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The black hole area theorem implies that when two black holes merge, the area of the final black
hole should be greater than the sum of the areas of the two original black holes. We examine how this
prediction can be tested with gravitational-wave observations of binary black holes. By separately
fitting the early inspiral and final ringdown phases, we calculate the posterior distributions for the
masses and spins of the two initial and the final black holes. This yields posterior distributions for the
change in the area and thus a statistical test of the validity of the area increase law. We illustrate this
method with a GW150914-like binary black hole waveform calculated using numerical relativity and
detector sensitivities representative of both the first observational run and the design configuration of
Advanced LIGO. We find that the area theorem could be confirmed to∼ 66% confidence with current
sensitivity, improving to ∼ 97% when Advanced LIGO reaches design sensitivity. An important
ingredient in our test is a method of estimating when the post-merger signal is well-fit by a damped
sinusoid ringdown waveform.

I. INTRODUCTION

The black hole area increase law [1, 2] is one of the
most celebrated results in exact non-linear relativity. It
applies to both single black holes and to mergers of mul-
tiple black holes and implies that the total horizon areas
should always increase provided certain assumptions that
are expected to hold for astrophysical black holes. This
law suggests an analogy between the area of the hori-
zon of a black hole and its entropy [3–5], and is thus
one of the central results of black hole thermodynam-
ics. The observations of gravitational waves from binary
black hole coalescence events [6–10] open up the possi-
bility of carrying out direct tests of this fundamental law
using observational data. In this paper we shall present a
method to perform such a test based on the inspiral and
on the ringdown stages of simulated binary black hole
coalescences.

Gravitational-wave observations of binary black hole
coalescences correspond to the inspiral of two black holes
that merge together to form a single black hole which
then settles down to a stationary state by a ringdown
process. The areas of the black hole horizons are not di-
rectly observable using gravitational wave data, so here
we make use of the Kerr metric to relate the black hole
horizon area to its asymptotic mass M and dimension-
less spin χ. Widely separated inspiralling black holes are
expected to be very well described by the Kerr metric
in some neighbourhood of the horizon. Mass and spin
values can be inferred for the inspiralling black holes by
comparison with inspiral gravitational waveforms. The
mass and spin of the final black hole can be inferred by
comparison with ringdown waveforms of a single Kerr
black hole.

a miriam.cabero@aei.mpg.de

If two initially distant Kerr black holes with areas
A1, A2 coalesce to form a final Kerr black hole with area
Af , then it follows from the area increase law that

A1 +A2 ≡ Ai < Af . (1)

Our analysis strategy is similar to the suggestion by
Hughes and Menou [11], namely, use the early inspiral
regime to measure the parameters of the initial black
holes, and independently use the late-time ringdown
regime to measure the parameters of the final black hole.
The end result of the parameter estimation procedure
will be a probability distribution p(∆A) for the change
in the area ∆A := Af − (A1 + A2). This allows us to
calculate a probability∫ ∞

0

p(∆A)d∆A (2)

that a particular event is compatible with the area in-
crease law.

By analysing the observed gravitational wave data for
the detected events [6–10, 12], posterior distributions
for the parameters of the initial and final black holes in
these events have been reported in [8–10, 13]. However,
these cannot be used as an independent test of the area
increase law because these results use fitting formulae
to obtain the final Mf , χf (and thus Af ) as functions
of the initial parameters. These fitting formulae [14–
16] are results of numerical relativity simulations which
assume the validity of vacuum general relativity, and thus
implicitly assume apriori the validity of the area increase
law. A true direct test of the area increase law should
independently obtain Ai and Af from the observed data
and then use them to verify whether or not Eq.(1) holds.

Similarly, tests have been designed to check the con-
sistency between the inspiral and merger-ringdown parts
of gravitational wave signals [17, 18]. When performed
on gravitational wave observations these tests have found
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the signals to be compatible with standard general rela-
tivity and the fitting formulae [6, 8–10]. Our proposed
test here is different in that we avoid the use of fitting
formulae entirely; we separate the signal in the time do-
main rather than the frequency domain, and crucially
we avoid using data from the near merger portion of the
signal. A violation of the area theorem is perhaps most
likely near the merger of the two black holes where the
spacetime is most dynamic. It is this region where nu-
merical relativity simulations are critical to following the
evolution. We wish to avoid this region and infer areas
for the inspiralling black holes only from the early inspi-
ral phase when the two black holes are clearly separated
and infer the area of the final black hole only from its
simple ringdown behaviour as given by the Kerr metric.

Another result that shows up naturally is an indepen-
dent estimate of the energy radiated away during the
merger in the form of gravitational radiation without us-
ing any of the aforementioned numerical relativity fits.
Since we obtain the two initial masses and the final mass,
it is straightforward to compute the difference and obtain
a posterior distribution of the radiated energy. This can
be compared with the numerical relativity prediction and
thus offers yet another test of general relativity.

The various details involved in this calculation will be
described in the following sections. The plan for the rest
of the paper is as follows. Sec. II introduces preliminary
material and notation. Sec. III presents the details of the
test. Sec. IV and Sec. V present results on simulated
signals and finally Sec. VI has concluding remarks on the
future prospects of this test.

