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Abstract. Weak reactions are critical for the neutron richness of the matter

dynamically ejected after the merger of two neutron stars. The neutron richness,

defined by the electron fraction (Ye), determines which heavy elements are produced

by the r-process and thus directly impacts the kilonova light curve. In this work,

we have performed a systematic and detailed post-processing study of the impact of

weak reactions on the distribution of the electron fraction and of the entropy on the

dynamic ejecta obtained from an equal mass neutron star binary merger simulated in

full general relativity and with microscopic equation of state. Previous investigations

indicated that shocks increase Ye, however our results show that shocks can also

decrease Ye, depending on their thermodynamical conditions. Moreover, we have found

that neutrino absorption are key and need to be considered in future simulations.

We also demonstrated that the angular dependence of the neutrino luminosity and

the spatial distribution of the ejecta can lead to significant difference in the electron

fraction distribution. In addition to the detailed study of the Ye evolution and its

dependences, we have performed nucleosynthesis calculations. They clearly point to

the necessity of improving the neutrino treatment in current simulations to be able to

predict the contribution of neutron star mergers to the chemical history of the universe

and to reliable calculate their kilonova light curves.

Keywords: Neutron stars, Weak interactions, r-process, Relativity and gravitation.
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1. Introduction

The merger of two neutron stars is intrinsically a multi-messenger event. The energy

that is released by these events produces a large variety of different transients, all of

which are nowadays potentially detectable from the Earth (see, e.g., Rosswog (2015),

Baiotti & Rezzolla (2017) and Fernández & Metzger (2016) for recent reviews). In

the case of a sufficiently close event, we expect to observe gravitational waves from

terrestrial detectors; electromagnetic radiation, ranging from gamma- and X-rays related

with short gamma-ray bursts, to infrared emission associated with a kilonova (Metzger

et al. 2010) (also called macronova, Kulkarni (2005)); and possibly neutrinos. Moreover,

neutron star mergers play a critical role in the chemical evolution of the universe as

they are most likely production site of half of the heavy elements via the rapid neutron

capture process (r-process, Lattimer et al. 1977, Eichler et al. 1989, Bauswein et al. 2014).

Indeed, the very neutron-rich isotopes that are formed and ejected in these events power

the kilonova light curve as they decay to stability.

Our understanding of neutron star mergers is increasing very fast as computer

power and observations improve. In current simulations, more microphysics has been

included, namely high density equations of state (e.g., Hotokezaka et al. 2011, Bauswein

et al. 2013, Read et al. 2013, Rezzolla & Takami 2016, Bernuzzi et al. 2016, Radice

et al. 2017, Bovard et al. 2017) and neutrinos (e.g., Neilsen et al. 2014, Foucart

et al. 2015, Sekiguchi et al. 2015, Radice et al. 2016). The transport of neutrinos

produced in the hot and dense remnant is not full consistently included in current 3D,

full general relativistic (GR) simulations. However, it has been shown that neutrinos

and electron/positron captures are crucial to understand the evolution of the neutron

richness (i.e., of the electron fraction, Ye) of the ejecta. This is the focus of our paper.

Several questions concerning the evolution of the electron fraction in the dynamic ejecta

still remain open and largely unexplored: What is the most relevant process responsible

for the change in the electron fraction of the ejecta? What is the impact of shocks on

the electron fraction? How robust is the r-process nucleosynthesis from binary neutron

star (BNS) mergers under variations of the electron fraction?

Recent GR simulations, including microphysical equation of state (EOS) and

neutrino treatment, indicate that the electron fraction of the dynamic ejecta can be

significantly changed with respect to the initial cold weak equilibrium values (Wanajo

et al. 2014, Sekiguchi et al. 2015, Foucart et al. 2015, Goriely et al. 2015, Radice

et al. 2016, Bovard et al. 2017). Matter ejected by tidal interaction is expected to stay

relatively cold. Therefore, in the absence of strong neutrino irradiation, its electron

fraction should not change significantly (e.g., Korobkin et al. 2012). In contrast,

matter ejected by shocks (occurring when the two neutron stars collide or after the

remnant has formed) is heated up to significantly large temperatures. Under these

conditions, electron-positron pairs are copiously produced and weak processes involving

neutrinos can alter the initial electron fraction. In particular, positron captures on free

neutrons can increase the electron fraction. Similarly, neutrino irradiation can enhance
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the electron fraction through the absorption of electron neutrinos on the initially very

neutron-rich ejecta.

In this paper, we consider trajectories of shock heated ejecta obtained from a GR

hydrodynamical simulation (Kastaun et al. 2017). We include the impact of neutrino

emission and absorption in a post-processing step, similar to Goriely et al. (2015),

but including also consistently the consequences of weak reactions on the entropy

evolution. Our approach allows to explore the role of individual weak reactions on

the final distributions of electron fraction and entropy, and, in turn, on the detailed

nucleosynthesis abundances. Our results indicate that the occurrence of a shock in

the ejection process does not necessary lead to an increase of the electron fraction in

neutron-rich matter, as found in previous works for other types of shock heated ejecta

(e.g., Sekiguchi et al. 2015). If this is the case, neutrino absorption plays a major role in

increasing Ye. We also study the dependence on the intensity of the neutrino irradiation

and found a non-negligible effect on the nucleosynthesis. For the first time, we present

the impact of neutrino emission anisotropies that can become very important and have

strong consequences on the prediction of the final abundances and thus kilonova light

curve.

The paper is structured as follows: In Sec. 2, we summarize the properties of the

GR simulation that provides the dynamical evolution of the BNS merger, and we present

the properties of the the ejecta obtained in that simulation and of the neutrino emission

that we computed from the merger profiles. In Sec. 3, we introduce the post-processing

treatment for the weak reactions to evolve the electron fraction and entropy of each

tracer. Sec. 4 is devoted to the presentation and discussion of our results in terms of

distributions of the properties of the ejecta and of abundances of the nucleosynthesis

yields. Finally, in Sec. 5, we draw our conclusions.

2. Binary NS merger simulation

2.1. Setup and numerical evolution

The ejected matter data studied in this work are extracted from one of the numerical

simulations described in Kastaun et al. (2017). The SHT UU model consists of two NSs

with gravitational mass of 1.4M� each, and employs the EOS by Shen, Horowitz, Teige

(SHT, Shen et al. 2010, Shen et al. 2011). The initial NS spins are aligned with the

orbital angular momentum, with dimensionless spin J/M2 ≈ 0.125. We note that the

other spin configurations studied in Kastaun et al. (2017) did not yield a significant

amount of ejecta. For the SHT EOS, the maximum possible baryonic (gravitational)

mass of a non-rotating NS (at zero temperature in β-equilibrium) is 3.33 M� (2.77 M�),

which is unusually large. Since the total baryonic mass of the system is below this critical

value, the merger remnant is a stable NS (which we regard as an astrophysical corner

case).

The numerical evolution was carried out in general relativity and the matter was
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treated as a perfect fluid. Pressure, internal energy, and specific entropy were computed

from density, temperature, and electron fraction using a three-dimensional interpolation

table of the SHT EOS, as described in Galeazzi et al. (2013). We did not include

magnetic fields (which might drive further matter outflows in addition to dynamical

ejecta, Siegel et al. (2014)). The code made use of moving box mesh refinement, with a

finest resolution of 295 m, and the outer boundary is located at 945 km. The numerical

methods and code set-up are described in detail in Kastaun et al. (2017). Neutrino

radiation was not taken into account in the simulation itself, and the electron fraction

was passively advected with the fluid. In this study, we account for the neutrino physics

in a post-processing step, which will be described in Sec. 2.3, neglecting any impact on

the fluid dynamics in the remnant.

One technical detail relevant for this work is the usage of an artificial atmosphere,

which is a standard method where a minimum mass density is enforced throughout the

computational domain, and the velocity is set to zero inside the artificial atmosphere.

This is required because the hydrodynamic equations degenerate in vacuum and also

because our tabulated EOS does not extend to arbitrary low values. Due to the latter,

we used a relatively dense atmosphere of 6×107 g cm−3 (with temperature 0.06 MeV and

electron fraction 0.4). Although such an atmosphere only weakly affects the dynamics of

the inspiral, merger remnant, and disk, it has a strong impact on the low-density ejecta

(see the discussion in Endrizzi et al. 2016, Kastaun & Galeazzi 2015a). We stress that,

since the goal of this work is to study the impact of weak reactions on the properties

of the ejecta, the potential effect of the artificial atmosphere on the total amount of

ejected material and (more importantly) the escape velocity, has no relevance for us.

That said, we do make use of a method developed to correct for the drag, which will be

described in Appendix B.

2.2. Ejecta and tracers

Extracting the trajectories of ejected matter from a numerical simulation is a nontrivial

task that requires various approximations. In the following, we describe the main

difficulties and the solutions used for this work. The first challenge is that numerical

simulations can only be run on short time scales, necessitating a criterion to judge if a

given fluid element will reach infinity eventually. For this, we use the standard approach

of assuming geodesic motion, approximating the spacetime as stationary. This results in

the condition ut < −1, where u is the fluid 4-velocity (e.g., Kastaun & Galeazzi 2015b).

