denotes the cumulated reward of state and impulse
reward functions up to time point τ and is computed by Equation (4.41), i.e.,
Algorithm 17 line 8.

Let the random variable YI=τ be the expected state reward at time point τ , it
is defined as

YI=τ = ρ(ω@τ) , (5.8)

where ω@τ is the state sn in path ω at time point τ , i.e., Algorithm 17 line 15.

The random variable YF σ denotes the expected reward to be accumulated
before reaching a state satisfying σ. Let state sn be the first state satisfying σ
on path ω, then

YF σ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if ω(0) |= σ

∞ if ∀si ∈ ω, si ̸|= σ∑n−1
i=0 τi · ρ(si) + ι(si, si+1) otherwise.

(5.9)

The evaluation of YF σ is divided in 3 parts. First, if the first state satisfies

95

σ, then the expected value is zero, because no reward could be accumulated.
Second, if no state in path ω satisfies sigma, then the expectation is infinity,
because the cumulated reward is monotonically increasing. In our simulative
settings, we have to stop the trace generation at some point and we apply
again the steady state property as in Section 5.2, i.e., Algorithm 17 line 18–25.
The random variable YS denotes the expected reward in the long-run and is
defined as

YS = lim
τ→∞

τ−1 ·
∑
i∈N

τi · ρ(si) + ι(si, si+1) . (5.10)

Thus, we use the same approach as described in Section 4.3, but rather than
the probability we compute the cumulated reward. Equation (5.10) matches
the case that the CTMC is irreducible. In case the CTMC is reducible, we
have to perform several simulation runs and average the resulting rewards.

Example 21. We verify the following reward formulas on the SPN in Ex-
ample 6 with B = 1, m0 = (0, 1, 0, 1, 0, 1) and the state reward function of
Example 14. We want to know

1. the accumulated reward until time point τ = 10

R=?
[
C≤10

]
= 9.6257 ≈ [9.6042, 9.6561],

2. the expected state reward at time point τ = 10

R=?
[
I=10

]
= 0.9013 ≈ [0.8953, 0.9106],

3. the accumulated reward until a state is reached satisfying producer =
1 ∧ consumer = 1

R=? [F producer = 1 ∧ consumer = 1] = 4.0042 ≈ [3.9239, 4.0866],

4. the accumulated reward in the long-run

R=? [S] = 0.8041 ≈ [0.7936, 0.8141].

The expected reward values computed by the numerical engine are all cov-
ered by the confidence intervals computed by the simulative model checking

96

procedure after 10 000 simulation runs.

Algorithm 17 Evaluate reward formula
1: procedure evalRewardFormula(ϕ,m0, τ0, τmax)
2: (s, [τs, τs+1))← initialState(m0, τ0)
3: res← 0
4: repeat
5: switch ϕ
6: case C≤τ :
7: if τs ≤ τ then
8: res← res+ evalReward(s, τs, τs+1)
9: end if

10: if τs+1 > τmax then
11: return res
12: end if
13: case I=τ :
14: if τ ∈ [τs, τs+1) then
15: return evalReward(s, τ, τ)
16: end if
17: case Fσ :
18: if evalStateFormula(σ, s) = true then
19: return res
20: end if
21: π ← π + (s, τs+1 − τs)
22: if checkSteadyState(π, ϵ) = true then
23: return ∞
24: end if
25: res← res+ evalReward(s, τs, τs+1)
26: case S :
27: π ← π + (s, τs+1 − τs)
28: res← res+ evalReward(s, τs, τs+1)
29: if checkSteadyState(π, ϵ) = true then
30: return res/τs+1
31: end if
32: end switch
33: (s, [τs, τs+1))← nextState(s, τs+1)
34: until true
35: end procedure

97

5.4 Simulative CSRL Model Checking

The Continuous Stochastic Reward Logic (CSRL), introduced in [Bai+00b;
Hav+02], is a superset of the continuous stochastic logic, presented in Sec-
tion 5.2 and is a specification formalism for performability measures. Now, the
temporal operators are decorated additionally with a reward interval. Model
checking CSRL requires to compute the joint distribution of the CTMC and
the stochastic process representing the evolution of the accumulated rewards.
This is much more involving than computing transient probabilities, since the
latter does not feature the Markov property. However, there are various algo-
rithms to compute numerically the performability measures [Clo+05; CH06],
but their applicability was restricted to systems of a few thousand states only.
This limit has been moved by several orders of magnitude to systems with
billion states in [Sch14], due to symbolic on-the-fly analysis. Nevertheless, the
size of the models is still growing, especially in systems biology, and exceeds
quite fast this limit. By using simulation analysis, we can overcome this limit
and analyse even larger systems at the expense of accuracy.
The syntax of our adapted CSRL is given in Definition 29.

Definition 29. Syntax of the Continuous Stochastic Reward Logic:

ψ := P▷◁ x [ϕ] | P=? [ϕ] | S▷◁ x [σ] | S=? [σ]

▷◁∈ {<,≤,≥, >} , x ∈ [0, 1]

ϕ := XI
J σ | FI

J σ | GI
J σ | σUI

J σ | σ
I := [x1, x2] =

{
x ∈ R+

0 | x1 ≤ x ≤ x2
}
, omit I = [0,∞)

J := [r1, r2] =
{
r ∈ R+

0 | r1 ≤ r ≤ r2
}
, omit J = [0,∞)

σ := ¬σ | σ ∧ σ | σ ∨ σ | a | true | false
a := value⊴ value

⊴ ∈ {<,≤,≥, >,=, ̸=}
value := value ∼ value | Place | Int | Real | function

∼∈ {+,−, ∗, /} «

It is quite similar to Definition 27, but extends the path operators with a reward
interval. The reward interval J can be omitted, if it is defined as J = [0,∞),

98

and the CSRL formula becomes in fact a CSL formula. In the same way,
the time interval I can be omitted, if it is defined as I = [0,∞). Now the
CSRL formula becomes a continuous reward logic (CRL) formula. CSL and
CRL are complementary [Bai+00b], i.e., CRL-properties over Markov reward
models can be interpreted as CSL-properties over the derived continuous-time
Markov chain. So we can check CRL formulas with the same algorithms as
CSL formulas.
A CSRL state formula is satisfied in state s, if the following |= relations hold.

s |= a ⇐⇒ s |= evalAtomic(a, s)

s |= ¬σ ⇐⇒ s ̸|= σ

s |= σ1 ∧ σ2 ⇐⇒ s |= σ1 ∧ s |= σ2

s |= σ1 ∨ σ2 ⇐⇒ s |= σ1 ∨ s |= σ2

s |= P▷◁ x [ϕ] ⇐⇒ Pr(ω ∈ Path(s) | ω |= ϕ) ▷◁ x

s |= S▷◁ x [σ] ⇐⇒
∑

s′|=σ

πs(s′) ▷◁ x

The function evalAtomic(a, s) evaluates the atomic proposition a by looking
up the tokens that each place x ∈ P (a) has in state s.
A path formula is satisfied for any path ω ∈ Path(s), if the following |=
relations hold.

ω |= XI
J σ ⇐⇒ ω(1) |= σ and τ0 ∈ I and y0 ∈ J

ω |= FI
J σ ⇐⇒ ∃τ ∈ I : ω@τ |= σ and Yτ ∈ J

ω |= GI
J σ ⇐⇒ ∀τ ∈ I : ω@τ |= σ and Yτ ∈ J

ω |= σ1 UI
J σ2 ⇐⇒ ∃τ ∈ I : ω@τ |= σ2 and ∀τ ′ < τ : ω(τ ′) |= σ1 and Yτ ∈ J

The random variable Yτ denotes the cumulated reward up to time point τ . In
particular, the path ω satisfies XI

J σ, if the sojourn time of the first state is
τ0 ∈ I, the cumulated reward in the first state is y0 ∈ J and the successor
state satisfies σ. Verifying operator σ1 UI

J σ2 is done by evaluating σ1 until a
state s is reached such that s ̸|= σ1 or s |= σ2, state s is reached within the

99

time interval I and the accumulated reward is in the reward interval J .
The model checking procedure for CSRL formulas is essentially the same as for
CSL formulas, see Algorithm 18. We just have to accumulate the reward using
Equation (4.41), while a new state is reached. Having done this, we can check
the cumulated reward against the reward bounds on the path operators. Such
a straightforward adaptation of the model checking procedure is possible in our
simulative setting, because we operate directly on a path and in continuous-
time. Additionally, there is no need to distinguish between different until
formulas, as it is the case when using numerical techniques [Clo06; Sch14].

Example 22. We verify the following CSRL formula on the SPN in Ex-
ample 6 with B = 1, m0 = (0, 1, 0, 1, 0, 1) and the state reward function of

Algorithm 18 Evaluate time-bounded reward path formula
1: procedure evalRewardPathFormula(ϕ,m0, τ0, τmax)
2: (s, [τs, τs+1))← initialState(m0, τ0)
3: y ← y + evalReward(s, τs, τs+1)
4: repeat
5: switch ϕ
6: case XI

J σ1 :
7: if τs+1 /∈ I ∨ y /∈ J then
8: end if
9: (s, [τs, τs+1))← nextState(s, τs+1)

10: return evalStateFormula(σ1, s)
11: case σ1 UI

J σ2 :
12: if τs ∈ I ∧ y ∈ J then
13: res2 ← evalStateFormula(σ2, s)
14: if res2 = true then
15: return true
16: end if
17: end if
18: res1 ← evalStateFormula(σ1, s)
19: if res1 = false then
20: return false
21: end if
22: end switch
23: (s, [τs, τs+1))← nextState(s, τs+1)
24: y ← y + evalReward(s, τs, τs+1)
25: until τs+1 > τmax

26: return false
27: end procedure

100

Example 14. We want to know how likely it is that producer and consumer
have one token at time point τ = 10 and the accumulated reward is at most 8

P=?
[
trueU10,10

0,8 producer = 1 ∧ consumer = 1
]
.

Such kind of formula is used for performability analysis. The expected proba-
bility computed by the numerical engine is 1.1722e-02. The simulative model
checking computes a confidence interval of [9.9442e-03, 1.5702e-02] after 100 000
simulation runs, which is covering well the expected value.

5.5 Closing Remarks

In this chapter we have shown how to verify certain properties, expressed
in temporal logics, by the application of simulative model checking. We ex-
tended PLTLc with time-unbounded temporal operators and the steady state
operator [Roh13]. Therefore, we exploited the steady state property to find
an appropriate truncation point for the generated path. This was achieved by
two different methods. First, the sample bath means algorithm Skart [Taf+11]
was used for the verification of PLTLc formulas, because it operates directly
on the generated path. Second, we approximated the steady state distribution
as described in Section 4.3 for the verification of CS(R)L formulas, because
this is more efficient in terms of memory than keeping the whole trace, which
is not necessary for verifying CS(R)L formulas. The simulative model check-
ing algorithm for CSRL formulas is the first to known and it supports state
rewards as well as impulse rewards. We implemented all algorithms for simula-
tive model checking of PLTLc, CSL and CSRL formulas in our model checker
MARCIE [HRS13].

Chapter 6

Case Studies

In this chapter we provide some case studies to demonstrate the applicability
of the different analysis methods presented in Chapter 4 and to verify certain
properties expressed in temporal logics presented in Chapter 5. Furthermore,
we compare the run-time performance of the introduced δ-leaping simulation
method with the well known and widely used direct method on models of
different size. We use models ranging from just a few nodes and arcs up to
some thousand nodes and tens of thousand arcs.
The models originate from different areas, i.e., systems biology and technical
systems. All Petri nets were modelled with Snoopy [RMH10; Hei+12] and
analysed with MARCIE [SRH11; HRS13]. We start with five biochemical case
studies of different sizes, presented from small to large. These models can
be separated into two categories signal transduction networks and metabolic
networks. The signal transduction networks are the RKIP inhibited ERK
pathway (Section 6.1), the Mitogen-activated Protein Kinase (Section 6.2), the
angiogenetic process (Section 6.3) and a simplified repressilator (Section 6.4).
The metabolic networks are a reduced E.coli K-12 Metabolic model and a
genome scale E.coli K-12 Metabolic model.
Afterwards we present two technical case studies , i.e., the flexible manufac-
turing systems (Section 6.6) and a cyclic server polling system (Section 6.7).
The experiments were carried out on two different machines. The first one is a
MacPro with 2×Intel® Xeon® E5520 with 2.26GHz and 32GB RAM running
Mac OSX 10.11, from now on we refer to it as machine 1. This machine is
used to demonstrate the scalability of the shared memory, multi-threading

101

102

Table 6.1: The size of the state space for different initial markings of SPNERK

computed with MARCIE’s symbolic state space generation.

N |states| N |states| N |states| N |states|
5 1, 974 20 1, 696, 618 40 79, 414, 335 100 1.591× 1010

10 47, 047 25 5, 723, 991 50 2.834× 108 250 3.582× 1012

15 368, 220 30 15, 721, 464 60 8.114× 108 500 2.231× 1014

implementation. The second one has 4×AMD Opteron™ 6276 with 2.3 GHz
and 256GB RAM running CentOS 6, from now on we refer to it as machine
2. It is used to demonstrate the scalability of the distributed memory, multi-
processing implementation.

6.1 RKIP inhibited ERK pathway

This model shows the influence of the Raf Kinase Inhibitor Protein (RKIP)
on the Extracellular signal Regulated Kinase (ERK) signalling pathway. A
model of non-linear ordinary differential equations was originally published
in [Cho+03]. Later on, it was discussed as qualitative and continuous Petri nets
in [GH06], and as three related Petri net models in [HDG10]. The stochastic
Petri net SPNERK comprises 11 places and 11 transitions connected by 34
arcs and is shown in Figure 6.1.
All transition rate functions use mass action kinetics with the original pa-
rameter values from [HDG10]. There is one exception, the constant, used in
scaling second order reactions, with a value of 2.5 violates the condition in
Equation 3.14. Thus, we set this constant to 1, so that our condition is ful-
filled. The model is scalable by the initial amount of tokens in the places ERK,
MEKpp, Raf1Star, RKIP and RP. The more initial tokens N on each of these
places, the bigger the state space of the Petri net. The number of reachable
states for different initial markings is shown in Table 6.1.
We compared the well known and widely used direct method [Gil76] with the
delta-leaping method [Roh16] and performed experiments with different values
of N = {10, 100, 1000, 10 000} on machine 1. We present simulation results for
four randomly chosen places, i.e., the results concerning the approximation
error are comparable for all places of the model. They are given in Fig. 6.2

103

and the run-times are provided in Table 6.2. For all instances of N the results
of direct method and δ-leaping match quite well. For N = 10 the simulation
run-time is lower for the direct method than for δ-leaping. The simulation run-
time increases for both algorithms with N = 100, but the discrete-time leap
method is a little faster now. For N = 1000 and N = 10 000 the run-times for
the direct method are far away from the run-times of δ-leaping. Overall, the
simulation run-time of the direct method increases by a factor of 10, whereas
the run-time for δ-leaping increases by only 15%.

In order to verify the correctness of our simulative model checking approach, we
check the same properties as in [Hei+10]. We use machine 2 for this purpose.
We first check the reachability of a state at some time in the future, such that

Raf1Star

Ns1

RKIP

Ns2

Raf1Star RKIPs3

ERKPP

s9

MEKPP ERK

s8

Raf1Star RKIP ERKPP

s4 RKIPP RPs11

MEKPP

Ns7

ERK

Ns5

RKIPP

s6

RP

Ns10

r1 r2

r3 r4

r6 r7 r9 r10r5

r8

r11

Raf1Star + RKIP r1,r2↔ Raf1Star_RKIP
Raf1Star_RKIP + ERKpp r3,r4↔ Raf1Star_RKIP_ERKpp
Raf1Star_RKIP_ERKpp r5→ Raf1Star + ERK + RKIPp

ERK + MEKpp r6,r7↔ MEKpp_ERK r8→ ERKpp + MEKpp
RKIPp + RP r9,r10↔ RKIPp_RP r11→ RKIP + RP

Figure 6.1: Stochastic Petri net of the RKIP inhibited ERK pathway, including
textual representation of the chemical reactions [HDG10].

104

(a) simulation results (b) approximation error

Figure 6.2: SPNERK with N = 100 and 1 000 000 simulation runs

Table 6.2: Comparison of run-times for the direct method and δ-leaping.
SPNERK was parametrised with N and simulated with 1 000 000 simulation
runs.

N direct method δ-leaping
10 2m8s 9m10s
100 17m48s 13m24s
1000 2h50m 15m28s

10 000 1d4h 17m10s

the number of tokens on place MEKpp is between 60% and 80% of N:

P=? [F [MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8]] .

In any case such a state was reached, therefore the probability of the formula
is 1. Figure 6.3 shows the run-time of the reachability analysis for different
initial markings N and for several number of workers.

Since we know now that such a state is eventually reached, we want to compute
the steady state probability of being in such a state, where the number of tokens
on place MEKpp is between 60% and 80% of N:

S=? [MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8] .

First the results in Table 6.3 show that the resulting confidence interval covers
the probability computed by the Jacobi method in [Hei+10]. Second the algo-
rithm scales nearly linear with the number of worker processes, see Figure 6.4.

105

Table 6.3: Steady state analysis for different initial markings N of SPNERK .
The probability Pr is computed by the numerical engine and the confidence
interval CI by the simulative engine.

N Pr CI
20 0.77508 [0.77482, 0.77534]
30 0.83297 [0.83277, 0.83325]
40 0.87452 [0.87416, 0.87470]
50 0.90465 [0.90437, 0.90486]
60 0.92682 [0.92641, 0.92696]

A very interesting behaviour regards the relationship between the state space
size and the total run-time of the computation. One could expect an increase
of the run-time, but it stays the same. This is a result of the level semantics
described in [Cal+06], i.e., the rate functions are scaled by the initial number of
tokensN . Therefore, the sojourn time of the transition remains the same, while
the initial amount of tokens is increasing. In contrast to the numerical engine,
the stochastic rate functions are decisive for the run-time of the stochastic
simulation and not the size of the state space.

Figure 6.3: Transient analysis for different initial markings N of SPNERK .
The total run-time is given for several number of workers.

106

Figure 6.4: Steady state analysis for different initial markings N of SPNERK .
The total run-time is given for different numbers of workers.

6.2 Mitogen-activated Protein Kinase

The mitogen-activated protein kinase (MAPK) is the core of the ERK/MAPK
pathway that can, for example, carry cell division and differentiation signals
from the cell membrane to the nucleus. The model was published in [LBS00]
and later on, discussed as stochastic Petri net in [HGD08].
The Petri net SPNMAP K comprises 22 places and 30 transitions connected by
90 arcs. The model is scalable by the initial amount of tokens in six places.
All transition rate functions of SPNMAP K use mass action kinetics with rate
constants taken from [HGD08].
The number of reachable states for different initial markings are shown in
Table 6.4.
Now, let us compare the well known and widely used direct method [Gil76]

Table 6.4: The size of the state space for different initial markings of
SPNMAP K computed with MARCIE’s symbolic state space generation.

N |states| N |states| N |states| N |states|
2 6.110× 106 8 2.712× 1013 14 4.197× 1016 20 5.635× 1018

4 6.920× 109 10 4.783× 1014 16 2.584× 1017 40 1.064× 1023

6 7.694× 1011 12 5.296× 1015 18 1.306× 1018 80 2.616× 1027

107

Raf 4*N

RasGTP N

Raf RasGTP

RafP

RafP Phase1

MEK RafP MEKP RafP

MEKP Phase2 MEKPP Phase2

ERK 3*N

ERK MEKPP ERKP MEKPP

ERKP

MEKPP

ERKPP Phase3ERKP Phase3

MEKP

ERKPP

Phase2

2*N

Phase3

3*N

MEK 2*N

Phase1

3*N

k3

k6

k21

k18

k9 k12

k15

k24

k27k30

k1/k2

k4/k5

k10/k11

k16/k17

k22/k23k19/k20

k13/k14

k28/k29 k25/k26

k7/k8

Figure 6.5: Stochastic Petri net of the mitogen-activated protein ki-
nase [HGD08].

108

Table 6.5: Comparison of run-times for the direct method and δ-leaping.
SPNMAP K was parametrised with N and simulated with 1 000 000 simula-
tion runs.

N direct method δ-leaping
10 19m36s 17m20s
100 3h13m 25m52s
1000 1d6h 31m52s

10 000 12d19h 39m55s

with the delta-leaping method [Roh16]. We performed experiments with the
following different values of N = {10, 100, 1000, 10 000} and all were carried
out on machine 1.
Exemplary simulation results of four places for N = 100 are given in Fig. 6.6.
They match quite well for the given places, as well as for the others. The
run-time behaviour for this model develops in a comparable way to SPNERK ,
see Table 6.5. The run-time of the direct method in the first instance N = 10
is lower than for δ-leaping, but it increases much faster in the other instances
of N .
We investigate the behaviour of place RafP . At first we want to know how
likely it is that RafP contains no tokens from the beginning up to time point
τ = 1. We check this property using the following formula:

P=?
[
G0,τ [RafP = 0]

]
.

The results in Table 6.6 show that it is very likely for RafP to contain no token

(a) simulation results (b) approximation error

Figure 6.6: SPNMAP K with N = 100 and 1 000 000 simulation runs

109

Table 6.6: Transient analysis up to time point τ = 1 for different number of
stations N of SPNMAP K . The probability Pr is computed by the numerical
engine and the confidence interval CI by the simulative engine after 6 634 234
simulation runs.

N Pr CI
1 0.98491 [0.98475, 0.98499]
2 0.97039 [0.97026, 0.97059]
3 0.95609 [0.95597, 0.95638]
4 – [0.94171, 0.94218]
5 – [0.92774, 0.92826]
6 – [0.91444, 0.91500]

up to time point 1 and the probability is just slightly decreasing. This is not a
surprise but a consequence of the scaled transition rates taken from [HGD08].
The confidence intervals computed by simulative model checking cover the
expected probability very well, but the numerical engine could not compute
results forN > 3, because of the large state space and thus insufficient memory.
Figure 6.7 shows the total run-times of the transient analysis up to time point
τ = 1 for different initial markings N . The run-times are given for 1 to 8
worker threads after 6 634 234 simulation runs. They increase as N increases
and for each N the run-time is cut nearly into halves as the number of worker
threads doubles.
As we now know that in the beginning of the transient phase RafP does not
hold a token most of the time, we are now interested in the long run behaviour.
Therefore we want to evaluate the probability that RafP contains no token
in the steady state. We achieve this by verifying the following formula:

S=? [RafP = 0] .

The results in Table 6.7 show that it is much more likely for place RafP

to carry at least one token in the steady state, than in the beginning of the
transient phase. The probability decreases, as N increases.
The coverage of the confidence intervals is as good as in the previous case.
The run-times, shown in Figure 6.8, exhibit the same characteristics as in the
transient case, i.e., the simulative model checking scales quite well with the
number of worker threads.

110

Figure 6.7: Transient analysis up to time point τ = 1 for different initial
markings N of SPNMAP K . The total run-time is given for several number of
worker threads after 6 634 234 simulation runs.

Figure 6.8: Steady state analysis for different initial markingsN of SPNMAP K .
The total run-time is given for different numbers of workers after 128 simulation
runs.

111

Table 6.7: Steady state analysis for different number of stations N of
SPNMAP K . The probability Pr is computed by the numerical engine and
the confidence interval CI by the simulative engine after 128 simulation runs.

N Pr CI
1 2.609× 10−1 [2.595× 10−1, 2.610× 10−1]
2 7.196× 10−2 [7.183× 10−2, 7.211× 10−2]
3 – [2.000× 10−2, 2.011× 10−2]
4 – [5.742× 10−3, 5.793× 10−3]
5 – [1.753× 10−3, 1.780× 10−3]
6 – [6.982× 10−4, 7.149× 10−4]

6.3 Angiogenesis

Angiogenesis is a complex phenomenon that goes from a molecular level to
macroscopic events. This Petri net models a part of the signal transduction
pathway involved in the angiogenetic process and was originally published
in [Nap+09]. The stochastic Petri net SPNANG comprises 39 places and 64
transitions connected by 185 arcs.

The model is scalable by the initial amount of tokens in the places Akt, DAG,
Gab1, KdStar, Pip2, P3k, Pg and Pten. The more initial tokens on each of these
places, the bigger the state space of the Petri net. The number of reachable
states for different initial markings are shown in Table 6.8.

As in Section 6.1, we check for reachability first. We use machine 2 for this
purpose. Now we want to know the probability of eventually reaching a state
where no tokens reside on place Akt:

P=? [F [Akt = 0]] .

Table 6.8: The size of the state space for different initial markings of SPNANG

computed with MARCIE’s symbolic state space generation. The places Akt,
DAG, Gab1, KdStar, Pip2, P3k, Pg and Pten carry initially N tokens.

N |states| N |states| N |states| N |states|
1 96 4 2, 413, 480 7 2.181× 109 10 4.537× 1011

2 5, 384 5 29, 224, 050 8 1.464× 1010 15 5.207× 1014

3 144, 188 6 277, 789, 578 9 8.623× 1010 20 1.428× 1017

112

Akt

N

AktP3

AktStar

DAG

N

DAGE
Enz

Gab1 N
GP3

GStarP3

GStarP3kP3

GStarPgP3

KdStar

N

KdStar

N

KdStar

N

KdStar

N

KdStar

N

KdStar

N

KdStarG KdStarGP3

KdStarGStar

KdStarGStarP3

KdStarGStarP3k

KdStarGStarP3kP3

KdStarGStarP3kStar

KdStarGStarP3kStarP2

KdStarGStarP3kStarP3

KdStarGStarP3kStarP3P2

KdStarGStarPgKdStarGStarPgP3

KdStarGStarPgStar

KdStarGStarPgStarP2

KdStarGStarPgStarP3

KdStarGStarPgStarP3P2

KdStarPg

KdStarPgStar

KdStarPgStarP2

Pip2

N

Pip2

N

Pip2

N

Pip2

N

Pip2

N

Pip2

N

Pip3

Pip3

Pip3

Pip3

P3k

N

P3k

N

P3k

N

Pg

N

Pg

N

Pg

N

Pg

N

Pten

N

PtP2

PtP3

PtP3P2

k0k1

k10k11

k12 k13

k14

k15

k16 k17

k18

k19

k2

k20

k21

k22 k23

k24

k25 k26

k27

k28k29

k3

k30

k31k32

k33

k34k35

k36

k37k38

k39

k4

k40k41

k42

k43k44

k45

k46k47

k48

k49

k5

k50

k51

k52

k53k54

k55

k56k57

k58k59

k6

k60 k61
k62

k63

k7

k8k9

Compound Symbols:
KDR = Kd = n1
Gab1 = G = n3
Pi3k = P3k = n2
PlcGamma = Pg = n4
Pip3 = P3
Pip2 = P2 = n5
Pten = Pt = n6
Enz = E = n7
Akt = n8

Figure 6.9: Stochastic Petri net of the angiogenesis process [Nap+09].

113

Table 6.9: Transient analysis for different initial markings N of SPNANG.
The probability Pr is computed by the numerical engine and the confidence
interval CI by the simulative engine.

N Pr CI

1 0.44141 [0.43542, 0.44642]
2 0.80836 [0.80292, 0.81370]
3 0.92899 [0.92319, 0.93365]
4 0.97950 [0.97189, 0.98216]
5 – [0.99380, 0.99396]
6 – [0.99760, 0.99770]

In contrast to SPNERK , Table 6.9 shows that the probability ranges from
about 0.44 (N = 1) to 0.9 (N = 6). That means a state where no tokens lay on
place Akt is not always reached, because the CTMC consists of several strongly
connected components and in some of them such a state does not exist.
Figure 6.10 shows the run-time of the reachability analysis for different initial
markings N and for several number of workers.
Second we compute the steady state probability of being in a state that has
no tokens on place Akt:

S=? [Akt = 0] .

The results in Table 6.10 show that the steady state probability is nearly the

Figure 6.10: Transient analysis for different initial markings N of SPNANG.
The total run-time is given for several number of workers.

114

Table 6.10: Steady state analysis for different initial markings N of SPNANG.
The probability Pr is computed by the numerical engine and the confidence
interval CI by the simulative engine.

N Pr CI

1 0.44141 [0.43773, 0.44771]
2 0.80836 [0.80446, 0.81237]
3 0.92899 [0.92772, 0.93284]
4 0.97950 [0.97859, 0.98140]
5 – [0.98923, 0.99121]
6 – [0.99649, 0.99758]

same as in the reachability case as the overall steady state probability consists
of two parts, first the probability of reaching a strongly connected component
and second the steady state probability inside these component. The result
means the steady state probability inside a strongly connected component,
where a state exists with Akt = 0, is almost 1. That is why the overall steady
state probability almost coincides with the reachability probability.

Figure 6.11 shows the run-time of the steady state analysis for different initial
markings N and for several number of workers.

Figure 6.11: Steady state analysis for different initial markings N of SPNANG.
The total run-time is given for different numbers of workers.

115

6.4 Simplified Repressilator

The repressilator is a cyclic negative feedback loop composed of three repres-
sor genes and of their corresponding promotors [EL00]. Each of the three
interconnected transcriptional repressor systems (TRSs) consists of the gene
encoding the mRNA from which the respective repressor protein is translated
(synthesized). Each repressor protein reversibly binds to its specific repressor
binding site. The bound repressor protein prevents the transcription of the
gene it controls. For the simplified repressilator, we assume that each gene
directly catalyses the synthesis of the repressor protein it encodes. We neglect
the mRNA intermediates, as well as the explicit processes of transcription and
translation, see [Blä+14]. However, we explicitly consider the binding and un-
binding of the repressor proteins to their target promotor sites as well as the
degradation of the repressor proteins in the free and bound forms [LB07]. Note
that the simplified repressilator is just a toy network to be used for demon-
stration purposes and not meant as a computational model of the original
repressilator that has been implemented in E.coli [EL00].

genes
1‘all()

e

genes

r

genes

p

t4

t3

t1

t2

t5

x
-xx

x
x

-x

x

x x x

x

x

Figure 6.12: Coloured Stochastic Petri Net of the simplified Repressilator.

We use here the simplified repressilator from [Blä+14]. The version presented
in [LH14] is structurally identical, but has slightly different rate constants.
The coloured stochastic Petri net of the simplified repressilator SPN C

SR is
shown in Figure 6.12. It has an unlimited state space, because transition t1
can fire infinite often. It is possible to adapt the model and to limit the state
space without changing the stochastic behaviour, see [Blä+14; LH14]. But we
rely on the unlimited model for demonstrating simulative analysis of such kind

116

of models.

Figure 6.13 shows stochastic simulation of SPN C
SR for 1 copy, 1000 copies

per gene and for 1, 1000 simulation runs. Performing one simulation with only
a single copy of each gene results in an oscillation superimposed by random
fluctuations. The random fluctuations diminish if the number of copies per
gene are increased. Averaging the results over several simulation runs reduces
the amplitude of the oscillation as random fluctuations superimpose.

In a next step we reproduce a property from [LH14]: We want to explore the
value range of the proteins up to time point τ . Therefore we use the free
variables of PLTLc. A free variable is specified by a leading $. Let $x be a free
variable, the value range of the proteins is computed by the following formula:

P=?
[
F0,τ [p1 > $x ∨ p2 > $x ∨ p3 > $x]

]
.

(a) 1 copy per gene, 1 run (b) 1 copy per gene, 1000 runs

(c) 1000 copies per gene, 1 run (d) 1000 copies per gene, 1000 runs

Figure 6.13: Stochastic simulations of the simplified repressilator for 1 copy,
1000 copies per gene and for 1, 1000 simulation runs.

117

The domain of the free variable $x, i.e., the value range of the proteins, is
shown in Figure 6.14. It shows not only the appeared value ranges, but the
probability for each of them. Our results differ from [LH14], but this was
expected, because of the different rate constants. In our case it is very unlikely
for each protein to have more than 40 tokens.

In the next step, we apply simulative steady state computation to SPN C
SR,

because we want to know the probability distribution of protein p1 in the steady
state. The computed distribution is given in Figure 6.15 and it sustains our
previous assumption that it is very unlikely for a protein to carry more than
40 tokens.