II. PRELIMINARIES

A. Testing the assumptions

A test of the black hole area increase theorem is a test
of whether the assumptions that go into the theorem’s
proof are valid. Any violation of area increase would be
proof that at least one of the assumptions does not hold.
In the test proposed here, we measure the change in area
between two asymptotic states, well before the merger
and well after the merger, where the relevant black holes
can be approximated by Kerr black holes. It is therefore
not a test that the total horizon area is increasing at all
times during the coalescence. However, the change in
area between these asymptotic states can be written as a
time integral over the instantaneous rate of area change
and hence our test depends on the assumptions used to
show that the rate of area change should always be pos-
itive. A decrease in the area between asymptotic states
would be a demonstration that at least one of these as-
sumptions was violated (although clearly if the overall
area change is positive this does not necessarily preclude
that the area was decreasing at some point during the
merger, or indeed that some of the assumptions were
mildly violated but the area still increases).

There exist in the literature several different proofs
of the area increase law that can be classified according
to which type of horizon they refer to, the main classes
being event horizons and quasi-local horizons based on
the notion of marginally trapped surfaces/apparent hori-
zons. The proofs of the area increase law make different
assumptions in either of the two cases. In the asymptotic
states considered here, both when the two black holes are
far apart and at late times when the final black hole is
in equilibrium, there is no difference between the areas
of the event horizon or quasi-local horizons. Thus if the
overall area change is measured to be negative then this
would be a violation both of proofs using event horizons
and of those using quasi-local horizons, and therefore at
least one of the common assumptions would most likely
be violated (although it is logically possible that different
assumptions are violated in the two cases).

Proofs of the area increase law for event horizons (see
e.g. [19]) rely on three main ingredients:

i) The null curvature condition, which says that the
Ricci tensor Rµν must satisfy Rµνξ

µξν ≥ 0 for any null
vector field ξµ. While the area theorem does not depend
on the Einstein equations, in Einstein’s general relativity
this assumption is equivalent to the requirement that the
stress-energy tensor Tab satisfies the null energy condition
Tµνξ

µξν ≥ 0.
ii) Asymptotic flatness and additional global condi-

tions which ensure that the spacetime outside the black
hole (including the event horizon) must be predictable
from suitable data on a Cauchy surface. In particular,
these conditions rule out the presence of naked singular-
ities (cosmic censorship).

iii) The proofs use properties of the intrinsic geometry
of event horizons and in particular the geodesic deviation
equation for null geodesics on the event horizon.

It can be shown that given the previous conditions, the
congruence of null geodesics generating the event horizon
cannot have negative expansion anywhere and the area is
always increasing. The most general statement and proof
of the area increase law is by Chrusciel et al [20]. This
includes the cases when the event horizon is not smooth1

and also applies to non-zero values of the cosmological
constant. As expected, cosmic censorship and the null
curvature condition are still required.

Since gravitational wave observations only probe a fi-
nite region of spacetime, it would seem unreasonable that
we could say anything definite about naked singularities
anywhere in the universe based on these observations.
This is also an artefact of the well known global and
teleological features of the event horizon. Thus, should
we have observational evidence that the area increase law

1 Generically event horizons are not smooth; cusps are formed
when null geodesics enter the horizon [21]. Numerical relativi-
tists assume that the horizon is regular except for a finite number
of such cusps (see e.g. [22]).
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is violated, we can expect the energy condition to be the
main culprit.

This can be seen clearly in alternate formulations of
the area increase law. It is possible to formulate the area
increase law for black holes in a quasi-local framework,
without these global assumptions, relying on marginally
trapped surfaces and the associated notions of dynamical
and trapping horizons [23–25]. Using the Einstein equa-
tions on the horizon, it is possible to obtain a “physical
process” version of the area increase law which relates
the increase in area to the fluxes of in-falling matter and
radiation [26]. These fluxes are manifestly positive if the
dominant energy condition holds.

It is in fact known that energy conditions can be vi-
olated in nature by a number of mechanisms [27]. The
question of whether sufficient energy condition violation
occurs during a binary black hole merge to cause the
horizon area to decrease is one of the main motivations
for our test.

In our test of the area increase law, we shall assume
that the black hole no-hair theorem holds, i.e. that
any astrophysical stationary black hole is completely de-
scribed by its mass M and angular momentum J and
given by the Kerr solution. This applies to the two ini-
tial black holes and to the final black hole formed as a
result of the coalescence. Thus, any cross-section of the
black holes at early and late times has an area A given
by

A = 8πM2
(

1 +
√

1− χ2
)
. (3)

Here χ = J/M2 is the dimensionless spin. It is an impor-
tant goal to test whether the no-hair theorems are valid
and in fact, there is a large body of work on possible
tests of the black hole uniqueness theorem from binary
black hole observations[28–42]. It would be preferable to
drop this assumption and design a joint test of both the
area increase law and the uniqueness theorems, but this
is beyond the scope of the present paper. It is important
for us to clearly identify the parts of the waveform when
we cannot assume the no-hair theorem to hold and this
will be addressed below in Secs. III B and III C.

As shown by Hawking [1], the constraint derived from
the area increase law can be used to bound the amount
of energy emitted during the coalescence process. For
a coalescence of non-spinning, equal-mass black holes,
this bound limits the emitted energy to be no more than
about 29% of the initial rest-mass energy of the two black
holes (see also [43]). Numerical simulations of black hole
collisions show that in reality the amount of energy radi-
ated by gravitational waves is considerably less than this
theoretical upper bound [44].