Although physically we do not expect significant deviations from Keplerian motion

once the ejected matter is expelled from the vicinity of merger remnant and disk, the

artificial atmosphere (see previous section) causes an unphysical drag force. In our case,

the impact is quite strong because of the low ejecta mass (and hence density) and the

high atmosphere density. Almost all matter that was unbound at some point becomes

bound again at large radii. We attribute this to the spurious drag force based on an

animation (available in the supplemental material of Kastaun et al. (2017)) showing
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how regions of unbound matter run into the artificial atmosphere and slowly dissolve.

In Kastaun et al. (2017), we measured the flux of unbound matter through spherical

surfaces of increasing radius and used the maximum as an estimate for the amount of

ejected matter. For this work however, we require the trajectories of ejected matter up

to radii much larger than the simulation domain. Therefore, we extrapolated trajectories

assuming Keplerian motion when the drag force becomes relevant. To determine this

correction, we constructed a simple model for the atmospheric drag, which we also use

to validate that the artificial atmosphere is the reason for the decrease of unbound mass

at large radius. The details of this model are presented in Appendix B.

The next challenge is to extract fluid trajectories from the numerical simulation,

which uses a numerical grid to describe the fluid (in contrast to smoothed particle

hydrodynamics codes, for which trajectories are an integral part of the evolution). One

approach would be to follow tracers during the evolution (Bovard & Rezzolla 2017). A

difficulty with that method is the placement of the initial tracer positions. Since only

a small fraction of the fluid mass ends up as ejected matter, a large fraction of tracers

will be wasted. Achieving a good coverage of ejected matter becomes computationally

challenging. To overcome this limitation, we extracted the fluid trajectories in a post-

processing step from 3D data saved during the evolution. One shortcoming of this

procedure is that the data need to be stored with sufficiently high resolution in both

space and time to maintain accuracy in the integration. However, it has the advantage

that we can identify unbound material at a suitable time and then trace its movement

both forward and backward in time. In our case, most matter became unbound during a

few ms. This allowed us to simplify the code and start the time integration of all tracers

at the same seed time, where the amount of unbound matter becomes maximal. The

seed positions are taken from a regular grid, and we assign the mass proportionally to

the local density. Only grid points with ut < −1+δ are used as seed positions. We lower

the threshold for the unbound matter criterion by some suitable δ > 0 to make up for

the fact that some matter becomes unbound later or re-bound earlier. After computing

the trajectories we remove the ones that never became unbound. Starting from the

seed positions, we integrate both forward and backward in time, using a second order

scheme and cylindrical coordinates. A further complication of the artificial atmosphere

is that the least dense parts of the ejecta fall below the cutoff density at some point,

and become part of the non-moving atmosphere. We only keep trajectories that can

be traced to the end. Finally, we combine neighboring trajectories in order to limit

the number of trajectories to ≈1000, since the nuclear network calculations using the

trajectories are more expensive than the extraction. We have tested that this procedure

has practically no impact on our analysis.

We find that the ejecta for the model at hand are neither tidally ejected nor part

of a breakout shock formed when the stars merge. Instead, the ejecta originate from

the inner part of the disk. Around 2 ms after merger, one of the remnant oscillations

sends a wave into the disk, which liberates the marginally bound matter. The ejecta

form two concentric rings above and below the orbital plane, which expand radially
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(and also in z-direction). We note that it does not require any violent movement of the

remnant to eject matter, because the density scales are very different. In our example, it

appears that a wave steepens into a shock. At least, we found a steep increase of specific

entropy (from a few to ∼7 kB baryon−1) at the same time the ring starts accelerating

outwards. The average ejecta temperature (entropy) is increased from about 10 GK

to about 30 GK by the shock heating, and then cools down adiabatically while the

density is decreasing. It is important to mention that most material is still classified

as bound when the temperature has already dropped below NSE conditions. Since

the temperature enters into the initial conditions for nucleosynthesis calculations, it

is necessary to know the thermal history of unbound matter. Using the conditions

found at the time where matter becomes unbound is only sufficient for tidally ejected

(i.e., cold) matter. Mass-weighted average temperature and radius for the (Kepler-

extrapolated) tracers are shown in Figure 1. The correlation between acceleration and

temperature increase is clearly visible. Note that near the end the temperature slightly

increases again. We assume that in addition to the drag, the interaction with the

artificial atmosphere also causes heating. However, before performing our analysis we

correct this artificial increase, by assuming constant entropy outside a fiducial radius of

200 km. Finally, as an independent validation of the correct tracing of fluid elements,

we compute the radial extent of unbound matter at each time directly from data on

the numerical grid. For this, we collect at regular time intervals the unbound mass in

histograms with bins corresponding to the radial coordinate. The resulting unbound

regions are also shown in Figure 1. The bulk of the trajectories are clearly inside this

region, although, as described above, some trajectories also become bound again. The

Figure also shows the impact of the drag correction, which will be described in Appendix

B.

2.3. Neutrino properties

Numerical simulations of BNS mergers, including neutrino emission, show characteristic

trends in the evolution of the neutrino luminosities, Lν , and mean energies, 〈Eν〉
(Ruffert et al. 1997, Rosswog & Liebendörfer 2003, Neilsen et al. 2014, Foucart

et al. 2015, Sekiguchi et al. 2015, Radice et al. 2016). While the emission of radiation is

negligible during the cold inspiral phase, as soon as the two NSs touch (t = tm) and the

temperature in the remnant increases, neutrino luminosities are boosted and reach their

peak values (a few 1053 erg s−1) within a few ms (t = tpeak). Additionally, the neutrino

mean energies rise, as a consequence of the temperature growth. After a few oscillations

(lasting typically no more than a few ms, and related with the motion of the merging

cores and the formation of the disk), both the luminosities and the mean energies settle

to almost stationary values. On a longer time scale, the luminosities slowly decrease

as a result of the remnant and disk cooling, and of the reduction of the accretion rate

inside the disk. To mimic this behavior, we model the neutrino luminosities according
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Figure 1. Properties of the ejected tracers versus time after merger, tm. Left:

spherical radial coordinate and z coordinate. The solid blue and red lines represent the

mass-weighted average of the tracer positions after correcting for the atmospheric drag,

the dotted lines the same without the correction. The transparent lines show individual

tracer trajectories (opacity proportional to mass). The contour line shows regions

with unbound material (no drag correction) obtained directly from the numerical grid

by summing unbound mass into histograms over radial bins at regular times. Right:

Matter temperature. Thick black lines represent averages over the whole tracer sample

(weighting each individual trajectory by its mass). The transparent lines represent

individual trajectories.

to the following analytic prescription:

Lν(t) =


0 for t ≤ tm,

Lν,peak

(
t−tm

tpeak−tm

)
for tm < t ≤ tpeak,

Lν,peak exp
(
− t−tm

∆tcool

)
for t > tpeak,

(1)

where we have included the growth of the luminosities between tm and tpeak, and the

subsequent decrease, but have neglected the transient oscillations. In the previous

equation, t is the time with respect to the beginning of the simulation. We consider

a typical cooling time scale ∆tcool ∼ 500 ms, comparable with the disk life time and

with the diffusion time scale from the central MNS (e.g., Dessart et al. 2009, Perego

et al. 2014). We note that its precise value is of small importance, since ∆tcool is much

larger than tpeak and the tracer expansion time scale. The parameters tm and tpeak

are determined through a careful inspection of the merger simulation. In particular,

tm = 12.5 ms is the time where the total entropy starts to increase due to the NS

collision and tpeak = 17.5 ms when it reaches an almost stationary value. Similarly, for

the neutrino mean energies we assume an initial linear increase, followed by an almost
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stationary phase:

〈Eν〉(t) =


〈Eν,min〉 for t ≤ tm,

〈Eν,min〉+ 〈∆Eν〉
(

t−tm
tpeak−tm

)
for tm < t ≤ tpeak,

〈Eν,max〉 for t > tpeak ,

(2)

where 〈∆Eν〉 ≡ (〈Eν,max〉 − 〈Eν,min〉).
Luminosities and mean energies are used to compute local neutrino fluxes Fν . Far

from the neutrino emission region, we expect purely radial fluxes, axisymmetric around

the rotational axis of the remnant. We further assume a quadratic dependence on cos θ:

Fν(R, θ, t) =
3 (1 + α cos2 θ)

3 + α

Lν(t)

4πR2 〈Eν〉(t)
, (3)

where θ is the polar angle from the rotational axis and R the distance from the

remnant center. For α = 0, we recover the isotropic case. For α = 2, we mimic

the modulation of the flux due to the presence of the optically thick disk. In fact, along

the equator (θ = π/2) Fν has its minimum, while along the poles (θ = 0) it reaches its

maximum. Numerical results of the neutrino emission from merger remnants point to

Fν(R, θ = 0, t)/Fν(R, θ = π/2, t) ≈ 3 (Dessart et al. 2009, Perego et al. 2014) and are

well described by α ≈ 2.