Figure 6.14: Probabilities of the value ranges on the places pi up to time point
τ = 10 000.

Figure 6.15: Steady state probability distribution of the number of tokens on
place p1.

118

6.5 E.coli K-12 Metabolic model

This model describes the whole genome metabolism of E.coli K-12 iJO1366
substrain MG1655, and is one of the 55 GEM models published by [Mon+13].
We have chosen this strain as an example, because it was the first strain of
E.coli to be sequenced; it is considered to be the best curated model and thus
it has been used as the basis for reconstructing the models of the other strains
of E.coli. The used versions of the model are currently part of investigations
concerning structural issues and were provided by [GH16]. All experiments in
this section were carried out on machine 1.

6.5.1 Reduced E.coli K-12 Metabolic model

This reduced model has been developed to illustrate the basic structure of the
whole genome metabolism of E.coli K-12. The reduction was originally done
by hand [OFP10] and subsequently used for comparison with the results of
an automated procedure [ESK15]. The Petri net comprises 93 places and 208
transitions connected by 649 arcs. The model is scalable by the initial amount
of tokens in 12 places belonging to a place invariant. It has some places
with a high connectivity (Fig. 6.16(b)), e.g., M_h_c(53), M_h2o_c(28) and
M_h_e(27), there are 18 places with a connectivity of ≥ 10. These places are
involved in many reactions and changing their values leads to many updates
of transition rates. This has a strong influence on the overall speed of the
stochastic simulation.
The model is assumed to have mass action kinetics, but it is not parametrized.
We decided to set all kinetic constants to 1 and applied the scaling of second
and higher order reactions as suggested in [Wil06].
We performed experiments with the following values of N={100, 1000, 10 000,
100 000}. The simulation results in Fig. 6.17 and the run-times in Table 6.11
are quite interesting. The trajectories correlate quite well in the direct method
and δ-leaping. The run-time variations differing in several orders of magnitude,
speak for themselves. In case of delta-leaping, the run-time increases mod-
erately with N increasing, but the run-time of the direct method increases
drastically, showing the limited use of exact stochastic simulation for higher
values of N .

119

M 13dpg c

M 2pg c

M 3pg c

M 6pgc c
M 6pgl c

M ac c

M ac e

M acald c

M acald e

M acon C c

M actp c

M akg c

M akg e

M cit c

M co2 c

M co2 e

M dhap c
M e4p c

M etoh c

M etoh e

M f6p c

M fdp c

M for c

M for e

M fru e

M fum c

M fum e

M g3p c
M g6p c

M glc D e

M gln L c

M gln L e

M glu L c

M glu L e

M glx c

M h2o c

M h2o e

M h c

M h e

M icit c

M lac D c

M lac D e

M mal L c

M mal L e

M nh4 c

M nh4 e

M o2 c

M o2 e

M oaa c

M pep c

M pi c

M pi e

M pyr c

M pyr e

M r5p c

M ru5p D c M s7p c

M succ c

M succ e

M xu5p D c

M ac b M acald b

M akg b

M co2 b

M etoh b

M for b

M fru b

M fum b

M glc D b

M gln L b

M glu L b

M h2o b

M h b

M lac D b

M mal L b

M nh4 b

M o2 b

M pi b

M pyr b

M succ b

Bio

M adp c
INIT

M amp c
INIT

M atp c
INIT

M nad c
INIT
M nadh c
INIT
M accoa c
INIT

M coa c
INIT

M succoa c
INIT

M q8 c
INIT
M q8h2 c
INIT

M nadp c
INIT
M nadph c
INIT

out M ac b out M acald b

out M akg b

in M co2 b

out M co2 b

out M etoh b

out M for b

in M fru b

in M fum b

in M glc D b
out M glc D b

in M gln L b

out M glu L b

in M h2o b
out M h2o b

in M h b
out M h b

out M lac D b

in M mal L b

in M nh4 b

out M nh4 b

in M o2 b

out M o2 b

in M pi b
out M pi b

out M pyr b

out M succ b

R ACALDre R ACALD

R ACALDtre R ACALDt

R ACKrre R ACKr

R ACONTare R ACONTa

R ACONTb
re R ACONTb

R ACt2rre R ACt2r

R ADK1re R ADK1

R AKGDH

R AKGt2rre R AKGt2r
R ALCD2xre R ALCD2x

R ATPM
R ATPS4rre R ATPS4r

R CO2tre R CO2t

R CS

R CYTBD

R D LACt2re R D LACt2

R ENOre R ENO

R ETOHt2rre R ETOHt2r

R EX ac e

R EX acald e

R EX akg e

R EX co2 e
re R EX co2 e

R EX etoh e

R EX for e

R EX glc ere R EX glc e

R EX glu L e

R EX h ere R EX h e

R EX h2o e
re R EX h2o e

R EX lac D e

R EX nh4 e

re R EX nh4 e

R EX o2 e
re R EX o2 e

R EX pi e
re R EX pi e

R EX pyr e

R EX succ e

R FBA
re R FBA

R FBP

R FORt2 R FORti

R FRD7

R FUMre R FUM

R FUMt2 2

R G6PDH2rre R G6PDH2r
R GAPDre R GAPD

R GLNS

R GLNabc

R GLUDyre R GLUDyR GLUNR GLUSy

R GLUt2rre R GLUt2r

R GND

R H2Ot
re R H2Ot

R ICDHyrre R ICDHyr

R ICL

R LDH Dre R LDH D
R MALS

R MALt2 2

R MDHre R MDH

R ME1
R ME2

R NADH16

R NADTRHDR NH4t
re R NH4t

R O2t
re R O2t

R PDHR PFK

R PFL

R PGI
re R PGI

R PGKre R PGK

R PGL

R PGMre R PGM

R PIt2rre R PIt2r

R PPCK

R PTAr
re R PTAr

R PYK

R PYRt2rre R PYRt2r

R RPEre R RPE

R RPIre R RPI

R SUCCt2 2R SUCCt3

R SUCDi

R SUCOASre R SUCOAS

R TALAre R TALA

R THD2

R TKT1re R TKT1
R TKT2re R TKT2

R TPI
re R TPI

R EX mal L e

R EX gln L e

R EX fum e

R EX fru e

R PPSre R PPS

R FRUpts2re R FRUpts2

R GLCptsre R GLCpts

R PPCre R PPC
R Biomass Ecoli core w GAM

4

2 60
2
4

60
45

2

60

3

60

2

2
2 4

2

2

2
3

2

4

2

2
2 3
2

2
4

44

1313

260

3

(a) Petri net (b) Connectivity

Figure 6.16: Petri net (a) and connectivity (b) of the reduced E.coli K-12 core
model.

(a) simulation results (b) approximation error

Figure 6.17: E.coli core with N = 1000 and 1 000 000 simulation runs

Table 6.11: Comparison of run-times for the direct method (a) and δ-leaping
(b). SPNCORE was parametrised with N and simulated with several number
of simulation runs. † is placed, if the simulation did not finish in reasonable
time (>40 days).

N
1 run 100 runs 100 000 runs 1 000 000 runs

a b a b a b a b
100 <1s <1s 8s 6s 1h58m 1h38m 21h4m 15h44m
1000 <1s <1s 24s 7s 6h15m 1h41m 2d15h 16h16m

10 000 4s <1s 3m28s 8s 2d3h 1h49m 20d5h 17h52m
100 000 15s <1s 34m16s 9s 21d14h 2h6m † 20h40m

120

The model is still under investigation for its structural correctness and there
are no kinetic rate constants available; so the simulation results may not cor-
respond to wet lab experiments.

6.5.2 E.coli K-12 Genome Scale Metabolic model

This model describes the whole genome metabolism of E.coli K-12 iJO1366
substrain MG1655. The Petri net comprises 2130 places and 4162 transitions
connected by 13571 arcs. The model is scalable by the initial amount of tokens
in 101 of 2046 places. The model is supposed to be rather dense. This is
confirmed by looking at the place connectivity in Fig. 6.18(b). The top six
places at the connectivity ranking are M_h_c with 1198 arcs, M_h2o_c with
617 arcs, M_atp_c with 402 arcs, M_h_p with 369 arcs, M_pi_c with 339
arcs and M_adp_c with 314 arcs. Places with such high connectivity have a
large impact on the performance of stochastic simulation, because the greater
connectivity of a place, the more transitions change the number of tokens on
this place and the more transition rates have to be evaluated each time this
happens.
The model is assumed to have mass action kinetics, but it is not parametrized.
We decided to set all kinetic constants to 1 and applied the scaling of second
and higher order reactions as suggested in [Wil06].
We performed experiments with the following values of N={100, 1000, 10 000,