B. Estimating the parameters

To extract the mass and spin parameters from the ob-
servations we must examine the nature of the gravita-
tional waves produced. Consider a plane gravitational

wave corresponding to a gravitational metric perturba-
tion hµν . We can find a frame transverse to the direction
of propagation so that the transverse-traceless part of
hµν can be written in terms of two polarisations:

h+(t) = A+(t) cos Φ(t) , (4)

h×(t) = A×(t) sin Φ(t) . (5)

Here A+,× are slowly varying amplitudes and Φ(t) is a
rapidly varying phase. The amplitudes depend on the
intrinsic parameters of the source, the distance to the bi-
nary, and the angle between the line-of-sight vector from
the binary to Earth and the orbital angular momentum
vector (inclination angle ι).

The response of an interferometric detector to this
wave depends on the relative orientation between the
wave frame and the detector frame and thus is specified
by three angles. These three angles are typically taken
to be the sky-location of the source given by a right-
ascension α and declination δ in a geocentric coordinate
system, and the so-called polarisation angle ψ defining
the relative orientation of the wave frame with the geo-
centric coordinate system (see e.g. [45, 46]). Assuming
the wavelength of the signal to be much larger than the
detector arms, appropriate for ground based detectors
and for the kind of signals we are considering, the strain
h(t) observed by the detector is

h(t) = F+(α, δ, ψ)h+(t−t0, φ0)+F×(α, δ, ψ)h×(t−t0, φ0) .
(6)

Here F+,× are the beam pattern functions of the detec-
tors (assumed to be constant over the duration of the
signal), t0 is a suitably defined arrival time and φ0 is the
phase at t0. It is useful to rewrite h(t) as

h(t) = A(t) cos(φ0 + φ(t− t0)) , (7)

where A(t) is a slowly varying amplitude and φ(t− t0) a
rapidly varying phase.

We estimate the source parameters of a gravitational
wave signal using Bayesian inference, which was the
method used to estimate the parameters of GW150914
and all subsequent events [13]. We wish to know the
properties of the source of a gravitational-wave signal
that exists in some given data s(t). To that end, we
use a model of the signal h that is parametrised by the

source properties {M1, χ1, ...} ≡ ~ϑ. We cannot measure
these properties to infinite precision. Instead we seek the

probability density function p(~ϑ|s, h), which quantifies
our measurement uncertainty. According to Bayes’ The-

orem, p(~ϑ|s, h) (known as the posterior distribution) is

proportional to the likelihood L(s|~ϑ, h) of observing the

data given ~ϑ times a prior probability distribution p(~ϑ).

The prior represents our knowledge of ~ϑ before observing
the data. In a network of Nd gravitational-wave detec-
tors containing uncorrelated stationary Gaussian noise,
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the likelihood function is:

L(s|~ϑ, h) ∝ exp

[
−1

2

Nd∑
a=1

〈
ha(~ϑ)− sa, ha(~ϑ)− sa

〉]
,

(8)
where sa is the data in each detector and ha is the model
waveform (or template) as it would be observed in each
detector. The inner product 〈·, ·〉 is:

〈x, y〉 ≡ 4<
∫ ∞

0

x̃∗a(f)ỹa(f)

S
(a)
n (f)

df . (9)

Here S
(a)
n (f) is the single-sided power spectral density

(PSD) of the noise in the a-th detector.

Stochastic samplers based on Markov-chain Monte
Carlo (MCMC) techniques can be used to evaluate Eq.
(8) over the large, multidimensional space of possible

parameters and produce an estimate of p(~ϑ|s, h). This
estimate can then be numerically marginalised to yield
Bayesian credible intervals on various parameters.

III. METHOD

Normally, when analysing the entire signal (and as-
suming the detector noise truly is stationary and Gaus-
sian), the parameter estimates produced by the method
described in Sec. II B will be unbiased. In other words, if
the source distribution is the same as the prior, then we
can expect that a signal’s true parameters will lie within
the X% confidence interval X% of the time.

However, the method described in Sec. II B will yield
biased estimates if a parameter-dependent cut is applied
to the template waveforms [47], as we wish to do here.
This is due to the fact that Eq. (8) is derived assuming
that the template is a model for the entire signal; i.e.,

L(~ϑ|s, h) is maximised for parameters that best match
the signal averaged over the entire bandwidth of the de-
tector. Here, however, we wish to find the parameters
that best-match the signal only over a limited portion of
the signal, while ignoring the rest. Crucially, the onset
and duration of the part that we wish to exclude — the
merger — is dependent on the signal’s source parameters.
Since this additional, parameter-dependent condition is

not included in p(~ϑ|s, h), a näıve application of Eq. (8)
results in biased measurements, as we will see below.

Further complicating our efforts is our desire to excise
a part of the signal in the time domain rather than the
frequency domain. As discussed below, this effectively
couples the sky location of the signal to the measurement
of the initial and final masses and spins.

In the following we describe a method to overcome
these challenges. To illustrate and test the method, we
simulate a signal using a publicly available waveform pro-
duced by the SXS collaboration [48, 49]. We choose a

non-spinning, equal-mass binary black hole2 with total
mass Mt = 70M�.3 The signal, which is similar to a
signal like GW150914, is injected in zero noise at a lumi-
nosity distance DL = 500 Mpc.

We compare results using two different detector sensi-
tivities: the PSD published in the LIGO Open Science
Centre [51] for GW150914, which is representative of Ad-
vanced LIGO’s first observing run, and the zero-detuned
high-power (ZDHP) PSD [52], which is representative of
LIGO’s expected sensitivity in the coming years. In this
analysis we only consider the two LIGO detectors. How-
ever, the method can be trivially expanded to include
any number of detectors.