The original simulation does not model the neutrino emission. Thus, we compute

the neutrino properties associated with the merger remnant in a post-processing step.

We map the outcome of a general relativistic binary merger simulation‡ into the

FISH+ASL code (Käppeli et al. 2011, Perego et al. 2016). The latter has been extensively

employed to study the evolution of binary merger remnants and their neutrino emission

(Perego et al. 2014, Martin et al. 2015). For the mapping, we choose a time step

corresponding to ∼ 15 ms after the first touch tm. At this time, the remnant is

characterized by an approximately axisymmetric massive neutron star, surrounded by

a thick accretion disk. Since FISH is a Newtonian Cartesian hydrodynamical code, a

further approximation becomes necessary because the geometry of the spacetime in a

NS is strongly non-Euclidean. We chose a mapping as follows: first, we approximate

the spacetime as spherically symmetric and extract the corresponding metric coefficients

from the available 1D data along the x axis. Then the volume element after transforming

back to Cartesian coordinates becomes unity. This way, volume integrals in the

Newtonian geometry (in particular the total mass) yield approximately the correct GR

result, while distances are distorted.

In the original simulation, the initial cold (T = 0) beta-equilibrium electron fraction

is simply advected. However, weak reactions at high temperatures and densities are

expected to change the relative amount of neutrons and protons, as a results of an

asymmetric behavior of electron neutrinos and antineutrinos. In particular, Lν̄e > Lνe
(Eichler et al. 1989, Ruffert et al. 1997, Rosswog & Liebendörfer 2003) and the formation

‡ Since the 3D distribution of Ye was not saved for the simulation presented in the previous section,

we computed the neutrino emission from the output of an almost identical simulation, in which the

initial NS are irrotational.
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Figure 2. Summary of the different regimes adopted to set the initial Ye in

the calculation of the neutrino luminosities and mean energies. The electron

fraction obtained in the original simulation is possibly changed according to the

thermodynamical conditions inside the remnant. After the initialization, Ye evolves

according to the leakage prescription. See the text for more details.

of an excess of ν̄e deep inside the hot remnant (Foucart et al. 2015) increase the proton

and electron abundances. To take these effects into account, we distinguish between

different regimes (also summarized in Figure 2) to initialize Ye:

• The neutrino trapped regime; due to both high density ρ > ρeq = 1012 g cm−3

and temperature T & 3 MeV, neutrinos diffuse on a time scale longer than the

dynamical time scale. Thus, neutrinos are trapped and the electron fraction

obtained from the simulation is assumed to be equal to the total lepton fraction,

(Ye)sim = Yl = Ye + Yνe − Yν̄e . The actual values for Ye, Yνe , and Yν̄e are computed

assuming weak equilibrium.

• The hot, neutrinoless beta-equilibrium regime; for ρfree = 5 · 1011 g cm−3 < ρ <

ρeq = 1012 g cm−3, and T & 3 MeV, neutrino reactions are still fast enough to

change Ye on a very short time scale (. 1 ms), but neutrino diffusion happens

on the same time scale. Under these conditions, we initialize Ye assuming hot,

neutrinoless beta-equilibrium.

• The neutrino free-streaming regime. For ρ < ρfree or low matter temperature, the

locally produced neutrinos can stream away. For this region, we initially assume

that Ye = (Ye)sim.

Due to the differences between the original GR simulation and the Newtonian

character of the FISH code, we do not dynamically evolve the remnant, but we consider

its distribution of matter as a stationary background, and we evolve only the electron

fraction and the temperature due to the neutrino emission. In Figure 3, we present the

temporal evolution of the electron neutrino and antineutrino luminosities (left panel) and

mean energies (right panel), obtained once the simulation has been started. We stress

that these temporal profiles do not represent the true physical evolution of the neutrino
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Figure 3. Temporal profiles of the neutrino luminosities (left) and mean energies

(right) obtained by post-processing with the FISH+ASL code a snapshot of three

dimensional results of the the GR hydrodynamics simulation described in Sec. 2, once

the disk has formed. Neutrino cooling feedback is included only in the temperature and

electron fraction evolutions, while matter is considered as a stationary background.

Thus, these temporal profiles should be intended as a sequence of possible weak

equilibrium configurations (after an initial transient phase), rather than a temporal

evolution. Vertical bands represent three possible configuration, chosen to bracket

uncertainties in the determination of the neutrino properties immediately after the

merger.

quantities, since these can be obtained only by a consistent radiation-hydrodynamical

model. They rather represent a fast approach to (T, Ye) quasi-equilibrium configurations

from an initial non-equilibrium state. In particular, during the first ms, the excess of

neutrons in the free streaming regime produces a large Lν̄e (several 1053 erg s−1), which

rapidly changes the electron fraction for ρ . ρfree. This determines a sudden decrease

of Lν̄e . After ∼ 1 ms, the electron fraction in the remnant has settled to a steady

configuration and the luminosities decrease smoothly, due to the remnant and disk

cooling. We use the obtained temporal profiles of the luminosities and mean energies to

select three different sets of values, (referred to as high, medium and low), to span the

uncertainties in the determination of the neutrino properties, as well as the large range

of values obtained in different models. For 〈Eν,min〉, we take 8 MeV for both νe and ν̄e.

In Tab. 1, we summarize all the parameters later used in Eqs. (1) and (2). We have also

tested that the behavior of the luminosities after 1 ms is only weakly dependent from

the detailed choice of the boundary values (e.g., ρeq and ρfree) in the Ye initialization.

3. Coupling weak interactions with tracer evolution

We post-process the tracers obtained from the simulation to include the impact of

neutrino emission and absorption on the evolution of the electron fraction and of the

entropy.

If tinit and to denote the starting and the ending point of each tracer, we solve the
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Table 1. Parameters for the maximum neutrino and antineutrino luminosities and

energies. In the beginning, we assume vanishing luminosities Lνe,min = Lν̄e,min = 0 and

constant energies 〈Eνe,min〉 = 〈Eν̄e,min〉 = 8 MeV.

Name Lνe,max Lν̄e,max 〈Eνe,max〉 〈Eν̄e,max〉
[1053 erg s−1] [1053 erg s−1] [MeV] [MeV]

capture 0.0 0.0 0.0 0.0

low 0.86 1.0 11.5 16.2

medium 1.0 1.5 12.0 16.3

high 1.2 2.4 13.0 16.7

following system of coupled ordinary differential equations for tinit < t ≤ to:

dρ

dt
=

(
dρ

dt

)
hydro

(t) , (4)

dx

dt
=

(
dx

dt

)
hydro

(t) , (5)

dYe

dt
=

(
dYe

dt

)
ν

(t) , (6)

ds

dt
=

(
ds

dt

)
hydro

(t) +

(
ds

dt

)
ν

(t) . (7)

On the lhs, ρ is the matter density, x the particle position, Ye the electron fraction and

s the matter entropy per baryon. On the rhs, time derivatives labeled by “hydro” refer

to the evolution obtained inside the simulations, while the ones label by “ν” denote the

variation due to the interaction with neutrinos. At t = to, temperatures are usually

larger than 10 GK. We extend the evolution also to t > to up to the point t = tend

when the temperature reaches 3 GK, assuming homologous expansion without shocks

((ds/dt)hydro = 0) and constant velocity:

dρ

dt
= −3

ρo
t

(
to
t

)3

, (8)

dx

dt
=

(
dx

dt

)
hydro

(to) , (9)

dYe

dt
=

(
dYe

dt

)
ν

(t) , (10)

ds

dt
=

(
ds

dt

)
ν

(t) . (11)

We note that this expansion is identical to the one used inside the network to evolve the

tracers for much longer time. This ensures a smooth transition between the tracer post-

processing and the nuclear network calculations. We have chosen 3 GK as a limiting

temperature because for all our tracers it is below the temperature where the network
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starts to compute detailed abundances out of NSE. We have verified that our results

are independent from this choice.

To compute the variations due to neutrinos, (dYe/dt)ν and (ds/dt)ν , we consider

a subset of reactions comprising the most relevant charged-current reactions between

neutrinos and matter, namely the capture of electron, positron, electron neutrinos and

antineutrinos on free nucleons:

p + e− → n + νe , (12)

n + e+ → p + ν̄e , (13)

n + νe → p + e− , (14)

p + ν̄e → n + e+ . (15)

For each capture reaction, we compute the associated reaction rates λx for species

x = e−, e+, νe, ν̄e and we distinguish between particle (λ0
x) and energy (λ1

x) rates. The

variation for the electron fraction is(
dYe

dt

)
ν

=
(
λ0
νe + λ0

e+

)
Yn −

(
λ0
ν̄e + λ0

e−

)
Yp ≡ λ0

+Yn − λ0
−Yp , (16)

where Yn and Yp are the abundances of free neutrons and protons, respectively.