M 4crsol c
M 5drib c

M aacald cM amob c

M mththf c
M oxam c

M 2fe2s c

M nadph c

M pg181 p

M lipopb c

M murein3p3p p

M so4 c

M chor c

M h c

M arg DASH L c

M pg181 c

M met DASH L c

M dgtp c

M asp DASH L c

M trp DASH L c

M murein4px4p p

M cu2 c

M h2o c

M pro DASH L c

M malcoa c
M phe DASH L c

M zn2 c

M dttp c

M mlthf c

M ca2 c

M 10fthf c

M ala DASH L c
M gtp c

M nadh c

M murein4px4px4p p

M colipa e

M ribflv c

M pi c

M pe181 p

M lys DASH L c

M pg160 p

M udcpdp c

M clpn161 p

M ser DASH L c

M enter c

M succoa c

M pe181 c

M spmd c

M nh4 cM pydx5p c

M ni2 c

M pe160 p

M his DASH L c

M fe3 c

M nadp c

M pg161 c

M utp c

M 2dmmql8 c

M cys DASH L c

M gthrd c

M mobd c

M 5mthf c

M tyr DASH L cM gln DASH L c

M gly c

M leu DASH L c

M asn DASH L c

M cobalt2 c

M accoa c

M q8h2 c

M thf c

M murein3px4p p

M ile DASH L c

M pe161 c

M glycogen c

M amet c
M adp c

M pe160 c

M atp c

M fe2 c

M coa c

M pg161 p

M btn c

M pheme c

M pg160 c

M ctp c

M adocbl c

M k c

M pe161 p

M val DASH L cM glu DASH L c

M mql8 c

M ppi c

M mg2 c M mn2 c

M clpn160 p

M 4fe4s c

M clpn181 p

M dctp c

M fad c
M thr DASH L c

M nad c

M datp c

M ptrc c

M murein4p4p p

M thmpp c

M murein5px4p p

M kdo2lipid4 e

M 2ohph c

M 12ppd DASH R e
M 12ppd DASH S e

M 14glucan e

M 15dap e

M 23camp e

M 23ccmp e

M 23cgmp e

M 23cump e

M 23dappa e

M 26dap DASH M e

M 2ddglcn e

M 34dhpac e

M 3amp e
M 3cmp e

M 3gmp e

M 3hcinnm e

M 3hpp e

M 3hpppn e
M 3ump e

M 4abut e

M 4hoxpacd e

M 5dglcn e

M 5mtr e

M LalaDglu e

M LalaDgluMdap eM LalaDgluMdapDala e

M LalaLglu e

M ac e

M acac e

M acald e

M acgal e

M acgal1p e

M acgam e

M acgam1p e

M acmana e

M acmum e

M acnam e

M acolipa e

M acser e

M ade e

M adn e

M adocbl e

M ag e

M agm e

M akg e

M ala DASH B e

M ala DASH D e

M ala DASH L e

M alaala e

M all DASH D e

M alltn e

M amp e

M anhgm e

M arab DASH L e

M arbt e

M arbtn e

M arbtn DASH fe3 e

M arg DASH L e

M ascb DASH L e

M asn DASH L e

M aso3 e

M asp DASH L e

M btn e

M but e

M butso3 e

M ca2 e

M cbi e

M cbl1 e

M cd2 e

M cgly e

M chol e

M chtbs e

M cit e

M cl e

M cm e

M cmp e

M co2 e

M cobalt2 e

M colipap e

M cpgn e

M cpgn DASH un e

M crn e
M crn DASH D e

M csn e

M cu e

M cu2 e

M cyan eM cynt e

M cys DASH D e

M cys DASH L e

M cytd e

M dad DASH 2 e

M damp e

M dca e

M dcmp e

M dcyt e

M ddca e

M dgmp e

M dgsn e

M dha e

M dimp e

M din e

M dms e

M dmso e

M dopa e

M doxrbcn e

M dtmp e

M dump e

M duri e

M eca4colipa e

M enlipa e

M enter e

M etha e

M ethso3 e

M etoh e

M f6p e

M fald e

M fe2 e

M fe3 e

M fe3dcit e

M fe3dhbzs e
M fe3hox eM fe3hox DASH un e

M fecrm e

M fecrm DASH un e

M feenter e

M feoxam e

M feoxam DASH un e

M for e

M fru e

M frulys e

M fruur e

M fuc DASH L e

M fum e

M fusa e

M g1p eM g3pc e

M g3pe e

M g3pg e

M g3pi e

M g3ps e

M g6p e

M gal e M gal DASH bD e

M gal1p e

M galct DASH D e

M galctn DASH D e

M galctn DASH L e

M galt e

M galur e

M gam e

M gam6p e

M gbbtn e

M gdp e

M glc DASH D e

M glcn e

M glcr e

M glcur e

M glcur1p e

M gln DASH L e

M glu DASH L e

M gly e

M glyald e

M glyb e

M glyc e

M glyc DASH R e

M glyc2p e

M glyc3p e

M glyclt e

M gmp e

M gsn e

M gthox e

M gthrd e

M gtp e

M gua e

M h e

M h2 e

M h2o e

M h2o2 e

M h2s e

M hacolipa eM halipa e
M hdca e

M hdcea e

M hg2 e

M his DASH L e

M hom DASH L e

M hxa e

M hxan e

M idon DASH L e

M ile DASH L e

M imp e

M indole e

M inost e

M ins e

M isetac e

M k e

M lac DASH D e

M lac DASH L e

M lcts e

M leu DASH L e

M lipa e

M lipa cold e

M lipoate e

M lys DASH L e

M lyx DASH L e

M mal DASH D e

M mal DASH L e

M malt e

M malthx e

M maltpt e

M malttr e

M maltttr e

M man e

M man6p e

M manglyc e

M melib e

M meoh e

M met DASH D e

M met DASH L e

M metsox DASH R DASH L e

M metsox DASH S DASH L e

M mg2 e

M mincyc e

M minohp e

M mmet e

M mn2 e

M mnl e

M mobd e

M mso3 e

M n2o e

M na1 e

M nac e

M nh4 e

M ni2 e

M nmn e

M no e

M no2 e
M no3 e

M novbcn e

M o16a4colipa e

M o2 e

M ocdca e

M ocdcea e
M octa e

M orn e

M orot e

M pacald e

M peamn e

M phe DASH L e

M pheme e

M pi e

M pnto DASH R e
M ppa e

M ppal e

M pppn e

M ppt e

M pro DASH L e

M progly e

M psclys e

M pser DASH L e

M ptrc e

M pydam e

M pydx e

M pydxn e

M pyr e

M quin e

M r5p e

M rfamp e

M rib DASH D e

M rmn e

M sbt DASH D e

M sel e

M ser DASH D e

M ser DASH L e

M skm e
M slnt e

M so2 e

M so3 e

M so4 e

M spmd e M succ e

M sucr e

M sulfac e

M tartr DASH D e

M tartr DASH L e

M taur e
M tcynt e

M thm e

M thr DASH L e

M thrp e

M thym e

M thymd e

M tma eM tmao e

M tre e

M trp DASH L e

M tsul e

M ttdca e

M ttdcea e

M ttrcyc e

M tungs e

M tym e

M tyr DASH L e

M tyrp e
M uacgam e

M udpacgal e

M udpg e

M udpgal e

M udpglcur e

M ump e

M ura e

M urea e

M uri e

M val DASH L e

M xan e

M xmp e

M xtsn e

M xyl DASH D e

M xylu DASH L e

M zn2 e M 12dgr120 c

M 12dgr120 pM 12dgr140 p

M 12dgr140 cM 12dgr141 c

M 12dgr141 p

M 12dgr160 p

M 12dgr160 c

M 12dgr161 p

M 12dgr161 c

M 12dgr180 p

M 12dgr180 c

M 12dgr181 c

M 12dgr181 p

M 12ppd DASH R p

M 12ppd DASH R c

M 12ppd DASH S p

M 12ppd DASH S c

M 14glucan c

M 14glucan p

M 23camp p
M 23ccmp p

M 23cgmp p

M 23cump p

M 23dappa c

M h p

M 23dappa p

M h2o p

M 3ump p

M 3cmp pM 3amp p

M 3gmp p

M 26dap DASH M p

M 2ddecg3p c

M 2ddecg3p p
M 2tdecg3p p

M 2tdecg3p c

M 2tdec7eg3p c

M 2tdec7eg3p p

M 2hdecg3p c

M 2hdecg3p p

M 2hdec9eg3p p

M 2hdec9eg3p c

M 2odecg3p p

M 2odecg3p c

M 2odec11eg3p c

M 2odec11eg3p p

M 2agpe120 p

M 2agpe120 cM 2agpe140 c

M 2agpe140 p

M 2agpe141 c

M 2agpe141 p

M 2agpe160 c

M 2agpe160 pM 2agpe161 p

M 2agpe161 cM 2agpe180 c

M 2agpe180 p
M 2agpe181 p

M 2agpe181 c

M ddca cM amp c

M pe120 c

M pe140 c

M ttdca c

M pe141 c

M ttdcea cM hdca cM hdcea c

M ocdca c

M pe180 c

M ocdcea c

M 2agpg120 c

M 2agpg120 p
M 2agpg140 p

M 2agpg140 c

M 2agpg141 p

M 2agpg141 cM 2agpg160 c

M 2agpg160 p

M 2agpg161 c

M 2agpg161 pM 2agpg180 p

M 2agpg180 cM 2agpg181 c

M 2agpg181 p

M pg120 cM pg140 cM pg141 cM pg180 c

M 2dhguln c

M glcn c

M idon DASH L c
M 4ampm c

M 2mahmp c

M 34dhpac p

M msa c
M 3amac c

M tdec2eACP c

INITM 3hdecACP c

INIT
M 3hddecACP c

INITM tddec2eACP c

INIT

M t3c5ddeceACP c

INIT

M 3hcddec5eACP c

INIT

M 3hmrsACP c

INIT

M tmrs2eACP c

INIT

M 3hcmrs7eACP c

INIT
M t3c7mrseACP c

INIT

M 3hpalmACP c

INITM tpalm2eACP c

INIT

M 3hcpalm9eACP c

INIT
M t3c9palmeACP c

INIT

M 3hoctaACP c

INITM toctd2eACP c

INIT

M t3c11vaceACP c

INIT

M 3hcvac11eACP c

INITM but2eACP c

INIT

M 3haACP c

INIT

M 3hhexACP c

INIT

M thex2eACP c

INIT

M toct2eACP c

INIT

M 3hoctACP c

INIT

M o2 c

M 3hcinnm c

M dhcinnm c

M dhpppn c

M 3hpppn c

M 3hpp p

M 3hpp c

M 3dhguln c

M 3dhgulnp c

M uri p

M pi p

M cytd p

M adn p

M gsn p

M 3odecACP c

INIT

M 3oddecACP c

INIT

M 3ocddec5eACP c

INIT

M 3omrsACP c

INIT

M 3ocmrs7eACP c

INITM 3opalmACP c

INIT

M 3ocpalm9eACP c

INIT
M 3ooctdACP c

INIT

M 3ocvac11eACP c

INITM actACP c

INIT

M 3ohexACP c

INIT

M 3ooctACP c

INIT

M malACP c

INIT
M ocACP c

INIT

M co2 c
M ACP c

INIT

M dcaACP c

INIT

M cdec3eACP c

INIT

M ddcaACP c

INIT

M cddec5eACP c

INIT

M myrsACP c

INITM tdeACP c

INIT

M palmACP c

INIT

M hdeACP c

INIT

M butACP c

INIT

M hexACP c

INITM oxadpcoa c

M LalaDgluMdap c

M LalaDgluMdap p

M dopa p

M o2 p

M h2o2 p

M nh4 p

M 4hoxpacd p

M phthr c

M ala DASH D c

M LalaDgluMdapDala c

M LalaDgluMdapDala p

M ala DASH D p

M 5dglcn c

M 5dglcn p

M ade c

M dad DASH 5 c

M 5mtr p

M 5mtr cM ara5p c
M ru5p DASH D c

M octeACP c

INIT
M ocdcaACP c

INIT

M dca c

M octa c

M h2o2 c

M mthgxl cM aact c

M dtdp4aaddg c

M unagamu c

M unagamuf c

M dtdp c

M malthx c

M malthx p

M arbt6p c

M g6p cM 4abut c

M sucsal c

M akg c

M 4abutn c

M 4abut p

M ac c

M acac c

M aacoa c

M btcoa c

M 3ohcoa c

M hxcoa c

M 3oocoa c

M occoa c

M 3odcoa c

M dcacoa c

M 3oddcoa c

M 3otdcoa c

M ddcacoa c
M tdcoa c

M 3ohdcoa c

M pmtcoa c

M 3oodcoa c

M acac p

M acald c

M acald p

M anth c

M adocbip c

M agdpcbi c

M hco3 c

M ppa c

M ppcoa c

M acgal1p p

M acgal p

M acgam p

M acgam1p p

M acgam c

M acgam6p c

M uacgam c

M ump c

M unaga c

M udcpp c

M pyr c
M pep c

M acg5p c

M acglu c

M 2obut c

M 2ahbut c

M actp c

M alac DASH S c

M lac DASH D c

M acmum6p c

M udp c

M uacmamu c

M acmana p

M acmanap c

M acmum p M acnam c

M acnam p

M acmana c

M b2coa c
M fadh2 c

M hx2coa c
M oc2coa c

M dc2coa c

M dd2coa c

M td2coa c
M hdd2coa c

M od2coa c

M stcoa c

M acACP c

INIT
M acorn c

M orn c

M acolipa p

M acon DASH T c

M acon DASH C c

M ahcys c

M cit c

M icit c

M acg5sa c

M ddcap c
M ttdcap c
M ttdceap cM hdcap c
M hdceap c

M ocdcap c
M ocdceap c

M pap c

M acser p M acser c

M ac p

M na1 c
M na1 p

M ins c

M adn c

M 4adcho c

M 4abz c

M hxan c

M ade p

M gdp c

M itp c

M idp c

M ametam c

M camp c

M rib DASH D c
M adocbi cM gmp c

M rdmbzi c

M adocbl p
M adprib cM r5p c

M prpp c

M paps c

M aps c

M dcamp c

M fum c

M 25aics c

M aicar c

M imp c

M gam6p c

M anhgm3p cM anhgm c

M anhgm pM anhgm3p p

M anhm3p c
M anhgm4p c

M anhgm4p p

M anhm4p c

M anhm c

M adphep DASH LD cM adphep DASH DD c

M urea c

M agm c

M agm p

M pa120 c

M 1ddecg3p c
M 1tdecg3p c

M pa140 c
M pa141 c

M 1tdec7eg3p c
M 1hdecg3p c

M pa160 c

M 1hdec9eg3p c

M pa161 c

M 1odecg3p c

M pa180 c

M 1odec11eg3p c

M pa181 c

M rhcys c

M fprica c

M air c

M 5caiz cM 5aizc c

M akg p

M alaala c

M alaala p

M LalaDglu cM LalaLglu c

M pyam5p c

M ala DASH L p

M glyc c

M glyald c

M etoh c
M pacald c

M pac c

M ppal c

M but c

M btal c

M all6p cM all DASH D c

M allul6p c

M alltt c
M urdglyc c

M alltn c
M alltn p

M f6p c

M all DASH D p

M lpp p

INIT

M alpp p

INIT

M acetol c

M 2ddglcn c

M altrn c

M glc DASH D c

M malttr c

M malt c

M maltttr cM maltpt c
M malthp c

M 8aonn c

M dann c

M for c

M cgly c

M progly c

M amp p

M pran c

M 2aobut c

M pimACP c

INIT

M ap4a c

M 5mta c
M 15dap c

M glyc3p c

M appl cM 5aprbu c

M 5apru cM rbl DASH L c

M arab DASH L c

M arbtn DASH fe3 c

M arbtn c

M fmnh2 cM fmn c

M rbflvrd c

M arbtn DASH fe3 p

M arbtn p

M arbt p

M arab DASH L p

M arg DASH L p

M co2 p

M orn p

M argsuc c

M citr DASH L c
M 4pasp c

M aspsa c

M ascb6p c

M ascb DASH L p

M asn DASH L p

M asp DASH L p

M aso3 p

M aso3 c

M ala DASH B c

M cbp c

M cbasp c

M iasp c

M q8 c

M mqn8 c

M succ c

M oaa c

M gthox c

M sucarg c

M athr DASH L c

M prbatp c

M ala DASH B p

M glyb c
M betald c

M bmoco c

M moco cM mptamp c

M bmoco1gdp c

M btnso c
M btn p

M dtbt c

M 2fe1s c
M butso3 c

M butso3 p

M but p

M bwco c

M bwco1gdp cM wco c

M ca2 p

M 15dap p

M lys DASH L p

M cbi c

M pppi c

M cbi p

M cbl1 c

M cbl1 p

M cbm c

M preq0 c

M cdg c

M cd2 p

M cd2 c

M cdpdddecg c
M cmp c

M cdpdtdecg c
M cdpdtdec7eg c

M cdpdhdecg c

M cdpdhdec9eg c

M cdpdodecg c

M cdpdodec11eg c

M cph4 c

M 2p4c2me c

M 4c2me c

M cgly p

M chol c

M chol p

M pphn c

M 3psme c

M 4hbz cM chtbs p
M chtbs6p c

M cenchddd c

M cit p

M succ p

M lipa cold p

M clpn120 p

M pa120 p

M pg120 p
M pa140 p

M clpn140 p

M pg140 p
M pa141 p
M pg141 p

M clpn141 p

M pa160 p

M pa161 p

M clpn180 p

M pg180 p

M pa180 p

M pa181 p

M glyc p

M cl p

M csn c

M cmp p

M cm p

M cobalt2 p

M udcpdp p

M udcpp p

M colipa p
M colipap p

M colipa c

M cpgn cM cpgn DASH un c

M cpgn DASH un p

M cpgn p

M ahdt c

M cpmp c

M pppg9 c

M cpppg3 c

M bbtcoa c

M crncoa c

M gbbtn c

M crn cM crnDcoa c

M ctbtcoa c

M ctbt c
M crn DASH D c

M crn DASH D p

M crn p

M gbbtn p

M ura c

M csn p

M ctbt p

M tdecoa cM hdcoa cM odecoa c M cu p

M cu2 p

M cu c

M cyan c

INITM tcynt c

INIT

M so3 c
M tsul c

M tsul p
M so3 p
M tcynt p
M cyan p

M cynt c

M cynt p

M cys DASH D c

M h2s c

M cys DASH D p

M so2 c

M hcys DASH L c

M cyst DASH L c

M cys DASH L p
M uri c

M cytd cM cdp c

M dcmp c

M dcdp c

M lac DASH D p

M din cM dad DASH 2 c

M damp c

M dadp c

M dad DASH 2 p

M damp p

M 26dap DASH M c

M 26dap DASH LL c

M ditp c

M db4p c

M dca p

M dcmp p

M dutp c
M duri c

M dcyt c

M dcyt p

M ddca p

M 2dh3dgal6p c

M 2dh3dgal c

M 2ddglcn pM 2ddg6p c

M e4p c

M 2dda7p c

M g3p c

M dgdp c

M dgmp c

M dgmp p

M dgsn c

M dgsn p

M 23dhacoa c

M 3hadpcoa c

M 3mob c

M 23dhmb cM 3mop c
M 23dhmp c

M dha c

M dhap c

M dha p

M 23dhb c

M 23ddhb c

M 23dhba c

M 23dhbzs c

M hkntd c

M thdp c
M 23dhdp c

M dhf c

M dhpt c

M dhmpt c

M octdp cM dhna cM 14dhncoa cM sbzcoa c

M gcald c

M 6hmhpt c

M dhnpt c

M dhor DASH S cM orot c

M cechddd c
M 25drapp c

M 6hmhptpp c

M dhptd c

M mdhdhf c

M dhmptp c

M 3dhq c
M 3dhsk c

M dimp p

M din p

M 25dkglcn c

M ipdp c

M grdp c

M dmpp c

M h2mb4p c
M 2omhmbl c

M dmso c

M dms c

M dmso pM dms p

M 2dmmq8 c

M dhpmp c

M doxrbcn p

M dpcoa c

M 2dhp c

M pant DASH R c

M 2dr5p c

M dsbaox p

INIT

M dsbard p

INIT

M gthox p
M dsbcrd p

INIT

M dsbcox p

INIT

M gthrd p

M trdox c

INIT

M trdrd c

INIT

M dsbdox c

INIT

M dsbdrd c

INIT

M dsbgox p

INIT

M dsbgrd p

INIT

M ser DASH D c

M 2amsa c

M ser DASH D p

M tartr DASH D c

M dtmp c

M dtmp p

M dump p

M 56dura c

M dump c

M 2dr1p c

M duri p

M dxyl5p c

M 2me4p c

M 4per c

M eca4colipa p

M eca4und p

M eca2und p

M unagamuf p

M eca3und p
M 3hbcoa c

M 3hhcoa c
M 3hocoa c

M 3hdcoa c

M 3hddcoa c

M 3htdcoa c
M 3hhdcoa c
M 3hodcoa c

M 6pgc c

M kdo2lipid4L c

M kdo2lipid4 c
M lipa c

M kdo2lipid4p c

M lipa cold c

M egmeACP c

INIT M gmeACP c

INIT

M enlipa p

M 2pg c

M seramp c

M feenter c

M epmeACP c

INIT
M pmeACP c

INIT

M etha c

M etha p

M ethso3 cM ethso3 p

M etoh p

M fru c

M f6p p

M hxa c

M ttdca p
M ttdcea p

M hdca p

M hdcea pM ocdca p

M ocdcea p

M hxa p

M octa p

M hmgth c

M Sfglutth c

M fald p

M fald c

M fdp c

M s17bp c

M fuc DASH L c
M fcl DASH L cM fc1p c

M lald DASH L c

M ppp9 c

M for p

M isetac c

M mso3 c

M sulfac c

M glx c

M fe2 p

M fe3dcit p

M fe3dhbzs c

M fe3dhbzs p

M fe3hox c
M fe3hox DASH un c

M fe3hox DASH un p

M fe3hox p

M fe3 p

M fecrm DASH un cM fecrm c

M fecrm DASH un pM fecrm pM feenter p
M enter p

M feoxam DASH un c
M feoxam c

M feoxam DASH un p
M feoxam p

M 3fe4s c
M n2o c

M no c

M suc6p c

M h2 c

M flxr c

INIT

M flxso c

INIT

M mettrna c

INIT

M methf c

M 5fthf c

M oxa c

M forcoa c

INIT

M oxalcoa c

INIT

M f1p c

M frulysp c

M psclys c

M frulys c

M frulys p

M fruur p

M fruur c

M fru p

M fuc DASH L p

M mal DASH L c

M fum p

M fusa p

M acgam1p c

M gam1p c

M g1p p

M glc DASH D p

M g1p c
M dtdpglu c

M glu1sa c

M 5aop c

M glyc2p c

M glyc2p p

M g3pc p

M g3pc c

M g3pe c
M g3pe p

M g3pg p

M g3pg c

M g3pi c

M g3pi p
M g3ps p

M g3ps c

M glu5sa c

M 1pyr5c c

M glu5p c

M 6pgl c

M g6p p

M gal p

M gal1p p

M gal DASH bD p

M galct DASH D c

M 5dh4dglc c
M galctn DASH L c
M tagur c

M galctn DASH D c

M galctn DASH L p

M galctn DASH D p

M galct DASH D p

M gal c

M gal1p c

M melib c

M gicolipa cM gagicolipa c

M udpg c

M galt p

M galt1p c

M galur c
M galur p

M gam6p p

M gam p

M 13dpg c

M gar c

M fgam c

M glyclt c

M gdpofuc cM gdpddman c

M ppgpp c

M man c

M gdpmann cM man1p c

M gdptp c

M gdp p

M gg4abut c

M ggbutal c

M ggptrc c

M ghb c

M bglycogen c
M acglc DASH D c

M glcn p

M 2h3oppan c

M glcr c
M glcr p

M adpglc c

M icolipa c
M ggagicolipa c

M gggagicolipa c

M glcur1p p

M glcur c

M glcur p

M gln DASH L p

M tag6p DASH D c

M glu DASH L p

M glucys c
M pram c

M glu DASH D c

M glutrna c

INIT

M trnaglu c

INIT

M glyald p

M glyb p

M glyc3p p

M glyc DASH R p

M glyc DASH R c

M 3pg c

M glyclt p

M lgt DASH S c

M gly p

M gmhep1p c

M gmhep7p c

M gmhep17bp c

M xmp c

M gmp p

M ser DASH L p

M inost c

M inost p

M frdp c

M grxrd c

INIT

M grxox c

INIT

M gsn c

M gtspmd c

M xtp c

M gtp p

M 35cgmp c

M xan c

M gua c

M gua p

M h2s p

M h2 p

M 3ophb c

M 3hcinnm p

M mmet c

M phhlipa cM hhlipa c
M hphhlipa c

M phphhlipa c

M hlipa c

M 4mpetz c

M man6p c
M hg2 c

M hg2 p

M histd c
M hisp c

M his DASH L p

M hkndd cM op4en c

M ppbng c

M hmbil c

M hom DASH L p

M hom DASH L c

M 4h2opntn c

M 3hpppn p

M hpyr c

M phom c

M suchms c

M imacp c
M pydam c

M hxan p

M iscu DASH 2fe2s c

INIT

M iscs c

INIT

M iscssh c

INIT

M iscu c

INIT
M iscu DASH 2fe2s2 c

INIT
M iscu DASH 4fe4s c

INIT

M ichor c

M idon DASH L p
M eig3p c

M prlp c

M 3ig3p c

M 2cpr5p c

M ile DASH L p

M imp p

M indole p

M indole c

M ins p

M 3c4mop c

M 3c2hmp c

M 2ippm c

M 3c3hmp c

M isetac p

M kdo2lipid4 p

M ckdo c

M kdo cM kdo8p c

M xu5p DASH L c
M k p

M lac DASH L c

M lac DASH L p

M uLa4n p

M lcts c

M lcts p

M LalaDglu p

M LalaLglu p

M lald DASH D c
M 4mop c

M leu DASH L p

M lipoamp c

M lipoate c

M lipa p

M octapb c

M lipoate p

M u23ga c

M lipidAds c

M lipidX c

M 1ddecg3p p
M 1tdecg3p p

M 1tdec7eg3p p

M 1hdecg3p p

M 1hdec9eg3p p
M 1odecg3p p

M 1odec11eg3p p
M 1agpe120 p

M 1agpe140 p
M 1agpe141 p

M 1agpe160 pM 1agpe161 p
M 1agpe180 p

M 1agpe181 pM 1agpg120 p

M 1agpg140 pM 1agpg141 p
M 1agpg160 p

M 1agpg161 pM 1agpg180 p

M 1agpg181 p

M apg120 cM apg140 cM apg141 cM apg160 c

M apg161 c
M apg180 c
M apg181 c

M xylu DASH L c
M lyx DASH L c

M lyx DASH L p

M mnl1p c

M malcoame c

M mal DASH D c

M mal DASH D p

M acmalt c

M maltpt p

M malttr p

M maltttr p

M malt p

M mal DASH L p

M man6p p

M mana c

M man6pglyc c

M manglyc p

M man p

M 2mcacn c
M 2mcit c

M micit c

M murein5p5p p

M murein5px3p p

M murein5p5p5p p

M murein5px4px4p p

M murein5p4p p
M murein5p3p pM murein4p3p p

M murein4px4p4p p

M 2mecdp c

M melib p

M meoh p

M meoh c

M met DASH D p

M metsox DASH S DASH L c
M metsox DASH R DASH L c

M metsox DASH S DASH L p

M metsox DASH R DASH L p
M met DASH L p

M mg2 p

M mincyc p

M minohp p

M murein3px3p p

M mmcoa DASH S c

M mmet p

M mn2 p

M mnl p

M moadamp c

INIT

M moadcosh c

INIT

M lipidA c

M kdolipid4 c

M kphphhlipa c

M mobd p

M mpt c

M uaagmda c

M moadcoo c

INIT

M mso3 p

M n2o p

M nac p

M nac c

M nmn c

M ncam c

M dnad c

M nicrnt c
M dudp c

M ni2 p

M nmn p

M 5prdmbz c

M quln c

M no2 c

M no2 p

M no3 p

M no3 c

M novbcn p

M no p

M xtsn c

M xtsn p

M xmp p

M dimp c

M ump p

M thymd c

M thymd p

M o16a4colipa p

M o16a4und p

M o16aund p

M o16a2und pM o16a3und p

M aragund c
M o16aund c

M garagund cM gfgaragund c

M udpgalfur c

M hgmeACP c

INITM ogmeACP c

INIT

M ohpb c

M 2omph cM 2ombzl c
M 2ommbl c

M orot5p c

M 2oph c

M hpmeACP c

INIT
M opmeACP c

INIT

M orot p

M oxur c

M 2oxpaccoa c

M 3oxdhscoa c

M pacald p

M phaccoa c

M rephaccoa c

M pnto DASH R c

M uagmda c

M ugmda c

M pdx5p c

M pydxn c

M pe120 p

M pe140 pM pe141 p

M pe180 p

M peamn p

M tagdp DASH D c

M s7p c

M 3php c

M pgp120 p

M pgp120 c

M pgp140 p

M pgp140 cM pgp141 c

M pgp141 p

M pgp160 c

M pgp160 p

M pgp161 c

M pgp161 p

M pgp180 c

M pgp180 p
M pgp181 p

M pgp181 c

M pheme p

M phpyr c

M phe DASH L p

M 4r5au c

M 4ppan c

M pnto DASH R p

M poaac c

M ppap c

M ppal p

M ppa p

M 4ppcys cM pan4p c

M r1p c

M 34hpp c

M pppn c

M pppn p

M ppt p

M fpram c

M prbamp c

M prfp c

M progly p

M pro DASH L p

M psclys p

M skm5p c

M ps120 c

M ps140 c

M ps141 c

M ps160 c

M ps161 c

M ps180 c

M ps181 c

M pser DASH L c

M pser DASH L p

M thr DASH L p

M thrp p

M ptrc p

M pydam p

M pydx c

M pydxn p

M pydx p

M uracp c

M pyr p

M o2s c

M quin p

M quin c

M r15bp c

M rib DASH D p

M r5p p

M dmlz c

M ru5p DASH L c

M xu5p DASH D c

M rfamp p
M dtdprmn c

M rmn cM rml c

M rml1p c

M rmn p

M sufbcd DASH 2fe2s c

INIT

M sufsesh c

INIT
M sufbcd c

INIT

M sufse c

INIT
M sufbcd DASH 2fe2s2 c

INITM sufbcd DASH 4fe4s c

INIT

M sucorn c

M sbt6p c
M sbt DASH D p

M sl26da c

M sl2a6o c

M sertrna LSQBKT sec RSQBKT c

INIT

M selnp c

M slnt c

M dgslnt c
M gslnt c

M seln c

M sel c

M sel p
M 2sephchc c

M sucglu cM sucgsa c

M 2shchc c M scl c

M dscl c

M skm c

M skm pM slnt p

M so2 p

M so4 p

M spmd p

M sucbz c

M sucr p

M tartr DASH D p

M sulfac p

M tartr DASH L c

M tartr DASH L p

M taur c

M taur p

M thmmp c

M dtdp4addg c

M dtdp4d6dg c

M dtdp4d6dm c

M thm c

M thm p

M thym c

M thym p

M dhgly c

M tma c

INIT

M tmao c

INIT

M tma pM tmao p

M tre6p c

M tre c

M tre p

M trp DASH L p

M ttrcyc p

M tungs c

M tungs p

M tym p

M tyr DASH L p

M tyrp p

M u3hga c

M ugmd c

M uamag c

M udpacgal p

M uacgam p

M uacmam c

M u3aga c

M uaccg c

M uama c

M uamr c

M udpgal c

M udpgal p

M udpglcur cM udpLa4o c

M udpglcur p

M udpg p

M udpLa4n c

M udpLa4fn c

M uLa4n c

M um4p c

M uLa4fn c

M uppg3 c

M ura p

M urea p

M urate c

M val DASH L p

M xan p

M xylu DASH D c
M xyl DASH D c

M xylu DASH L p

M xyl DASH D p

M zn2 p

M 4crsol c boundary

M 5drib c boundary

M aacald c boundary

M amob c boundary

M mththf c boundary

M oxam c boundary

M 12ppd DASH R e boundary
M 12ppd DASH S e boundary

M 14glucan e boundary

M 15dap e boundary

M 23camp e boundary

M 23ccmp e boundary

M 23cgmp e boundary

M 23cump e boundary

M 23dappa e boundary

M 26dap DASH M e boundary

M 2ddglcn e boundary

M 34dhpac e boundary

M 3amp e boundary

M 3cmp e boundary

M 3gmp e boundary
M 3hcinnm e boundary

M 3hpp e boundary

M 3hpppn e boundary M 3ump e boundary

M 4abut e boundary

M 4hoxpacd e boundary

M 5dglcn e boundary

M 5mtr e boundary

M LalaDglu e boundary

M LalaDgluMdap e boundaryM LalaDgluMdapDala e boundary

M LalaLglu e boundary

M ac e boundary

M acac e boundary

M acald e boundary

M acgal e boundary

M acgal1p e boundary

M acgam e boundary

M acgam1p e boundary

M acmana e boundary

M acmum e boundary

M acnam e boundary

M acolipa e boundary

M acser e boundary

M ade e boundary

M adn e boundary

M adocbl e boundary

M ag e boundary

M agm e boundary

M akg e boundary

M ala DASH B e boundary

M ala DASH D e boundary

M ala DASH L e boundary

M alaala e boundary

M all DASH D e boundary

M alltn e boundary

M amp e boundary

M anhgm e boundary

M arab DASH L e boundary

M arbt e boundary

M arbtn e boundary

M arbtn DASH fe3 e boundary

M arg DASH L e boundary

M ascb DASH L e boundary

M asn DASH L e boundary

M aso3 e boundary

M asp DASH L e boundary

M btn e boundary

M but e boundary

M butso3 e boundary

M ca2 e boundary

M cbi e boundary

M cbl1 e boundary

M cd2 e boundary

M cgly e boundary

M chol e boundary

M chtbs e boundary

M cit e boundary

M cl e boundary

M cm e boundary

M cmp e boundary

M co2 e boundary

M cobalt2 e boundary

M colipa e boundary

M colipap e boundary

M cpgn e boundary

M cpgn DASH un e boundary

M crn e boundaryM crn DASH D e boundary

M csn e boundary

M cu e boundary

M cu2 e boundary

M cyan e boundary

M cynt e boundary

M cys DASH D e boundary

M cys DASH L e boundary

M cytd e boundary

M dad DASH 2 e boundary

M damp e boundary

M dca e boundary

M dcmp e boundary

M dcyt e boundary

M ddca e boundary

M dgmp e boundary

M dgsn e boundary

M dha e boundary

M dimp e boundary

M din e boundary

M dms e boundary
M dmso e boundary

M dopa e boundary

M doxrbcn e boundary

M dtmp e boundary

M dump e boundary

M duri e boundary

M eca4colipa e boundary

M enlipa e boundary

M enter e boundary

M etha e boundary

M ethso3 e boundary

M etoh e boundary

M f6p e boundary

M fald e boundary

M fe2 e boundary

M fe3 e boundary

M fe3dcit e boundary

M fe3dhbzs e boundary

M fe3hox e boundary
M fe3hox DASH un e boundary

M fecrm e boundary

M fecrm DASH un e boundary

M feenter e boundary

M feoxam e boundary

M feoxam DASH un e boundary

M for e boundary

M fru e boundary

M frulys e boundary

M fruur e boundary

M fuc DASH L e boundary

M fum e boundary

M fusa e boundary

M g1p e boundary

M g3pc e boundary

M g3pe e boundary

M g3pg e boundary

M g3pi e boundary

M g3ps e boundary

M g6p e boundary

M gal e boundaryM gal DASH bD e boundary

M gal1p e boundary

M galct DASH D e boundary

M galctn DASH D e boundary

M galctn DASH L e boundary

M galt e boundary

M galur e boundary

M gam e boundary

M gam6p e boundary

M gbbtn e boundary

M gdp e boundary

M glc DASH D e boundary

M glcn e boundary

M glcr e boundary

M glcur e boundary

M glcur1p e boundary

M gln DASH L e boundary

M glu DASH L e boundary
M gly e boundary

M glyald e boundary

M glyb e boundary

M glyc e boundary

M glyc DASH R e boundary

M glyc2p e boundary

M glyc3p e boundary

M glyclt e boundary

M gmp e boundary

M gsn e boundary

M gthox e boundary

M gthrd e boundary

M gtp e boundary

M gua e boundary

M h e boundary

M h2 e boundary

M h2o e boundary

M h2o2 e boundary

M h2s e boundary

M hacolipa e boundary
M halipa e boundary

M hdca e boundary

M hdcea e boundary

M hg2 e boundary

M his DASH L e boundary

M hom DASH L e boundary

M hxa e boundary

M hxan e boundary

M idon DASH L e boundary

M ile DASH L e boundary

M imp e boundary

M indole e boundary

M inost e boundary

M ins e boundary

M isetac e boundary

M k e boundary

M kdo2lipid4 e boundary

M lac DASH D e boundary

M lac DASH L e boundary

M lcts e boundary

M leu DASH L e boundary

M lipa e boundary

M lipa cold e boundary

M lipoate e boundary

M lys DASH L e boundary

M lyx DASH L e boundary

M mal DASH D e boundary

M mal DASH L e boundary

M malt e boundary

M malthx e boundary

M maltpt e boundary

M malttr e boundary

M maltttr e boundary M man e boundary

M man6p e boundary

M manglyc e boundary

M melib e boundary

M meoh e boundaryM met DASH D e boundary

M met DASH L e boundary

M metsox DASH R DASH L e boundary

M metsox DASH S DASH L e boundary

M mg2 e boundary

M mincyc e boundary

M minohp e boundary

M mmet e boundary

M mn2 e boundary

M mnl e boundary

M mobd e boundary

M mso3 e boundary

M n2o e boundary

M na1 e boundary

M nac e boundary

M nh4 e boundary

M ni2 e boundary

M nmn e boundary

M no e boundary

M no2 e boundary
M no3 e boundary

M novbcn e boundary

M o16a4colipa e boundary

M o2 e boundary

M ocdca e boundary

M ocdcea e boundaryM octa e boundary

M orn e boundary

M orot e boundary

M pacald e boundary

M peamn e boundary

M phe DASH L e boundary

M pheme e boundary

M pi e boundary

M pnto DASH R e boundary
M ppa e boundary

M ppal e boundary

M pppn e boundary

M ppt e boundary

M pro DASH L e boundary

M progly e boundary

M psclys e boundary

M pser DASH L e boundary

M ptrc e boundary

M pydam e boundary

M pydx e boundary

M pydxn e boundary

M pyr e boundary

M quin e boundary

M r5p e boundary

M rfamp e boundary

M rib DASH D e boundary

M rmn e boundary

M sbt DASH D e boundary

M sel e boundary

M ser DASH D e boundary

M ser DASH L e boundary

M skm e boundaryM slnt e boundary

M so2 e boundary

M so3 e boundary

M so4 e boundary

M spmd e boundary

M succ e boundary

M sucr e boundary

M sulfac e boundary

M tartr DASH D e boundary

M tartr DASH L e boundary

M taur e boundary

M tcynt e boundary

M thm e boundary

M thr DASH L e boundary

M thrp e boundary

M thym e boundary

M thymd e boundary

M tma e boundaryM tmao e boundary

M tre e boundary

M trp DASH L e boundary

M tsul e boundary

M ttdca e boundary

M ttdcea e boundary

M ttrcyc e boundary

M tungs e boundary

M tym e boundary

M tyr DASH L e boundary

M tyrp e boundary

M uacgam e boundary

M udpacgal e boundary

M udpg e boundary

M udpgal e boundary

M udpglcur e boundary

M ump e boundary

M ura e boundary

M urea e boundary

M uri e boundary

M val DASH L e boundary

M xan e boundary

M xmp e boundary

M xtsn e boundary

M xyl DASH D e boundary

M xylu DASH L e boundary

M zn2 e boundary

Bio

out M 4crsol c boundary

out M 5drib c boundary

out M aacald c boundary

out M amob c boundary

out M mththf c boundary

out M oxam c boundary

out M 12ppd DASH R e boundary
out M 12ppd DASH S e boundary

in M 14glucan e boundary

out M 15dap e boundary

in M 23camp e boundary

in M 23ccmp e boundary

in M 23cgmp e boundary

in M 23cump e boundary

in M 23dappa e boundary

in M 26dap DASH M e boundary

out M 2ddglcn e boundary

out M 34dhpac e boundary

out M 3amp e boundary

out M 3cmp e boundary

out M 3gmp e boundaryin M 3hcinnm e boundary

out M 3hpp e boundary

in M 3hpppn e boundary out M 3ump e boundary

out M 4abut e boundary

out M 4hoxpacd e boundary

out M 5dglcn e boundary

out M 5mtr e boundary

in M LalaDglu e boundary

out M LalaDgluMdap e boundary
out M LalaDgluMdapDala e boundary

in M LalaLglu e boundary

out M ac e boundary

in M acac e boundary

out M acald e boundary

out M acgal e boundary

out M acgal1p e boundary

out M acgam e boundary

out M acgam1p e boundary

in M acmana e boundary

in M acmum e boundary

in M acnam e boundary

out M acolipa e boundary

out M acser e boundary

out M ade e boundary

out M adn e boundary

in M adocbl e boundary

out M ag e boundary

out M agm e boundary
out M akg e boundary

in M ala DASH B e boundary

out M ala DASH D e boundary

out M ala DASH L e boundary

out M alaala e boundary

in M all DASH D e boundary

out M alltn e boundary

in M amp e boundary

out M anhgm e boundary

in M arab DASH L e boundaryout M arab DASH L e boundary

in M arbt e boundary

in M arbtn e boundary
out M arbtn e boundary

in M arbtn DASH fe3 e boundary
out M arbtn DASH fe3 e boundary

out M arg DASH L e boundary

in M ascb DASH L e boundary

out M asn DASH L e boundary

out M aso3 e boundary

out M asp DASH L e boundary

out M btn e boundary

out M but e boundary

in M butso3 e boundary

in M ca2 e boundary
out M ca2 e boundary

in M cbi e boundary

in M cbl1 e boundary
out M cbl1 e boundary

in M cd2 e boundary
out M cd2 e boundary

in M cgly e boundary
out M cgly e boundary

out M chol e boundary

in M chtbs e boundary

out M cit e boundary

in M cl e boundary
out M cl e boundary

in M cm e boundary

in M cmp e boundary

in M co2 e boundary
out M co2 e boundary

in M cobalt2 e boundary
out M cobalt2 e boundary

out M colipa e boundary

out M colipap e boundary

in M cpgn e boundaryout M cpgn e boundary

in M cpgn DASH un e boundary
out M cpgn DASH un e boundary

in M crn e boundaryout M crn e boundary
in M crn DASH D e boundaryout M crn DASH D e boundary

in M csn e boundary

in M cu e boundaryout M cu e boundary

in M cu2 e boundaryout M cu2 e boundary

in M cyan e boundary

in M cynt e boundary

in M cys DASH D e boundary

in M cys DASH L e boundary
out M cys DASH L e boundary

out M cytd e boundary

out M dad DASH 2 e boundary

in M damp e boundary

in M dca e boundary

in M dcmp e boundary
out M dcyt e boundary

in M ddca e boundary

in M dgmp e boundary

out M dgsn e boundary

out M dha e boundary

in M dimp e boundary

out M din e boundary

out M dms e boundary

in M dmso e boundaryout M dmso e boundary

in M dopa e boundary

in M doxrbcn e boundary

in M dtmp e boundary

in M dump e boundary

out M duri e boundary

out M eca4colipa e boundary

out M enlipa e boundary

out M enter e boundary

out M etha e boundary

in M ethso3 e boundary

out M etoh e boundary

in M f6p e boundary

out M fald e boundary

in M fe2 e boundaryout M fe2 e boundary

in M fe3 e boundary
out M fe3 e boundary

in M fe3dcit e boundary

in M fe3dhbzs e boundary

in M fe3hox e boundaryout M fe3hox e boundaryin M fe3hox DASH un e boundary
out M fe3hox DASH un e boundary

in M fecrm e boundary
out M fecrm e boundary

in M fecrm DASH un e boundary
out M fecrm DASH un e boundary

out M feenter e boundary

in M feoxam e boundaryout M feoxam e boundary

in M feoxam DASH un e boundaryout M feoxam DASH un e boundary

out M for e boundary

in M fru e boundary

in M frulys e boundary

out M fruur e boundary

in M fuc DASH L e boundary
out M fuc DASH L e boundary

in M fum e boundary

in M fusa e boundary

out M g1p e boundary

in M g3pc e boundary

out M g3pe e boundary

out M g3pg e boundary

in M g3pi e boundary

in M g3ps e boundary

in M g6p e boundary

out M gal e boundaryin M gal DASH bD e boundary

out M gal1p e boundary

in M galct DASH D e boundary

in M galctn DASH D e boundary

in M galctn DASH L e boundary

in M galt e boundary

out M galur e boundary

in M gam e boundary

in M gam6p e boundary

in M gbbtn e boundaryout M gbbtn e boundary

out M gdp e boundary

in M glc DASH D e boundary
out M glc DASH D e boundary

out M glcn e boundary

in M glcr e boundary

out M glcur e boundary

out M glcur1p e boundary

in M gln DASH L e boundary

out M glu DASH L e boundary

out M gly e boundary

out M glyald e boundary

out M glyb e boundary

out M glyc e boundary

out M glyc DASH R e boundary

in M glyc2p e boundary

out M glyc3p e boundary

out M glyclt e boundary

in M gmp e boundary

out M gsn e boundary

in M gthox e boundary
out M gthox e boundary

in M gthrd e boundary
out M gthrd e boundary

in M gtp e boundary

out M gua e boundary

in M h e boundary
out M h e boundary

out M h2 e boundary

in M h2o e boundaryout M h2o e boundary

out M h2o2 e boundary

out M h2s e boundary

out M hacolipa e boundary
out M halipa e boundary

in M hdca e boundary
out M hdca e boundary

in M hdcea e boundary

in M hg2 e boundaryout M hg2 e boundary

out M his DASH L e boundary

out M hom DASH L e boundary

out M hxa e boundary

out M hxan e boundary

out M idon DASH L e boundary

out M ile DASH L e boundary

in M imp e boundary

out M indole e boundary

out M inost e boundary

out M ins e boundary

in M isetac e boundary

in M k e boundaryout M k e boundary

out M kdo2lipid4 e boundary

out M lac DASH D e boundary

out M lac DASH L e boundary

in M lcts e boundary
out M lcts e boundary

out M leu DASH L e boundary

out M lipa e boundary

out M lipa cold e boundary

in M lipoate e boundary

out M lys DASH L e boundary

in M lyx DASH L e boundary

in M mal DASH D e boundary

out M mal DASH L e boundary

in M malt e boundary

in M malthx e boundary

in M maltpt e boundary

in M malttr e boundary

in M maltttr e boundary
in M man e boundary

in M man6p e boundary

in M manglyc e boundary

in M melib e boundary
out M melib e boundary

out M meoh e boundaryin M met DASH D e boundary

in M met DASH L e boundary

in M metsox DASH R DASH L e boundary

in M metsox DASH S DASH L e boundary

in M mg2 e boundary
out M mg2 e boundary

in M mincyc e boundary

in M minohp e boundary

in M mmet e boundary

in M mn2 e boundaryout M mn2 e boundary

in M mnl e boundary

in M mobd e boundary
out M mobd e boundary

in M mso3 e boundary

out M n2o e boundary

in M na1 e boundaryout M na1 e boundary

in M nac e boundary

in M nh4 e boundaryout M nh4 e boundary

in M ni2 e boundary
out M ni2 e boundary

in M nmn e boundary

in M no e boundary

out M no2 e boundary
in M no3 e boundary

in M novbcn e boundary

out M o16a4colipa e boundary

in M o2 e boundary
out M o2 e boundary

in M ocdca e boundary

in M ocdcea e boundary
in M octa e boundary

out M orn e boundary

in M orot e boundary

out M pacald e boundary

in M peamn e boundary

out M phe DASH L e boundary

out M pheme e boundary

in M pi e boundaryout M pi e boundary

in M pnto DASH R e boundary
in M ppa e boundary

in M ppal e boundary

in M pppn e boundary

in M ppt e boundary

out M pro DASH L e boundary

in M progly e boundary

in M psclys e boundary

in M pser DASH L e boundary

out M ptrc e boundary

in M pydam e boundary

in M pydx e boundary

in M pydxn e boundary

out M pyr e boundary

out M quin e boundary

in M r5p e boundary

in M rfamp e boundary

out M rib DASH D e boundary

in M rmn e boundary

in M sbt DASH D e boundary

in M sel e boundary
out M sel e boundary

in M ser DASH D e boundary

out M ser DASH L e boundary

in M skm e boundaryin M slnt e boundaryout M slnt e boundary

out M so2 e boundary

out M so3 e boundary

in M so4 e boundary
out M so4 e boundary

out M spmd e boundary

out M succ e boundary

in M sucr e boundary

in M sulfac e boundary

in M tartr DASH D e boundary

in M tartr DASH L e boundary

in M taur e boundary

out M tcynt e boundary

in M thm e boundary

out M thr DASH L e boundary

in M thrp e boundary

out M thym e boundary

out M thymd e boundary

out M tma e boundaryin M tmao e boundary

in M tre e boundary

out M trp DASH L e boundary

in M tsul e boundary

in M ttdca e boundary

in M ttdcea e boundary

in M ttrcyc e boundary

in M tungs e boundary
out M tungs e boundary

in M tym e boundary

out M tyr DASH L e boundary

in M tyrp e boundary

in M uacgam e boundary

in M udpacgal e boundary

in M udpg e boundary

in M udpgal e boundary

in M udpglcur e boundary

out M ump e boundary

out M ura e boundary

out M urea e boundary

out M uri e boundary

out M val DASH L e boundary

out M xan e boundary

in M xmp e boundary

out M xtsn e boundary

in M xyl DASH D e boundary

in M xylu DASH L e boundary

in M zn2 e boundary
out M zn2 e boundary

R DM 4CRSOL

R DM 5DRIB

R DM AACALD

R DM AMOB

R DM MTHTHF

R DM OXAM

R EX 12ppd DASH R LPAREN e RPAREN
R EX 12ppd DASH S LPAREN e RPAREN

R EX 15dap LPAREN e RPAREN

R EX 2ddglcn LPAREN e RPAREN

R EX 34dhpac LPAREN e RPAREN

R EX 3amp LPAREN e RPAREN
R EX 3cmp LPAREN e RPAREN

R EX 3gmp LPAREN e RPAREN

R EX 3hpp LPAREN e RPAREN

R EX 3ump LPAREN e RPAREN

R EX 4abut LPAREN e RPAREN

R EX 4hoxpacd LPAREN e RPAREN

R EX 5dglcn LPAREN e RPAREN

R EX 5mtr LPAREN e RPAREN

R EX LalaDgluMdap LPAREN e RPARENR EX LalaDgluMdapDala LPAREN e RPAREN

R EX ac LPAREN e RPAREN

R EX acald LPAREN e RPAREN

R EX acgal LPAREN e RPAREN

R EX acgal1p LPAREN e RPAREN

R EX acgam LPAREN e RPAREN

R EX acgam1p LPAREN e RPAREN

R EX acolipa LPAREN e RPAREN

R EX acser LPAREN e RPAREN

R EX ade LPAREN e RPAREN

R EX adn LPAREN e RPAREN

R EX ag LPAREN e RPAREN

R EX agm LPAREN e RPAREN

R EX akg LPAREN e RPAREN

R EX ala DASH D LPAREN e RPAREN

R EX ala DASH L LPAREN e RPAREN

R EX alaala LPAREN e RPAREN

R EX alltn LPAREN e RPAREN

R EX anhgm LPAREN e RPAREN

R EX arg DASH L LPAREN e RPAREN

R EX asn DASH L LPAREN e RPAREN

R EX aso3 LPAREN e RPAREN

R EX asp DASH L LPAREN e RPAREN

R EX btn LPAREN e RPAREN

R EX but LPAREN e RPAREN

R EX ca2 LPAREN e RPARENre R EX ca2 LPAREN e RPAREN

R EX cbl1 LPAREN e RPARENre R EX cbl1 LPAREN e RPAREN

R EX chol LPAREN e RPAREN

R EX cit LPAREN e RPAREN

R EX cl LPAREN e RPARENre R EX cl LPAREN e RPAREN

R EX co2 LPAREN e RPARENre R EX co2 LPAREN e RPAREN

R EX cobalt2 LPAREN e RPARENre R EX cobalt2 LPAREN e RPAREN

R EX colipa LPAREN e RPAREN

R EX colipap LPAREN e RPAREN

R EX cu2 LPAREN e RPARENre R EX cu2 LPAREN e RPAREN

R EX cytd LPAREN e RPAREN

R EX dad DASH 2 LPAREN e RPAREN

R EX dcyt LPAREN e RPAREN

R EX dgsn LPAREN e RPAREN

R EX dha LPAREN e RPAREN

R EX din LPAREN e RPAREN

R EX dms LPAREN e RPAREN

R EX duri LPAREN e RPAREN

R EX eca4colipa LPAREN e RPAREN

R EX enlipa LPAREN e RPAREN

R EX enter LPAREN e RPAREN

R EX etha LPAREN e RPAREN

R EX etoh LPAREN e RPAREN

R EX fald LPAREN e RPAREN

R EX fe2 LPAREN e RPARENre R EX fe2 LPAREN e RPAREN

R EX fe3 LPAREN e RPAREN
re R EX fe3 LPAREN e RPAREN

R EX feenter LPAREN e RPAREN

R EX for LPAREN e RPAREN

R EX fruur LPAREN e RPAREN

R EX g1p LPAREN e RPAREN

R EX g3pe LPAREN e RPAREN

R EX g3pg LPAREN e RPAREN

R EX gal LPAREN e RPAREN

R EX gal1p LPAREN e RPAREN

R EX galur LPAREN e RPAREN

R EX gdp LPAREN e RPAREN
R EX glc LPAREN e RPARENre R EX glc LPAREN e RPAREN

R EX glcn LPAREN e RPAREN

R EX glcur LPAREN e RPAREN

R EX glcur1p LPAREN e RPAREN

R EX glu DASH L LPAREN e RPARENR EX gly LPAREN e RPAREN

R EX glyald LPAREN e RPAREN

R EX glyb LPAREN e RPAREN

R EX glyc LPAREN e RPAREN

R EX glyc DASH R LPAREN e RPAREN

R EX glyc3p LPAREN e RPAREN

R EX glyclt LPAREN e RPAREN
R EX gsn LPAREN e RPAREN

R EX gua LPAREN e RPAREN

R EX h LPAREN e RPARENre R EX h LPAREN e RPAREN

R EX h2 LPAREN e RPAREN

R EX h2o LPAREN e RPARENre R EX h2o LPAREN e RPAREN

R EX h2o2 LPAREN e RPAREN

R EX h2s LPAREN e RPAREN

R EX hacolipa LPAREN e RPAREN
R EX halipa LPAREN e RPAREN

R EX his DASH L LPAREN e RPAREN

R EX hom DASH L LPAREN e RPAREN

R EX hxa LPAREN e RPAREN

R EX hxan LPAREN e RPAREN

R EX idon DASH L LPAREN e RPAREN

R EX ile DASH L LPAREN e RPAREN

R EX indole LPAREN e RPAREN

R EX inost LPAREN e RPAREN

R EX ins LPAREN e RPAREN

R EX k LPAREN e RPARENre R EX k LPAREN e RPAREN

R EX kdo2lipid4 LPAREN e RPAREN

R EX lac DASH D LPAREN e RPAREN

R EX lac DASH L LPAREN e RPAREN

R EX leu DASH L LPAREN e RPAREN

R EX lipa LPAREN e RPAREN

R EX lipa cold LPAREN e RPAREN

R EX lys DASH L LPAREN e RPAREN

R EX mal DASH L LPAREN e RPAREN

R EX meoh LPAREN e RPAREN

R EX mg2 LPAREN e RPARENre R EX mg2 LPAREN e RPAREN

R EX mn2 LPAREN e RPARENre R EX mn2 LPAREN e RPAREN

R EX mobd LPAREN e RPAREN
re R EX mobd LPAREN e RPAREN

R EX n2o LPAREN e RPAREN

R EX na1 LPAREN e RPARENre R EX na1 LPAREN e RPAREN
R EX nh4 LPAREN e RPARENre R EX nh4 LPAREN e RPAREN