We use the PyCBC Inference framework to estimate

p(~ϑ|s, h) [53]. This is a python-based pipeline similar to
the LALInference pipeline [54] used to infer the parame-
ters of published gravitational waves. PyCBC Inference
supports multiple stochastic sampling engines. In this
study we use kombine [55], which is an MCMC sampler
that uses an ensemble of Markov chains (or walkers) to

efficiently estimate p(~ϑ|s, h).

A. The effect of sky location

An integral part of our analysis is separating the inspi-
ral part to estimate the initial parameters of the binary
and the ringdown part to estimate the parameters of the
final black hole. The templates used for the parameter
estimation are terminated (or started) at a specific time.
This method complicates the issue of dealing with the sky
location since the sky location affects the arrival time of
the signal in the detectors.

We have found that if the sky location is allowed to
vary in the MCMC, the terminated templates will favour
sky locations that get them closer to the merger, yield-
ing biased results. One could fix the sky location to a
single point if it were known. However, we do not ex-
pect to measure the sky location of a binary black hole
merger to sufficient precision with the current network of
gravitational-wave detectors for this approach to work.
Indeed, when doing the ringdown analysis, we have found
that choosing different fixed points drawn from within
the 50% confidence interval of the sky location produced
by a full inspiral-merger-ringdown analysis yields statisti-
cally significant different estimates of the final mass and
spin. Thus picking a single point for the sky location
when one is not actually known will result in an underes-
timate of our uncertainty, and a potential bias, of these
parameters.

2 Numerical waveform SXS:BBH:0066, Lev5
3 Since we use waveform templates that do not include sub-

dominant modes, we select only the 22 mode of the numer-
ical waveform. This is a sensible approach because higher
modes are not expected to be detectable with current sensitivi-
ties [29, 32, 33, 50].
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To account for this uncertainty, we fix the sky location
to a distribution rather than a single point when doing
the inspiral and ringdown analyses. We do this by as-
signing each walker in our MCMC to a different right
ascension and declination. These locations are drawn
from a given sky map that quantifies the uncertainty in
the event’s location. The walker’s positions in the sky
remain fixed throughout the entirety of the parameter
estimation routine. This way, we include all the infor-
mation obtained from allowing the sky location to vary
without forcing the entire parameter estimation analysis
to remain on one fixed point.

We use the same sky locations for the inspiral and
ringdown analysis. After evolving the MCMC until it
is burned in, each walker in the inspiral (ringdown) anal-
ysis produces a point estimate of the initial (final) area.
Taking the estimates over all of the walkers produces a
distribution of areas. When taking the difference in ar-
eas, we only compare point estimates between the same
sky locations in both runs. Thus, the inspiral and ring-
down analyses are independent in all parameters except
for the sky location.

To produce a sky map for this study, we first per-
form the parameter estimation analysis on the full signal,
using full inspiral-merger-ringdown IMRPhenomD tem-
plates [56, 57]. Figure 1 shows the marginalised posterior
distribution of the right ascension (α) and declination (δ)
obtained from this analysis. We only use the sky-location
information from this analysis; no information regarding

the GW parameters ~ϑ are kept. Here, we have restricted
our analysis to the two LIGO detectors. However it is
trivial to include a third detector, if available, to improve
our measurement of the sky location [10, 12].

Since the sky location relies primarily on the time of
arrival of the signal at different detectors, it is possible
to estimate the sky location using searches that do not
use any waveform models from general relativity. For
example, a sky map produced using the coherent Wave
Burst pipeline [58] was published with GW150914 [51].
The sky map produced by this pipeline may be used when
applying our test to real events.

B. The inspiral analysis

The initial parameters ought to be measured from the
inspiral part of the waveform, with no assumptions or in-
put from the merger or ringdown. Ideally, one would use
post-Newtonian waveforms [59]. However, full inspiral-
merger-ringdown waveforms such as the IMRPhenomD
family [56, 57] have better agreement with numerical rel-
ativity waveforms at higher inspiral frequencies. We shall
use IMRPhenomD waveforms terminated at the end of
the inspiral to exclude the highly dynamical merger phase
and guarantee that the inspiral analysis is completely in-
dependent from the merger and ringdown. For compact
binaries with arbitrary masses and spins, the hybrid mini-
mum energy circular orbit (hybrid MECO) [60] is a proxy
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FIG. 1. Posterior distribution for the sky location (right
ascension α and declination δ) obtained from the full sim-
ulated signal. The colorbar shows the signal-to-noise ratio
(SNR), which is a function of the likelihood, and the red lines
indicate the values that were injected. The centre and outer
dashed lines in the histograms represent the median value and
the 90% confidence interval, respectively. These correspond
to the values and the errors given on top of the histograms.

for the end of the inspiral. The hybrid MECO depends on
the mass ratio of the binary and on the spins of the black
holes, and is symmetric under exchange of the individual
objects’ parameters.

Näıvely, one might think that to exclude the merger
phase from the analysis, we need only to terminate the
templates at the time at which they pass through hybrid
MECO. However, while this excludes the merger dynam-
ics in the templates, it does not exclude the merger in
the signal. This results in templates with higher spin
and mass matching the signal better than the template
that has the same mass and spin of the signal, leading
to biased results. This is because the hybrid MECO of
these templates occurs at a higher frequency. Effectively,
these templates are able to see more of the signal; the
additional signal-to-noise ratio (SNR) they gain in doing
so is enough to offset any mismatch these templates have
with the signal at lower frequencies.