For the entropy variation, from the first principle of thermodynamics we obtain(
ds

dt

)
ν

=
1

T

[(
dQ

dt

)
ν

− (µe − µn + µp)

(
dYe

dt

)
ν

]
, (17)

where (dQ/dt)ν is the heat variation due to the emission and absorption of neutrinos:(
dQ

dt

)
ν

=
(
λ1
νe − λ

1
e+

)
Yn +

(
λ1
ν̄e − λ

1
e−

)
Yp , (18)

and µe, µp and µn are the chemical potentials of electrons, protons and neutrons,

respectively. The particle and energy capture rates are computed according to

(Bruenn 1985), including the corrections due to the electron mass, M, and to the

weak magnetism Rνe,ν̄e :

λke− =
4πσ0c

(2π~c)3

∫ ∞
0

(
E + ∆

me

)2

M(E + ∆)Rνe(E) fe−(E + ∆)

× E2+k dE , (19)

λke+ =
4πσ0c

(2π~c)3

∫ ∞
∆+me

(
E −∆

me

)2

M(E −∆)Rν̄e(E) fe+(E −∆)

× E2+k dE , (20)

λkνe =
Gνeσ0c

(2π~c)3

∫ ∞
0

(
E + ∆

me

)2

M(E + ∆)Rνe(E) [1− fe−(E + ∆)]

× fνe(E)E2+k dE , (21)

λkν̄e =
Gν̄eσ0c

(2π~c)3

∫ ∞
∆+me

(
E −∆

me

)2

M(E −∆)Rν̄e(E) [1− fe+(E −∆)]

× fν̄e(E)E2+k dE , (22)
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where c is the speed of light, me the electron mass, ∆ = 1.2935 MeV the mass difference

between neutron and proton, and σ0 = 4(mec
2)2G2

F (c2
v + 3c2

a)/π~4 ≈ 2.43 × 10−44 cm2

with GF the Fermi constant, ~ the reduced Planck constant, cv = 1 and ca = ga ≈ 1.23.

The distribution functions of electrons and positrons, fe∓ , are assumed to obey Fermi-

Dirac distributions with non-vanishing chemical potentials. The electron mass correction

term is M(x) =
(
1− (me/x)2)1/2

, while the weak magnetism factors, Rνe,ν̄e , are

implemented according to Horowitz (2002). Their detailed expressions are provided in

Appendix A. Free-streaming neutrinos and antineutrinos are assumed to be described

by a distribution function with a Fermi-Dirac energy spectrum of temperature Tν and

zero degeneracy, and with an angular dependence gν ,

fν(E,Ω) = gν(Ω)
1

1 + exp
(

E
kBTν

) , (23)

such that

Gν =

∫
Ω

gν(Ω)dΩ . (24)

The value of Gν can be expressed in terms of the local neutrino density and, ultimately,

of the neutrino luminosity and mean energy:

Gν =
Lν

4πr2 〈Eν〉 c
(2π~c)3

(kBTν)3F2(0)
, (25)

where Fk(η) ≡
∫∞

0
xk/[1 + exp(x − η)] dx is the Fermi integral of order k evaluated at

η. In the rates calculations, we have included Pauli blocking factors for electrons and

positrons in the final states, while we have neglected neutrino blocking factors in free

streaming conditions.

Hot and dense matter in NSE is described by a nuclear equation of state in tabular

form (Hempel et al. 2012). For consistency with the underlying simulation, we choose the

NL3 parameterization for the nucleon interaction. However, since our initial densities

are usually below 1013 g cm−3, we do not expect our choice to have a significant impact

on the results.

For each trajectory, we assume as initial conditions for the matter density, entropy,

and velocity the tracer properties at t = tinit, such that ρ(tinit) = 1012 g cm−3 ≡ ρeq. We

consider this value for ρ as the transition between the diffusive and the free-streaming

regime for neutrinos (see Sec. 3). A precise initialization of the electron fraction would

require a detailed evolution of Ye inside the merger simulation in neutrino diffusive

conditions. Since this is not available, we consider two opposite cases:

• Case A, in which weak equilibrium is assumed down to ρeq. This corresponds to

the case where neutrino reactions are fast enough (compared to the expansion time

scale) to drive Ye toward the equilibrium value associated with the corresponding

density and temperature, Ye,eq. If the tracer starts at a density below ρeq§, then

Ye = 0.044 is assumed (this value corresponds to mass-weighted average Ye of ejecta

passing through a spherical surface of radius 111 km in the original simulation).

§ This condition is fulfilled for ∼ 25% of the tracers.
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Figure 4. Mass distribution of the electron fraction of the ejecta at the beginning

of the post-processing calculations for case A, (i.e., assuming weak equilibrium up to

tinit when matter density drops below ρeq). Case B corresponds to the vertical line at

Ye = 0.044.

• Case B, where Ye = 0.044 is assumed for every tracer at t = tinit. This corresponds

to the case where all neutrino reactions are very slow for ρ > ρeq, compared to the

expansion time scale, and the electron fraction remains practically unchanged.

For most of the tracers, temperatures are usually smaller than 0.5 MeV for ρ ≈ ρeq. In

addition, NSE predicts a composition characterized by free neutrons (with mass fraction

Xn ∼ 1−Ye), neutron-rich nuclei (Xheavy ∼ Ye) and a negligible amount of free protons,

for initially low electron abundances (Ye . 0.2). Under these conditions, neutrino

reactions are expected to be slower than the expansion time scale. In particular, the

absorption of electron neutrinos on free neutron can increase Ye, but the rate is usually

too slow to reach Ye,eq. Thus, we expect our two cases to bracket the actual evolution

of the electron fraction.

Figure 4 shows the mass distribution of the electron fractions for all tracers at tinit,

for case A. Due to the initial high densities and low temperatures of the tracers, the

average Ye is rather low (〈Ye〉 ≈ 0.12) and close to the values obtained in the simulation

without the inclusion of weak reactions.

3.1. Nuclear network

In order to determine the composition of the fluid along the trajectories, we employ a

complete nuclear reaction network (Winteler et al. 2012, Korobkin et al. 2012, Martin

et al. 2015). It includes over 5800 nuclei between the valley of stability and the

neutron drip line, comprising isotopes from H to Rg. The nuclear properties (e.g.,

mass excess, ground state spin, and partition functions) and reaction rates are taken

from the compilation of Rauscher & Thielemann (2000) and Rauscher (2003) for the

Finite Range Droplet Model (FRDM, Möller et al. 1995). In particular, the reaction

rates are tabulated as the coefficients of a fit function in the JINA REACLIB format

(Cyburt et al. 2010). Theoretical weak interaction rates including neutrino absorption

on nucleons are taken into account (Fuller et al. 1982a, Fuller et al. 1982b, Fuller
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et al. 1985, Langanke & Mart́ınez-Pinedo 2001, Möller et al. 2003), and to compute

them we utilize chemical potentials from the Helmholtz equation of state (Timmes &

Swesty 2000). Furthermore, neutron capture for nuclei with Z > 83 and neutron-induced

fission rates are taken from Panov et al. (2010) while beta-delayed fission probabilities

are from Panov et al. (2005).

We feed the reaction network with the temporal profiles of the matter density

and radial position obtained by post-processing the ejected tracers, see Sec. 3. The

electron fraction, temperature, and nuclear composition are only initialized and then

evolved consistently by the network. This ensures a smooth transition between the

two different post-processing steps. As starting point of the Ye and nucleosynthesis

calculations, we still consider NSE conditions occurring at T ≈ 8 GK. These conditions

typically occur a few tens of milliseconds after the shock has reheated the outflow. From

then on, we switch to the full reaction network to determine the nucleosynthesis, while

descending to lower temperatures and densities. For temperatures below 3 GK, we

further extrapolate the expansion inside the network assuming a homologous outflow.

The energy generation by the r-process is calculated and its impact on the entropy is

included (Freiburghaus et al. 1999, Korobkin et al. 2012) The heating mainly originates

from beta decays and we assume that the energy is roughly equally distributed between

thermalizing electrons and photons, and escaping neutrinos and photons (see Metzger

et al. 2010, Barnes et al. 2016) for a recent discussion. We compute the final abundances

at 109 years.

4. Results

4.1. Representative tracers

Both the shock and the neutrino irradiation have a strong effect on the electron fraction

evolution. In the following, we examine how the considered reactions influence the

electron fraction in detail.

In the upper panels of Figure 5, we show the hydrodynamical properties of two

representative tracers, initialized according to case A. One tracer (left panel) starts

with a density of 1012 g cm−3 and an initial weak equilibrium electron fraction of 0.16.