R EX ni2 LPAREN e RPARENre R EX ni2 LPAREN e RPAREN

R EX no2 LPAREN e RPAREN

R EX o16a4colipa LPAREN e RPAREN

R EX o2 LPAREN e RPARENre R EX o2 LPAREN e RPAREN

R EX orn LPAREN e RPAREN

R EX pacald LPAREN e RPAREN

R EX phe DASH L LPAREN e RPAREN

R EX pheme LPAREN e RPAREN

R EX pi LPAREN e RPARENre R EX pi LPAREN e RPAREN

R EX pro DASH L LPAREN e RPAREN

R EX ptrc LPAREN e RPAREN

R EX pyr LPAREN e RPAREN

R EX quin LPAREN e RPAREN

R EX rib DASH D LPAREN e RPAREN

R EX sel LPAREN e RPAREN
re R EX sel LPAREN e RPAREN

R EX ser DASH L LPAREN e RPAREN

R EX slnt LPAREN e RPARENre R EX slnt LPAREN e RPAREN

R EX so2 LPAREN e RPAREN

R EX so3 LPAREN e RPAREN

R EX so4 LPAREN e RPARENre R EX so4 LPAREN e RPAREN

R EX spmd LPAREN e RPAREN
R EX succ LPAREN e RPAREN

R EX tcynt LPAREN e RPAREN

R EX thr DASH L LPAREN e RPAREN

R EX thym LPAREN e RPAREN

R EX thymd LPAREN e RPAREN

R EX tma LPAREN e RPAREN

R EX trp DASH L LPAREN e RPAREN

R EX tungs LPAREN e RPAREN
re R EX tungs LPAREN e RPAREN

R EX tyr DASH L LPAREN e RPAREN

R EX ump LPAREN e RPAREN

R EX ura LPAREN e RPAREN

R EX urea LPAREN e RPAREN

R EX uri LPAREN e RPAREN

R EX val DASH L LPAREN e RPAREN

R EX xan LPAREN e RPAREN

R EX xtsn LPAREN e RPAREN

R EX zn2 LPAREN e RPAREN
re R EX zn2 LPAREN e RPAREN

R 12DGR120tipp
R 12DGR140tipp
R 12DGR141tipp

R 12DGR160tipp

R 12DGR161tipp

R 12DGR180tipp

R 12DGR181tipp

R 12PPDRtexre R 12PPDRtex

R 12PPDRtppre R 12PPDRtpp

R 12PPDStexre R 12PPDStex

R 12PPDStppre R 12PPDStpp

R 14GLUCANabcpp

R 14GLUCANtexi

R 23CAMPtexre R 23CAMPtex

R 23CCMPtexre R 23CCMPtex

R 23CGMPtexre R 23CGMPtex

R 23CUMPtexre R 23CUMPtex

R 23DAPPAt2pp
R 23DAPPAtexre R 23DAPPAtex

R 23PDE2pp

R 23PDE4ppR 23PDE7pp

R 23PDE9pp

R 26DAHtexre R 26DAHtex

R 2AGPA120tipp
R 2AGPA140tipp

R 2AGPA141tipp

R 2AGPA160tipp

R 2AGPA161tipp

R 2AGPA180tipp

R 2AGPA181tipp

R 2AGPE120tipp
R 2AGPE140tippR 2AGPE141tipp
R 2AGPE160tippR 2AGPE161tippR 2AGPE180tipp
R 2AGPE181tipp

R 2AGPEAT120
R 2AGPEAT140R 2AGPEAT141R 2AGPEAT160R 2AGPEAT161R 2AGPEAT180

R 2AGPEAT181

R 2AGPG120tipp
R 2AGPG140tippR 2AGPG141tipp
R 2AGPG160tippR 2AGPG161tipp

R 2AGPG180tipp
R 2AGPG181tipp

R 2AGPGAT120R 2AGPGAT140R 2AGPGAT141R 2AGPGAT160R 2AGPGAT161
R 2AGPGAT180R 2AGPGAT181

R 2DGULRGx
R 2DGULRGy
R 2DGULRx
R 2DGULRy

R 2MAHMP

R 34dhpactexre R 34dhpactex

R 3AMACHYD

R 3AMPtexre R 3AMPtex
R 3CMPtexre R 3CMPtex

R 3GMPtexre R 3GMPtex

R 3HAD100
R 3HAD120

R 3HAD121

R 3HAD140

R 3HAD141
R 3HAD160
R 3HAD161
R 3HAD180

R 3HAD181R 3HAD40R 3HAD60R 3HAD80

R 3HCINNMH
R 3HPPPNH

R 3HPPtexre R 3HPPtex

R 3HPPtpp

R 3KGK

R 3NTD2pp
R 3NTD4pp
R 3NTD7pp

R 3NTD9pp

R 3OAR100re R 3OAR100R 3OAR120re R 3OAR120
R 3OAR121

R 3OAR140re R 3OAR140

R 3OAR141
R 3OAR160re R 3OAR160
R 3OAR161
R 3OAR180re R 3OAR180
R 3OAR181R 3OAR40re R 3OAR40R 3OAR60re R 3OAR60R 3OAR80re R 3OAR80

R 3OXCOAT

R 3PEPTabcpp

R 3PEPTtexre R 3PEPTtex
R 3UMPtexre R 3UMPtex

R 42A12BOOXpp

R 4HOXPACDtexre R 4HOXPACDtex

R 4PCP

R 4PCPpp

R 4PEPTabcpp

R 4PEPTtexre R 4PEPTtex

R 5DGLCNRre R 5DGLCNR

R 5DGLCNt2rppre R 5DGLCNt2rpp

R 5DGLCNtexre R 5DGLCNtex

R 5DOAN

R 5MTRtexre R 5MTRtex

R 5MTRtpp

R A5PISOre R A5PISO

R AACPS1R AACPS2R AACPS3R AACPS4
R AACPS5R AACPS6
R AACPS7

R AACPS8
R AACPS9

R AACTOOR

R AADDGT

R AAMYL

R AAMYLpp

R ABTA

R ABUTD

R ABUTt2pp

R ABUTtexre R ABUTtex

R ACACT1r
re R ACACT1r
R ACACT2rre R ACACT2r

R ACACT3rre R ACACT3r
R ACACT4rre R ACACT4r
R ACACT5rre R ACACT5r

R ACACT6rre R ACACT6rR ACACT7rre R ACACT7rR ACACT8rre R ACACT8r

R ACACt2ppre R ACACt2pp

R ACACtexre R ACACtex

R ACALDre R ACALD

R ACALDtexre R ACALDtex

R ACALDtppre R ACALDtpp

R ACBIPGT

R ACCOAC

R ACCOAL

R ACGAL1PPpp

R ACGAL1Ptexre R ACGAL1Ptex

R ACGALtexre R ACGALtex

R ACGAM1PPpp

R ACGAM1Ptexre R ACGAM1Ptex

R ACGAMK

R ACGAMT

R ACGAptspp

R ACGAtexre R ACGAtex

R ACGK
R ACGS

R ACHBS

R ACKrre R ACKr

R ACLS

R ACM6PH

R ACMAMUT

R ACMANAptspp

R ACMANAtexre R ACMANAtex

R ACMUMptspp

R ACMUMtex

R ACNAMt2pp

R ACNAMtexre R ACNAMtex

R ACNML

R ACOAD1fre R ACOAD1fR ACOAD2fre R ACOAD2f
R ACOAD3fre R ACOAD3f
R ACOAD4fre R ACOAD4f

R ACOAD5fre R ACOAD5f

R ACOAD6fre R ACOAD6fR ACOAD7fre R ACOAD7f
R ACOAD8fre R ACOAD8f

R ACOATAre R ACOATAR ACODA
R ACOLIPAabctex

R ACONIsre R ACONIs

R ACONTare R ACONTa
R ACONTbre R ACONTb

R ACOTAre R ACOTA

R ACPPAT120R ACPPAT140
R ACPPAT141R ACPPAT160R ACPPAT161
R ACPPAT180R ACPPAT181

R ACSR ACSERtex
re R ACSERtex

R ACt2rppre R ACt2rpp

R ACt4pp

R ACtexre R ACtex

R ADA
R ADCL

R ADCS

R ADD

R ADEt2rppre R ADEt2rpp

R ADEtexre R ADEtex

R ADK1re R ADK1R ADK3re R ADK3

R ADK4re R ADK4

R ADMDC

R ADNCYC

R ADNK1

R ADNUC
R ADNt2ppR ADNt2rppre R ADNt2rpp

R ADNtexre R ADNtex

R ADOCBIK

R ADOCBLS
R ADOCBLabcpp

R ADOCBLtonex

R ADPRDP

R ADPT

R ADSK

R ADSL1rre R ADSL1r

R ADSL2rre R ADSL2r

R ADSS
R AGDC

R AGM3PA

R AGM3PApp

R AGM3PH
R AGM3Pt2pp

R AGM4PA

R AGM4PApp

R AGM4PCP

R AGM4PCPpp

R AGM4PH
R AGM4Pt2pp

R AGMH

R AGMHE

R AGMT

R AGMt2pp

R AGMtexre R AGMtex

R AGPAT120
R AGPAT140
R AGPAT141

R AGPAT160
R AGPAT161

R AGPAT180

R AGPAT181
R AGPRre R AGPR

R AHCYSNS

R AICARTre R AICART

R AIRC2

R AIRC3re R AIRC3

R AKGDH R AKGt2rppre R AKGt2rpp

R AKGtexre R AKGtex

R ALAALAD
R ALAALAabcpp

R ALAALArre R ALAALAr

R ALAALAtexre R ALAALAtex

R ALAGLUEre R ALAGLUE

R ALARre R ALAR

R ALATA D2

R ALATA Lre R ALATA L

R ALATA L2

R ALAabcpp
R ALAt2ppR ALAt2rppre R ALAt2rpp

R ALAt4pp

R ALAtexre R ALAtex

R ALCD19re R ALCD19

R ALCD2xre R ALCD2x
R ALDD19xrre R ALDD19xr

R ALDD2x

R ALDD2y
R ALDD3y

R ALDD4R ALLKR ALLPI
re R ALLPI

R ALLTAMHR ALLTN

R ALLTNt2rppre R ALLTNt2rpp

R ALLTNtexre R ALLTNtex

R ALLULPEre R ALLULPE

R ALLabcpp

R ALLtexre R ALLtex

R ALR2R ALR4x

R ALTRH

R AM3PAR AM4PAR AM4PCP

R AMALT1R AMALT2R AMALT3R AMALT4

R AMANAPErre R AMANAPEr

R AMANK

R AMAOTrre R AMAOTr

R AMMQLT8

R AMPMS2

R AMPN

R AMPTASECG

R AMPTASEPG

R AMPtexre R AMPtex

R ANHGMtexre R ANHGMtex

R ANHMK

R ANPRT

R ANS

R AOBUTDs

R AOXSr2

R AP4AH
R AP4AS

R APG3PAT120
R APG3PAT140
R APG3PAT141
R APG3PAT160

R APG3PAT161

R APG3PAT180
R APG3PAT181

R APH120R APH140R APH141R APH160R APH161

R APH180
R APH181

R APPLDHrre R APPLDHr
R APRAUR

R ARAIre R ARAI

R ARBTNR1

R ARBTNR2

R ARBTNR3
R ARBTNabcpp

R ARBTNexs

R ARBTNtex
R ARBTNtonex

R ARBTNtpp

R ARBTptspp

R ARBTtex

R ARBabcppR ARBt2rppre R ARBt2rppR ARBt3ipp

R ARBtexre R ARBtex
R ARGAGMt7ppre R ARGAGMt7pp

R ARGDC
R ARGDCpp

R ARGORNt7ppre R ARGORNt7pp

R ARGSLre R ARGSL

R ARGSS

R ARGabcpp
R ARGt3pp

R ARGtexre R ARGtex

R ASADre R ASAD

R ASCBPL

R ASCBptspp
R ASCBtexre R ASCBtex

R ASNN

R ASNNpp

R ASNS1

R ASNS2
R ASNabcpp

R ASNt2rppre R ASNt2rpp

R ASNtexre R ASNtex

R ASO3t8pp

R ASO3texre R ASO3tex

R ASP1DC

R ASPCT
R ASPKre R ASPK

R ASPO3

R ASPO4

R ASPO5

R ASPO6

R ASPT

R ASPTAre R ASPTA

R ASPabcpp
R ASPt2 2pp
R ASPt2 3ppR ASPt2ppR ASPt2rppre R ASPt2rpp R ASPtexre R ASPtex

R AST

R ATHRDHrre R ATHRDHr

R ATPHs

R ATPM

R ATPPRT

R ATPS4rppre R ATPS4rpp

R BALAt2pp

R BALAtexre R BALAtex

R BMOCOS

R BMOGDS1

R BPNT

R BTNtexre R BTNtex

R BUTSO3abcpp

R BUTSO3texre R BUTSO3tex

R BUTt2rppre R BUTt2rpp

R BUTtexre R BUTtex

R BWCOGDS1

R BWCOS

R CA2t3pp

R CA2texre R CA2tex

R CADVtpp

R CAt6ppre R CAt6pp

R CBIATre R CBIAT

R CBItonex

R CBIuabcpp
R CBL1abcpp

R CBL1tonex

R CBLATre R CBLAT

R CBMD

R CBMKrre R CBMKrR CBPS

R CCGS

R CD2abcpp
R CD2t3pp

R CD2texre R CD2tex

R CD2tpp

R CDAPPA120
R CDAPPA140R CDAPPA141
R CDAPPA160
R CDAPPA161

R CDAPPA180

R CDAPPA181

R CDGS
R CDPMEKR CGLYabcpp

R CGLYtexre R CGLYtex

R CHLabcpp

R CHLt2pp

R CHLtexre R CHLtex

R CHOLD

R CHORM

R CHORS

R CHRPL

R CHTBSptspp

R CHTBStexre R CHTBStex

R CITL

R CITt3pp

R CITt7pp

R CITtexre R CITtex

R CLIPAabctex

R CLPNH120ppR CLPNH140ppR CLPNH141ppR CLPNH160ppR CLPNH161ppR CLPNH180pp
R CLPNH181pp

R CLPNS120ppre R CLPNS120ppR CLPNS140ppre R CLPNS140pp
R CLPNS141ppre R CLPNS141pp

R CLPNS160ppre R CLPNS160pp

R CLPNS161ppre R CLPNS161pp

R CLPNS180ppre R CLPNS180pp

R CLPNS181ppre R CLPNS181pp

R CLtexre R CLtex

R CMPN

R CMPtexre R CMPtex

R CMtexre R CMtex

R CMtpp

R CO2texre R CO2tex

R CO2tppre R CO2tpp

R COBALT2abcpp

R COBALT2t3pp

R COBALT2texre R COBALT2tex

R COBALT2tpp

R COLIPAKppR COLIPAPabctexR COLIPAabcpp

R COLIPAabctex

R CPGNR1

R CPGNR2

R CPGNR3

R CPGNUtex

R CPGNUtppR CPGNabcpp

R CPGNexs

R CPGNtonex

R CPH4S

R CPMPS

R CPPPGO

R CPPPGO2

R CRNBTCTre R CRNBTCT
R CRNCARre R CRNCAR

R CRNCBCTre R CRNCBCT

R CRNCDHre R CRNCDH

R CRNDabcppR CRNDt2rppre R CRNDt2rpp

R CRNDtexre R CRNDtex

R CRNabcpp
R CRNt2rppre R CRNt2rpp

R CRNt8pp

R CRNtexre R CRNtex

R CS

R CSND

R CSNt2pp

R CSNtexre R CSNtex

R CTBTabcppR CTBTt2rppre R CTBTt2rpp

R CTECOAI6re R CTECOAI6
R CTECOAI7re R CTECOAI7

R CTECOAI8re R CTECOAI8

R CTPS2

R CU2abcpp

R CU2texre R CU2tex

R CU2tpp

R CUtexre R CUtex

R CYANSTpp R CYANtexre R CYANtex

R CYNTAH

R CYNTt2pp

R CYNTtexre R CYNTtex

R CYSDDSR CYSDabcpp

R CYSDtexre R CYSDtex

R CYSS

R CYSTL

R CYSabc2ppR CYSabcpp

R CYStexre R CYStex

R CYStpp

R CYTBD2pp
R CYTBDppR CYTBO3 4pp
R CYTD

R CYTDH

R CYTDK2
R CYTDt2ppR CYTDt2rppre R CYTDt2rpp

R CYTDtexre R CYTDtex

R CYTK1re R CYTK1R CYTK2re R CYTK2

R D DASH LACt2ppre R D DASH LACt2pp

R D DASH LACtexre R D DASH LACtex

R DAAD
R DADA

R DADKre R DADK
R DADNt2pp

R DADNtexre R DADNtex

R DAGK120R DAGK140R DAGK141
R DAGK160

R DAGK161

R DAGK180

R DAGK181

R DALAt2pp

R DALAtexre R DALAtex

R DAMPtex
re R DAMPtex

R DAPAL

R DAPDC

R DAPEre R DAPE

R DAPabcpp

R DAPtexre R DAPtex

R DASYN120R DASYN140R DASYN141
R DASYN160R DASYN161
R DASYN180

R DASYN181

R DATPHs

R DB4PS

R DBTS

R DC6PH

R DCAtexre R DCAtex

R DCMPtexre R DCMPtex

R DCTPD

R DCYTD

R DCYTt2pp

R DCYTtexre R DCYTtex

R DDCAtexi

R DDGALK R DDGLCNt2rppre R DDGLCNt2rpp

R DDGLCNtexre R DDGLCNtex

R DDGLK

R DDPA
R DDPGALAre R DDPGALA

R DGK1re R DGK1

R DGMPtexre R DGMPtex

R DGSNt2pp

R DGSNtexre R DGSNtex

R DHACOAHre R DHACOAH
R DHAD1

R DHAD2

R DHAPT

R DHAtexre R DHAtex

R DHAtppre R DHAtpp

R DHBDre R DHBD

R DHBS

R DHBSH

R DHCIND

R DHCINDO

R DHDPRy

R DHDPS
R DHFRre R DHFR

R DHFS

R DHNAOT4

R DHNCOAS
R DHNCOATR DHNPA2rre R DHNPA2r

R DHNPTEre R DHNPTE

R DHORD2
R DHORD5

R DHORDfumR DHORTSre R DHORTSR DHPPD

R DHPPDA2

R DHPS2

R DHPTDCs2

R DHPTPEre R DHPTPE

R DHQS

R DHQTi

R DIMPtexre R DIMPtex

R DINSt2pp

R DINStexre R DINStex

R DMATT

R DMPPS
R DMQMT

R DMSOtexre R DMSOtex

R DMSOtppre R DMSOtpp

R DMStexre R DMStex

R DNMPPAR DNTPPA

R DOPAtexre R DOPAtex

R DOXRBCNtexre R DOXRBCNtex

R DOXRBCNtpp

R DPCOAK

R DPR

R DRPA

R DSBDR

R DSERDHrre R DSERDHr

R DSERt2pp

R DSERtexre R DSERtexR DTARTD
R DTMPKre R DTMPK

R DTMPtexre R DTMPtex

R DUMPtexre R DUMPtex

R DURADxre R DURADx

R DURIK1

R DURIPPre R DURIPP

R DURIt2pp

R DURItexre R DURItex

R DUTPDP

R DXPRIiR DXPS

R E4PDre R E4PD

R EAR100x
R EAR100y

R EAR120x
R EAR120y

R EAR121x
R EAR121y

R EAR140x
R EAR140y

R EAR141x
R EAR141y
R EAR160x
R EAR160yR EAR161x
R EAR161y

R EAR180x
R EAR180yR EAR181x
R EAR181y

R EAR40x
R EAR40y
R EAR60x
R EAR60y

R EAR80x
R EAR80y

R ECA4COLIPAabctex

R ECA4OALpp
R ECAP1ppR ECAP2ppR ECAP3pp

R ECAtpp

R ECOAH1re R ECOAH1
R ECOAH2re R ECOAH2
R ECOAH3re R ECOAH3
R ECOAH4re R ECOAH4

R ECOAH5re R ECOAH5

R ECOAH6re R ECOAH6R ECOAH7re R ECOAH7
R ECOAH8re R ECOAH8

R EDA
R EDD

R EDTXS1R EDTXS2R EDTXS3
R EDTXS4

R EGMEACPR

R ENLIPAabctex

R ENOre R ENO

R ENTCS

R ENTERES
R ENTERES2

R EPMEACPR

R ETHAAL R ETHAt2pp

R ETHAtexre R ETHAtex

R ETHSO3abcpp

R ETHSO3texre R ETHSO3tex

R ETOHtexre R ETOHtex

R ETOHtrppre R ETOHtrpp

R F6PAre R F6PA

R F6PP

R F6Pt6 2pp

R F6Ptexre R F6Ptex

R FA100ACPHi

R FA120ACPHiR FA140ACPHi
R FA141ACPHiR FA160ACPHiR FA161ACPHi

R FA80ACPHi

R FACOAE100

R FACOAE120R FACOAE140

R FACOAE141
R FACOAE160

R FACOAE161R FACOAE180
R FACOAE181

R FACOAE60

R FACOAE80

R FACOAL100t2pp
R FACOAL120t2ppR FACOAL140t2pp
R FACOAL141t2pp
R FACOAL160t2pp

R FACOAL161t2ppR FACOAL180t2ppR FACOAL181t2pp
R FACOAL60t2pp

R FACOAL80t2pp

R FADRx
R FADRx2

R FALDH2re R FALDH2

R FALDtex
re R FALDtex

R FALDtppre R FALDtpp

R FALGTHLsre R FALGTHLsR FBAre R FBA

R FBA3re R FBA3

R FBP

R FCIre R FCI

R FCLPAre R FCLPA

R FCLT

R FDH4pp
R FDH5pp

R FDMO

R FDMO2

R FDMO3

R FDMO4

R FDMO6

R FE2abcpp

R FE2t2ppR FE2t3pp

R FE2texre R FE2tex

R FE2tpp

R FE3DCITabcpp

R FE3DCITtonex

R FE3DHBZR

R FE3DHBZSabcpp

R FE3DHBZStonex

R FE3HOXR1

R FE3HOXR2

R FE3HOXR3

R FE3HOXUtex

R FE3HOXUtpp

R FE3HOXabcpp

R FE3HOXexs

R FE3HOXtonex

R FE3Ri

R FE3abcpp
R FE3texre R FE3tex

R FECRMR1

R FECRMR2

R FECRMR3

R FECRMUtex

R FECRMUtppR FECRMabcpp

R FECRMexs

R FECRMtonex

R FEENTERR1

R FEENTERR2

R FEENTERR3

R FEENTERabcpp

R FEENTERexs

R FEENTERtex

R FEENTERtonex

R FEENTERtpp

R FEOXAMR1

R FEOXAMR2

R FEOXAMR3

R FEOXAMUtex

R FEOXAMUtppR FEOXAMabcpp

R FEOXAMexs

R FEOXAMtonex

R FEROpp

R FESD1s
R FESD2s

R FESR

R FFSD R FLDR2

R FLVR
R FLVRx

R FMNAT

R FMNRx

R FMNRx2

R FOMETRi

R FORCTre R FORCT

R FORt2pp

R FORtexre R FORtex

R FORtppi

R FRD2
R FRD3

R FRUK

R FRULYSDGre R FRULYSDG

R FRULYSEre R FRULYSE

R FRULYSK
R FRULYSt2pp

R FRULYStexre R FRULYStex

R FRUURt2rppre R FRUURt2rpp
R FRUURtexre R FRUURtex

R FRUpts2ppR FRUptspp

R FRUtexre R FRUtex

R FTHFD

R FTHFLi

R FUCtexre R FUCtex

R FUCtppre R FUCtpp

R FUMre R FUM

R FUMt2 2ppR FUMt2 3pp

R FUMtexre R FUMtex

R FUSAtexre R FUSAtex

R FUSAtpp

R G1PACT

R G1PPpp

R G1PTT

R G1Ptexre R G1Ptex

R G1SATre R G1SAT

R G2PP

R G2PPpp

R G3PAT120R G3PAT140
R G3PAT141R G3PAT160
R G3PAT161
R G3PAT180
R G3PAT181

R G3PCabcpp

R G3PCtexre R G3PCtex

R G3PD2re R G3PD2

R G3PD5

R G3PD6
R G3PD7

R G3PEabcpp

R G3PEtexre R G3PEtex

R G3PGabcpp

R G3PGtexre R G3PGtex

R G3PIabcpp

R G3PItexre R G3PItex

R G3PSabcpp

R G3PStexre R G3PStex

R G3PT

R G5SADs

R G5SD

R G6PDA

R G6PDH2rre R G6PDH2r

R G6PP

R G6Pt6 2pp

R G6Ptexre R G6Ptex

R GAL1PPpp

R GAL1Ptexre R GAL1Ptex

R GALBDtexre R GALBDtex

R GALCTD
R GALCTLO

R GALCTND

R GALCTNLt2pp

R GALCTNLtexre R GALCTNLtex

R GALCTNt2pp

R GALCTNtexre R GALCTNtex

R GALCTt2rppre R GALCTt2rpp

R GALCTtexre R GALCTtex

R GALKrre R GALKr

R GALM2pp

R GALT1

R GALTptspp

R GALTtexre R GALTtex

R GALURt2rppre R GALURt2rpp

R GALURtexre R GALURtex

R GALUi

R GALabcpp
R GALt2pp

R GALtexre R GALtex

R GAM6Pt6 2pp

R GAMAN6Ptexre R GAMAN6Ptex

R GAMptspp

R GAMtexre R GAMtex

R GAPDre R GAPD

R GARFTre R GARFT

R GART

R GBBTNtexre R GBBTNtex

R GCALDD

R GDMANE

R GDPDPK

R GDPMNHR GDPMNP

R GDPTPDP

R GDPtexre R GDPtex

R GF6PTA

R GGGABADrre R GGGABADr

R GGGABAH

R GGPTRCO

R GGPTRCS

R GHBDHxre R GHBDHx

R GHMT2rre R GHMT2r

R GK1re R GK1

R GLBRAN2

R GLCATrre R GLCATr

R GLCDpp

R GLCNt2rppre R GLCNt2rpp

R GLCNtexre R GLCNtex

R GLCPR GLCP2

R GLCRAL

R GLCRD

R GLCRt2rppre R GLCRt2rpp

R GLCRtexre R GLCRtex

R GLCS1

R GLCTR1R GLCTR2R GLCTR3

R GLCUR1Ptexre R GLCUR1Ptex

R GLCURt2rppre R GLCURt2rpp

R GLCURtexre R GLCURtex

R GLCabcpp

R GLCptspp

R GLCt2pp

R GLCtexre R GLCtexR GLCtexi

R GLDBRAN2

R GLGC

R GLNS

R GLNabcpp

R GLNtexre R GLNtex

R GLTPDre R GLTPDR GLU5K

R GLUABUTt7ppre R GLUABUTt7pp

R GLUCYS

R GLUDC
R GLUDyre R GLUDy

R GLUN

R GLUNpp

R GLUPRT

R GLURre R GLUR
R GLUSy

R GLUTRR

R GLUTRS

R GLUabcppR GLUt2rppre R GLUt2rpp

R GLUt4pp

R GLUtexre R GLUtex

R GLXCL

R GLYALDtexre R GLYALDtex

R GLYALDtppre R GLYALDtpp

R GLYATre R GLYAT

R GLYBtexre R GLYBtex

R GLYC2Pabcpp

R GLYC2Ptexre R GLYC2Ptex

R GLYC3Pabcpp

R GLYC3Pt6pp

R GLYC3Ptexre R GLYC3Ptex

R GLYCAt2rppre R GLYCAt2rpp

R GLYCAtexre R GLYCAtex

R GLYCDx

R GLYCKR GLYCK2

R GLYCL

R GLYCLTDx

R GLYCLTDy

R GLYCLTt2rppre R GLYCLTt2rpp

R GLYCLTt4pp

R GLYCLTtexre R GLYCLTtex

R GLYCTO2
R GLYCTO3R GLYCTO4

R GLYCtexre R GLYCtex

R GLYCtppre R GLYCtpp

R GLYK

R GLYOX
R GLYOX3

R GLYt2ppR GLYt2rppre R GLYt2rpp

R GLYt4pp

R GLYtexre R GLYtex

R GMAND

R GMHEPAT

R GMHEPKR GMHEPPA
R GMPR

R GMPS2

R GMPtexre R GMPtex

R GND

R GNK

R GPDDA1

R GPDDA1pp

R GPDDA2

R GPDDA2pp

R GPDDA3

R GPDDA3pp

R GPDDA4

R GPDDA4pp

R GPDDA5pp

R GRTT

R GRXR

R GSNK

R GSNt2pp

R GSNtexre R GSNtex

R GSPMDA

R GSPMDS

R GTHOXtexre R GTHOXtex

R GTHOrre R GTHOr

R GTHPi

R GTHRDHpp

R GTHRDabc2ppR GTHRDabcpp

R GTHRDtexre R GTHRDtex

R GTHS

R GTPCI
R GTPCII2

R GTPDPDPR GTPDPK

R GTPHs

R GTPtexre R GTPtex

R GUACYC

R GUAD

R GUAPRT

R GUAt2pp

R GUAtexre R GUAtex

R GUAtppre R GUAtpp

R GUI1re R GUI1

R GUI2re R GUI2

R GUR1PPpp

R H2O2texre R H2O2tex

R H2Otexre R H2Otex

R H2Otppre R H2Otpp

R H2SO

R H2St1pp

R H2Stex
re R H2Stex

R H2texre R H2tex

R H2tppre R H2tpp

R HACD1re R HACD1

R HACD2re R HACD2

R HACD3re R HACD3
R HACD4re R HACD4R HACD5re R HACD5

R HACD6re R HACD6R HACD7re R HACD7R HACD8re R HACD8

R HADPCOADH3re R HADPCOADH3

R HBZOPT
R HCINNMt2rppre R HCINNMt2rpp

R HCINNMtexre R HCINNMtex

R HCO3E
re R HCO3E

R HCYSMT

R HCYSMT2

R HDCEAtexi

R HEPK1
R HEPK2

R HEPT1R HEPT2R HEPT3R HEPT4

R HEX1
R HEX4

R HEX7

R HEXt2rppre R HEXt2rpp

R HG2texre R HG2tex

R HISTDR HISTP
R HISabcpp

R HISt2rppre R HISt2rpp

R HIStexre R HIStex

R HKNDDH

R HKNTDH

R HMBS

R HOMt2pp

R HOMtexre R HOMtex

R HOPNTAL
R HPPK2

R HPPPNDO

R HPPPNt2rppre R HPPPNt2rpp

R HPPPNtexre R HPPPNtex

R HPYRIre R HPYRI

R HPYRRx
R HPYRRy
R HSDyre R HSDy

R HSK

R HSSTR HSTPT

R HXAND

R HXAtexre R HXAtex

R HXCT

R HXPRT
R HYD1pp
R HYD2pp

R HYD3pp

R HYPOE

R HYXNtexre R HYXNtex
R HYXNtppre R HYXNtppR Htexre R Htex

R I2FE2SR
R I2FE2SS
R I2FE2SS2
R I2FE2ST

R I4FE4SRR I4FE4ST

R ICDHyrre R ICDHyr

R ICHORSre R ICHORS
R ICHORSi

R ICHORT R ICL R IDONDre R IDOND
R IDOND2

R IDONt2rppre R IDONt2rpp

R IDONtexre R IDONtex

R IG3PS
R IGPDH

R IGPS

R ILETAre R ILETA

R ILEabcppR ILEt2rppre R ILEt2rpp

R ILEtexre R ILEtex

R IMPCre R IMPC
R IMPD

R IMPtexre R IMPtex

R INDOLEt2ppR INDOLEt2rppre R INDOLEt2rpp

R INDOLEtexre R INDOLEtex

R INSH
R INSK

R INSTtexre R INSTtex

R INSt2ppR INSt2rppre R INSt2rpp

R INStexre R INStex
R IPDDIre R IPDDI

R IPDPS

R IPMD

R IPPMIare R IPPMIa

R IPPMIbre R IPPMIb

R IPPS

R ISETACabcpp

R ISETACtexre R ISETACtex

R K2L4Aabcpp

R K2L4Aabctex

R KARA1re R KARA1R KARA2re R KARA2

R KAS15

R KDOCT2

R KDOPP
R KDOPS

R KG6PDC

R Kabcpp
R Kt2ppR Kt3pp

R Ktexre R Ktex

R L DASH LACD2

R L DASH LACD3

R L DASH LACt2rppre R L DASH LACt2rpp

R L DASH LACtexre R L DASH LACtex

R LA4NTpp

R LADGMDH

R LALADGLUtexre R LALADGLUtex

R LALADGLUtpp

R LALALGLUtexre R LALALGLUtex

R LALALGLUtpp

R LALDO2xR LALDO3

R LALGP

R LCADi

R LCARRre R LCARRR LCARSre R LCARS

R LCTSt3ipp

R LCTStexre R LCTStex

R LCTStppre R LCTStpp

R LDH Dre R LDH D

R LDH D2

R LEUTAi

R LEUabcpp
R LEUt2rppre R LEUt2rpp

R LEUtexre R LEUtex

R LGTHL

R LIPACabcpp

R LIPATPT

R LIPAabcpp

R LIPAabctex

R LIPOCT
R LIPOt2pp

R LIPOtexre R LIPOtex

R LPADSS

R LPLIPAL1A120ppR LPLIPAL1A140ppR LPLIPAL1A141pp
R LPLIPAL1A160pp

R LPLIPAL1A161ppR LPLIPAL1A180ppR LPLIPAL1A181ppR LPLIPAL1E120ppR LPLIPAL1E140ppR LPLIPAL1E141ppR LPLIPAL1E160pp
R LPLIPAL1E161ppR LPLIPAL1E180pp