To recover the correct masses and spins it is necessary
to exclude the merger dynamics in both the templates
and the signal. However, because the intrinsic param-
eters of the signal are unknown, the time at which the
signal passes through hybrid MECO is also unknown. To
estimate this time we choose a grid of times tgrid < tref ,
where tref is a fiducial time chosen arbitrarily in the prox-
imity of the expected coalescence time of the binary. We
perform an independent parameter estimation analysis
for each grid time. In each analysis, we apply a taper
function to the templates in the time domain that goes
to zero at a time ttaper. The taper time is varied across
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parameter space and between detectors. Specifically, for

a given set of parameters ~ϑ and a detector D,

ttaper = min
[
tgrid + δt(α, δ; D), thMECO(~ϑ)

]
, (10)

where thMECO is the time at which the template goes
through hybrid MECO. The δt(α, δ; D) is an offset ap-
plied to account for the arrival time uncertainty in each
detector arising from the uncertainty in sky location.

When doing the analysis we found that whitening the
template before tapering yielded better results than sim-
ply applying the taper to the waveform and then whiten-
ing. That is, we replace the full IMR template h with:

h′(t) = w(t; ttaper)[h ∗ Ã−1](t),

where Ã−1(t) is the inverse Fourier transform of

1/
√
Sn(f); the ∗ indicates convolution. We use half a

Kaiser window with a duration of 10 ms and shape pa-
rameter β = 8 [61] for the taper function w(t; ttaper).
A duration of 10 ms is used because the whitening filter

Ã−1(t) effectively goes to zero on this time scale, ensur-
ing that times t > ttaper are minimally coupled to times
t < ttaper via the convolution. The whitened, tapered
template h′(t) is filtered with the whitened data.

The grid time tgrid prevents the templates from match-
ing the merger dynamics in the signal. For tgrid times
later than thMECO, results are influenced by the dynamic
merger phase and the posterior distributions yield biased
results. As tgrid approaches thMECO of the signal, the
posterior settles around the parameters of the signal. For
tgrid times earlier than the signal’s thMECO, the posterior
remains in the same region of parameter space, though
it begins to widen due to the decreasing SNR. Therefore,
the transition time between the moving and the growing
posterior distributions yields the best point at which to
calculate the initial areas.

It is thus clear that to estimate the transition time, we
need to study how the posterior distributions change as
tgrid is varied. A general notion of the divergence between
two probability distributions p1(x) and p2(x) is provided
by the Kullback-Leibler divergence (see e.g. [62]) which,
for discrete distributions is defined as

DKL(p1||p2) =
∑
x

p1(x) log
p1(x)

p2(x)
. (11)

However DKL(p1||p2) is not symmetric, i.e.
DKL(p1||p2) 6= DKL(p2||p1). In particular, DKL

cannot be viewed as a distance between probability
distributions. DKL is an appropriate divergence to use
when one of the distributions is privileged for some
reason.

In our case, we have no reason to distinguish different
values of tref−tgrid and thus we choose to use instead the
Jensen-Shannon (JS) divergence. Given two probability
distributions p1 and p2, the JS divergence is a symmetric

and smooth version of the Kullback-Leibler (KL) diver-
gence DKL(p1||p2):

DJS(p1||p2) =
1

2
DKL(p1||q) +

1

2
DKL(p2||q) , (12)

where q = 1
2 (p1 + p2). It has been shown that DJS can

be turned into a distance measure between probability
distributions [63].

Figure 2 shows the JS divergence between the poste-
rior distribution of the analysis at tgrid and the analy-
sis at tgrid + ∆t, which we have chosen to be ∆t = 2.5
ms. Since we are only interested in the masses and
spins of the black holes, we compute the JS diver-
gence using the 2D marginalised distribution of chirp

mass M = (M1M2)3/5/M
1/5
t and effective spin χeff =

(M1χ1 + M2χ2)/Mt. While the posterior distribution is
still moving, the JS divergence is changing significantly.
The transition time is given by the point when the JS
divergence settles to a nearly constant value. From Fig-
ure 2, the transition time is clearly seen to be at the time
tgrid = tref − 27.5 ms. At times closer to the merger, the
difference between consecutive JS divergences increases
significantly.

In doing the analysis shown in Fig. 2, we vary the
two component masses M1,2, two component spins χ1,2,
distance DL, inclination ι, polarisation ψ, coalescence
phase φ0, and the template’s coalescence time tc. We
use uniform priors for all of these parameters. The prior
range for the parameters of interest is mi ∈ [10, 80)M�
and χi ∈ [−0.9895, 0.9895). This is the same prior that
was used in the analysis of GW150914 [13].