In the other tracer (right panel), the initial density is below 1012 g cm−3 and the initial

Ye is assumed to be 0.044 (see Sec. 3). The former tracer is also representative of

the trajectories initialized according to case B. A more extensive discussion about the

differences between case A and B will be provided in Sec. 4.2. The lower panels illustrate

the reaction rates calculated with Eqs. (19)−(22) as well as the resulting evolution of the

electron fraction as a function of time. When the tracer leaves the neutrino diffusion

regime, the relatively low temperatures favor the formation of neutron-rich, tightly

bound nuclei in combination with free neutrons in NSE. Particularly, the abundance

of free protons vanishes under such cold, neutron-rich conditions (cf. Sec 3). Electron

neutrino absorption on free neutrons increases the electron fraction, despite the non-
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negligible effect of Pauli blocking for the degenerate electrons in the final state. As the

density decreases and the temperature increases, nuclei are more and more dissociated

into free nucleons in NSE. After about 1 ms, a shock sets in and the sudden rise

of temperature triggers electron captures and, to smaller extent, positron captures.

Hence, the electron fraction drops sharply. As soon as the temperature decreases, as a

consequence of the expansion induced by the shock itself, the subsequent evolution is

mainly determined by electron neutrino captures on neutrons. When material expands

to larger distances, the (anti)neutrino fluxes fade as R−2 and the electron fraction

flattens after a few milliseconds. In the subsequent expansion phase, density and

temperature decrease monotonically, until leaving NSE and reaching conditions relevant

for the r-process nucleosynthesis.

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

T
 [

K
],

 
 [

g
/c

m
3
],

 r
 [

cm
] T r

0 1 2 3 4 5
Time [ms]

10
1

10
0

10
1

10
2

10
3

10
4

10
5

C
a
p
tu

re
 r

a
te

 
 [

1
/s

]

0

e
Yp

0

e
+ Yn

0

e

Yp

0

e

Yn

Ye

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
le

ctro
n
 fra

ctio
n
 Y

e

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

T
 [

K
],

 
 [

g
/c

m
3
],

 r
 [

cm
] T r

0 1 2 3 4 5
Time [ms]

10
1

10
0

10
1

10
2

10
3

10
4

10
5

C
a
p
tu

re
 r

a
te

 
 [

1
/s

]

0

e
Yp

0

e
+ Yn

0

e

Yp

0

e

Yn

Ye

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
le

ctro
n
 fra

ctio
n
 Y

e

Figure 5. Temporal evolution for two selected tracers of case A with high isotropic

luminosities. The left panel shows a tracer with Ye,ini = 0.044, while the right panel

shows a tracer starting from beta-equilibrium conditions with Ye,ini ∼ 0.16. Top panels:

hydrodynamic properties of a representative tracer. Bottom panels: trends of the

considered reaction rates and evolution of the electron fraction over time. Rates that

lead to a decrease in the electron fraction are shown with solid lines, while rates that

cause an increase of the electron fraction are plotted with dashed lines.

It is instructive to discuss the effects of the shock passage on the electron fraction

in terms of the different conditions experienced in the density-temperature plane. Since

(anti)neutrino capture rates, λνe and λν̄e , are weakly affected by density and temperature

gradients in the free-streaming regime, we restrict our discussion to the electron and

positron captures. Using Eqs. (19) and (20), we evaluate the rates for a large sample

of density and temperature conditions. To present their impact on the evolution of the

electron fraction, we consider the product of the rates and the corresponding target

abundance, i.e., λxYx. The nucleon abundances are calculated for NSE conditions with

the aid of the nuclear EOS. Figure 6 shows with contour lines the conditions where
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electron and positron captures balance each other, λe−Yp/ (λe+Yn) = 1. The contour

lines are labeled with the corresponding electron fraction and illustrate a range of Ye

between 0.05 and 0.30 in steps of ∆Ye = 0.05. For a given Ye, in the region above the

corresponding line electron captures dominate, while positron captures win for lower

densities or larger temperatures. This plane can be understood in terms of the degree

of degeneracy of the electrons. Making use of the approximated expressions of the rates

derived in Appendix A, we obtain:

λ0
e− Yp

λ0
e+ Yn

≈
F4

(
ηe − ∆

kBT

)
Ye

F4 (−ηe) (1− Ye)
, (26)

where ηe is the electron degeneracy parameter, defined as ηe ≡ µe/kBT , µe the

relativistic electron chemical potential including the rest mass. We have also assumed

that temperature is high enough to dissociate most of the nuclei in free nucleons.

When electrons are degenerate (i.e., for high densities and low temperatures), ηe � 1

and F4 (ηe −∆/(kBT )) /F4 (−ηe) ∼ (ηe −∆/(kBT ))5 eηe/120 � 1 (Bludman & van

Riper 1977, Takahashi et al. 1978). On the contrary, in non-degenerate conditions

ηe ∼ 0 and F4 (ηe −∆/(kBT )) /F4 (−ηe) ∼ [1 + 0.974 (ηe −∆/(kBT ))]. Thus, for high

temperatures and/or low densities such that µe . ∆, the positron capture rate becomes

dominant. More in general, for µe . ∆/2 the rates become comparable for all regimes.

We evolve again the tracer from the left panels of Figure 5, but including only

electron and positron captures in Eqs. (16) and (17). We show the subsequent evolution

of its Ye with a colored thick line in Figure 6. Its color changes according to the evolution

of the electron fraction and coherently with the thin threshold lines. When the ejecta are
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Figure 6. Comparison of the electron and positron captures for different conditions

in the density-temperature plane. The thick line shows the electron fraction evolution

along the representative trajectory from Figure 5 including only electron and positron

captures. Arrows indicated the temporal evolution of the hydrodynamics along the

trajectory. The thin lines in the colored area mark critical values of density and

temperature, labeled with the corresponding electron fraction in NSE. These are the

conditions at which the electron capture rate equals the positron capture rate, i.e.,

λ0
e−Yp/

(
λ0

e+Yn

)
= 1. At higher densities, electron capture dominates, while at lower

densities positron captures win. Note that we only show contour lines for electron

fractions up to Ye = 0.30.
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hit by the shock, the electron fraction of the trajectory is close to the weak-equilibrium

value, Ye ≈ 0.16, given no (anti)neutrino absorption. For the high degeneracy conditions

experienced at the shock passage, electron captures are initially favored by a factor of

∼ 100 over positron captures. As the temperature increases toward the peak value,

the electron degeneracy decreases and this factor goes down, but not enough to make

positron captures dominant. Instead, the ongoing electron captures rapidly decrease

the electron fraction, shifting the line of λ0
e−Yp/

(
λ0

e+Yn

)
= 1 into the direction of the

conditions found for the trajectory. This effectively flattens the evolution of the electron

fraction, as it tends to balance the capture rates. At the shock peak, the reaction rates

are fast enough to reach the corresponding weak equilibrium conditions. When the

electron fraction has dropped to Ye ≈ 0.07, the ratio of electron and positron capture

rates is close to unity. However, the temperature is already very low at this point,

shutting off both kinds of captures. If these reaction types were the only ones involved

in the electron fraction evolution, then its profile would remain constant at later times.

4.2. Property distributions
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Figure 7. Mass distributions of the electron fraction at 8 GK obtained from the post-

processed tracers. Different panels refer to different treatments of the weak reactions.

In the top-left panel, we include only electron and positron captures, while in the other

panels also (anti)neutrino captures with increasing, isotropic luminosities. Solid and

dashed lines refer to the results obtained using case A and case B as initial conditions,

respectively. Vertical lines mark the average electron fractions. In all cases, we obtain a

rather broad distribution of the electron fraction, with generally less neutron-deficient

values, as we assume higher (anti)neutrino luminosities.
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Figure 8. Mass distributions of the entropy (left) and radial velocity (right) at 8 GK,

obtained by evolving ejected tracers initialized according to case A. Different colors

refer to different treatments of the weak reactions, while neutrino luminosities are

assumed to be isotropic (cf. Figure 7).

The nucleosynthesis in the ejecta is sensitive to the electron fraction, Ye, the entropy,

s, and the expansion time scale (or equivalently the expansion velocity, v8GK) at NSE

freeze-out (e.g., Hoffman et al. 1997). Using the whole ensemble of ejected tracers

from the simulation, we obtain distributions for all these quantities, recorded when the

tracer temperature drops below 8 GK, well after the shock has passed. At later time,

weak processes can still change Ye and s. However, due to the low temperatures and

large distances from the remnant (R & 600 km), these residual variations are small

(δYe/Ye ∼ 0.02 and δs/s ∼ 0.015).

In Figure 7, we present the electron fraction distributions for different treatments of

the weak reactions (different panels) and for both cases A and B (with solid and dashed

lines, respectively). If we only include electron and positron captures to evolve the

tracers (top-left panel)‖, different initial conditions results in different Ye distributions.