R LPLIPAL1E181pp
R LPLIPAL1G120ppR LPLIPAL1G140ppR LPLIPAL1G141pp
R LPLIPAL1G160pp

R LPLIPAL1G161ppR LPLIPAL1G180pp
R LPLIPAL1G181pp

R LPLIPAL2A120
R LPLIPAL2A140

R LPLIPAL2A141

R LPLIPAL2A160

R LPLIPAL2A161

R LPLIPAL2A180

R LPLIPAL2A181

R LPLIPAL2E120R LPLIPAL2E140R LPLIPAL2E141R LPLIPAL2E160R LPLIPAL2E161R LPLIPAL2E180R LPLIPAL2E181R LPLIPAL2G120R LPLIPAL2G140R LPLIPAL2G141R LPLIPAL2G160R LPLIPAL2G161R LPLIPAL2G180R LPLIPAL2G181

R LSERDHrre R LSERDHr

R LYSDC

R LYSabcppR LYSt2ppR LYSt3pp

R LYStexre R LYStexR LYXI

R LYXt2pp

R LYXtexre R LYXtex

R M1PDre R M1PD

R MALDDH R MALDt2 2pp

R MALDtexre R MALDtex

R MALS

R MALTATrre R MALTATr

R MALTHXabcpp

R MALTHXtexi

R MALTPTabcpp

R MALTPTtexi

R MALTTRabcpp

R MALTTRtexi

R MALTTTRabcpp

R MALTTTRtexi

R MALTabcpp

R MALTtexi

R MALt2 2ppR MALt2 3ppR MALt3pp

R MALtexre R MALtex

R MAN1PT2

R MAN6PIre R MAN6PI

R MAN6Pt6 2pp

R MAN6Ptexre R MAN6Ptex

R MANAOre R MANAO

R MANGLYCptspp

R MANGLYCtexre R MANGLYCtex

R MANPGH
R MANptspp

R MANtexre R MANtex

R MCITD
R MCITL2re R MCITL2

R MCITS
R MCOATAre R MCOATA

R MCTP1App

R MCTP1Bpp

R MCTP2App

R MDDCP1pp

R MDDCP2pp

R MDDCP3pp

R MDDCP4ppR MDDCP5ppR MDDEP1ppR MDDEP2pp

R MDDEP3pp

R MDDEP4pp

R MDHre R MDH

R MDH2

R MDH3

R ME1R ME2

R MECDPDH5

R MECDPS

R MELIBt2ppR MELIBt3ipp

R MELIBtexre R MELIBtex
R MEOHtex

re R MEOHtex

R MEOHtrppre R MEOHtrpp

R MEPCT

R METAT

R METDtexre R METDtex

R METOX1sR METOX2s

R METS

R METSOX1abcpp

R METSOX1texre R METSOX1tex

R METSOX2abcpp

R METSOX2texre R METSOX2tex

R METSOXR1R METSOXR2
R METabcpp

R METtexre R METtex
R MG2t3 2ppre R MG2t3 2pp

R MG2texre R MG2tex

R MG2tpp

R MG2uabcpp

R MGSAR MICITDrre R MICITDr

R MINCYCtexre R MINCYCtex

R MINCYCtpp

R MINOHPtexi

R MLDCP1App

R MLDCP1Bpp
R MLDCP2App

R MLDCP2BppR MLDCP3AppR MLDEP1ppR MLDEP2pp

R MLTG1R MLTG2R MLTG3R MLTG4
R MLTG5

R MLTGY1pp

R MLTGY2pp
R MLTGY3pp

R MLTGY4pp

R MLTP1re R MLTP1R MLTP2re R MLTP2R MLTP3re R MLTP3

R MMCD

R MMETt2pp

R MMETtexre R MMETtex

R MMM

R MN2t3pp

R MN2tpp

R MN6PP
R MNLptspp

R MNLtexre R MNLtex

R MNNH

R MNt2pp

R MNtexre R MNtex

R MOADSUx

R MOATR MOAT2

R MOAT3C

R MOBDabcpp

R MOBDtexre R MOBDtex

R MOCOS

R MOHMT

R MOXre R MOX

R MPTAT
R MPTG
R MPTG2

R MPTS

R MPTSS

R MSAR

R MSO3abcpp

R MSO3texre R MSO3tex

R MTANR MTHFCre R MTHFC

R MTHFDre R MTHFD

R MTHFR2

R MTHTHFSs

R N2Otexre R N2Otex

R N2Otppre R N2Otpp

R NACODA

R NACtexre R NACtex

R NACtpp

R NADDP R NADH10

R NADH16pp

R NADH17pp

R NADH18pp

R NADH5

R NADH9

R NADK
R NADN

R NADPHQR2

R NADPHQR3

R NADPHQR4

R NADPPPS

R NADS1

R NADTRHD

R NAMNPP

R NAt3 1p5ppR NAt3 2ppR NAt3pp

R NAtexre R NAtex

R NDPK1re R NDPK1

R NDPK2re R NDPK2

R NDPK3re R NDPK3

R NDPK4re R NDPK4

R NDPK5re R NDPK5

R NDPK6re R NDPK6

R NDPK7re R NDPK7R NDPK8re R NDPK8

R NH4texre R NH4tex

R NH4tppre R NH4tpp

R NHFRBO

R NI2abcpp
R NI2t3pp

R NI2texre R NI2tex

R NI2tpp

R NI2uabcpp

R NMNAT
R NMNDA

R NMNN
R NMNPtpp

R NMNt7pp

R NMNtexre R NMNtex
R NNAM

R NNATrre R NNATr

R NNDPR

R NO2t2rppre R NO2t2rpp

R NO2texre R NO2tex
R NO3R1bpp

R NO3R1pp

R NO3R2bpp

R NO3R2pp

R NO3t7pp

R NO3texre R NO3tex

R NODOx

R NODOy

R NOVBCNtexre R NOVBCNtex

R NOVBCNtpp

R NOtexre R NOtex

R NOtppre R NOtpp

R NTD1
R NTD10

R NTD10pp

R NTD11

R NTD11pp

R NTD12

R NTD12pp
R NTD1pp

R NTD2

R NTD2pp

R NTD3

R NTD3pp

R NTD4

R NTD4pp

R NTD5

R NTD5pp

R NTD6

R NTD6pp

R NTD7

R NTD7pp

R NTD8

R NTD8pp

R NTD9

R NTD9pp

R NTP1

R NTP10

R NTP3

R NTP3pp

R NTP5

R NTPP1R NTPP10
R NTPP11

R NTPP2

R NTPP3

R NTPP4

R NTPP5

R NTPP6

R NTPP7
R NTPP8

R NTPP9

R NTPTP1R NTPTP2

R NTRIR2x

R NTRIR3pp
R NTRIR4pp

R O16A4COLIPAabctex

R O16A4Lpp
R O16AP1ppR O16AP2ppR O16AP3pp

R O16AUNDtpp

R O16GALFT

R O16GLCT1 R O16GLCT2

R O2texre R O2tex

R O2tppre R O2tpp

R OAADC

R OBTFL R OCBTre R OCBT

R OCDCAtexi

R OCDCEAtexi

R OCTAtexre R OCTAtex

R OCTDPS

R OCTNLL

R OGMEACPDR OGMEACPR

R OGMEACPS

R OHPBATre R OHPBAT

R OHPHMR OMBZLM

R OMCDC

R OMMBLHX

R OMMBLHX3

R OMPDC

R OMPHHX

R OMPHHX3

R OP4ENH

R OPHBDC

R OPHHX

R OPHHX3

R OPMEACPDR OPMEACPR

R ORNDC

R ORNabcpp

R ORNtexre R ORNtex

R OROTt2 2pp

R OROTtexre R OROTtex

R ORPTre R ORPT

R OXAMTC

R OXCOAHDH

R OXDHCOAT

R P5CD

R P5CR

R PA120abcppR PA140abcppR PA141abcpp
R PA160abcppR PA161abcpp

R PA180abcpp

R PA181abcpp

R PACALDt2rppre R PACALDt2rpp

R PACALDtexre R PACALDtex

R PACCOAE

R PANTS R PAPA120

R PAPA120pp

R PAPA140

R PAPA140pp

R PAPA141

R PAPA141pp

R PAPA160

R PAPA160pp

R PAPA161

R PAPA161pp

R PAPA180

R PAPA180pp

R PAPA181

R PAPA181pp

R PAPPT3

R PAPSR
R PAPSR2

R PDE1R PDE4

R PDH

R PDX5PO2

R PDX5POi

R PDX5PS
R PDXPP

R PE120abcpp
R PE140abcppR PE141abcpp

R PE160abcpp

R PE161abcpp
R PE180abcpp

R PE181abcpp

R PEAMNOpp

R PEAMNtexre R PEAMNtex

R PERDre R PERD

R PETNT161pp

R PETNT181pp

R PFK

R PFK 2
R PFK 3

R PFL

R PG120abcppR PG140abcppR PG141abcppR PG160abcpp
R PG161abcppR PG180abcpp
R PG181abcpp

R PGAMTre R PGAMT

R PGCD

R PGIre R PGI

R PGKre R PGK

R PGL

R PGMre R PGM

R PGMTre R PGMT

R PGP120abcppR PGP140abcppR PGP141abcppR PGP160abcppR PGP161abcppR PGP180abcpp
R PGP181abcpp

R PGPP120

R PGPP120pp

R PGPP140

R PGPP140pp

R PGPP141

R PGPP141pp

R PGPP160

R PGPP160pp

R PGPP161

R PGPP161pp

R PGPP180

R PGPP180pp

R PGPP181

R PGPP181pp

R PGSA120
R PGSA140R PGSA141R PGSA160
R PGSA161R PGSA180

R PGSA181

R PHEMEabcpp

R PHEMEtiex
R PHETA1re R PHETA1

R PHEt2rppre R PHEt2rpp

R PHEtexre R PHEtex

R PHYTSpp

R PIt2rppre R PIt2rpp

R PItexre R PItex

R PIuabcpp

R PLIPA1A120pp
R PLIPA1A140pp

R PLIPA1A141pp

R PLIPA1A160pp

R PLIPA1A161pp

R PLIPA1A180pp

R PLIPA1A181pp

R PLIPA1E120pp
R PLIPA1E140ppR PLIPA1E141pp

R PLIPA1E160ppR PLIPA1E161ppR PLIPA1E180pp
R PLIPA1E181ppR PLIPA1G120ppR PLIPA1G140ppR PLIPA1G141pp
R PLIPA1G160ppR PLIPA1G161ppR PLIPA1G180ppR PLIPA1G181pp

R PLIPA2A120ppR PLIPA2A140pp
R PLIPA2A141pp

R PLIPA2A160pp
R PLIPA2A161ppR PLIPA2A180pp

R PLIPA2A181pp
R PLIPA2E120ppR PLIPA2E140ppR PLIPA2E141pp

R PLIPA2E160pp
R PLIPA2E161pp
R PLIPA2E180pp

R PLIPA2E181pp
R PLIPA2G120pp
R PLIPA2G140ppR PLIPA2G141ppR PLIPA2G160ppR PLIPA2G161ppR PLIPA2G180pp
R PLIPA2G181pp

R PMANMre R PMANM

R PMDPHTR PMEACPE

R PMPK

R PNTK

R PNTOt4pp

R PNTOtexre R PNTOtex

R POAACR

R POR5re R POR5

R POX

R PPAR PPA2

R PPAKrre R PPAKr

R PPALtexre R PPALtex

R PPALtppre R PPALtpp

R PPAt4pp

R PPAtexre R PPAtex

R PPBNGS R PPC

R PPCDC

R PPCKR PPCSCT

R PPGPPDP
R PPK2rre R PPK2r

R PPKr
re R PPKr

R PPMre R PPM

R PPM2re R PPM2

R PPNCL2

R PPND
R PPNDH

R PPPGO

R PPPGO3

R PPPNDO

R PPPNt2rppre R PPPNt2rpp

R PPPNtexre R PPPNtex

R PPS

R PPTHpp

R PPTtexre R PPTtex

R PRAGSrre R PRAGSr

R PRAIS

R PRAIi

R PRAMPC

R PRASCSi

R PRATPP

R PRFGS

R PRMICIre R PRMICI

R PROD2

R PROGLYabcppR PROGLYtexre R PROGLYtex

R PROabcpp

R PROt2rppre R PROt2rpp

R PROt4pp

R PROtexre R PROtex

R PRPPSre R PRPPS

R PSCLYSt2pp

R PSCLYStexre R PSCLYStex

R PSCVTre R PSCVT
R PSD120

R PSD140
R PSD141

R PSD160

R PSD161
R PSD180

R PSD181

R PSERT

R PSERtexre R PSERtex

R PSP L

R PSP Lpp

R PSSA120

R PSSA140
R PSSA141
R PSSA160

R PSSA161
R PSSA180

R PSSA181

R PTA2R PTArre R PTAr

R PTHRpp

R PTPATi

R PTRCORNt7ppre R PTRCORNt7pp

R PTRCTA

R PTRCabcpp
R PTRCt2pp

R PTRCtexre R PTRCtex

R PUNP1re R PUNP1
R PUNP2re R PUNP2

R PUNP3re R PUNP3R PUNP4re R PUNP4

R PUNP5re R PUNP5

R PUNP6re R PUNP6

R PUNP7re R PUNP7
R PYAM5PO

R PYDAMK

R PYDAMtexre R PYDAMtex

R PYDAMtpp

R PYDXK

R PYDXNK

R PYDXNtexre R PYDXNtex

R PYDXNtpp

R PYDXPP

R PYDXtexre R PYDXtex

R PYDXtpp

R PYK

R PYNP2rre R PYNP2r

R PYROX
R PYRt2rppre R PYRt2rpp

R PYRtexre R PYRtex

R QUIN2texre R QUIN2tex

R QUIN2tppre R QUIN2tpp

R QUINDHre R QUINDH

R QULNS

R R15BPK

R R1PK

R R5PP

R R5PPpp

R R5Ptexre R R5Ptex

R RBFK

R RBFSa

R RBFSb

R RBK

R RBP4Ere R RBP4E
R REPHACCOAIre R REPHACCOAI

R RFAMPtexre R RFAMPtex

R RFAMPtpp

R RHAT1

R RHCCE

R RIBabcpp

R RIBtexre R RIBtex

R RMIre R RMI

R RMK

R RMNtexre R RMNtex

R RMNtpp

R RMPAre R RMPA

R RNDR1R RNDR1b
R RNDR2
R RNDR2b
R RNDR3
R RNDR3b

R RNDR4
R RNDR4b

R RNTR1c2R RNTR2c2R RNTR3c2
R RNTR4c2

R RPEre R RPE

R RPIre R RPI R RZ5PP

R S2FE2SR
R S2FE2SSR S2FE2SS2R S2FE2ST

R S4FE4SRR S4FE4ST

R S7PI

R SADH

R SADT2

R SBTPDre R SBTPD
R SBTptspp

R SBTtexre R SBTtex

R SDPDSR SDPTAre R SDPTA
R SELGTHR

R SELGTHR2
R SELGTHR3

R SELNPS

R SELR

R SELtexre R SELtex

R SELtpp

R SEPHCHCS

R SERASrre R SERASr

R SERATre R SERAT

R SERD D

R SERD L

R SERt2rppre R SERt2rpp

R SERt4pp

R SERtexre R SERtex

R SFGTHi
R SGDSR SGSAD

R SHCHCS3 R SHCHD2

R SHK3Drre R SHK3Dr

R SHKK

R SKMt2pp

R SKMtexre R SKMtexR SLNTtexre R SLNTtex

R SLNTtpp

R SO2texre R SO2tex

R SO2tppre R SO2tpp

R SO3texre R SO3tex

R SO4t2pp

R SO4texre R SO4tex

R SOTA

R SPMDabcpp
R SPMDt3pp

R SPMDtexre R SPMDtex

R SPMS

R SSALxR SSALy

R SUCBZL

R SUCBZS

R SUCCt2 2ppR SUCCt2 3ppR SUCCt3pp

R SUCCtexre R SUCCtex

R SUCDi

R SUCOASre R SUCOAS

R SUCRtexre R SUCRtex

R SUCptspp

R SULFACabcpp

R SULFACtexre R SULFACtex

R SULRi

R SULabcpp

R T2DECAIre R T2DECAI

R TAGURrre R TAGURr

R TALAre R TALA

R TARTD
R TARTRDtexre R TARTRDtex

R TARTRt7ppre R TARTRt7pp

R TARTRtexre R TARTRtex

R TARTt2 3ppR TAUDO

R TAURabcpp
R TAURtexre R TAURtex

R TCYNTtexre R TCYNTtex

R TDP

R TDPADGAT

R TDPAGTA

R TDPDRE

R TDPDRR

R TDPGDH

R TDSK

R TGBPAre R TGBPA

R THD2pp

R THDPS
R THFAT

R THIORDXi

R THMDt2ppR THMDt2rppre R THMDt2rpp

R THMDtexre R THMDtex

R THMabcpp

R THMtexre R THMtex

R THRA2i

R THRAi

R THRD

R THRD L

R THRPtexre R THRPtex

R THRS

R THRabcpp

R THRt2ppR THRt2rppre R THRt2rpp

R THRt4pp

R THRtexre R THRtex

R THYMt3pp
R THYMtexre R THYMtexR THZPSN3

R TKT1re R TKT1
R TKT2re R TKT2

R TMAOR1ppR TMAOR2pp

R TMAOtexre R TMAOtexR TMAtexre R TMAtex

R TMDK1

R TMDPPre R TMDPP

R TMDS

R TMK

R TMPK

R TMPPP

R TPIre R TPI

R TRDRR TRE6PH

R TRE6PP

R TRE6PS

R TREH

R TREHpp

R TREptspp

R TREtexre R TREtex

R TRPAS2re R TRPAS2

R TRPS1

R TRPS2

R TRPS3

R TRPt2rppre R TRPt2rpp

R TRPtexre R TRPtex

R TRSARrre R TRSARr

R TSULabcpp R TSULtexre R TSULtex

R TTDCAtexi

R TTDCEAtexi

R TTRCYCtexre R TTRCYCtex

R TTRCYCtpp

R TUNGSabcpp

R TUNGStexre R TUNGStex

R TYMtexre R TYMtex

R TYRL

R TYROXDApp

R TYRPpp

R TYRPtexre R TYRPtex

R TYRTAre R TYRTA

R TYRt2rppre R TYRt2rpp

R TYRtexre R TYRtex

R U23GAAT

R UAAGDS

R UACGALPpp

R UACGAMPpp

R UACGAMtexre R UACGAMtex

R UACMAMO

R UAG2Ere R UAG2E

R UAGAATre R UAGAAT

R UAGCVT

R UAGDP

R UAGPT3

R UAMAGS
R UAMAS

R UAPGR

R UDCPDP

R UDCPDPS

R UDCPDPpp

R UDCPPtppi

R UDPACGALtexre R UDPACGALtex

R UDPG4Ere R UDPG4E

R UDPGALM

R UDPGALPpp

R UDPGALtexre R UDPGALtex

R UDPGD

R UDPGDC

R UDPGLCURtexre R UDPGLCURtex

R UDPGPpp

R UDPGtexre R UDPGtex

R UDPKAATre R UDPKAAT

R UGLCURPpp

R UGLTre R UGLT

R UGLYCH

R UGMDDS

R UHGADA

R ULA4NFT

R ULA4Ntppi

R UM3PL

R UM4PCP

R UM4PL

R UMPKre R UMPK

R UMPtexre R UMPtex

R UPLA4FNF

R UPLA4FNT

R UPP3MT

R UPP3S

R UPPDC1

R UPPRT

R URACPAH

R URAt2ppR URAt2rppre R URAt2rpp
R URAtexre R URAtex

R URDGLYCD

R UREAtexre R UREAtex

R UREAtppre R UREAtpp

R URIC

R URIH

R URIK2

R URIt2ppR URIt2rppre R URIt2rpp

R URItexre R URItex

R USHD
R VALTAre R VALTA

R VALabcppR VALt2rppre R VALt2rpp

R VALtexre R VALtex

R VPAMTrre R VPAMTr

R WCOS

R X5PL3E

R XAND

R XANt2pp

R XANtexre R XANtex

R XANtppre R XANtpp

R XMPtexre R XMPtex

R XPPT

R XTSNH

R XTSNt2rppre R XTSNt2rpp

R XTSNtexre R XTSNtex

R XYLI1re R XYLI1

R XYLI2re R XYLI2

R XYLK
R XYLK2

R XYLUt2pp

R XYLUtexre R XYLUtex

R XYLabcpp
R XYLt2pp

R XYLtexre R XYLtex

R ZN2abcpp

R ZN2t3pp

R ZN2tpp

R ZNabcpp

R Zn2texre R Zn2tex

R SERTRS2

R METTRS
R SARCOX

R O16AT

R GP4GH

R DXYLK

R NNDMBRT

R CINNDO

R ASR

R AP5AH

R AGt3

R MTRPOX

R HETZK

R HMPK1

R CYSSADS
R PGLYCP

R DOGULNR

R NTP12

R VALTRS

R TYRTRS

R TRPTRS

R THRTRS

R DHMPTR

R SHCHF

R SERTRS

R SELCYSS

R PROTRS

R CDGR

R PHETRS

R APCS

R SPMDAT2

R MOGDSR MOCDS

R METDabcpp

R MALTptspp

R LYSTRS
R LEUTRS

R ILETRS

R AB6PGH
R HISTRS

R HEMEOSR GLYTRS

R GLNTRS

R GOFUCR

R FMETTRS

R NTP11R CFAS180GR CFAS160G

R CFAS180E
R CFAS160E

R CLt3 2pp

R BWCOGDS2R BMOGDS2

R ThDPAT

R ASPTRS

R ASNTRS

R ARGTRS

R ALATRS

R ACONMT

R ACANTHAT

R SPMDAT1

R 4HTHRS

R EX ttdcea LPAREN e RPAREN

R EX ttdca LPAREN e RPAREN

R EX ocdcea LPAREN e RPAREN

R EX ocdca LPAREN e RPAREN

R EX minohp LPAREN e RPAREN

R EX maltttr LPAREN e RPAREN

R EX malttr LPAREN e RPAREN

R EX maltpt LPAREN e RPAREN

R EX malthx LPAREN e RPAREN

R EX malt LPAREN e RPAREN

R EX hdcea LPAREN e RPAREN

R EX fe3dhbzs LPAREN e RPAREN

R EX fe3dcit LPAREN e RPAREN

R EX ddca LPAREN e RPAREN

R EX cbi LPAREN e RPAREN

R EX arbt LPAREN e RPAREN

R EX adocbl LPAREN e RPAREN

R EX acmum LPAREN e RPAREN

R EX 14glucan LPAREN e RPAREN

R TMAOR1re R TMAOR1
R TMAOR2re R TMAOR2

R CYANSTre R CYANSTR MCPSTre R MCPST

R QMO2re R QMO2
R QMO3re R QMO3

R ALPATE160ppre R ALPATE160pp

R ALPATG160ppre R ALPATG160pp

R LIPAMPLre R LIPAMPL

R LIPOSre R LIPOS

R GPDDA5re R GPDDA5

R INOSTt4ppre R INOSTt4pp

R MI1PPre R MI1PP

R HG2abcppre R HG2abcppR HG2t3ppre R HG2t3pp

R EX hdca LPAREN e RPARENre R EX hdca LPAREN e RPAREN

R HDCAtexire R HDCAtexi

R LIPAHT2exre R LIPAHT2exR LIPAHTexre R LIPAHTex

R BETALDHxre R BETALDHxR BETALDHyre R BETALDHy
R GLYBabcppre R GLYBabcppR GLYBt2ppre R GLYBt2pp

R DSBGGTre R DSBGGT

R TDSR2re R TDSR2

R DSBCGTre R DSBCGT

R TDSR1re R TDSR1

R DSBAO1re R DSBAO1

R DSBAO2re R DSBAO2

R DMSOR1re R DMSOR1
R DMSOR2re R DMSOR2

R CU1abcppre R CU1abcpp

R CUt3re R CUt3

R BSORxre R BSORxR BSORyre R BSORy

R BTNt2ippre R BTNt2ipp

R BTS5re R BTS5

R LPLIPAL2ATE181re R LPLIPAL2ATE181R LPLIPAL2ATG181re R LPLIPAL2ATG181
R LPLIPAL2ATE180re R LPLIPAL2ATE180R LPLIPAL2ATG180re R LPLIPAL2ATG180

R LPLIPAL2ATE161re R LPLIPAL2ATE161R LPLIPAL2ATG161re R LPLIPAL2ATG161
R LPLIPAL2ATE160re R LPLIPAL2ATE160R LPLIPAL2ATG160re R LPLIPAL2ATG160
R LPLIPAL2ATE141re R LPLIPAL2ATE141R LPLIPAL2ATG141re R LPLIPAL2ATG141R LPLIPAL2ATE140re R LPLIPAL2ATE140R LPLIPAL2ATG140re R LPLIPAL2ATG140R LPLIPAL2ATE120re R LPLIPAL2ATE120R LPLIPAL2ATG120re R LPLIPAL2ATG120

R DKGLCNR1re R DKGLCNR1
R DKGLCNR2xre R DKGLCNR2x
R DKGLCNR2yre R DKGLCNR2y

R EX 23camp LPAREN e RPAREN

R EX 23ccmp LPAREN e RPAREN

R EX 23cgmp LPAREN e RPAREN

R EX 23cump LPAREN e RPAREN

R EX 23dappa LPAREN e RPAREN

R EX 26dap DASH M LPAREN e RPAREN

R EX acmana LPAREN e RPAREN

R EX acnam LPAREN e RPAREN

R EX all DASH D LPAREN e RPAREN

R EX amp LPAREN e RPAREN

R EX ascb DASH L LPAREN e RPAREN

R EX ala DASH B LPAREN e RPAREN

R EX butso3 LPAREN e RPAREN

R EX chtbs LPAREN e RPAREN

R EX cmp LPAREN e RPAREN

R EX cm LPAREN e RPAREN

R EX csn LPAREN e RPAREN

R EX cyan LPAREN e RPAREN

R EX cynt LPAREN e RPAREN

R EX cys DASH D LPAREN e RPAREN

R EX damp LPAREN e RPAREN

R EX dca LPAREN e RPAREN

R EX dcmp LPAREN e RPAREN

R EX dgmp LPAREN e RPAREN

R EX dimp LPAREN e RPAREN

R EX dopa LPAREN e RPAREN

R EX doxrbcn LPAREN e RPAREN
R EX ser DASH D LPAREN e RPAREN

R EX dtmp LPAREN e RPAREN

R EX dump LPAREN e RPAREN

R EX ethso3 LPAREN e RPAREN

R EX f6p LPAREN e RPAREN

R EX frulys LPAREN e RPAREN

R EX fru LPAREN e RPAREN

R EX fum LPAREN e RPAREN

R EX fusa LPAREN e RPAREN

R EX g3pc LPAREN e RPAREN

R EX g3pi LPAREN e RPAREN

R EX g3ps LPAREN e RPAREN

R EX g6p LPAREN e RPAREN

R EX gal DASH bD LPAREN e RPAREN

R EX galctn DASH L LPAREN e RPAREN

R EX galctn DASH D LPAREN e RPAREN

R EX galt LPAREN e RPAREN

R EX gam6p LPAREN e RPAREN

R EX gam LPAREN e RPAREN

R EX gln DASH L LPAREN e RPAREN

R EX glyc2p LPAREN e RPAREN

R EX gmp LPAREN e RPAREN

R EX gtp LPAREN e RPAREN

R EX imp LPAREN e RPAREN

R EX isetac LPAREN e RPAREN

R EX LalaDglu LPAREN e RPAREN

R EX LalaLglu LPAREN e RPAREN

R EX lipoate LPAREN e RPAREN R EX lyx DASH L LPAREN e RPAREN

R EX mal DASH D LPAREN e RPAREN

R EX man6p LPAREN e RPAREN

R EX manglyc LPAREN e RPAREN

R EX man LPAREN e RPAREN

R EX met DASH D LPAREN e RPAREN

R EX metsox DASH S DASH L LPAREN e RPAREN

R EX metsox DASH R DASH L LPAREN e RPAREN

R EX met DASH L LPAREN e RPAREN

R EX mincyc LPAREN e RPAREN

R EX mmet LPAREN e RPAREN

R EX mnl LPAREN e RPAREN

R EX mso3 LPAREN e RPAREN

R EX nac LPAREN e RPAREN

R EX nmn LPAREN e RPAREN

R EX no3 LPAREN e RPAREN

R EX novbcn LPAREN e RPAREN

R EX octa LPAREN e RPAREN

R EX orot LPAREN e RPAREN

R EX peamn LPAREN e RPAREN

R EX pnto DASH R LPAREN e RPARENR EX ppa LPAREN e RPAREN

R EX ppt LPAREN e RPAREN

R EX progly LPAREN e RPAREN

R EX psclys LPAREN e RPAREN

R EX pser DASH L LPAREN e RPAREN

R EX pydam LPAREN e RPAREN

R EX pydxn LPAREN e RPAREN

R EX pydx LPAREN e RPAREN

R EX r5p LPAREN e RPAREN

R EX rfamp LPAREN e RPAREN

R EX rmn LPAREN e RPAREN

R EX sbt DASH D LPAREN e RPAREN

R EX skm LPAREN e RPAREN

R EX sucr LPAREN e RPAREN

R EX sulfac LPAREN e RPAREN

R EX tartr DASH D LPAREN e RPAREN

R EX taur LPAREN e RPAREN

R EX thm LPAREN e RPAREN

R EX thrp LPAREN e RPAREN

R EX tmao LPAREN e RPAREN

R EX tre LPAREN e RPAREN

R EX tsul LPAREN e RPAREN

R EX ttrcyc LPAREN e RPAREN

R EX tym LPAREN e RPAREN

R EX tyrp LPAREN e RPAREN

R EX uacgam LPAREN e RPAREN

R EX udpacgal LPAREN e RPAREN

R EX udpgal LPAREN e RPAREN

R EX udpglcur LPAREN e RPAREN

R EX udpg LPAREN e RPAREN

R EX xmp LPAREN e RPAREN

R EX xylu DASH L LPAREN e RPAREN

R EX xyl DASH D LPAREN e RPAREN

R EX acac LPAREN e RPAREN

R EX galct DASH D LPAREN e RPAREN

R EX glcr LPAREN e RPAREN

R EX 3hcinnm LPAREN e RPAREN

R EX 3hpppn LPAREN e RPAREN

R EX no LPAREN e RPAREN

R EX ppal LPAREN e RPAREN

R EX pppn LPAREN e RPAREN

R EX tartr DASH L LPAREN e RPAREN

R EX arab DASH L LPAREN e RPARENre R EX arab DASH L LPAREN e RPAREN

R RBK L1re R RBK L1

R EX cd2 LPAREN e RPARENre R EX cd2 LPAREN e RPAREN

R CRNDCAL2re R CRNDCAL2

R EX crn DASH D LPAREN e RPARENre R EX crn DASH D LPAREN e RPAREN

R EX lcts LPAREN e RPARENre R EX lcts LPAREN e RPAREN

R LACZre R LACZ

R LACZppre R LACZpp

R CU1Oppre R CU1Opp

R EX cu LPAREN e RPARENre R EX cu LPAREN e RPAREN

R EX arbtn DASH fe3 LPAREN e RPARENre R EX arbtn DASH fe3 LPAREN e RPAREN

R EX arbtn LPAREN e RPARENre R EX arbtn LPAREN e RPAREN

R EX hg2 LPAREN e RPARENre R EX hg2 LPAREN e RPAREN

R CRNCAL2re R CRNCAL2

R CTBTCAL2re R CTBTCAL2

R EX crn LPAREN e RPARENre R EX crn LPAREN e RPAREN

R EX fe3hox DASH un LPAREN e RPARENre R EX fe3hox DASH un LPAREN e RPAREN
R EX fe3hox LPAREN e RPARENre R EX fe3hox LPAREN e RPAREN