C. The ringdown analysis

The late ringdown phase is well described through per-
turbation theory. Assuming that the final object is a Kerr
black hole, the ringdown signal consists of a sum of expo-
nentially damped sinusoids [64]. It is natural to write the
gravitational wave in terms of spin-weighted spheroidal
harmonics:

h+ + ih× =
∑
`,m,n

−2S`m(ι, ϕ)A`mne
iΩ`mnt+φ`mn . (13)

The sum in the above equation is over the quantum num-
bers `,m and the overtone n. Thus, m = −`,−` +
1, . . . , 0, . . . , ` for each ` = 2, 3, . . . and n = 0, 1, 2, . . ..
The angular functions −2S`m(ι, ϕ) are the spin-weighted
spheroidal harmonics which appear as the angular eigen-
functions of the equations describing the gravitational
perturbations of a Kerr black hole found by Teukolsky
(see e.g. [65]). These functions depend on the angular
momentum and mass of the Kerr black hole and reduce
to the usual spin-weighted spherical harmonics for the
non-spinning case. The inclination angle ι is the angle
between the line-of-sight vector from the black hole to
Earth and the intrinsic angular momentum of the black
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FIG. 2. (Top) Posterior distribution of the chirp mass and
the effective spin obtained from three different runs. The red
cross indicates the injected values. (Bottom) Jensen-Shannon
divergence between consecutive grid runs and resulting pos-
terior distribution for the chosen transition time (in this case,
tgrid− tref = −27.5 ms). The x-axis indicates the correspond-
ing time tgrid and the JS divergence is calculated between the
posterior distributions at tgrid and tgrid + ∆t, where ∆t = 2.5
(ms). The coloured circles indicate the times corresponding
to the posterior distributions in the top figure.

hole, and ϕ is the azimuth angle of the black hole with
respect to the observer. The amplitudes A`mn and the
phases φ`mn are arbitrary as far as our ringdown analysis
is concerned. In principle they depend on the configura-
tion of the gravitational perturbation hµν at the begin-
ning of the ringdown phase (when linear perturbation
theory begins to be applicable) which in turn depends
on the initial configuration of the binary and on the par-
ticular gravitational theory. However, we shall make no
assumption relating the amplitudes or phases to the ini-
tial parameters of the binary. The complex frequencies
Ω`mn are the quasi-normal frequencies determined from

the Teukolsky equation. They are the frequencies for
which we obtain solutions which are purely outgoing at
infinity and purely ingoing at the horizon. See [66] for a
method of calculating these frequencies for a Kerr black
hole and see e.g. [31, 67] for reviews on black hole ring-
down.

The two polarisations of the gravitational waveform
are given by

h+(t) =
∑
`,m,n

−2Y
+
`m(ι)A`mne

−t/τ`mn cos(ω`mnt+ β`mn) ,

h×(t) =
∑
`,m,n

−2Y
×
`m(ι)A`mne

−t/τ`mn sin(ω`mnt+ β`mn) .

(14)

It is assumed here that the ringdown begins at t = 0
and instead of the complex frequency Ω`mn we have
used the damping time τ`mn and real frequency ω`mn.
Here, we have approximated spin-weighted spheroidal
harmonics −2S`mn by spin-weighted spherical harmonics

−2Y`mn [32, 68]. The angle β`mn = φ`mn +mϕ combines
the initial ringdown phase with the azimuthal part of the
spherical harmonics, and we have defined [32]

−2Y
+
`m(ι) = −2Y`m(ι, 0) + (−1)`−2Y`m(ι, 0) ,

−2Y
×
`m(ι) = −2Y`m(ι, 0)− (−1)`−2Y`m(ι, 0) . (15)

Throughout this paper we use only the fundamental
mode (` = m = 2, n = 0). However, the methods pre-
sented here can be extended to multi-mode ringdowns
once the detectors’ sensitivities allow the detectability of
higher order modes.

The ringdown template assumes h(t) = 0 before the
start of the damped sinusoid, but it is unknown in the
data when the signal waveform starts behaving like a
pure damped sinusoid. Same as for the inspiral phase,
we choose a grid of times tgrid > tref and perform the
ringdown analysis for each time separately, where tref

is the same fiducial time used for the inspiral analysis.
Times closer to the coalescence of the signal will again
show biased results. If tref is after the coalescence time of
the signal, we might have to use a few times tgrid < tref

to find the transition time. Figure 3 shows the resulting
JS divergence between the posterior distribution of the
analysis at tgrid and the analysis at tgrid + ∆t, which for
the ringdown analysis we have chosen to be ∆t = 0.5 ms.
The JS divergence is computed using the 2D marginalised
distribution of final mass Mf and final spin χf . The
transition time in the ringdown analysis happens at the
time tgrid = tref − 0.5 ms.

We find that it is necessary to zero out the data prior
to the grid time in order to accurately recover the final
mass and spin using the damped sinusoid. This is differ-
ent than the inspiral analysis, in which only the templates
were modified. As discussed above, the time domain rep-

resentation of the whitening filter Ã−1(t) has non-zero
support on time scales O(ms). This is significant in the
ringdown analysis, in which differences of a few millisec-
onds can have large effects on the estimated parameters.
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Namely, the convolution of the whitening filter with the
signal in Eq. (9) couples information from the merger
with the post-merger ringdown. Since the damped sinu-
soid is simply zero prior to its onset, the whitening filter
has a different effect on it. Thus, even if the template
and the post-merger signal are exactly the same prior to
whitening, they are different afterward. This difference
particularly biases the recovered damping time, which in
turn affects the estimated final mass and spin. Zeroing
out the data prior to whitening decouples the whitened
signal’s merger and ringdown, and causes the whitening
filter to affect the signal and template in the same way,
correcting the bias.