In particular, the broader and less neutron-rich initial distribution assumed in Case

A is reflected in the evolved distribution at 8 GK. A closer comparison reveals that

in this case the peak and the mass-weighted average are located around Ye = 0.07,

thus reduced compared to the beta-equilibrium values obtained at weak freeze-out (cf.,

Figure 4). In the absence of neutrino captures, the electron fraction is not significantly

modified after being processed by the shock wave. This is a direct consequence of the

effect of the shock passage discussed in Sec. 4.1. As soon as the temperature increases

due to the shock passage, electron and positron captures are significantly enhanced (cf.,

Figure 5). In Figure 9, we show the electron fraction in neutrinoless beta-equilibrium

on the matter density-entropy plane. The white ellipse contains the hydrodynamical

conditions experienced by most of the tracers at the shock peak and shows that the

resulting equilibrium Ye scatters around Ye ∼ 0.10 for most of the ejecta. In case B,

‖ We notice that this treatment of the weak reactions is equivalent to what is done in simulations

employing leakage schemes without absorption terms in the optically thin regime.
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the lower initial Ye values (∼ 0.044) favor positron captures, which increase the electron

fraction towards the equilibrium conditions, where λ0
e−Yp/

(
λ0

e+Yn

)
= 1. However, due

to the vicinity of the initial electron fraction to the equilibrium one, and to the relatively

slow positron capture rate (λ0
e+Yn ∆tshock . 1, where ∆tshock ≈ 0.5 ms is the width of

the shock duration), the resulting rise in Ye is only marginal and the electron fraction

distribution peaks again around Ye = 0.05. On the contrary, ejecta in case A start

often with a considerably higher weak equilibrium electron fraction (see Figure 4). The

conditions at the shock peak are relatively far from the λ0
e−Yp/

(
λ0

e+Yn

)
= 1 line, and

electron capture is enhanced by electron degeneracy up to two orders of magnitude

with respect to positron capture. Moreover, weak reactions are fast enough to approach

equilibrium, since for most of the trajectories λ0
e−Yp ∆tshock > 1. This leads to an

appreciable decrease in the electron fraction, compared to the initial conditions of case

A, Figure 4, and at the same time to a qualitative different behavior compared to case

B, where equilibrium at the shock is almost never reached.
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Figure 9. Beta-equilibrium values for the electron fraction in the entropy-density

plane. Dashed and solid black lines indicate temperature contours. The white ellipse

shows the one-sigma environment of the conditions that the tracers encounter at the

peak temperature of the shock. Accordingly, the electron fraction tends to evolve

toward an equilibrium value of Ye ∼ 0.10 if only electron and positron captures are

considered.

The other panels of Figure 7 show the three cases including (anti)neutrino

absorption reactions for different strength of the neutrino luminosities (see Table 1).

We first consider the case of isotropic neutrino emission (i.e., α = 0 in Eq. (3)). For all

considered combinations, the late-time electron fraction is generally shifted to higher

values, compared to the starting beta-equilibrium values. This is mainly a consequence

of the neutrino absorption occurring after the passage of the shock wave. The mass-

weighted average is contained within the range 0.19 . 〈Ye〉 . 0.23 and larger neutrino

fluxes result in higher 〈Ye〉. The distributions have a tail toward high electron fractions,

up to Ye ≈ 0.36 for all degrees of irradiation. Once neutrino absorptions are taken

into account, the differences between case A and B vanish. This is due to copious
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absorptions of electron neutrinos on neutrons, which occur before the shock passage

and for both cases A and B. The subsequent increase in the electron fraction, well

above Ye ≈ 0.10, sets the tracer conditions similar to the ones we have discussed above,

in the case of electron and positron captures alone and initial conditions in case A. Due

to the achievement of the equilibrium Ye inside the shock, the differences between the

cases A and B disappear and the variety in the final distributions depends only on the

degree of neutrino irradiation after the shock passage.

Since our results and conclusions are largely independent from the initial conditions,

in the following we will consider only case A. The distributions for the entropy per baryon

and for the asymptotic expansion velocity are presented in Figure 8. The passage

of the shock wave increases the entropy from ∼ 4 kB baryon−1 to ∼ 8 kB baryon−1.

In the electron-positron capture case, the emission of neutrinos removes efficiently

entropy from the fluid elements. The resulting distribution at 8 GK shows two peaks,

one around 5 kB baryon−1 and one around 7 kB baryon−1, which correlate with the

peak temperature after the shock passage: the more intense neutrino emission from

the hotter tracers (Tpeak > 40 GK) reduces the entropy more significantly than from

the colder ones. If neutrino absorption processes are included, the captures of high

energy (anti)neutrinos on expanding and cooling matter compensate the reduction of

entropy provided by neutrino emission. The bimodal distribution observed before is

substituted by a distribution with a single peak around 8−9 kB baryon−1 and a rapidly

decreasing tail, extending up to 16 kB baryon−1. Due to the balance between emission

and absorption processes, we notice only a marginal increase in the entropy profiles for

increasing neutrino luminosities. The ejecta expand with fast velocities (v8 GK > 0.15 c)

in all cases. The wider and faster distribution obtained in the electron-positron capture

case is simply a consequence of the more rapid cooling observed in this case. Once

neutrino absorption processes are taken into account, the NSE freeze-out temperature

TNSE = 8 GK) is reached at later times and larger radii. In these cases, the radial velocity

of each fluid element has further decreased due to the motion inside the gravitational

well, and has approached its asymptotic value, v∞.

Finally, we compare the previous results, obtained assuming an isotropic ν emission

(Eq. (3) with α = 0), with the ones obtained in the anisotropic case (Eq. (3) with

α = 2). While the entropy and the expansion velocity show only minor variations,

more interesting differences are visible in the electron fraction distributions, presented

in Figure 10. Since most of the ejection happens inside a solid angle delimited by a

polar angle θ = π/2± π/6 about the equatorial plane, the assumption of an anisotropic

neutrino emission decreases the neutrino fluxes experienced by the escaping matter and

lower the effect of electron neutrino absorption. This results in systematically more

neutron-rich ejecta, with electron abundances usually decreased by ∼15% and average

values located between 〈Ye〉 ≈ 0.16 (low luminosity) and 〈Ye〉 ≈ 0.21 (high luminosity).

Our results suggest also that, in the case of ejecta emitted closer to the polar axis, a

high degree of anisotropy in the neutrino emission could result in a large increase of the

electron fraction inside the polar region.
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Figure 10. Same as in Figure 7, but for anisotropic neutrino luminosities.

4.3. Nucleosynthesis yields

Having post-processed the ejected tracers for obtaining an updated electron fraction

evolution, we use the outcome as an input for subsequent nucleosynthesis calculations.

The nucleosynthesis yields are shown in Figure 11, alongside with the solar r-process

abundances (dots, Lodders 2003). We first consider the isotropic luminosity case, α = 0

in Eq. (3). Gray lines represent the abundance patterns of individual tracers, while

colored lines the abundances summed over all tracers. For a straightforward comparison,

we apply the same colors as for the electron fraction distributions in Figure 7. In the

case with only electron and positron captures, we find a robust r-process nucleosynthesis

from second to third peak due to the extremely neutron-rich conditions. Moreover,

the abundances of individual tracers are close to the average one, with a small spread

reflecting the narrow distribution in electron fraction. In contrast, the three remaining

cases including neutrino captures show a rather strong dependence on the neutrino

irradiation flux, and the larger spreads in the electron fraction distribution translate in

a larger variety behaviors of the single tracers with respect to the average one. The

component of the ejecta with relatively high electron fraction forms r-process nuclei up

to the second peak. When these ejecta are complemented by a neutron-rich component,

the mass-integrated nucleosynthesis almost ranges from the first to the third r-process

peak. The relative importance of the light to the heavy r-process nuclei depends on the

increase in electron fraction and, in turn, on the intensity of the neutrino luminosities.

The first peak is somewhat underproduced in the case with low luminosities. Increasing

the (anti)neutrino luminosities has two effects. First, the abundances of nuclei up to
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the second r-process peak are enhanced. Second, the abundances of heavy nuclei with

A & 130 decrease by up to more than an order of magnitude with respect to the solar

abundances. In the high luminosity case, the increase of the electron fraction peak above

0.23, combined with a rather low matter entropy, prevents a significant production of

r-process nuclei above the second peak.
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Figure 11. Nucleosynthesis yields when including weak reactions. We find a robust

r-process for the case including only electron and positron captures. However, the

abundances for heavy nuclei with (A & 130) decreases and the ones for lower mass

nuclei (A . 130) increases if higher (anti)neutrino luminosities are assumed. Color

scheme and luminosity cases are the same as in Figure 7. Gray lines show the

abundance pattern of individual tracers. Solar r-process abundances are shown as

red dots.

The angular dependence of the (anti)neutrino luminosities also affects the r-process

nucleosynthesis in the dynamic ejecta. In Figure 12, we present the final abundance

yields obtained in the case of anisotropic neutrino emission, α = 2 in Eq. (3), again

in comparison with the solar r-process abundances (dots, Lodders 2003). Since the

dynamic ejecta are mainly ejected close to the equatorial plane, the shadow effect of the

forming disk reduces the neutrino fluxes that irradiate the expanding matter. Similar to

the isotopic cases, a weak component that comprises nuclei with A . 130 is coproduced.