R EX feoxam DASH un LPAREN e RPARENre R EX feoxam DASH un LPAREN e RPAREN

R EX feoxam LPAREN e RPARENre R EX feoxam LPAREN e RPAREN

R EX melib LPAREN e RPARENre R EX melib LPAREN e RPAREN

R GALS3re R GALS3

R OXCDCre R OXCDC

R EX fecrm DASH un LPAREN e RPARENre R EX fecrm DASH un LPAREN e RPAREN

R EX fecrm LPAREN e RPARENre R EX fecrm LPAREN e RPAREN

R 3OAS100re R 3OAS100R 3OAS120re R 3OAS120

R 3OAS121re R 3OAS121

R 3OAS140re R 3OAS140

R 3OAS141re R 3OAS141
R 3OAS160re R 3OAS160R 3OAS161re R 3OAS161R 3OAS180re R 3OAS180
R 3OAS181re R 3OAS181
R 3OAS60re R 3OAS60R 3OAS80re R 3OAS80

R ACACCTre R ACACCT

R ACPS1re R ACPS1

R ACSERtppre R ACSERtpp
R BUTCTre R BUTCT

R CYSDSre R CYSDS

R CYSTRSre R CYSTRS

R EX cgly LPAREN e RPARENre R EX cgly LPAREN e RPAREN

R EX cys DASH L LPAREN e RPAREN
re R EX cys DASH L LPAREN e RPAREN

R EX gthox LPAREN e RPAREN
re R EX gthox LPAREN e RPAREN

R EX gthrd LPAREN e RPARENre R EX gthrd LPAREN e RPAREN

R ICYSDSre R ICYSDS

R KAS14re R KAS14R MACPDre R MACPD

R MALCOAMTre R MALCOAMT

R OPMEACPSre R OPMEACPS

R PACCOALre R PACCOAL

R SCYSDSre R SCYSDS

R SHSL1re R SHSL1

R TPRDCOASre R TPRDCOAS

R CRNt7ppre R CRNt7pp

R EX gbbtn LPAREN e RPARENre R EX gbbtn LPAREN e RPAREN

R EX fuc DASH L LPAREN e RPARENre R EX fuc DASH L LPAREN e RPAREN

R FCLKre R FCLK

R EX cpgn DASH un LPAREN e RPARENre R EX cpgn DASH un LPAREN e RPAREN

R EX cpgn LPAREN e RPARENre R EX cpgn LPAREN e RPAREN

R DMSOR1ppre R DMSOR1pp
R DMSOR2ppre R DMSOR2pp

R EX dmso LPAREN e RPARENre R EX dmso LPAREN e RPAREN

R Ec biomass iJO1366 core 53p95M

3

33

22

22

2

22

2

2
2

54222

2

2

2

2

2

2

2
22

2

2

2

2

2

2

2

2

2

6

2
2

2
2
2

2
2
2

2

2

54222

2

2

2

2

2

4

2
2
2

2
2
2

44

44

2

22

2

2
2
2

2
2
2

2
2
2

2
2
2

2
2

2
2

2
2
2

2
2
2

22

2

22

2

4

2
22

4
2

2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2

2

2

222
2

22

2

2

222
2

2

2

3

2

2

2

2
2

22 2

2

42

2222

2
2

2

33
49
2

2 3

2
333

2

2
2

2

3

2

2
2
3

3
2

2 2

2
2
22

6

2

2

2

2
2

2
2 2
2

2
3

2 2
22222
22

2
2
2

23
3

22
2

22

2
22
22
2

2

3

2

2

2

2
2

2
2

2
2

3

2
224

3

2

9

33
542

2
2

2
2
2

2
2

2
2

2
2
2

2
2
222

23

2

2
2

2
2

2

2

2

3

22
246

64
24

2

22

2

2

2
2
2

2
232

2
25

2

2
4
4
4

32

2

22
5

333

22

222
2

2

22

2

222
2
5774
24

2
2

2

2

3

22 23

5
32

33

2
4

2

2

2
3

22
2

22 2

22

2

234

4

224

4

23

22
2

2
232

3
3
3

32

22

22

2

2

23

32

2

2

2
2
2

4

4

2

5 8

2222

2

2

22

2

2

33

2
2

2

3

22
2

3

22
2

3

2

3

2
2

4

2

2

2
2

2
2 2

2

2

2
2
22

2222

2222

2222
22

22

22
22

22

54

22

2

2222

2

2

22

2

2

6

4

5 8

2

33

3

3

2222

2

2

2

(a) Petri net

0 200 400 600 800 1000 1200
connectivity of places

0
100

101

102

103

104

#
 o

f
p

la
ce

s
w

it
h

 s
a
m

e
 c

o
n

n
e
ct

iv
it

y

(b) Connectivity

Figure 6.18: Petri net (a) and connectivity (b) of the E.coli K-12 genome scale
metabolic model.

121

Table 6.12: Comparison of run-times for the direct method (a) and δ-leaping
(b). SPNECOLI was parametrised with N and simulated with several number
of simulation runs. † is placed, if the simulation did not finish in reasonable
time (>40 days).

N
1 run 100 runs 100 000 runs 1 000 000 runs
a b a b a b a b

100 17s 1s 38m56s 3m20s 21d15h 1d21h † 19d7h
1000 2m28s 2s 5h17m 4m53s † 2d16h † 26d16h

10 000 24m28s 2s 1d6h 5m20s † 2d21h † 28d18h
100 000 3h43m 3s 20d22h 5m52s † 3d2h † 30d20h

100 000}.
The simulation results given in Fig. 6.19, as well as the run-times in Table 6.12
are quite interesting. The plots of the randomly chosen places are comparable
and the approximation error is moderate. We were not able to finish a higher
number of exact stochastic simulations within 40 days. The simulation run-
times for δ-leaping are acceptable for such a big and dense model. The scaling
parameter N has small influence on the simulation run-time of δ-leaping. The
simulation run-times for δ-leaping are moderate for such a big and dense model.

6.6 Flexible Manufacturing System

The Flexible Manufacturing System with three machines has been published
in [CT93]. The original model contains immediate transitions; thus it is a

(a) simulation results (b) approximation error

Figure 6.19: E.coli K-12 with N = 100 and 100 000 simulation runs

122

Table 6.13: The size of the state space for different initial markings of
GSPN F MS computed with MARCIE’s symbolic state space generation.

N |states| N |states| N |states| N |states|
2 3, 444 8 2.480× 108 14 9.928× 1010 20 6.029× 1012

4 438, 600 10 2.501× 109 16 4.520× 1011 30 7.737× 1014

6 15, 126, 440 12 1.790× 1010 18 1.760× 1012 50 4.240× 1017

Table 6.14: Transient analysis up to time point τ = 1 for different number
of items N of GSPN F MS. The probability Pr is computed by the numerical
engine and the confidence interval CI by the simulative engine after 6 634 234
simulation runs.

N Pr CI
1 2.521× 10−1 [2.516× 10−1, 2.525× 10−1]
2 1.796× 10−1 [1.792× 10−1, 1.800× 10−1]
4 7.063× 10−2 [7.032× 10−2, 7.083× 10−2]
6 3.048× 10−2 [3.026× 10−2, 3.061× 10−2]
8 – [1.352× 10−2, 1.375× 10−2]
10 – [6.223× 10−3, 6.382× 10−3]

GSPN . A pure SPN model can been derived from the GSPN model by
applying the elimination rules for immediate transitions given in [Ajm+95].
In contrast to [SRH11], we consider the GSPN model to demonstrate the
application of simulative model checking on GSPN models. Furthermore, the
FMS model contains arcs with marking-dependent weights. MARCIE does not
support such arcs as they potentially destroy the locality principle. Instead,
our model simulates the marking dependencies by additional transitions, each
representing a specific firing situation in the original model. We achieve this by
using coloured stochastic Petri nets and let the unfolding create the additional
transitions. Besides that, the coloured model is equivalent to the uncoloured
one, that is why we still speak about a GSPN model. Figure 6.20 shows the
GSPN C model without coloured annotations, the full specification in CANDL
syntax is given in Appendix A.5. The FMS is scalable concerning the number
of items which can be processed by the machines. The places P1, P2 and P3
carry initially N tokens. The model can be easily scaled be increasing the value
of N . The number of reachable states for different initial markings are shown
in Table 6.13. All experiments in this section were carried out on machine 1.

123

We start our experiments with transient analysis of GSPN F MS and we want
to know the probability that there are no tokens on the places P1, P2, P3 and
P12 at time point τ = 1. This property is expressed in the following formula:

P=? [Fτ,τ [P1 = 0 ∧ P2 = 0 ∧ P3 = 0 ∧ P12 = 0]] .

The results of the transient analysis up to time point τ = 1 for different number
of items N is given in Table 6.14. The probability is about 25% for N = 1,
i.e., the probability is nearly 75% that at least one machine has at least one
item that needs to be processed at time point 1. As expected, the probability
decreases with increasing N.
Figure 6.21 shows the total run-times of the transient analysis up to time
point τ = 1 for different number of items N . The run-times are given for 1 to
8 worker threads after 6 634 234 simulation runs. They increase as N increases

P1

N

P1

N

P1wM1

P1M1

M1

P1s

P12s

P12M3

M3

P12wM3 P12

P12

P1wP2

P2wP1

P2 N

P2

N

P2wM2

P2M2

M2 P2s

P3

N

P3
N

P3M2 P3s

P1d

P2d

tP3

tP3

tP3M2

tP1

tP1

tP2

tP2

tP12

tP12

tP1M1

tP12M3

tP2M2

tP1s

tP2s

tP3s

tP12s

tM1

tP1e

tP1j

tx

tM3

tM2

tP2j

tP2e

#P1s #P1s

#P2s#P2s

#P3s

#P3s

#P12s

#P12s

#P12s

Figure 6.20: Coloured Stochastic Petri net of the flexible manufacturing sys-
tem.

124

Table 6.15: Steady state analysis for different number of items N of
GSPN F MS. The probability Pr is computed by the numerical engine and
the confidence interval CI by the simulative engine after 128 simulation runs.

N Pr CI
1 0.96319 [0.95980, 0.96757]
2 0.97434 [0.97337, 0.97487]
4 0.97496 [0.97406, 0.97448]
6 0.97609 [0.97500, 0.97514]
8 – [0.97596, 0.97616]
10 – [0.97708, 0.97726]

and for each N the run-time is cut nearly into halves as the number of worker
threads doubles.
Now, we want to explore the steady state probability that there are no tokens
on the places P1, P2, P3 and P12. This property is expressed in the following
formula:

S=? [P1 = 0 ∧ P2 = 0 ∧ P3 = 0 ∧ P12 = 0] .

The results in Table 6.15 show a different picture than in the transient analysis.
The probability is above 96% and increases slightly with increasing number of
items. Thus the probability is below 4% that at least one machine has at least

Figure 6.21: Transient analysis up to time point τ = 1 for different number
of items N of GSPN F MS. The total run-time is given for several number of
workers after 6 634 234 simulation runs.

125

Figure 6.22: Steady state analysis for different number of items N of
GSPN F MS. The total run-time is given for different numbers of workers after
128 simulation runs.

one item that needs to be processed, i.e., the degree of utilisation is above
96% in the long run. Table 6.15 reveals a caveat concerning GSPN models.
The expected probabilities for N = 3 and N = 4 are slightly higher than
the confidence intervals computed by the simulative engine. Despite the small
differences, this is in need for further investigation.
The run-times, shown in Figure 6.22, exhibit the same characteristics as in the
transient analysis, i.e., the simulative model checking scales quite well with
the number of worker threads.

6.7 Cyclic Server Polling System

Polling systems have a wide range of applications for which they provide good
performance estimates, e.g., computer science, manufacturing, telecommuni-
cations. We discuss a cyclic single-server polling system, the simplest and most
common polling system. It comprises one waiting line per station to be served
and the waiting line is filled with customers from the outside world. One server
cycles through the stations and provides service to the customers if needed.
Afterwards the customers disappear from the system.
Such polling systems were presented as GSPN in [IT90] and [ADN89]. Later

126

on it was shown how to reduce them to SPN by applying several reduction
rules [Ajm+95].
We provide a coloured stochastic Petri net of a cyclic single-server polling
system SPN C

CSP S, shown in Figure 6.23. The server is modelled by 2 places
s and a, place s denotes the station that the server is currently investigating.
The number of tokens on s refers to the index of the station sin and is initialised
with one. The place a carries no token as long as the server is looking for a
station to serve, if the server found a station then a token is placed on a and it
is removed after service. A station si is modelled by a single place, representing
its queue that holds the customer (token) to be served. The model is scalable
by the number N of stations si. All experiments in this section were carried
out on machine 1.
The number of reachable states for different amount of stations N are shown
in Table 6.16.
We start our analysis of the model by means of transient analysis. Let us check
the probability that station 1 is awaiting service at time point τ = 10 with the
following formula

P=? [trueUτ,τ [si1 = 1 ∧ ¬[s = 1 ∧ a = 1]]] .

Table 6.17 shows the expected probability Pr computed by the numerical en-

int Station = 1-N;
int Server = 1;
Station x;
Server y;

s
Server

s
Server

s
Server

a
Server

a
Server

a
Server

si
Station

walk choose

new

serve

mu

1

gamma

200

lambda

mu/N = 0.1

N

101‘y

1‘y

1‘x

1‘x

[x=N]N‘y

1‘y

[x=N]N‘y

1‘y

1‘y

1‘x

1‘x

1‘y[x<N]x‘y
x‘y

[x<N]x‘y

1‘x

Figure 6.23: Coloured Stochastic Petri Net of the Cyclic Server Polling System.

127

Table 6.16: The size of the state space for different number of stations N of
SPN C

CSP S computed with MARCIE’s symbolic state space generation.

N |states| N |states| N |states| N |states|
5 240 20 31, 457, 280 50 8.444× 1016 80 1.451× 1026

10 15, 360 30 4.832× 1010 60 1.038× 1020 90 1.671× 1029

15 737, 280 40 6.597× 1013 70 1.240× 1023 100 1.901× 1032

Table 6.17: Transient analysis up to time point τ = 10 for different number of
stations N of SPN C

CSP S. The probability Pr is computed by the numerical
engine and the confidence interval CI by the simulative engine after 6 634 234
simulation runs.

N Pr CI
5 0.14198 [0.14177, 0.14246]
10 0.12294 [0.12252, 0.12318]
15 0.10152 [0.10118, 0.10179]
20 0.08560 [0.08516, 0.08572]
25 – [0.07360, 0.07413]

gine and the confidence interval CI computed by the simulate engine after
6 634 234 simulation runs. The CI covers the expected value for all instances.
The numerical engine is not able to compute the probability for N = 25 or
greater, because of the state space explosion. Instead the simulative engine
can evaluate the formula for even greater values than 25 just at the cost of
larger run-time.
Figure 6.24 shows the run-time of the reachability analysis for different number
of stations N and for several number of workers after 6 634 234 simulation runs.
The run-time increases as the number of stations increases, which is to be
expected, because of the increasing model size. With an increasing number of
workers the run-time decreases in a close to linear way.
Next we compute the probability that in the long run station 1 is awaiting
service with the following formula

S=? [si1 = 1 ∧ ¬[s = 1 ∧ a = 1]] .

The expected probability Pr in the long run computed by the numerical engine

128

Table 6.18: Steady state analysis for different number of stations N of
SPN C

CSP S. The probability Pr is computed by the numerical engine and
the confidence interval CI by the simulative engine after 128 simulation runs.

N Pr CI
5 0.14492 [0.13930, 0.15171]
10 0.14021 [0.13828, 0.14123]
15 0.13073 [0.12952, 0.13109]
20 0.12266 [0.12167, 0.12274]
25 – [0.11630, 0.11712]

is covered well by the confidence interval computed by the simulate engine after
128 simulation runs, see Table 6.18.

The run-time of the steady state analysis for different number of stations N is
increasing per N and decreases for several number of workers, see Figure 6.25.

Now we want to know the expected time station 1 is waiting to be served up
to time point τ = 10. Therefore, we use the following state reward function

rewards [waiting] { si_1=1 & ! [s_1=1 & a_1=1] : 1; }

Figure 6.24: Transient analysis up to time point τ = 10 for different number
of stations N of SPN C

CSP S. The total run-time is given for several number
of workers after 6 634 234 simulation runs.

129

Table 6.19: Reward analysis for different number of stations N of SPN C
CSP S.

The expected reward value R is computed by the numerical engine and the
confidence interval CI by the simulative engine after 6 634 234 simulation runs.

N R CI
5 1.25457 [1.25410, 1.25659]
10 0.65473 [0.65398, 0.65493]
15 0.44157 [0.44110, 0.44199]
20 0.33245 [0.33194, 0.33288]
25 – [0.26601, 0.26690]

to compute the accumulated reward with the following formula

R=?
[
C≤1

]
.

As in the previous computations, the confidence interval of the simulative
algorithm covers the expected reward value.
Figure 6.26 shows the run-times of the reward analysis for different number of
stations N and for several number of workers after 6 634 234 simulation runs.
The developing of the run-times of the reward analysis look the same as in the
transient analysis, but they are about 20% higher.

Figure 6.25: Steady state analysis for different number of stations N of
SPN C

CSP S. The total run-time is given for different numbers of workers after
128 simulation runs.

130

Table 6.20: Performability analysis for different number of stations N of
SPN C

CSP S. The probability Pr is computed by the numerical engine and
the confidence interval CI by the simulative engine after 6 634 234 simulation
runs.

N Pr CI
5 8.447× 10−2 [8.419× 10−2, 8.475× 10−2]
10 9.849× 10−2 [9.819× 10−2, 9.879× 10−2]
15 8.844× 10−2 [8.815× 10−2, 8.872× 10−2]
20 7.748× 10−2 [7.721× 10−2, 7.775× 10−2]
25 – [6.812× 10−2, 6.863× 10−2]

And last but not least, we conduct the performability analysis that station 1
is awaiting service at time point τ = 10 and with an accumulated reward of at
most 1. This is done by evaluating the following CSRL formula

P=?
[
trueUτ,τ

0,y [si1 = 1 ∧ ¬[s = 1 ∧ a = 1]]
]
.

Performability analysis is literally a combination of transient analysis and re-
ward analysis. Thus it is no surprise that the numerical engine’s expected
probability is covered by the confidence interval, see Table 6.20.

Figure 6.26: Reward analysis for different number of stations N of SPN C
CSP S.

The total run-time is given for different numbers of workers after 6 634 234
simulation runs.

131

Figure 6.27: Performability analysis for different number of stations N of
SPN C

CSP S. The total run-time is given for different numbers of workers after
6 634 234 simulation runs.

The run-times of the performability analysis is shown in Figure 6.27. They are
similar to the reward analysis for all number of stations N and for all number
of workers. That means the simulative CSRL model checking has only little
overhead compared to simulative CSL model checking.

6.8 Closing Remarks

In this chapter we used five biochemical case studies and two technical systems
in order to demonstrate the capabilities of simulative analysis and simulative
model checking. We illustrated that the discrete-time leap method computes
reasonable results and has a very good run-time performance especially for
larger and dense networks. It is less sensitive to higher number of tokens and
thus higher transition rates than stochastic simulation algorithms in terms of
run-time. This recommends δ-leaping for models, which stochastic simulation
is not capable of simulating in reasonable time, e.g., genome scale metabolic
models.
We showed the verification of time-bounded and time-unbounded PLTLc for-
mulas including transient and steady state analysis. This was done for CSL
formulas as well, and in addition we exemplified reward and performability

132

analysis. The simulation, analysis and model checking algorithms are paral-
lelised in at least one out of two possible ways: first in terms of shared memory
and multi-threading, and second for distributed memory and multi-processing.
We demonstrated the scalability of both implementations, and it turned out
that both scale very well with the number of workers most of the time.
But there is one caveat that needs further investigation, the simulative steady
state analysis of GSPN models. Whereas in all other cases the computed con-
fidence intervals covered the expected values, they did not cover the expected
values in two instances of the flexible manufacturing system.
Beyond the given seven case studies, there are a couple of published non-trivial
case studies, some of them deploying coloured XSPN , which where made
possible by the advanced simulation and analysis features efficiently supported
by Marcie, among them [Pâr+15; BR15; Blä+14; LH14; Liu+14; LHY14;
LH13a; LH13b; Blä+13; Gao+13; Gil+13; Gao+11].

Chapter 7

Conclusions and Outlook

7.1 Conclusions

In this thesis we introduced the discrete-time leap method for the simulation
of stochastic Petri nets. It converts the underlying CTMC into a stochastically
equivalent DTMC. Generating paths through the DTMC is as expensive as for
the CTMC and we would not gain any efficiency by doing it in an exact way.
That is why we are leaping over several states. The discrete time model and
the maximum firing rule in combination with binomial sampling and weighted
random shuffling of the transitions make an efficient simulation algorithm, that
leads to comparable results. Furthermore, we presented exact and approximate
stochastic simulation algorithms that are state-of-the-art, and performed an
exemplary comparison of δ-leaping and direct method.
We can conclude that the discrete-time leap method computes reasonable re-
sults and has a very good run-time performance especially for larger and dense
networks. It is less sensitive to higher number of tokens and thus higher tran-
sition rates than other stochastic simulation algorithms in terms of run-time.
This recommends δ-leaping for models, which can not be simulated in reason-
able time, e.g., genome scale metabolic models. Furthermore, it is suitable for
in silico experiments, where the behavioural differences between modified mod-
els are of interest, such as knock-out scenarios of certain species or reactions.
The approximation error is moderate as long as the condition in Equation 3.14
is fulfilled. There is surely space for discussion on how significant the reported
approximation error is and the interpretation may be subjective, but a rela-

133

134

tive error below 0.05 can be seen as sufficiently good. A larger approximation
error may be an indication for one the following situations. First, the model’s
time-scale is smaller than the chosen δ, i.e., reducing the δ would gain better
approximation. Second, some transition’s rate functions are not scaled cor-
rectly, i.e., stochastic reaction rates have to be scaled with respect to their
reaction order.

For particular models it might be necessary to adapt the kinetic rate constants
in order to obtain similar results, see Section 3.7.4. Here, further investiga-
tions are needed whether we can compute the required adaptations from the
net structure. The discrete-time leap method is implemented and publicly
available in our tools Snoopy [Hei+12] and MARCIE [HRS13].

Moreover, we presented simulative analysis of stochastic Petri nets and we
showed that simulative analysis is not restricted to trace generation. We are
able to compute approximations of transient solutions and steady state distri-
butions. In case of transient solutions, we introduced some optimizations to
make the computation more efficient. The computation of derived measures
(observers) paved us a way to a whole new class of models, namely Markov
reward models.

A more advanced way for the verification of system properties is simulative
model checking. We presented an infinite time horizon model checking algo-
rithm plus steady state operator for probabilistic linear-time temporal logic. In
addition, we gave simulative model checking algorithms of continuous stochas-
tic logic formulas including reward extensions and time-unbounded temporal
operators. In Section 5.2, we stated that simulative CSL model checking re-
duces the memory consumption to some constant value compared to simula-
tive PLTLc model checking where it increases with the length of the generated
trace. In Figure 7.1 we compare the peak memory consumption of simulative
CSL and PLTLc model checking up to different time points τ and it confirms
the previous statement. The memory consumption of simulative CSL model
checking remains constant throughout all time points, whereas the memory
consumption of simulative PLTLc model checking increases with τ , because
the length of the generated trace increases. The increase is not linear, because
of some storage optimizations, i.e., not the full trace is stored, but only the
number of tokens of places used in the formula and successive equal numbers

135

Figure 7.1: The peak memory consumption is given for transient analysis up
to different time points τ for N = 10 stations of SPN C

CSP S using simulative
CSL and PLTLc model checking.

are compressed.

To the best of our knowledge, we introduced the first simulative continuous
stochastic reward logic model checking algorithm. We used five biochemical
case studies and two technical systems in order to demonstrate the capabil-
ities of simulative analysis and simulative model checking. We verified the
results of the simulative approach against the numerical solutions of the Ja-
cobi and Gauss-Seidel methods. We proved the efficiency of our algorithm
and the scalability by using several worker threads in the shared memory and
multi-threading implementation, and by using several worker processes in the
distributed memory and multi-processing implementation. It turned out that
both implementations scale very well with the number of workers most of the
time.

As our algorithms are based on stochastic simulation, their run-time does not
directly depend on the size of the state space, as for the numerical methods,
but on the rate functions of the transitions and the size of the Petri net, i.e.,
number of places, transitions and arcs. The greater the sum of the transitions
rates, the smaller the time steps are, and the more simulation steps need to be
done to reach a certain time point. Thus, the main drawback of simulation-
based methods remains. The achieved accuracy depends on the number of

136

simulation runs and the number of required runs grows exponentially with the
expected accuracy. Therefore, methods of choice for bounded and medium-
sized models are numerical, otherwise simulation plays out its strength.

7.2 Outlook

As in any other case, there is space for improvements. On short term, the de-
picted caveats in the discrete-time leap method and in the steady state analysis
of GSPN models are in need of investigations. The weighted random shuffle of
δ-leaping needs further improvements to obtain even better approximations of
the stochastic simulation. Further investigation is in need for the caveat found
in Section 3.7.4. One question is, are there any other situations that behave in
the same way, and if so, how can we find them in larger models. It is necessary
to strengthen the approximation quality of δ-leaping by applying additional
quantitative comparison methods like linear regression or ANOVA [Fis92], and
Tukey’s range test [Tuk49] as well as cross-validation. Another aspect that de-
serves attention relates to the circumstances under which the approximation
accuracy suffers, e.g., at which points in a simulation trace one would ex-
pect significant differences. Out of the experience so far with delta-leaping,
one could expect to get such significant differences in conflict situations (see
Section 3.7.2) and in situations with very high transition rates (very stiff re-
actions). Such situations could be identified with a comparison of the rate
of change in the number of tokens of affected places and the relative error,
over time. A closer look at the steady state analysis of GSPN models is nec-
essary to resolve the caveat found in Section 6.6, whether it is a model, an
implementation or a methodical issue.
On long term, there is a broad range of possibilities to develop and imple-
ment simulative analysis of stochastic Petri nets. General purpose graphics
processing units (GPGPUs) offer a new way of parallel computation and show
great potential to speed-up simulative analysis. In case of stochastic simu-
lation there are already great improvements if it comes to the parallelisation
of several simulation runs [LP07], i.e., speed-up 150 – 170 times compared to
single-threaded CPU, but the parallelisation of an individual simulation run
is still an open issue, the current speed-up is not even 2 times [DC09]. Our

137

δ-leaping method opened up a new class of models for simulative analysis, i.e.,
genome scale metabolic models, but there is still work to do, e.g., automatic δ
adaptation.
The presented computation of transient solutions can be adapted to simulate
rare events without any additional effort. Therefore, we would perform ⌈N ·
|π(τj)|−1⌉ simulation runs for any visited state. The probability of the reached
state at τj+1 would be then increased by the quotient πi(τj)/⌈N · |π(τj)|−1⌉
of the probability of the starting state i and the number of simulation runs,
calculated before. We can adapt Equation 4.21 and the probability to be in
state i at the end of the time interval (τj, τj+1) would be approximately

πi(τj+1) ≈
|π(τj)|∑
k=1

⌈N ·|π(τj)|−1⌉∑
n=1

⎧⎪⎨⎪⎩
πk(τj)/⌈N · |π(τj)|−1⌉ X(τj+1) = i

0 otherwise .

But there is a drawback. The higher the probability of a state, the greater
the discrepancy of the expected value. Thus, it would be of use only if one is
interested in the rare events and not in the states with higher probability.
The support of rewards is not yet included in PLTLc, but adding it would close
the gap to CSRL. Probably the main issue of simulative CS(R)L model check-
ing is nesting of the probability operator. As we have stated in Section 5.2.1,
it is possible, but not in an efficient way. One possible way to lessen the effort
would be to distribute the verification of the inner formulas, but this is only a
drop in the bucket.

138

Appendix A

Appendix

We give the syntax of all case studies used in Chapter 6 except for Section 6.5,
because these are still under investigation. We use the abstract net definition
language (ANDL) [SRH14] for all uncoloured Petri nets, e.g., RKIP inhib-
ited ERK pathway, Mitogen-activated Protein Kinase and Angiogenesis. We
use the coloured abstract net definition language (CANDL) [LHR12] for all
coloured Petri nets, e.g., Repressilator, Flexible Manufacturing System and
Cyclic Server Polling System.