The variable parameters for the ringdown analysis are
the central frequency ω220, damping time τ220, amplitude
A220, phase β220, inclination ι and polarisation ψ (we
drop the 220 label from now onwards). We use uniform
priors for all of these parameters. Using the fitting for-
mulae in [69], one can obtain the final black-hole’s mass
Mf and spin χf from the ringdown frequency and damp-
ing time. The prior range for the parameters of interest is
f ∈ [20, 1024) Hz and τ ∈ [0.1, 100) ms, with the further
constraint that f and τ have to yield physical masses and
spins (i.e. Mf > 0 and −1 < χf < 1).

IV. COMBINED RESULTS

A visual representation of the maximum posterior
(MAP) waveforms resulting from the separated parame-
ter estimation analyses is shown in Figure 4, with the
template waveforms plotted on top of the detectors’
whitened strains. The probability distribution for the
change in the area is obtained by combining the poste-
rior distributions of the initial and final parameters from
the selected inspiral and ringdown results.

The simulated binary black hole signal used in this
paper is bound to agree with the area theorem by design.
Using the fitting formulae in [56] we can estimate the
expected area increase for the signal. Two non-spinning
black holes with masses M1 = M2 = 35M� yield a final
black hole with mass Mf ' 66.6M� and spin χf ' 0.69,
which translates into an expected area increase Af/Ai '
1.56.

The top panel in Figure 5 shows the measured area
increase, with the expected value indicated by a red
line. With current gravitational-wave detectors sensitiv-
ities (O1), the measured median value with 90% credible
interval is Af/Ai = 1.16+0.74

−0.62. Furthermore, we obtain a
∼ 66% confidence that the simulated signal is consistent
with the area theorem.

To ascertain how well we may test the area theorem
in the future, we repeat the entire analysis on the same
signal using the zero-detuned high-power (ZDHP) PSD
from Ref. [52], which is the design sensitivity for Ad-
vanced LIGO. Figure 6 shows the JS divergence plots for
the inspiral (top) and ringdown analysis (bottom). We
find that the JS divergence of the inspiral posteriors set-

FIG. 3. (Top) Posterior distribution of the final massMf and
the final spin χf obtained from three different runs. The red
cross indicates the injected values. (Bottom) Jensen-Shannon
divergence between consecutive grid runs and resulting pos-
terior distribution for the chosen transition time (in this case,
tgrid − tref = −0.5 ms). The x-axis indicates the correspond-
ing time tgrid and the JS divergence is calculated between the
posterior distributions at tgrid and tgrid + ∆t, which in this
case is ∆t = 0.5 ms. The coloured circles indicate the times
corresponding to the posterior distributions in the top figure.

tles to a constant value at tref − 27.5,ms; which is the
same as the O1 results. For the ringdown, however, we
find that the JS divergence settles approximately 1 ms
later, at tref + 0.5 ms. The selected ringdown grid times
for O1 and ZDHP sensitivities correspond to 9.6Mf and
12.6Mf after the peak amplitude of the signal, respec-
tively. In this context, it is interesting to note that the
more sensitive configuration of ZDHP requires a later
starting time for the ringdown. This is consistent with
findings in Refs. [40, 42].

Results with the ZDHP configuration are shown by the
dashed posterior in Figure 5. In this case, the measured
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FIG. 4. Whitened strain in each detector with the maximum
posterior (MAP) waveform from the inspiral analysis (blue)
and from the ringdown analysis (orange).

median value of the area increase with 90% credible in-
terval is Af/Ai = 1.42+0.36

−0.36. With this sensitivity we
obtain a ∼ 97% confidence that the simulated signal is
consistent with the area theorem.

Given the measured initial parameters from the inspi-
ral analysis, one can obtain the expected area change
for each point in the initial distribution using the fitting
formulae in [56]. A direct comparison of the expected
change with the measured change indicates the level of
agreement of the final object with the fitting formulae,
and therefore with general relativity. If the final object
agrees with general relativity, the ratio between the mea-
sured and the expected values should be 1. The bottom
panel in Figure 5 shows this ratio for the area change,
∆A = Af −Ai.

The independent measurements of the initial and final
mass performed in this work also allow for estimating
the energy radiated away by the system. The top panel
in Figure 7 shows the posterior distribution in the en-
ergy radiated away, ∆E = Ei−Ef , for both current and
future Advanced LIGO sensitivities. The shaded region
indicates the 29% bound derived from the area increase
law. Similar as with the area change, one can compare
the measured energy radiated, ∆Emeasured, with the re-
sult one would obtain making use of the fitting formulae
in [56], ∆Eexpected. The bottom panel in Figure 7 shows
the ratio between these two energies.

As can be seen by comparison of Figure 5 and Figure 7,
the measurement of the area increase is more accurate
than the measurement of the energy radiated. This can
be understood from the lines of constant area shown in
Figure 8. The area follows the ringdown posteriors bet-
ter than the mass at positive spins, which are expected
for two initially non-spinning black holes. Furthermore,
we can expect the measurement of the area to be even
sharper for highly aligned spinning black holes, while the
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FIG. 5. (Top) Posterior distribution on the ratio of the
final to initial areas, Af/(A1 + A2), for two different Ad-
vanced LIGO sensitivities, O1 and ZDHP. The shaded re-
gion Af/Ai < 1 indicates violation of the area theorem. The
shaded region Af/Ai > 4 indicates violation of the conser-
vation of energy. The vertical red line is the expected area
increase, Af/Ai ' 1.56. (Bottom) Distribution of the ra-
tio ∆Ameasured/∆Aexpected. The measured area change corre-
sponds to the distribution shown in the top figure. The ex-
pected area change is given by the initial parameters obtained
in the inspiral analysis and the corresponding expected final
parameters from the fitting formulae in [56]. The vertical
red line indicates agreement between the measured and the
expected values, i.e. ∆Ameasured/∆Aexpected = 1.

spin does not significantly affect the measurement of the
mass.