As a consequence, this reduces the abundances in the region beyond the second r-process

peak, but not as much as in the cases exhibiting isotropic luminosity. On the contrary,

we find a rather robust r-process pattern, which underproduces the rare-earth peak

and the third peak by up to a factor of ∼ 2 for the highest assumed (anti)neutrino

luminosities. All yields are complemented by lighter heavy elements between the first
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and the second peak.

10 7

10 6

10 5

10 4

10 3

Ab
un

da
nc

e 
Y

capture low luminosity

0 50 100 150 200
Mass number A

10 7

10 6

10 5

10 4

10 3

Ab
un

da
nc

e 
Y

medium luminosity

0 50 100 150 200
Mass number A

high luminosity

Figure 12. Nucleosynthesis yields when including weak reactions and angle dependent

luminosities. Color scheme and luminosity cases are the same as in Figure 10.

4.4. Discussion and comparison

Our work extends on the results of previous studies (e.g., Roberts et al. (2017) and, in

particular, Goriely et al. (2015)). Goriely et al. (2015) report a similar initial¶ electron

fraction distribution as we do (0.0 . Ye . 0.2). However, they find a peaked instead

of a bimodal distribution, and their distribution extends to Ye = 0.3. Particularly

when solely considering electron and positron captures in the subsequent evolution of

Ye, they find a very broad distribution, and this is because of to the occurrence of

a shock at larger densities and much larger temperatures (T & 100 GK). In their

cases including (isotropic) neutrino irradiation, the relatively large (neutrinoless) weak

equilibrium Ye occurring at weak freeze-out is further increased by νe and positron

absorptions. Thus, when including also neutrino captures on nucleons, they report on

higher electron fractions than we find in our results, even up to Ye = 0.5 (though this

is likely also due to the different treatment of λkν). Their corner case for decreased

temperatures (T/3) is comparable to our results, since the temperatures are similarly

high here. The lower shock temperature generally implies a milder decrease of Ye during

the shock, and therefore more emphasized effects of νe and ν̄e captures, leading to an

overall higher 〈Ye〉 at late times. When only taking into account electron and positron

¶ For beta-equilibrium conditions at ρeq = 1012g cm−3.
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captures, they find a distribution that is very similar to our corresponding case. Overall,

our results confirm their conclusion that the r-process nucleosynthesis shows a robust

abundance pattern, unless the neutrino flux is extraordinarily high (see our case “high

luminosity”). Nevertheless, the weak r-process component with mass numbers A . 130

is affected by the degree of weak interactions, i.e., the larger the neutrino flux the more

the ejecta yield nuclei below the second r-process peak. Under the assumptions made

here, there are always admixtures of these two distinct components and there is a trade-

off to produce either of the two. Therefore, we need at least a second kind of ejecta to

explain the full r-process pattern from the first to the third r-process peak (see, e.g.,

Hansen et al. 2014).

For the merger of a black hole and a neutron star, Roberts et al. (2017) investigate

the impact of neutrinos on the nucleosynthesis. It is important to note that such a

system lacks an interaction region, hence the ejecta originate from the tidal tails. This

component is extremely neutron-rich and cold enough for electron and positron captures

to be neglected. Due to the rapid outflow timescales of the ejecta, Roberts et al. (2017)

find that the electron fraction distribution is not shifted significantly. Even for their

highest (isotropic) luminosity case (Lνe = 2.5 · 1053 erg/s, Lν̄e = 1.5Lνe), the electron

fraction obeys Ye . 0.25. Similar to our results, the heavy elements from the second

to the third r-process peak are produced robustly, with subtle enhancements for the

abundances of nuclei with A . 130 due to neutrino irradiation.

Furthermore, GR radiation-hydrodynamics simulations also found that Ye in the

dynamic ejecta of BNS mergers can be significantly enhanced by weak reactions (e.g.,

Sekiguchi et al. 2015, Foucart et al. 2015, Radice et al. 2016). However, Sekiguchi et al.

(2015) reported that the inclusion of neutrino absorption in optically thin conditions has

a minor impact on the average electron fraction of the ejecta in their models. These could

be explained by the occurrence of the shock at lower electron degeneracy conditions (i.e.,

at lower densities and/or higher temperatures), favoring positron captures on neutrons,

rather than electron captures on protons (see, for example, Figure 6).

5. Conclusion

In this paper, we have explored the impact of weak reactions on the distributions of the

electron fraction and of the entropy in the ejecta obtained from an equal mass neutron

star binary merger simulated in full GR, with a finite temperature, microphysical EOS.

We have focused on the shock-heated ejecta that originates from the disk. We have used

a parameterized post-processing treatment that allowed us to explore consistently the

impact of individual reactions on Ye and on the entropy. It also permitted to disentangle

the role of some of the most relevant aspects influencing the electron fraction evolution,

including the impact of shock heating, the dependence on the intensity of the integrated

neutrino luminosities, and on the degree of anisotropy in the neutrino emission. For

each model, we have computed detailed nucleosynthesis yields, relating the impact of

weak reactions to the properties of the synthesized nuclear abundances.
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These are our three major findings:

1.) The inclusion of neutrino absorption on free nucleons, in addition to neutrino

emission from electron and positron absorptions, changes significantly the

properties of the ejecta. Even if electron antineutrino luminosity initially dominates

over electron neutrino luminosity, the neutron abundance and the larger reaction Q-

value favor electron neutrino absorption on neutrons for all the tested luminosities,

increasing always the electron fraction. The larger the neutrino luminosities are, the

larger the increase in Ye distribution is. Moreover, the increase in matter entropy

due to the absorption of neutrinos roughly compensate the decrease due to neutrino

emission.

2.) The occurrence of a shock in the ejection process does not necessarily lead to an

increase of the electron fraction in neutron-rich matter. If the shock occurs at

densities & 1011 g cm−3 and temperatures . 8 MeV, electron degeneracy favors

electron captures on protons rather than positron captures on neutrons, for an

initial Ye > 0.10. For the examined trajectories, when the peak temperature in the

shock exceeds ∼ 5 MeV and Ye > 0.1, electron captures are fast enough to reach

weak equilibrium around Ye ≈ 0.10. This has the remarkable consequence that

the subsequent evolution becomes independent from the thermodynamical history

before the shock. On the other hand, if Ye < 0.1 before the shock occurs, positron

absorption is not fast enough to ensure equilibrium. In our tracer sample, the

latter condition is verified only when neutrino absorption is neglected. Otherwise,

neutrino absorption increases always Ye above 0.1 before the shock occurrence.

3.) Neutrino absorption is proportional to the local neutrino flux. Thus, in addition to

the total luminosity and energy spectrum, the angular dependence of the neutrino

luminosity, in combination with the spatial distribution of the ejecta, has a relevant

impact. Since the shock heated ejecta that we have analyzed in our work expand

close to the equatorial plane, a significant degree of anisotropy in the neutrino

emission can lead to appreciable differences in the Ye distributions, compared with

the isotropic case.

Our work confirms previous findings that weak reactions are crucial to set the

properties of the ejecta in binary compact mergers, even for the dynamic ejecta (Wanajo

et al. 2014, Sekiguchi et al. 2015, Goriely et al. 2015, Sekiguchi et al. 2016, Radice

et al. 2016, Roberts et al. 2017). Thus, future studies that aim at exploring the

properties of the ejecta and address the problem of the related nucleosynthesis will

require a careful inclusion of neutrino physics, both in terms of the relevant neutrino

reactions and of the characteristic emission properties. The detailed results we have

obtained are intrinsically related with the specific properties of the tracer particles we

have used in our analysis. Some of our findings might not apply to shock-heated ejecta

that significantly differ from ours. However, we have shown that our approach is useful

to investigate the origin of the increase in Ye in decompressed neutron-rich matter from

binary compact mergers, as well as the relevance of single reactions. Moreover, it is
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well suited to analyze the results of detailed radiation-hydrodynamical simulations with

a controlled and inexpensive approach, in particular to explore in details the different

thermodynamical conditions experienced by fluid elements during a binary merger. A

larger and more detailed set of models is required to extensively explore the different

conditions experienced by matter and radiation during compact mergers.
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Appendix A. Weak magnetism and recoil corrections. Approximated

captures rate expressions.

In Eqs. (19)−(22), we employ the weak magnetism and recoil corrections provided by

Horowitz (2002) for charged current reactions on free nucleons:

Rν(E) =
1

c2
v + 3c2

a

1

(1 + 2x)3

[
c2
v

(
1 + 4x+

16

3
x2

)
+ 3c2

a

(
1 +

4

3
x

)2

±4 (cv + F2) cax

(
1 +

4

3
x

)
+

8

3
cvF2x

2 +
5

3
x2

(
1 +

2

5
x

)
F 2

2

]
.(A.1)

In the above expression, x = E/(Mbc
2), Mb is the baryon mass, cv = 1, ca = ga ≈ 1.26,

and F2 ≈ 3.706. The upper sign refers to νe, the lower to ν̄e.