A.1 ANDL Syntax of RKIP inhibited ERK
pathway

1 spn [erk_N]
2 {
3 constants:
4 parameter:
5 double c1 = 0.53;
6 double c2 = 0.0072;
7 double c3 = 0.625;
8 double c4 = 0.00245;
9 double c5 = 0.0315;

10 double c6 = 0.8;
11 double c7 = 0.0075;
12 double c8 = 0.071;
13 double c9 = 0.92;
14 double c10 = 0.00122;
15 double c11 = 0.87;
16 double fs = 2.5;
17 marking:
18 int N = 1;

139

140

19

20 places:
21 Raf1Star = N;
22 RKIP = N;
23 Raf1Star_RKIP = 0;
24 ERKPP = 0;
25 MEKPP_ERK = 0;
26 Raf1Star_RKIP_ERKPP = 0;
27 RKIPP_RP = 0;
28 MEKPP = N;
29 ERK = N;
30 RKIPP = 0;
31 RP = N;
32

33 transitions:
34 r1
35 :
36 : [Raf1Star_RKIP + 1] & [Raf1Star - 1] & [RKIP - 1]
37 : MassAction(c1*fs/N)
38 ;
39 r2
40 :
41 : [Raf1Star + 1] & [RKIP + 1] & [Raf1Star_RKIP - 1]
42 : MassAction(c2)
43 ;
44 r3
45 :
46 : [Raf1Star_RKIP_ERKPP + 1] & [Raf1Star_RKIP - 1] & [ERKPP - 1]
47 : MassAction(c3*fs/N)
48 ;
49 r4
50 :
51 : [Raf1Star_RKIP + 1] & [ERKPP + 1] & [Raf1Star_RKIP_ERKPP - 1]
52 : MassAction(c4)
53 ;
54 r5
55 :
56 : [ERK + 1] & [RKIPP + 1] & [Raf1Star + 1] & [Raf1Star_RKIP_ERKPP - 1]
57 : MassAction(c5)
58 ;
59 r6
60 :
61 : [MEKPP_ERK + 1] & [MEKPP - 1] & [ERK - 1]
62 : MassAction(c6*fs/N)
63 ;
64 r7
65 :
66 : [ERK + 1] & [MEKPP + 1] & [MEKPP_ERK - 1]
67 : MassAction(c7)
68 ;
69 r8
70 :
71 : [ERKPP + 1] & [MEKPP + 1] & [MEKPP_ERK - 1]

141

72 : MassAction(c8)
73 ;
74 r9
75 :
76 : [RKIPP_RP + 1] & [RP - 1] & [RKIPP - 1]
77 : MassAction(c9*fs/N)
78 ;
79 r10
80 :
81 : [RP + 1] & [RKIPP + 1] & [RKIPP_RP - 1]
82 : MassAction(c10)
83 ;
84 r11
85 :
86 : [RKIP + 1] & [RP + 1] & [RKIPP_RP - 1]
87 : MassAction(c11)
88 ;
89 }

A.2 ANDL Syntax of Mitogen-activated Pro-
tein Kinase

1 spn [levchenko_N]
2 {
3 constants:
4 parameter:
5 double k1 = 1.0;
6 double k10 = 3.3;
7 double k4 = 0.5;
8 double k3 = 0.1;
9 double k6 = 0.1;

10 double k7 = 3.3;
11 double k8 = 0.42;
12 double k9 = 0.1;
13 double k2 = 0.4;
14 double k21 = 0.1;
15 double k22 = 20.0;
16 double k23 = 0.6;
17 double k24 = 0.1;
18 double k25 = 5.0;
19 double k26 = 0.4;
20 double k27 = 0.1;
21 double k28 = 5.0;
22 double k29 = 0.4;
23 double k30 = 0.1;
24 double k11 = 0.4;
25 double k12 = 0.1;
26 double k13 = 10.0;
27 double k14 = 0.8;
28 double k15 = 0.1;

142

29 double k16 = 10.0;
30 double k17 = 0.8;
31 double k18 = 0.1;
32 double k19 = 20.0;
33 double k20 = 0.6;
34 double sf = 0.1;
35 double k5 = 0.5;
36 marking:
37 int N = 1;
38

39 places:
40 Raf = N*4;
41 RasGTP = N;
42 Raf_RasGTP = 0;
43 RafP = 0;
44 RafP_Phase1 = 0;
45 MEK_RafP = 0;
46 MEKP_RafP = 0;
47 MEKP_Phase2 = 0;
48 MEKPP_Phase2 = 0;
49 ERK = N*3;
50 ERK_MEKPP = 0;
51 ERKP_MEKPP = 0;
52 ERKP = 0;
53 MEKPP = 0;
54 ERKPP_Phase3 = 0;
55 ERKP_Phase3 = 0;
56 MEKP = 0;
57 ERKPP = 0;
58 Phase2 = N*2;
59 Phase3 = N*3;
60 MEK = N*2;
61 Phase1 = N*3;
62

63 transitions:
64 k3
65 :
66 : [RafP + 1] & [RasGTP + 1] & [Raf_RasGTP - 1]
67 : MassAction(k3)
68 ;
69 k6
70 :
71 : [Raf + 1] & [Phase1 + 1] & [RafP_Phase1 - 1]
72 : MassAction(k6)
73 ;
74 k21
75 :
76 : [ERKP + 1] & [MEKPP + 1] & [ERK_MEKPP - 1]
77 : MassAction(k21)
78 ;
79 k18
80 :
81 : [MEK + 1] & [Phase2 + 1] & [MEKP_Phase2 - 1]

143

82 : MassAction(k18)
83 ;
84 k9
85 :
86 : [MEKP + 1] & [RafP + 1] & [MEK_RafP - 1]
87 : MassAction(k9)
88 ;
89 k12
90 :
91 : [MEKPP + 1] & [RafP + 1] & [MEKP_RafP - 1]
92 : MassAction(k12)
93 ;
94 k15
95 :
96 : [Phase2 + 1] & [MEKP + 1] & [MEKPP_Phase2 - 1]
97 : MassAction(k15)
98 ;
99 k24

100 :
101 : [ERKPP + 1] & [MEKPP + 1] & [ERKP_MEKPP - 1]
102 : MassAction(k24)
103 ;
104 k1
105 :
106 : [Raf_RasGTP + 1] & [Raf - 1] & [RasGTP - 1]
107 : MassAction(k1*sf/N)
108 ;
109 k2
110 :
111 : [RasGTP + 1] & [Raf + 1] & [Raf_RasGTP - 1]
112 : MassAction(k2)
113 ;
114 k27
115 :
116 : [Phase3 + 1] & [ERKP + 1] & [ERKPP_Phase3 - 1]
117 : MassAction(k27)
118 ;
119 k30
120 :
121 : [ERK + 1] & [Phase3 + 1] & [ERKP_Phase3 - 1]
122 : MassAction(k30)
123 ;
124 k16
125 :
126 : [MEKP_Phase2 + 1] & [Phase2 - 1] & [MEKP - 1]
127 : MassAction(k16*sf/N)
128 ;
129 k17
130 :
131 : [Phase2 + 1] & [MEKP + 1] & [MEKP_Phase2 - 1]
132 : MassAction(k17)
133 ;
134 k29

144

135 :
136 : [Phase3 + 1] & [ERKP + 1] & [ERKP_Phase3 - 1]
137 : MassAction(k29)
138 ;
139 k28
140 :
141 : [ERKP_Phase3 + 1] & [Phase3 - 1] & [ERKP - 1]
142 : MassAction(k28*sf/N)
143 ;
144 k14
145 :
146 : [Phase2 + 1] & [MEKPP + 1] & [MEKPP_Phase2 - 1]
147 : MassAction(k14)
148 ;
149 k13
150 :
151 : [MEKPP_Phase2 + 1] & [Phase2 - 1] & [MEKPP - 1]
152 : MassAction(k13*sf/N)
153 ;
154 k5
155 :
156 : [Phase1 + 1] & [RafP + 1] & [RafP_Phase1 - 1]
157 : MassAction(k5)
158 ;
159 k4
160 :
161 : [RafP_Phase1 + 1] & [Phase1 - 1] & [RafP - 1]
162 : MassAction(k4*sf/N)
163 ;
164 k26
165 :
166 : [Phase3 + 1] & [ERKPP + 1] & [ERKPP_Phase3 - 1]
167 : MassAction(k26)
168 ;
169 k25
170 :
171 : [ERKPP_Phase3 + 1] & [Phase3 - 1] & [ERKPP - 1]
172 : MassAction(k25*sf/N)
173 ;
174 k11
175 :
176 : [RafP + 1] & [MEKP + 1] & [MEKP_RafP - 1]
177 : MassAction(k11)
178 ;
179 k8
180 :
181 : [RafP + 1] & [MEK + 1] & [MEK_RafP - 1]
182 : MassAction(k8)
183 ;
184 k23
185 :
186 : [MEKPP + 1] & [ERKP + 1] & [ERKP_MEKPP - 1]
187 : MassAction(k23)

145

188 ;
189 k20
190 :
191 : [MEKPP + 1] & [ERK + 1] & [ERK_MEKPP - 1]
192 : MassAction(k20)
193 ;
194 k7
195 :
196 : [MEK_RafP + 1] & [RafP - 1] & [MEK - 1]
197 : MassAction(k7*sf/N)
198 ;
199 k10
200 :
201 : [MEKP_RafP + 1] & [RafP - 1] & [MEKP - 1]
202 : MassAction(k10*sf/N)
203 ;
204 k19
205 :
206 : [ERK_MEKPP + 1] & [MEKPP - 1] & [ERK - 1]
207 : MassAction(k19*sf/N)
208 ;
209 k22
210 :
211 : [ERKP_MEKPP + 1] & [MEKPP - 1] & [ERKP - 1]
212 : MassAction(k22*sf/N)
213 ;
214 }

A.3 ANDL Syntax of Angiogenesis
1 spn [angiogenesis_N]
2 {
3 constants:
4 parameter:
5 double Receptor = 1;
6 double Survival = 10;
7 double Regeneration = 1;
8 double Proliferation = 1;
9 all:

10 int N = 1;
11

12 places:
13 Akt = N;
14 AktP3 = 0;
15 AktStar = 0;
16 DAG = N;
17 DAGE = 0;
18 Enz = N;
19 Gab1 = N;
20 GP3 = 0;
21 GStarP3 = 0;
22 GStarP3kP3 = 0;

146

23 GStarPgP3 = 0;
24 KdStar = N;
25 KdStarG = 0;
26 KdStarGP3 = 0;
27 KdStarGStar = 0;
28 KdStarGStarP3 = 0;
29 KdStarGStarP3k = 0;
30 KdStarGStarP3kP3 = 0;
31 KdStarGStarP3kStar = 0;
32 KdStarGStarP3kStarP2 = 0;
33 KdStarGStarP3kStarP3 = 0;
34 KdStarGStarP3kStarP3P2 = 0;
35 KdStarGStarPg = 0;
36 KdStarGStarPgP3 = 0;
37 KdStarGStarPgStar = 0;
38 KdStarGStarPgStarP2 = 0;
39 KdStarGStarPgStarP3 = 0;
40 KdStarGStarPgStarP3P2 = 0;
41 KdStarPg = 0;
42 KdStarPgStar = 0;
43 KdStarPgStarP2 = 0;
44 Pip2 = N;
45 Pip3 = 0;
46 P3k = N;
47 Pg = N;
48 Pten = N;
49 PtP2 = 0;
50 PtP3 = 0;
51 PtP3P2 = 0;
52

53 transitions:
54 k0
55 :
56 : [KdStarG + 1] & [Gab1 - 1] & [KdStar - 1]
57 : MassAction(Receptor)
58 ;
59 k1
60 :
61 : [Gab1 + 1] & [KdStar + 1] & [KdStarG - 1]
62 : MassAction(Receptor)
63 ;
64 k10
65 :
66 : [KdStarGStarP3 + 1] & [KdStarGStar - 1] & [Pip3 - 1]
67 : MassAction(Receptor)
68 ;
69 k11
70 :
71 : [KdStarGStar + 1] & [Pip3 + 1] & [KdStarGStarP3 - 1]
72 : MassAction(Receptor)
73 ;
74 k12
75 :

147

76 : [GStarP3kP3 + 1] & [GStarP3 - 1] & [P3k - 1]
77 : MassAction(Survival)
78 ;
79 k13
80 :
81 : [GStarP3 + 1] & [P3k + 1] & [GStarP3kP3 - 1]
82 : MassAction(Survival)
83 ;
84 k14
85 :
86 : [KdStarGStarP3kP3 + 1] & [GStarP3kP3 - 1] & [KdStar - 1]
87 : MassAction(Survival)
88 ;
89 k15
90 :
91 : [GStarP3kP3 + 1] & [KdStar + 1] & [KdStarGStarP3kP3 - 1]
92 : MassAction(Survival)
93 ;
94 k16
95 :
96 : [KdStarGStarP3k + 1] & [KdStarGStar - 1] & [P3k - 1]
97 : MassAction(Survival)
98 ;
99 k17

100 :
101 : [KdStarGStar + 1] & [P3k + 1] & [KdStarGStarP3k - 1]
102 : MassAction(Survival)
103 ;
104 k18
105 :
106 : [KdStarGStarP3kStar + 1] & [KdStarGStarP3k - 1]
107 : MassAction(Survival)
108 ;
109 k19
110 :
111 : [KdStarGStarP3kStarP2 + 1] & [KdStarGStarP3kStar - 1] & [Pip2 - 1]
112 : MassAction(Survival)
113 ;
114 k2
115 :
116 : [KdStarGStar + 1] & [KdStarG - 1]
117 : MassAction(Receptor)
118 ;
119 k20
120 :
121 : [KdStarGStarP3kStar + 1] & [Pip2 + 1] & [KdStarGStarP3kStarP2 - 1]
122 : MassAction(Survival)
123 ;
124 k21
125 :
126 : [KdStarGStarP3k + 1] & [Pip3 + 1] & [KdStarGStarP3kStarP2 - 1]
127 : MassAction(Survival)
128 ;

148

129 k22
130 :
131 : [KdStarGStarP3kP3 + 1] & [KdStarGStarP3 - 1] & [P3k - 1]
132 : MassAction(Survival)
133 ;
134 k23
135 :
136 : [KdStarGStarP3 + 1] & [P3k + 1] & [KdStarGStarP3kP3 - 1]
137 : MassAction(Survival)
138 ;
139 k24
140 :
141 : [KdStarGStarP3kStarP3 + 1] & [KdStarGStarP3kP3 - 1]
142 : MassAction(Survival)
143 ;
144 k25
145 :
146 : [KdStarGStarP3kStarP3P2 + 1] & [KdStarGStarP3kStarP3 - 1] & [Pip2 - 1]
147 : MassAction(Survival)
148 ;
149 k26
150 :
151 : [KdStarGStarP3kStarP3 + 1] & [Pip2 + 1] & [KdStarGStarP3kStarP3P2 - 1]
152 : MassAction(Survival)
153 ;
154 k27
155 :
156 : [KdStarGStarP3kP3 + 1] & [Pip3 + 1] & [KdStarGStarP3kStarP3P2 - 1]
157 : MassAction(Survival)
158 ;
159 k28
160 :
161 : [AktP3 + 1] & [Pip3 - 1] & [Akt - 1]
162 : MassAction(Survival)
163 ;
164 k29
165 :
166 : [Pip3 + 1] & [Akt + 1] & [AktP3 - 1]
167 : MassAction(Survival)
168 ;
169 k3
170 :
171 : [GP3 + 1] & [Gab1 - 1] & [Pip3 - 1]
172 : MassAction(Receptor)
173 ;
174 k30
175 :
176 : [AktStar + 1] & [Pip3 + 1] & [AktP3 - 1]
177 : MassAction(Survival)
178 ;
179 k31
180 :
181 : [KdStarPg + 1] & [KdStar - 1] & [Pg - 1]

149

182 : MassAction(Proliferation)
183 ;
184 k32
185 :
186 : [KdStar + 1] & [Pg + 1] & [KdStarPg - 1]
187 : MassAction(Proliferation)
188 ;
189 k33
190 :
191 : [KdStarPgStar + 1] & [KdStarPg - 1]
192 : MassAction(Proliferation)
193 ;
194 k34
195 :
196 : [KdStarPgStarP2 + 1] & [KdStarPgStar - 1] & [Pip2 - 1]
197 : MassAction(Proliferation)
198 ;
199 k35
200 :
201 : [KdStarPgStar + 1] & [Pip2 + 1] & [KdStarPgStarP2 - 1]
202 : MassAction(Proliferation)
203 ;
204 k36
205 :
206 : [KdStarPg + 1] & [DAG + 1] & [KdStarPgStarP2 - 1]
207 : MassAction(Proliferation)
208 ;
209 k37
210 :
211 : [KdStarGStarPg + 1] & [KdStarGStar - 1] & [Pg - 1]
212 : MassAction(Proliferation)
213 ;
214 k38
215 :
216 : [KdStarGStar + 1] & [Pg + 1] & [KdStarGStarPg - 1]
217 : MassAction(Proliferation)
218 ;
219 k39
220 :
221 : [KdStarGStarPgStar + 1] & [KdStarGStarPg - 1]
222 : MassAction(Proliferation)
223 ;
224 k4
225 :
226 : [Gab1 + 1] & [Pip3 + 1] & [GP3 - 1]
227 : MassAction(Receptor)
228 ;
229 k40
230 :
231 : [KdStarGStarPgStarP2 + 1] & [KdStarGStarPgStar - 1] & [Pip2 - 1]
232 : MassAction(Proliferation)
233 ;
234 k41

150

235 :
236 : [KdStarGStarPgStar + 1] & [Pip2 + 1] & [KdStarGStarPgStarP2 - 1]
237 : MassAction(Proliferation)
238 ;
239 k42
240 :
241 : [KdStarGStarPg + 1] & [DAG + 1] & [KdStarGStarPgStarP2 - 1]
242 : MassAction(Proliferation)
243 ;
244 k43
245 :
246 : [KdStarGStarPgP3 + 1] & [KdStarGStarP3 - 1] & [Pg - 1]
247 : MassAction(Proliferation)
248 ;
249 k44
250 :
251 : [KdStarGStarP3 + 1] & [Pg + 1] & [KdStarGStarPgP3 - 1]
252 : MassAction(Proliferation)
253 ;
254 k45
255 :
256 : [KdStarGStarPgStarP3 + 1] & [KdStarGStarPgP3 - 1]
257 : MassAction(Proliferation)
258 ;
259 k46
260 :
261 : [KdStarGStarPgStarP3P2 + 1] & [KdStarGStarPgStarP3 - 1] & [Pip2 - 1]
262 : MassAction(Proliferation)
263 ;
264 k47
265 :
266 : [KdStarGStarPgStarP3 + 1] & [Pip2 + 1] & [KdStarGStarPgStarP3P2 - 1]
267 : MassAction(Proliferation)
268 ;
269 k48
270 :
271 : [KdStarGStarPgP3 + 1] & [DAG + 1] & [KdStarGStarPgStarP3P2 - 1]
272 : MassAction(Proliferation)
273 ;
274 k49
275 :
276 : [GStarPgP3 + 1] & [GStarP3 - 1] & [Pg - 1]
277 : MassAction(Proliferation)
278 ;
279 k5
280 :
281 : [KdStarGP3 + 1] & [GP3 - 1] & [KdStar - 1]
282 : MassAction(Receptor)
283 ;
284 k50
285 :
286 : [GStarP3 + 1] & [Pg + 1] & [GStarPgP3 - 1]
287 : MassAction(Proliferation)

151

288 ;
289 k51
290 :
291 : [KdStarGStarPgP3 + 1] & [GStarPgP3 - 1] & [KdStar - 1]
292 : MassAction(Proliferation)
293 ;
294 k52
295 :
296 : [GStarPgP3 + 1] & [KdStar + 1] & [KdStarGStarPgP3 - 1]
297 : MassAction(Proliferation)
298 ;
299 k53
300 :
301 : [PtP3 + 1] & [Pip3 - 1] & [Pten - 1]
302 : MassAction(Regeneration)
303 ;
304 k54
305 :
306 : [Pip3 + 1] & [Pten + 1] & [PtP3 - 1]
307 : MassAction(Regeneration)
308 ;
309 k55
310 :
311 : [Pip2 + 1] & [Pten + 1] & [PtP3 - 1]
312 : MassAction(Regeneration)
313 ;
314 k56
315 :
316 : [PtP2 + 1] & [Pip2 - 1] & [Pten - 1]
317 : MassAction(Regeneration)
318 ;
319 k57
320 :
321 : [Pip2 + 1] & [Pten + 1] & [PtP2 - 1]
322 : MassAction(Regeneration)
323 ;
324 k58
325 :
326 : [PtP3P2 + 1] & [PtP2 - 1] & [Pip3 - 1]
327 : MassAction(Regeneration)
328 ;
329 k59
330 :
331 : [PtP2 + 1] & [Pip3 + 1] & [PtP3P2 - 1]
332 : MassAction(Regeneration)
333 ;
334 k6
335 :
336 : [GP3 + 1] & [KdStar + 1] & [KdStarGP3 - 1]
337 : MassAction(Receptor)
338 ;
339 k60
340 :

152

341 : [PtP2 + 1] & [Pip2 + 1] & [PtP3P2 - 1]
342 : MassAction(Regeneration)
343 ;
344 k61
345 :
346 : [DAGE + 1] & [DAG - 1] & [Enz - 1]
347 : MassAction(Regeneration)
348 ;
349 k62
350 :
351 : [DAG + 1] & [Enz + 1] & [DAGE - 1]
352 : MassAction(Regeneration)
353 ;
354 k63
355 :
356 : [Pip2 + 1] & [Enz + 1] & [DAGE - 1]
357 : MassAction(Regeneration)
358 ;
359 k7
360 :
361 : [KdStarGStarP3 + 1] & [KdStarGP3 - 1]
362 : MassAction(Receptor)
363 ;
364 k8
365 :
366 : [GStarP3 + 1] & [KdStar + 1] & [KdStarGStarP3 - 1]
367 : MassAction(Receptor)
368 ;
369 k9
370 :
371 : [KdStarGStarP3 + 1] & [GStarP3 - 1] & [KdStar - 1]
372 : MassAction(Receptor)
373 ;
374 }

A.4 CANDL Syntax of Repressilator
1 colspn [repressilator]
2 {
3 constants:
4 param:
5 double g = 0.05;
6 double d = 0.003;
7 double dr = 0.003;
8 double a0 = 0.5;
9 double a1 = 0.01;

10

11 colorsets:
12 genes = {1,2,3};
13

14 variables:
15 genes : x;

153

16

17 places:
18 discrete:
19 genes e = 1‘all;
20 genes r = 0‘all;
21 genes p = 0‘all;
22

23 transitions:
24 t4
25 :
26 : [e + {x}] & [p + {-x}] & [r - {x}]
27 : a1*r
28 ;
29 t3
30 :
31 : [r + {x}] & [e - {x}] & [p - {-x}]
32 : a0*e*p
33 ;
34 t1
35 :
36 : [p + {x}] & [e + {x}] & [e - {x}]
37 : g*e
38 ;
39 t2
40 :
41 : [p - {x}]
42 : d*p
43 ;
44 t5
45 :
46 : [e + {x}] & [r - {x}]
47 : dr*r
48 ;
49

50 }

A.5 CANDL Syntax of Flexible Manufactur-
ing System

1 colgspn [fms_gspn]
2 {
3 constants:
4 all:
5 int N = 10;
6 int np = 3*N/2;
7

8 colorsets:
9 Dot = {dot};

10 CS = {1..N};
11 Dummy = {1};

154

12

13 variables:
14 CS : x;
15

16 places:
17 discrete:
18 Dummy P1 = N‘all;
19 Dummy P1wM1 = 0‘all;
20 Dummy P1M1 = 0‘all;
21 Dummy M1 = 3‘all;
22 Dummy P1s = 0‘all;
23 Dummy P12s = 0‘all;
24 Dummy P12M3 = 0‘all;
25 Dummy M3 = 2‘all;
26 Dummy P12wM3 = 0‘all;
27 Dummy P12 = 0‘all;
28 Dummy P1wP2 = 0‘all;
29 Dummy P2wP1 = 0‘all;
30 Dummy P2 = N‘all;
31 Dummy P2wM2 = 0‘all;
32 Dummy P2M2 = 0‘all;
33 Dummy M2 = 1‘all;
34 Dummy P2s = 0‘all;
35 Dummy P3 = N‘all;
36 Dummy P3M2 = 0‘all;
37 Dummy P3s = 0‘all;
38 Dummy P1d = 0‘all;
39 Dummy P2d = 0‘all;
40

41 transitions:
42 tP3
43 : [P1 {1‘1}] & [P2 {1‘1}] & [P12 {1‘1}]
44 : [P3M2 + {1‘1}] & [P3 - {1‘1}]
45 : P3*max(1,np/(P1+P2+P3+P12))
46 ;
47 tP3M2
48 :
49 : [M2 + {1‘1}] & [P3s + {1‘1}] & [M2 - {1‘1}] & [P3M2 - {1‘1}]
50 : 0.5
51 ;
52 tP1
53 : [P2 {1‘1}] & [P12 {1‘1}] & [P3 {1‘1}]
54 : [P1wM1 + {1‘1}] & [P1 - {1‘1}]
55 : P1*max(1,np/(P1+P2+P3+P12))
56 ;
57 tP2
58 : [P1 {1‘1}] & [P12 {1‘1}] & [P3 {1‘1}]
59 : [P2wM2 + {1‘1}] & [P2 - {1‘1}]
60 : P2*max(1,np/(P1+P2+P3+P12))
61 ;
62 tP12
63 : [P1 {1‘1}] & [P2 {1‘1}] & [P3 {1‘1}]
64 : [P12wM3 + {1‘1}] & [P12 - {1‘1}]

155

65 : P12*max(1,np/(P1+P2+P3+P12))
66 ;
67 tP1M1
68 :
69 : [M1 + {1‘1}] & [P1d + {1‘1}] & [P1M1 - {1‘1}]
70 : P1M1/4
71 ;
72 tP12M3
73 :
74 : [P12s + {1‘1}] & [M3 + {1‘1}] & [P12M3 - {1‘1}]
75 : P12M3
76 ;
77 tP2M2
78 :
79 : [M2 + {1‘1}] & [P2d + {1‘1}] & [P2M2 - {1‘1}]
80 : 1/6
81 ;
82 tP1s
83 : [P1s = {x‘1}]
84 : [P1 + {x‘1}] & [P1s - {x‘1}]
85 : 1/60
86 ;
87 tP2s
88 : [P2s = {x‘1}]
89 : [P2 + {x‘1}] & [P2s - {x‘1}]
90 : 1/60
91 ;
92 tP3s
93 : [P3s = {x‘1}]
94 : [P3 + {x‘1}] & [P3s - {x‘1}]
95 : 1/60
96 ;
97 tP12s
98 : [P12s = {x‘1}]
99 : [P1 + {x‘1}] & [P2 + {x‘1}] & [P12s - {x‘1}]

100 : 1/60
101 ;
102 immediate:
103 tM1
104 :
105 : [P1M1 + {1‘1}] & [P1wM1 - {1‘1}] & [M1 - {1‘1}]
106 : 1
107 ;
108 tP1e
109 :
110 : [P1s + {1‘1}] & [P1d - {1‘1}]
111 : 0.8
112 ;
113 tP1j
114 :
115 : [P1wP2 + {1‘1}] & [P1d - {1‘1}]
116 : 0.2
117 ;

156

118 tx
119 :
120 : [P12 + {1‘1}] & [P1wP2 - {1‘1}] & [P2wP1 - {1‘1}]
121 : 1
122 ;
123 tM3
124 :
125 : [P12M3 + {1‘1}] & [P12wM3 - {1‘1}] & [M3 - {1‘1}]
126 : 1
127 ;
128 tM2
129 :
130 : [P2M2 + {1‘1}] & [P2wM2 - {1‘1}] & [M2 - {1‘1}]
131 : 1
132 ;
133 tP2j
134 :
135 : [P2wP1 + {1‘1}] & [P2d - {1‘1}]
136 : 0.4
137 ;
138 tP2e
139 :
140 : [P2s + {1‘1}] & [P2d - {1‘1}]
141 : 0.6
142 ;
143 }

A.6 CANDL Syntax of Cyclic Server Polling
System

1 colspn [polling]
2 {
3 constants:
4 all:
5 int N = 10;
6 int M = 1;
7 param:
8 double mu = 1;
9 double gamma = 200;

10 double lambda = 1/N;
11

12 colorsets:
13 Station = {1..N};
14 Server = {1..M};
15

16 variables:
17 Station : x;
18 Server : y;
19

20 places:

157

21 discrete:
22 Server s = 1‘all;
23 Server a = 0‘all;
24 Station si = 0‘all;
25

26 transitions:
27 walk
28 : [si < {1‘x}] & [a < {1‘y}] & [s = {[x<N]x‘y}]
29 : [s + {1‘y}] & [s - {[x=N]N‘y}]
30 : gamma
31 ;
32 choose
33 : [a < {1‘y}] & [s = {x‘y}] & [si >= {1‘x}]
34 : [a + {1‘y}]
35 : gamma
36 ;
37 new
38 : [si < {1‘x}]
39 : [si + {1‘x}]
40 : lambda
41 ;
42 serve
43 : [s = {[x<N]x‘y}]
44 : [s + {1‘y}] & [si - {1‘x}] & [a - {1‘y}] & [s - {[x=N]N‘y}]
45 : mu
46 ;
47 }

158

Bibliography

[ACK06] A. Auger, P. Chatelain, and P. Koumoutsakos. “R-leaping: Accel-
erating the stochastic simulation algorithm by reaction leaps”. In:
The Journal of chemical physics 125.8 (2006), p. 084103.

[ACR01] G. Agha, F. de Cindio, and G. Rozenberg, eds. Concurrent Object-
Oriented Programming and Petri Nets, Advances in Petri Nets.
Vol. 2001. Lecture Notes in Computer Science. Springer, 2001.

[ADN89] M. Ajmone Marsan, S. Donatelli, and F. Neri. “GSPN models of
multiserver multiqueue systems”. In: Petri Nets and Performance
Models, 1989. PNPM89., Proceedings of the Third International
Workshop on. IEEE. 1989, pp. 19–28.

[ADO00] W. M. P. van der Aalst, J. Desel, and A. Oberweis, eds. Business
Process Management, Models, Techniques, and Empirical Studies.
Vol. 1806. Lecture Notes in Computer Science. Springer, 2000.

[AG07] S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms
and analysis. Vol. 57. Springer Science & Business Media, 2007.

[Ajm+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.
Franceschinis. Modelling with Generalized Stochastic Petri Nets.
2nd Edition. Wiley Series in Parallel Computing, John Wiley and
Sons, 1995.

[Azi+00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. “Model checking
continuous-time Markov chains”. In: ACM Trans. on Computa-
tional Logic 1.1 (2000), pp. 162–170.

[Bai+00a] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. “Model
checking continuous-time Markov chains by transient analysis”.
In: Proc. CAV 2000. LNCS 1855, Springer, 2000, pp. 358–372.

159

160 BIBLIOGRAPHY

[Bai+00b] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. “On the
logical characterisation of performability properties”. In: Inter-
national Colloquium on Automata, Languages, and Programming.
Springer. 2000, pp. 780–792.

[Bai98] C. Baier. “On algorithmic verification methods for probabilistic
systems”. Habilitation thesis. University of Mannheim, 1998.

[Bal+04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. “Model-
based performance prediction in software development: A sur-
vey”. In: IEEE Transactions on Software Engineering 30.5 (2004),
pp. 295–310.

[Bal+09] P. Ballarini, M. Forlin, T. Mazza, and D. Prandi. “Efficient Paral-
lel Statistical Model Checking of Biochemical Networks”. In: Proc.
PDMC. 2009, pp. 47–61.

[Bal+10] P. Baldan, N. Cocco, A. Marin, and M. Simeoni. “Petri nets for
modelling metabolic pathways: a survey”. In: Natural Computing
9.4 (2010), pp. 955–989.

[BCD02] L. D. Brown, T. T. Cai, and A. DasGupta. “Confidence Intervals
for a binomial proportion and asymptotic expansions”. In: Annals
of Statistics 30.1 (2002), pp. 160–201.

[BGH09] S. Basu, A. P. Ghosh, and R. He. “Approximate Model Checking of
PCTL Involving Unbounded Path Properties”. In: ICFEM. 2009,
pp. 326–346.

[Bir31] G. D. Birkhoff. “Proof of the ergodic theorem”. In: Proceedings of
the National Academy of Sciences 17.12 (1931), pp. 656–660.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press, 2008.

[Blä+13] M. Blätke, A. Dittrich, C. Rohr, M. Heiner, F. Schaper, and W.
Marwan. “JAK/STAT signalling - an executable model assembled
from molecule-centred modules demonstrating a module-oriented
database concept for systems and synthetic biology”. In: Molecular
BioSystem 9.6 (2013), pp. 1290–1307.

BIBLIOGRAPHY 161

[Blä+14] M. Blätke, C. Rohr, M. Heiner, and W. Marwan. “A Petri Net
based Framework for Biomodel Engineering”. In: Large-Scale Net-
works in Engineering and Life Sciences. Ed. by P. Benner, R.
Findeisen, D. Flockerzi, U. Reichl, and K. Sundmacher. Modeling
and Simulation in Science, Engineering and Technology. Springer,
Birkhäuser Mathematics, Dec. 2014, pp. 317–366.