V. SIMULATING VIOLATIONS OF THE AREA
THEOREM

In this Section we explore if we would be able to mea-
sure a violation of the area increase law with the method
described above. We do not explore here how this vi-
olation could happen, but only if we would be able to
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FIG. 6. Jensen-Shannon divergence between consecutive
grid times of the inspiral (top) and ringdown (bottom) anal-
yses using the ZDHP PSD. Insets show the resulting pos-
terior distribution for the chosen transition times. For the
inspiral analysis we find that the JS divergence settles at
tgrid − tref = −27.5 ms, consistent with the O1 PSD (Fig. 2).
In the ringdown analysis we find that the JS diveregence set-
tles at tgrid − tref = 0.5 ms, which is 1 ms later than the time
we found for the O1 PSD (Fig. 3).

measure a violation. For this purpose we compare our
inspiral measurements with lower-mass ringdown signals.
The spin of the final object is only dependent on the
mass ratio and the spins of the initial objects. Chang-
ing the total mass of the binary will yield different final
mass but the same final spin. Therefore, we find that
for our system, a violation of the area theorem would re-
quire Mf < 53.3M�. We use two ringdowns with masses
Mf ' 52.3M� and Mf ' 47.6M�, and perform the ring-
down analysis only with the ZDHP sensitivity.

Figure 9 shows the result of combining these new ring-
downs with the original inspiral results. The dashed pos-
terior distribution with ∆M = Mf −Mt ' 3.4M� is the
result shown in the previous section. The continuous line
with ∆M ' 17.7M� is the system that yields a small vi-
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FIG. 7. (Top) Posterior distribution on the energy radi-
ated during the coalescence. The red line indicates the ex-
pected value for the injected parameters, Ei − Ef ' 3.4M�.
The shaded region shows the theoretical limit of 29% in
the energy emitted. (Bottom) Distribution of the ratio
∆Emeasured/∆Eexpected. The expected radiated energy is
given by the initial parameters obtained in the inspiral anal-
ysis and the corresponding expected final parameters from
the fitting formulae in [56]. The vertical red line indicates
agreement between the measured and the expected values,
i.e. ∆Emeasured/∆Eexpected = 1.

olation of the area theorem. We find that this system
violates the area theorem with ∼ 61% confidence. The
dotted line shows the system with even lower mass, for
which we obtain ∼ 95% confidence of a violation of the
area theorem.

VI. CONCLUSIONS

We developed a method to test the area theorem on
gravitational-wave signals from binary black hole coa-
lescences. This method completely ignores information
from the highly dynamical merger phase, thus ensuring
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FIG. 8. Lines of constant area as function of the final mass
and spin. The solid line shows the expected value, while
dashed lines indicate areas ±25%, 50%, 75%. For compari-
son, the 90% confidence interval from the ringdown analysis
is shown.
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FIG. 9. Posterior distribution on the ratio of the final to ini-
tial areas, Af/(A1 +A2) with ZDHP sensitivity. The shaded
region Af/Ai < 1 indicates violation of the area theorem.
The shaded region Af/Ai > 4 indicates violation of the con-
servation of energy. The dashed posterior distribution is the
result shown in the previous section. The solid posterior dis-
tribution is a signal that slightly violates the area theorem,
and the dotted posterior distribution is a signal that clearly
violates the area theorem.

that the initial and final parameters are measured inde-
pendently from each other, and without assuming general

relativity during the merger process.
With current gravitational-wave detectors sensitivities,

a numerical waveform similar to GW150914 and known
to agree with the area theorem shows that agreement
could be confirmed with ∼ 66% confidence. Design sen-
sitivity (ZDHP) for Advanced LIGO will allow us to con-
firm the area theorem with ∼ 97% confidence on such
type of signals.

The next obvious step is to perform this analysis on
a real gravitational-wave signal. From the binary black
holes known to date there is only one with loud enough
ringdown to perform this test: GW150914. We plan to
show results on this event in a future publication.

The confidences obtained are mainly bound by the
ringdown analysis, which yields wider posterior distri-
butions than the inspiral analysis. Higher modes could
start becoming important before the end of the second
generation of gravitational-wave detectors. The addition
of sub-dominant modes to the ringdown analysis will not
only allow for tests of the Kerr nature of the final black
holes, but could result in better constraints on the final
mass and spin. Therefore, detectable higher modes could
improve the confidence level on testing the area theorem.

As we have seen, the sky location is also an impor-
tant limiting factor in our analysis. In this paper we
have shown results on a two-detector network. How-
ever, the Virgo detector joined the second generation
of gravitational-wave detectors in August of 2017, and
showed an important contribution on sky localisation of
gravitational-wave sources. Future events could therefore
show different confidence levels as reported in this work
if more than two detectors are being used.

The techniques we present may also be extended to
make a joint measurement of the violation of the area
theorem for a population of binary black hole mergers.
As an increasing number of mergers are detected, we ex-
pect that this may provide significant improvements to
the overall uncertainties.
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