In our calculations, we did not consider any approximations to the rates, while in

the following, starting from Eqs. (19)−(22), we derive approximated expressions in the

form:

λ0
x = c nx 〈σx〉 , (A.2)

where nx is the target density and 〈σx〉 an average cross section. This derivation is

useful to provide simpler expressions for the rates and to compare with others used

in the literature. We neglect both the electron rest mass correction (M → 1 and

∆ + me → ∆ in the non-vanishing lower limits of integration) and the Pauli blocking

factors involving electrons and positrons in the final state. Moreover, since for typical

neutrino energies x� 1, we expand Eq. (A.1) in powers of x:

Rν(E) ≈ 1− 2x
(5c2

a ∓ 2ca (cv + F2) + c2
v)

(c2
v + 3c2

a)
+

1

3
x2 (88c2

a ∓ 56ca (cv + F2) + 5F 2
2 + 8cvF2 + 16c2

v)

(c2
v + 3c2

a)
+O(x3) . (A.3)
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In the case of (anti)neutrino capture rates, λ0
νe and λ0

ν̄e , we assume the free

streaming radiation to propagate mainly radially, and its spectrum to be described

by a Fermi-Dirac distribution with vanishing degeneracy parameter and mean energy

〈Eν〉 = kBTνF3(0)/F2(0). For the corresponding capture rates, we obtain

λ0
νe = c nνe 〈σνe〉 , (A.4)

λ0
ν̄e = c ñν̄e 〈σν̄e〉 . (A.5)

In the above expressions, nνe is the electron neutrino particle density, which can be

expressed in terms of the local radial flux, Eq. (3), while ñν̄e is a modified expression of

the electron antineutrino particle density, which takes into account the non-zero lower

integration limit:

nνe =
Fνe
c
, (A.6)

ñν̄e =
Fν̄e
c

F2(−∆/kBTν̄e)

F2(0)
. (A.7)

Fk(η) is the Fermi integral of order k and argument η.

The average cross sections 〈σν〉 are then computed by inserting Eq. (A.3) up to

the first order in x inside Eqs. (21) and (22), and then averaging over the neutrino

distribution functions:

〈σν〉 ≈
σ0

(mec2)2

〈
ε2ν
〉{[

1 + 2
∆〈εν〉
〈ε2ν〉

+
∆2

〈ε2ν〉

]
+

− (γ ∓ δ)
[
〈ε3ν〉

〈ε2ν〉Mbc2
+ 2

∆

Mbc2
+

∆2〈εν〉
〈ε2ν〉Mbc2

]}
, (A.8)

In Eq. (A.8), the upper sign is for νe while the lower sign for ν̄e, γ =

2 (c2
v + 5c2

a) / (c2
v + 3c2

a), and δ = 4c2
a (cv + F2) / (c2

v + 3c2
a) . We compute the neutrino

and antineutrino energy moments via〈
εnνe
〉

= (kBTνe)
n Fn+2(0)

F2(0)
, (A.9)

〈
εnν̄e
〉

= (kBTν̄e)
n Fn+2(−∆/(kBTν̄e))

F2(−∆/(kBTν̄e)
, (A.10)

where we took again into account the lower integration limit by modifying the neutrino

degeneracy parameter.

In the case of electron and positron captures on nucleons, the rates are expresses

as

λ0
e− = c ñe− 〈σe−〉 , (A.11)

λ0
e+ = c ne+ 〈σe+〉 . (A.12)

In the previous expressions, ne+ is the positron particle density while ñe− is a modified

version of the electron particle density,

ne− =
8π

(2π~c)3
(kBT )3 F2

(
µe −∆

kBT

)
, (A.13)

ne+ =
8π

(2π~c)3
(kBT )3 F2

(
− µe

kBT

)
, (A.14)
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where µe is the relativistic electron chemical potential, and we used the fact that for

high enough temperatures µe+ = −µe. The average capture cross-sections for electrons

and positrons, 〈σe−〉 and 〈σe+〉, are given by:

〈σe〉 ≈
σ0

2 (mec2)2

〈
ε2e
〉{[

1 + 2
∆〈εe〉
〈ε2e〉

+
∆2

〈ε2e〉

]
+

− (γ ∓ δ)
[
〈ε3e〉

〈ε2e〉Mbc2
+ 2

∆

Mbc2
+

∆2〈εe〉
〈ε2e〉Mbc2

]}
. (A.15)

where the upper sign refer to e− and the lower sign to e+. The energy moments are

computing in terms of the Fermi integrals and also in this case for e− the non vanishing

lower integration limit is included as a shift in the chemical potential,

〈εne−〉 = (kBT )n
Fn+2((µe −∆) /(kBT ))

F2((µe −∆) /(kBT ))
, (A.16)

〈εne+〉 = (kBT )n
Fn+2(−µe/(kBT ))

F2(−µe/(kBT ))
. (A.17)

We notice that the expressions we have derived for 〈σν〉 are similar, but different from

the expressions reported in Horowitz & Li (1999).

In Figure 6, we have presented curves of equal electron and positron capture rates

in the matter density-temperature plane. In Figure A1, we plot for completeness the

ratio between the two rates over the full plane.

Appendix B. Model for atmospheric drag

In the following, we construct a model for the atmospheric drag applicable to the ejecta

considered in this work. Those are arranged in two expanding thin rings above and

below the orbital plane. At the relevant distances from the remnant, Newtonian physics

is sufficient. We assume that each fluid element of the ring would follow an unbound orbit

without the drag force provided by the artificial atmosphere. To compute the latter, we

assume that artificial atmosphere swept up by the expanding ring becomes part of it,

while the linear and angular momentum of infinitesimal ring sections remains unchanged

by this merging. We regard this as a reasonable approximation for the behavior of

the finite volume numerical scheme unless the ring density becomes comparable to the

atmosphere density. Given the atmosphere density ρa and an effective projected area

Ar of the ring, the increase in the mass m of the ring is ṁ = Arρavs, where vs is the

velocity of the ring surface. We further approximate vs ≈ ṙ, where r2 = R2
r + z2

r ,

where Rr and zr are the ring radius and the z-offset of the ring. To get the projected

area, we take the increase in thickness during the expansion into account by making

the assumption Ar ≈ 4πar2, where a is a constant denoting the effective fraction of the

solid angle covered by ejecta. This holds exactly if the expansion can be described as

uniform scaling.

Combining all the above assumptions, we obtain ṁ = 4πar2ρaṙ. Using momentum

and angular momentum conservation and a central gravitating mass M , a short
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Figure A1. Ratio of the electron and positron capture rates in the density-

temperature plane for varying electron fractions. We plot the trajectory from Figure 6

with a dashed blue line. The dotted-dashed black line marks the solution of Eqs. (26)

for a composition made up of only nucleons.

computation yields

d

dt

(
E

m

)
=

d

dt

(
Ek
m
− M

r

)
= −2

ṁ

m

Ek
m
, lz = lz0

m0

m
, (B.1)

where Ek is the kinetic energy of the ring and lz the specific angular momentum.

Rewriting m(t) as m(r), we find

dm

dr
= 4πar2ρa,

d

dr
(mE) = −8πaρaMmr , (B.2)

Integration yields the result

m = m0

(
1 +

k1

3

(
r3 − r3

0
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(B.3)
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where the subscripts 0 denote initial values and k1 = 4πaρa/m0. A fit of k1 to the

extracted trajectories is shown in the middle panel of Figure B1 (we picked a starting
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Figure B1. Influence of artificial atmosphere on ejecta. Left: total mass of tracers

(black), tracer mass unbound at a given time according to geodesic criterion (blue),

after correcting for the energy loss according to drag model fit (red). Middle: kinetic

plus potential energy of tracers divided by total tracer mass (black), and the drag

model fit (red). Right: total angular momentum of tracers divided by total tracer

mass (black), and the drag model fit (red).

time well after the ring became unbound). Next, we computed the angular momentum

using the fit parameter obtained above. The result is shown in the right panel, and

fits the data sufficiently well. Our main requirement for the fit is however that it can

account for the loss of unbound matter. To test this, we assume that the loss of (kinetic

plus potential) specific energy for each ejecta fluid element is a function of radius given

by the fit. We can then adjust the energy threshold for the geodesic bound matter

criterion to correct for this energy loss. The result is shown in the left panel. After

the correction, the sharp decrease is removed. Instead, we find a slight increase, which

is likely an over-correction due to the various approximations. To avoid confusion, we

note that the mass shown in the panel is not m in the equations above, but a sum over

the (constant) tracer masses of the tracers which are unbound at a given time, i.e. it

should remain constant if no tracer becomes bound/unbound anymore. In conclusion,

our model supports the assumption that the slow-down of our ejecta is indeed just a

numerical artifact, as assumed in (Kastaun et al. 2017) to compute the ejecta mass.

The model might also be useful to plan numerical simulations since it allows to predict

the slowing of the ejecta for given (constant) atmosphere density.
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2010 A&A 513, A61.

Perego A, Cabezón R M & Käppeli R 2016 ApJS 223, 22.
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