[BP03] N. Bahi-Jaber and D. Pontier. “Modeling transmission of di-
rectly transmitted infectious diseases using colored stochastic petri
nets”. In: Mathematical Biosciences 185 (2003), pp. 1–13.

[BR15] M. Blätke and C. Rohr. “A Colored Petri net approach for spatial
Biomodel Engineering based on the modular model composition
framework Biomodelkit”. In: Proc. Int. Workshop on Biological
Processes & Petri Nets (BioPPN 2015). Vol. 1373. CEUR Work-
shop Proceedings. CEUR-WS.org, June 2015, pp. 37–54.

[Cal+06] M. Calder, A. Duguid, S. Gilmore, and J. Hillston. “Stronger com-
putational modelling of signalling pathways using both continuous
and discrete-state methods”. In: Proc. CMSB 2006. LNBI 4210,
Springer, 2006, pp. 63–78.

[CE81] E. M. Clarke and E. A. Emerson. “Design and Synthesis of Syn-
chronization Skeletons using Branching Time Temporal Logic”.
In: Proceedings of the Workshop on Logics of Programs. LNCS
#131. Springer-Verlag, 1981, pp. 52–71.

[CGP01] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking.
Cambridge: MIT Press, 2001.

[CGP06] Y. Cao, D. T. Gillespie, and L. R. Petzold. “Efficient step size
selection for the tau-leaping simulation method.” In: J Chem Phys
124.4 (Jan. 2006), p. 044109.

[CGP07] Y. Cao, D. T. Gillespie, and L. R. Petzold. “Adaptive explicit-
implicit tau-leaping method with automatic tau selection.” In: J
Chem Phys 126.22 (June 2007), p. 224101.

162 BIBLIOGRAPHY

[CH06] L. Cloth and B. R. H. M. Haverkort. “Five Performability Al-
gorithms. A Comparison”. In: MAM 2006: Markov Anniversary
Meeting, Charleston, SC, USA. Boson Books, 2006, pp. 39–54.

[Cha07] C. Chaouiya. “Petri Net Modelling of Biological Networks”. In:
Briefings in Bioinformatics 8.4 (2007), pp. 210–219.

[Cho+03] K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer, B. McFerran,
and W. Kolch. “Mathematical modeling of the influence of RKIP
on the ERK signaling pathway”. In: Proc. CMSB 2003. LNCS
2602, Springer, 2003, pp. 127–141.

[Cia94] G. Ciardo. “Petri Nets with Marking-Dependent Arc Cardinality:
Properties and Analysis”. In: Application and Theory of Petri Nets
1994. Ed. by R. Valette. Vol. 815. LNCS. Springer-Verlag, 1994,
pp. 179–198.

[Clo+05] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan. “Model
checking Markov reward models with impulse rewards”. In: 2005
International Conference on Dependable Systems and Networks
(DSN’05). IEEE. 2005, pp. 722–731.

[Clo06] L. Cloth. “Model checking algorithms for Markov reward models”.
PhD thesis. University of Twente, 2006.

[CLP04] Y. Cao, H. Li, and L. Petzold. “Efficient formulation of the
stochastic simulation algorithm for chemically reacting systems.”
In: J Chem Phys 121.9 (Sept. 2004), pp. 4059–4067.

[CT93] G. Ciardo and K. S. Trivedi. “A Decomposition Approach for
Stochastic Reward Net Models”. In: Performance Evaluation 18.1
(1993), pp. 37–59.

[CX07] X. Cai and Z. Xu. “K-leap method for accelerating stochastic sim-
ulation of coupled chemical reactions”. In: Journal of Chemical
Physics 126.7 (2007), pp. 74102–74102.

[DC09] C. Dittamo and D. Cangelosi. “Optimized parallel implementation
of gillespie’s first reaction method on graphics processing units”.
In: Computer Modeling and Simulation, 2009. ICCMS’09. Inter-
national Conference on. IEEE. 2009, pp. 156–161.

BIBLIOGRAPHY 163

[DDO08] R. M. Dijkman, M. Dumas, and C. Ouyang. “Semantics and anal-
ysis of business process models in BPMN”. In: Information and
Software technology 50.12 (2008), pp. 1281–1294.

[DG08a] R. Donaldson and D. Gilbert. “A Model Checking Approach to
the Parameter Estimation of Biochemical Pathways”. In: Proc. 6th
International Conference on Computational Methods in Systems
Biology (CMSB 2008). LNCS 5307, Springer, 2008, pp. 269–287.

[DG08b] R. Donaldson and D. Gilbert. A Monte Carlo Model Checker for
Probabilistic LTL with Numerical Constraints. Tech. rep. Univer-
sity of Glasgow, Dep. of CS, 2008.

[Did+09] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf. “Fast
Adaptive Uniformization for the Chemical Master Equation”. In:
HIBI. IEEE Comp. Soc., 2009, pp. 118–127.

[Doi+99] A. Doi, R. Drath, M. Nagaska, H. Matsuno, and S. Miyano. “Pro-
tein Dynamics Observations of Lambda-Phage by Hybrid Petri
net”. In: Genome Informatics (1999), pp. 217–218.

[Dur+04] W. Duridanova, W. Hummel, O. Fengler, and W. Fengler. “Ver-
ifikation von Spezifikationsmodellen mit Intervall-Petri-Netzen”.
In: Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen. 7. GI/ITG/GMM-
Workshop zu Modellierung und Verifikation. Ed. by D. Stoffel and
W. Kunz. Kaiserslautern: Shaker-Verlag, 2004, pp. 184–193.

[Dur64] R. Durstenfeld. “Algorithm 235: Random Permutation”. In: Com-
mun. ACM 7.7 (July 1964), p. 420.

[EL00] M. B. Elowitz and S. Leibler. “A synthetic oscillatory network of
transcriptional regulators”. In: Nature 403.6767 (2000), pp. 335–
338.

[ESK15] P. Erdrich, R. Steuer, and S. Klamt. “An algorithm for the re-
duction of genome-scale metabolic network models to meaningful
core models”. In: BMC systems biology 9.1 (2015).

164 BIBLIOGRAPHY

[F+63] R. A. Fisher, F. Yates, et al. Statistical tables for biological, agri-
cultural and medical research. 6th. Oliver and Boyd, Edinburgh,
1963.

[FA73] M. J. Flynn and T. Agerwala. “Comments on Capabilities, Limi-
tations and Correctness of Petri Nets”. In: Proceedings of the 1st
Annual Symposium on Computer Architecture. ACM Press, 1973,
pp. 81–86.

[Fis92] R. Fisher. “Statistical methods for research workers”. In: Break-
throughs in Statistics. Springer, 1992, pp. 66–70.

[FR07] F. Fages and A. Rizk. “On the Analysis of Numerical Data Time
Series in Temporal Logic”. In: Proc. CMSB 2007. LNCS/LNBI
4695, Springer, 2007, pp. 48–63.

[Gao+11] Q. Gao, F. Liu, D. Gilbert, M. Heiner, and D. Tree. “A Multiscale
Approach to Modelling Planar Cell Polarity in Drosophila Wing
using Hierarchically Coloured Petri Nets”. In: Proc. 9th Interna-
tional Conference on Computational Methods in Systems Biology
(CMSB 2011). Paris: ACM digital library, Sept. 2011, pp. 209–
218.

[Gao+13] Q. Gao, D. Gilbert, M. Heiner, F. Liu, D. Maccagnola, and D.
Tree. “Multiscale Modelling and Analysis of Planar Cell Polarity
in the Drosophila Wing”. In: IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 10.2 (2013). online 01 August
2012, pp. 337–351.

[GB00] M. A. Gibson and J. Bruck. “Efficient exact stochastic simulation
of chemical systems with many species and many channels”. In:
The Journal of Physical Chemistry A 104 (2000), pp. 1876–1889.

[GBC07] L. Gomes, J. Barros, and A. Costa. “Petri Nets Tools and Em-
bedded Systems Design”. In: Proc. Workshop on Petri Nets and
Software Engineering (PNSE07) at Int. Conf. on Application and
Theory of Petri Nets (ICATPN ’07 Siedlce). 2007, pp. 214–219.

[Ger01] R. German. Performance analysis of communication systems with
non-Markovian stochastic Petri nets. Wiley, 2001.

BIBLIOGRAPHY 165

[GH06] D. Gilbert and M. Heiner. “From Petri nets to differential equa-
tions - an integrative approach for biochemical network analysis”.
In: Proc. ICATPN 2006. LNCS 4024, Springer, 2006, pp. 181–200.

[GH16] D. Gilbert and M. Heiner. E.coli K-12 genome scale metabolic
model. personal communication. 2016.

[GHL07] D. Gilbert, M. Heiner, and S. Lehrack. “A Unifying Framework
for Modelling and Analysing Biochemical Pathways Using Petri
Nets”. In: Proc. CMSB 2007. LNCS/LNBI 4695, Springer, 2007,
pp. 200–216.

[Gil+13] D. Gilbert, M. Heiner, F. Liu, and N. Saunders. “Colouring Space
- A Coloured Framework for Spatial Modelling in Systems Biol-
ogy”. In: Proc. PETRI NETS 2013. Ed. by J. Colom and J. Desel.
Vol. 7927. LNCS. Milano: Springer, June 2013, pp. 230–249.

[Gil01] D. T. Gillespie. “Approximate accelerated stochastic simulation of
chemically reacting systems”. In: The Journal of Chemical Physics
115.4 (2001), pp. 1716–1733.

[Gil76] D. Gillespie. “A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Species”. In:
Journal of Computational Physics 22 (1976), pp. 403–434.

[Gil77] D. Gillespie. “Exact stochastic simulation of coupled chemical re-
actions”. In: The Journal of Physical Chemistry 81(25) (1977),
pp. 2340–2361.

[Gil92] D. T. Gillespie. “A rigorous derivation of the chemical master
equation”. In: Physica A: Statistical Mechanics and its Applica-
tions 188.1 (1992), pp. 404–425.

[GP98] P. J. E. Goss and J. Peccoud. “Quantitative modeling of stochastic
systems in molecular biology by using stochastic Petri nets”. In:
Proc. Natl. Acad. Sci. USA 95.June (1998), pp. 2340–2361.

[GS01] G. Grimmett and D. Stirzaker. Probability and random processes.
Oxford university press, 2001.

[Haa03] P. Haas. Stochastic Petri nets: Modelling, Stability, Simulation.
Springer, 2003.

166 BIBLIOGRAPHY

[Haa04] P. J. Haas. “Stochastic petri nets for modelling and simulation”.
In: Simulation Conference, 2004. Proceedings of the 2004 Winter.
Vol. 1. IEEE. 2004.

[Hav+02] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier.
“Model Checking Performability Properties”. In: IEEE CS Press
(2002), pp. 103–112.

[HB03] R. Hamadi and B. Benatallah. “A Petri net-based model for
web service composition”. In: Proceedings of the 14th Australasian
database conference-Volume 17. Australian Computer Society, Inc.
2003, pp. 191–200.

[HDG10] M. Heiner, R. Donaldson, and D. Gilbert. “Petri Nets for Systems
Biology”. In: Symbolic Systems Biology: Theory and Methods. Ed.
by M. Iyengar. Jones & Bartlett Learning, LCC, 2010. Chap. 3,
pp. 61–97.

[HDS99] M. Heiner, P. Deussen, and J. Spranger. “A Case Study in Design
and Verification of Manufacturing System Control Software with
Hierarchical Petri Nets”. In: Journal of Advanced Manufacturing
Technology 15 (1999), pp. 139–152.

[Hei+09] M. Heiner, S. Lehrack, D. Gilbert, and W. Marwan. “Extended
Stochastic Petri Nets for Model-Based Design of Wetlab Experi-
ments”. In: LNBI 5750, Springer. 2009, pp. 138–163.

[Hei+10] M. Heiner, C. Rohr, M. Schwarick, and S. Streif. “A Comparative
Study of Stochastic Analysis Techniques”. In: Proc. 8th Interna-
tional Conference on Computational Methods in Systems Biology
(CMSB 2010). Trento: ACM digital library, Sept. 2010, pp. 96–
106.

[Hei+12] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick.
“Snoopy - a unifying Petri net tool”. In: Proc. PETRI NETS 2012.
Vol. 7347. LNCS. Hamburg: Springer, June 2012, pp. 398–407.

[Hei+16] M. Heiner, C. Rohr, M. Schwarick, and A. A. Tovchigrechko.
“MARCIE’s Secrets of Efficient Model Checking”. In: Transac-
tions on Petri Nets and Other Models of Concurrency XI. Ed.

BIBLIOGRAPHY 167

by M. Koutny, J. Desel, and J. Kleijn. Vol. 9930. LNCS. Berlin,
Heidelberg: Springer, 2016, pp. 286–296.

[HG11] M. Heiner and D. Gilbert. “How Might Petri Nets Enhance Your
Systems Biology Toolkit”. In: Proc. PETRI NETS 2011. LNCS
6709, Springer, 2011, pp. 17–37.

[HGD08] M. Heiner, D. Gilbert, and R. Donaldson. “Petri Nets in Systems
and Synthetic Biology”. In: SFM. LNCS 5016, Springer, 2008,
pp. 215–264.

[HJ94] H. Hansson and B. Jonsson. “A Logic for Reasoning about Time
and Reliability”. In: Formal Aspects of Computing 6.5 (1994),
pp. 512–535.

[HLR14] M. Herajy, F. Liu, and C. Rohr. “Coloured hybrid Petri nets for
systems biology”. In: Proc. of the 5th International Workshop on
Biological Processes & Petri Nets (BioPPN), satellite event of
PETRI NETS 2014. Vol. 1159. CEUR Workshop Proceedings.
CEUR-WS.org, June 2014, pp. 60–76.

[HRS13] M. Heiner, C. Rohr, and M. Schwarick. “MARCIE - Model check-
ing And Reachability analysis done effiCIEntly”. In: Proc. PETRI
NETS 2013. Ed. by J. Colom and J. Desel. Vol. 7927. LNCS. Mi-
lano: Springer, June 2013, pp. 389–399.

[HSH13] M. Herajy, M. Schwarick, and M. Heiner. “Hybrid Petri Nets for
Modelling the Eukaryotic Cell Cycle”. In: ToPNoC VIII, LNCS
8100 (2013), pp. 123–141.

[Huc+03] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, and et al. “The Systems Biology Markup Language (SBML):
A Medium for Representation and Exchange of Biochemical Net-
work Models”. In: J. Bioinformatics 19 (2003), pp. 524–531.

[IT90] O. Ibe and K. Trivedi. “Stochastic Petri Net Models of Polling
Systems”. In: IEEE Journal on Selected Areas in Communications
8.9 (1990), pp. 1649–1657.

168 BIBLIOGRAPHY

[Jen53] A. Jensen. “Markoff chains as an aid in the study of Markoff
processes”. In: Scandinavian Actuarial Journal 1953.sup1 (1953),
pp. 87–91.

[Jen81] K. Jensen. “Coloured Petri nets and the invariant-method”. In:
Theoretical Computer Science 14 (1981), pp. 317–336.

[Joh75] D. B. Johnson. “Finding all the elementary circuits of a directed
graph”. In: SIAM Journal on Computing 4.1 (1975), pp. 77–84.

[KNP07] M. Kwiatkowska, G. Norman, and D. Parker. “Stochastic Model
Checking”. In: SFM. LNCS 4486, Springer, 2007, pp. 220–270.

[Knu97] D. E. Knuth. “Volume 2: Seminumerical Algorithms”. In: The Art
of Computer Programming 192 (1997).

[Koh+11] C. H. Koh, M. Nagasaki, A. Saito, C. Li, L. Wong, and S. Miyano.
“MIRACH: Efficient Model Checker for Quantitative Biological
Pathway Models”. In: Bioinformatics 27 (2011).

[Kur72] T. G. Kurtz. “The relationship between stochastic and determin-
istic models for chemical reactions”. In: The Journal of Chemical
Physics 57.7 (1972), pp. 2976–2978.

[LB07] A. Loinger and O. Biham. “Stochastic simulations of the repres-
silator circuit”. In: Physical Review E 76.5 (2007), p. 051917.

[LBS00] A. Levchenko, J. Bruck, and P. Sternberg. “Scaffold proteins may
biphasically affect the levels of mitogen-activated protein kinase
signaling and reduce its threshold properties”. In: Proc Natl Acad
Sci USA 97.11 (2000), pp. 5818–5823.

[LDT06] P. L’Ecuyer, V. Demers, and B. Tuffin. “Splitting for rare-event
simulation”. In: Proceedings of the 2006 winter simulation confer-
ence. IEEE. 2006, pp. 137–148.

[Leh07] S. Lehrack. “A Tool to Model and Simulate Stochastic Petri Nets
in the Context of Biochemical Networks (in German)”. MA thesis.
Brandenburg University of Technology Cottbus, Computer Sci-
ence Dept., 2007.

BIBLIOGRAPHY 169

[LH13a] F. Liu and M. Heiner. “Modeling membrane systems using colored
stochastic Petri nets”. In: Nat. Computing 12.4 (2013), pp. 617–
629.

[LH13b] F. Liu and M. Heiner. “Multiscale modelling of coupled Ca2+
channels using coloured stochastic Petri nets”. In: IET Systems
Biology 7.4 (Aug. 2013), pp. 106–113.

[LH14] F. Liu and M. Heiner. “Petri Nets for Modeling and Analyzing
Biochemical Reaction Networks”. In: Approaches in Integrative
Bioinformatics. Ed. by M. Chen and R. Hofestädt. Springer, 2014.
Chap. 9, pp. 245–272.

[LHR12] F. Liu, M. Heiner, and C. Rohr. Manual for Colored Petri Nets
in Snoopy. Tech. rep. 02–12. BTU Cottbus, Computer Science
Institute, Mar. 2012.

[LHY14] F. Liu, M. Heiner, and M. Yang. “Modeling and analyzing biolog-
ical systems using colored hierarchical Petri nets, illustrated by
C. elegans vulval development”. In: WSPC Journal of Biological
Systems 22.3 (2014), pp. 463–493.

[Liu+14] F. Liu, M. Blätke, M. Heiner, and M. Yang. “Modelling and sim-
ulating reaction–diffusion systems using coloured Petri nets”. In:
Computers in Biology and Medicine 53 (Oct. 2014). online July
2014, pp. 297–308.

[Liu12] F. Liu. “Colored Petri Nets for Systems Biology”. English. PhD
thesis. BTU Cottbus, Dep. of CS, Jan. 2012.

[LP06] H. Li and L. Petzold. “Logarithmic direct method for discrete
stochastic simulation of chemically reacting systems”. In: Journal
of Chemical Physics (2006).

[LP07] H. Li and L. R. Petzold. “Stochastic simulation of biochemical
systems on the graphics processing unit”. In: Bioinformatics. Cité
pages 32 et 35 (2007).

[Mar15] S. Marsland. Machine learning: an algorithmic perspective. CRC
press, 2015.

170 BIBLIOGRAPHY

[McC+06] J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson,
and N. F. Samatova. “The sorting direct method for stochastic
simulation of biochemical systems with varying reaction execution
behavior”. In: Comput. Biol. Chem. 30.1 (2006), pp. 39–49.

[McQ67] D. A. McQuarrie. “Stochastic Approach to Chemical Kinetics”.
In: Journal of Applied Probability 4.3 (1967), pp. 413–478.

[MN98] M. Matsumoto and T. Nishimura. “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator”. In: ACM Trans. Model. Comput. Simul. 8.1 (1998),
pp. 3–30.

[Mon+13] J. M. Monk, P. Charusanti, R. K. Azizb, J. A. Lermand, N. Pre-
myodhinb, J. D. Orth, A. M. Feist, and B. O. Palsson. “Genome-
scale metabolic reconstructions of multiple Escherichia coli strains
highlight strain-specific adaptations to nutritional environments”.
In: PNAS 110.50 (2013), pp. 20338–20343.

[MRH12] W. Marwan, C. Rohr, and M. Heiner. “Petri nets in Snoopy: A
unifying framework for the graphical display, computational mod-
elling, and simulation of bacterial regulatory networks”. In: Meth-
ods in Molecular Biology – Bacterial Molecular Networks. Ed. by
J. Helden, A. Toussaint, and D. Thieffry. Vol. 804. Methods in
Molecular Biology. Humana Press, 2012. Chap. 21, pp. 409–437.

[MS11] S. Mauch and M. Stalzer. “Efficient Formulations for Exact
Stochastic Simulation of Chemical Systems”. In: IEEE/ACM
Trans. Comput. Biol. Bioinformatics 8 (1 Jan. 2011), pp. 27–35.

[Nap+09] L. Napione et al. “On the Use of Stochastic Petri Nets in the
Analysis of Signal Transduction Pathways for Angiogenesis Pro-
cess”. In: Proc. CMSB 2009. LNCS/LNBI 5688, Springer. 2009,
pp. 281–295.

[OFP10] J. D. Orth, R. M. Fleming, and B. O. Palsson. “Reconstruction
and use of microbial metabolic networks: the core Escherichia coli
metabolic model as an educational guide”. In: EcoSal Plus 4.1
(2010).

BIBLIOGRAPHY 171

[OSW69] I. Oppenheim, K. Shuler, and G. Weiss. “Stochastic and deter-
ministic formulation of chemical rate equations”. In: The Journal
of Chemical Physics 50.1 (1969), pp. 460–466.

[Pâr+15] O. Pârvu, D. Gilbert, M. Heiner, F. Liu, N. Saunders, and S. Shaw.
“Spatial-temporal modelling and analysis of bacterial colonies
with phase variable genes”. In: ACM Transactions on Modeling
and Computer Simulation (TOMACS) 25.2 (May 2015), 25p.

[Paw90] K. Pawlikowski. “Steady-state Simulation of Queueing Processes:
Survey of Problems and Solutions”. In: ACM Comput. Surv. 22.2
(1990), pp. 123–170.

[Pec98] J. Peccoud. “Stochastic Petri Nets for Genetic Networks”. In: MS-
Medicine Sciences 14. 1998, pp. 991–993.

[Pet62] C. A. Petri. “Kommunikation mit Automaten”. PhD thesis. Bonn:
Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2,
1962.

[PLM06] F. Panneton, P. L’ecuyer, and M. Matsumoto. “Improved long-
period generators based on linear recurrences modulo 2”. In: ACM
Transactions on Mathematical Software (TOMS) 32.1 (2006),
pp. 1–16.

[Pnu77] A. Pnueli. “The Temporal Logic of Programs”. In: Proceedings
of the 18th IEEE Symposium on the Foundations of Computer
Science. IEEE Computer Society Press, 1977, pp. 46–57.

[PP02] A. Papoulis and S. U. Pillai. Probability, Random Variables, and
Stochastic Processes, Fourth Edition. McGraw-Hill Higher Educa-
tion, 2002.

[Pre+07] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes 3rd edition: The art of scientific comput-
ing. Cambridge university press, 2007.

[RMH10] C. Rohr, W. Marwan, and M. Heiner. “Snoopy - a unifying Petri
net framework to investigate biomolecular networks”. In: Bioin-
formatics 26.7 (2010), pp. 974–975.

172 BIBLIOGRAPHY

[Roh10] C. Rohr. “Simulative CSL model checking of Stochastic Petri nets
in IDD-MC”. In: Proc. 17th German Workshop on Algorithms and
Tools for Petri Nets (AWPN 2010). Vol. 643. CEUR Workshop
Proceedings. CEUR-WS.org, Oct. 2010, pp. 88–93.

[Roh12] C. Rohr. “Simulative Model Checking of Steady-State and Time-
Unbounded Temporal Operators”. In: Proc. of the 3rd Interna-
tional Workshop on Biological Processes & Petri Nets (BioPPN),
satellite event of PETRI NETS 2012. Vol. 852. CEUR Workshop
Proceedings. CEUR-WS.org, June 2012, pp. 62–75.

[Roh13] C. Rohr. “Simulative Model Checking of Steady State and Time-
Unbounded Temporal Operators”. In: Transactions on Petri Nets
and Other Models of Concurrency VIII. Ed. by M. Koutny, W.
Aalst, and A. Yakovlev. Vol. 8100. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 142–158.

[Roh16] C. Rohr. “Discrete-Time Leap Method For Stochastic Simula-
tion”. In: Proc. Int. Workshop on Biological Processes & Petri
Nets (BioPPN 2016). Vol. 1591. CEUR Workshop Proceedings.
CEUR-WS.org, June 2016, pp. 362–376.

[RP09] D. Rabih and N. Pekergin. “Statistical Model Checking Using Per-
fect Simulation”. In: Proceedings of the 7th International Sym-
posium on Automated Technology for Verification and Analysis.
ATVA ’09. Macao, China: Springer, 2009, pp. 120–134.

[San08] W. Sandmann. “Brief Communication: Discrete-time stochastic
modeling and simulation of biochemical networks”. In: Comput.
Biol. Chem. 32 (4 Aug. 2008), pp. 292–297.

[Sch14] M. Schwarick. “Symbolic on-the-fly analysis of stochastic Petri
nets”. English. PhD thesis. BTU Cottbus, Dep. of CS, June 2014.

[SH09] M. Schwarick and M. Heiner. “CSL model checking of biochemical
networks with Interval Decision Diagrams”. In: Proc. CMSB 2009.
Bologna, Italy: LNCS/LNBI 5688, Springer, 2009, pp. 296–312.

BIBLIOGRAPHY 173

[SM08] W. Sandmann and C. Maier. “On the statistical accuracy of
stochastic simulation algorithms implemented in Dizzy”. In: Proc.
WCSB 2008. 2008, pp. 153–156.

[SRH11] M. Schwarick, C. Rohr, and M. Heiner. “MARCIE - Model check-
ing And Reachability analysis done effiCIEntly”. In: Proc. 8th
International Conference on Quantitative Evaluation of SysTems
(QEST 2011). Aachen, Germany: IEEE CS Press, Sept. 2011,
pp. 91–100.

[SRH14] M. Schwarick, C. Rohr, and M. Heiner. MARCIE Manual: An
analysis tool for extended stochastic Petri nets. Computer Science
Reports 03-14. Brandenburg University of Technology Cottbus,
Nov. 2014.

[Ste94] W. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton Univ. Press, 1994.

[STP08] A. Slepoy, A. P. Thompson, and S. J. Plimpton. “A constant-time
kinetic Monte Carlo algorithm for simulation of large biochemical
reaction networks”. In: The journal of chemical physics 128.20
(2008), p. 205101.

[Taf+08] A. Tafazzoli, J. R. Wilson, E. K. Lada, and N. M. Steiger. “Skart:
A skewness- and autoregression-adjusted batch-means procedure
for simulation analysis”. In: Winter Simulation Conference. 2008,
pp. 387–395.

[Taf+11] A. Tafazzoli, J. R. Wilson, E. K. Lada, and N. M. Steiger. “Perfor-
mance of Skart: A Skewness- and Autoregression-Adjusted Batch
Means Procedure for Simulation Analysis”. In: INFORMS Journal
on Computing 23.2 (2011), pp. 297–314.

[TB04] T. Tian and K. Burrage. “Binomial leap methods for simulating
stochastic chemical kinetics”. In: The Journal of chemical physics
121.21 (2004), pp. 10356–10364.

[TFZ09] W. Tan, Y. Fan, and M. Zhou. “A petri net-based method for
compatibility analysis and composition of web services in business

174 BIBLIOGRAPHY

process execution language”. In: IEEE Transactions on Automa-
tion Science and Engineering 6.1 (2009), pp. 94–106.

[Tov08] A. Tovchigrechko. “Model Checking Using Interval Decision Dia-
grams”. PhD thesis. BTU Cottbus, Dep. of CS, 2008.

[Tuk49] J. W. Tukey. “Comparing individual means in the analysis of vari-
ance”. In: Biometrics (1949), pp. 99–114.

[TW10] A. Tafazzoli and J. R. Wilson. “Skart: A skewness- and auto-
regression-adjusted batch-means procedure for simulation analy-
sis”. In: IIE Transactions 43.2 (2010), pp. 110–128.

[Val78] R. Valk. “Self-Modifying Nets, a Natural Extension of Petri Nets”.
In: ICALP. 1978, pp. 464–476.

[Wal92] A. Wald. “Sequential tests of statistical hypotheses”. In: Break-
throughs in Statistics. Springer, 1992, pp. 256–298.

[Wen91] L. Wen. “An analytic technique to prove Borel’s strong law of large
numbers”. In: The American Mathematical Monthly 98.2 (1991),
pp. 146–148.

[Wil06] D. Wilkinson. Stochastic Modelling for System Biology. CRC
Press, New York, 1st Edition, 2006.

[Wil22] E. B. Wilson. “Probable inference, the law of succession, and sta-
tistical inference”. In: Journal of the American Statistical Associ-
ation 22 (1922), pp. 209–212.

[YCZ11] H. Younes, E. Clarke, and P. Zuliani. “Statistical Verification of
Probabilistic Properties with Unbounded Until”. In: Formal Meth-
ods: Foundations and Applications. Vol. 6527. Lecture Notes in
Computer Science. Springer, 2011, pp. 144–160.

[You+06] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. “Numer-
ical vs. Statistical Probabilistic Model Checking”. In: STTT 8.3
(2006), pp. 216–228.

[YS02] H. Younes and R. Simmons. “Probabilistic Verification of Descrete
Event Systems using Acceptance Sampling”. In: Computer Aided
Verification. Vol. 2404. Lecture Notes in Computer Science. LNCS
2404, Springer, 2002, pp. 223–235.

BIBLIOGRAPHY 175

[YV99] S. Yee and J. Ventura. “A dynamic programming algorithm to de-
termine optimal assembly sequences using Petri nets”. In: Inter-
national Journal of Industrial Engineering - Theory, Applications
and Practice, Vol.6, No.1 (1999), pp. 27–37.

[Zap08] I. S. Zapreev. “Model checking Markov chains : techniques and
tools”. PhD thesis. Enschede: University of Twente, Mar. 2008.

[ZC06] J. Zhang and B. H. Cheng. “Model-based development of dynami-
cally adaptive software”. In: Proceedings of the 28th International
Conference on Software Engineering. ACM. 2006, pp. 371–380.

	Introduction
	Preliminaries
	Petri Net
	Reachability Graph
	Extended Petri Net
	Marking-dependent Extended Petri Net
	Stochastic Petri Net
	Continuous-Time Markov Chain
	Generalised Stochastic Petri Net
	Extended Stochastic Petri Net
	Coloured Petri Net
	Closing Remarks

	Stochastic Simulation
	Stochastic Simulation Algorithm
	Direct Method
	Optimised Direct Method
	First Reaction Method
	Next Reaction Method
	Tau-Leaping Method
	Discrete-Time Leap Method
	Transition firing
	Dependent Subnets
	Algorithm
	Caveat

	Extensions
	Immediate Transitions
	Deterministic and Scheduled Transitions

	Random Number Generation
	Closing Remarks

	Simulative Analysis
	Trace Generation
	Transient Solutions
	Steady State Distribution
	Observers
	Closing Remarks

	Simulative Model Checking
	Simulative PLTLc Model Checking
	Time-bounded Formula
	Time-unbounded Formula
	Steady State Operator

	Simulative CSL Model Checking
	Nested Probabilistic Operator
	Time-bounded Formula
	Time-unbounded Formula
	Steady State Operator

	Simulative Reward Computation
	Simulative CSRL Model Checking
	Closing Remarks

	Case Studies
	RKIP inhibited ERK pathway
	Mitogen-activated Protein Kinase
	Angiogenesis
	Simplified Repressilator
	E.coli K-12 Metabolic model
	Reduced E.coli K-12 Metabolic model
	E.coli K-12 Genome Scale Metabolic model

	Flexible Manufacturing System
	Cyclic Server Polling System
	Closing Remarks

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	ANDL Syntax of RKIP inhibited ERK pathway
	ANDL Syntax of Mitogen-activated Protein Kinase
	ANDL Syntax of Angiogenesis
	CANDL Syntax of Repressilator
	CANDL Syntax of Flexible Manufacturing System
	CANDL Syntax of Cyclic Server Polling System

	Bibliography

