Chapter 1

Stochastic modeling of
complex macromolecular
decay

Angelo Valleriani*

1 A short model of gene expression

There are many books and articles summarizing what we know about gene expression.
Furthermore, the more we study this aspect of life, the more we find out how complex it
is and how variable such concepts like gene, genetic code and protein are. Nevertheless,
since this article refers to modeling one aspect of the regulation of gene expression, it is
perhaps important to provide the reader with at least a very superficial but quick view of
the big framework.

Gene expression is a generic term that is commonly related to what is known as the
central dogma of molecular biology. According to the commonly accepted version of
this dogma, it all starts with the DNA, which is a chain of four nucleotides A, C, G,
T, organized in chromosomes. On the chromosomes, the genes occupy specific regions
called loci. In humans, there are 23 different chromosomes, each coming in two copies,
one inherited from the mother and one from the father, respectively. The sequence of

nucleotides of one gene on a certain locus could be different on the two chromosomes
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but in general the number of differences is very small or absent. Population genetics, also
a branch of applied stochastic methods, deals with some mechanisms of propagation of
gene variants in populations [1, 2]. Certain cells have only one set of chromosomes, e.g.
sperm or egg cells. Certain organisms like bacteria have only one single chromosome on

which all genes are collected.

The genes found in the DNA are first transcribed into RNA molecules. The majority
of the total RNA molecules present in each cell plays a key role in the production of
proteins. Some species of RNA molecules become part of ribosomes, which are complex
molecular machines made of RNA and proteins. Some RNAs become transport RNA,
called also tRNA. Some RNAs are found in the form of small or micro RNA and finally

a prominent role in gene expression is played by messenger RNA molecules (mRNA).

Protein synthesis is the final product of gene expression: in this process, the ribosomes
read the information encoded in the mRNA and synthesize the proteins using the amino-
acid delivered by the tRNAs. This process is called translation. The particular way in
which the ribosome reads the mRNA is the basis of what we know as the genetic code.
The ribosome reads the nucleotide sequence of the mRNA one triplet of amino-acids per
step. To each triplet, called codon, corresponds one amino-acid that will be incorporated

into the nascent protein.

The amount of proteins corresponding to a given gene present in the cell will thus
depend on several factors. The first factor is the amount of mRNAs of that gene: this is
determined by the balance between the synthesis rate of the mRNA (transcription rate)
and the degradation rate of the mRNA. The second factor is the amount of ribosomes
translating each mRNA molecules, which eventually determines the protein synthesis
rate (if we neglect possible translation errors such as ribosome drop-off [3]). The final

factor is the degradation rate of the proteins.

The RNA molecules that become part of the ribosome are called rRNA. Both rRNA
and tRNA are very stable. Their duty is to provide the machinery of the process of trans-
lation, independently of what has to be translated. The mRNA molecules instead are
typically not so stable and their lifetime is regulated by some internal cellular mecha-
nisms. Indeed, when the cell needs to change the kind of proteins to be synthesized, due
for instance to some stressful condition, it can do that by changing the composition of the
cell mRNA population. Beside the important role played by the regulation of transcrip-

tion, one way to tune the amount of mRNA is to activate or deactivate specific degradation
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mechanisms. These degradation mechanisms usually involve several biochemical path-
ways, which work in parallel or in competition with each other. As an example, micro
RNA (miRNA) can bind to a specific mRNA together with some proteins, whose main
scope is to recruit other enzymes that start or trigger the digestion of the mRNA [4, 5].
The digestion of the mRNA proceeds usually through several steps until the molecule is
not detectable in a fashion that depends on the kind of mRNA and on the organism [6].
This series of steps can be quite complex, since it requires the subsequent participation of
several molecules. Since the degradation of mRNA runs over several steps, the lifetime
of such molecules is very complex and so we should expect that their decay pattern is
not exponential [7, 8, 9, 10]. The degradation of proteins is also a mechanism to regulate
gene expression. Also for proteins we know that several factors are needed to degrade
them and so we expect their lifetime to be complex and their decay pattern to be non-
exponential [11, 12, 13].

Without entering into any of the biochemical mechanisms that determine the degrada-
tion of mRNA or proteins, we may still briefly discuss how the decay pattern of such
molecules are determined experimentally. There are obviously several experimental tech-
niques. All of them have in common the idea of following the decay in time of the amount
of molecules of the species of interest. To achieve this, the experimentalists first culti-
vate the cells for a certain fixed amount of time during which the molecules of interest
are marked, e.g. with radioactive isotopes. This period of labeling with the marker is
called the pulse phase. Afterwards, the labeling of the molecules is stopped and the ex-
periment proceeds with the harvesting of the molecules at fixed time intervals from the
cell extracts of a large amount of cells. This period of harvesting is called the chase
phase. The measurements at these time points will provide a decaying curve that we call
the decay pattern of the specific molecule. The curve decays because the amount of la-
beled molecules cannot increase. In some cases, the pulse phase can be so long that all
molecules of interest are labeled. We call this situation the steady state expression. In this
situation a balanced amount of old and newly synthesized molecules is present in the cell,
i.e. we have a stationary age distribution of those molecules. When instead the pulse is
extremely short, the labeled molecules are all very young and the age distribution is far
away from stationarity. As we shall see in the following, the length of the pulse will make
a big difference on how the decay pattern looks like [11, 13]. This is the starting point of

our journey towards modeling the process of complex decay.
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1.1 Types of decay patterns

Traditionally, decay experiments have been performed under the assumption of an ex-
ponential decay. Under this assumption, the decay pattern in a semilog plot looks like
a straight line. The fit requires just two point and the liner regression of the data, from
which the rate of degradation can be extracted.

As more experimental techniques became available, more datapoints during the chase
phase were collected thus revealing that the behavior is often very different from a straight
line in a semilog plot (see [9] and references therein). In most cases, the decay pattern
could be superficially described as fast at short times and slow at long times thus leading
to the idea of a double exponential. Most careful experiments and theory have however
shown that the decay pattern changes in shape depending on the length of the pulse phase
even if the molecules under examination are the same [11, 13]. From the biochemical
point of view, a non-exponential decay pattern means only that the degradation process is

complex, i.e. it is composed of several steps [7, 9].

2 Relationship between Poisson processes and uniform
distribution

This section states and summarizes a known result concerning the relationship between a
Poisson process with constant rate and the uniform distribution [14]. We will show that
conditional on a number N of events at a certain time ¢, the time of origin of the N events
is uniformly distributed in [0, 7).

Let X(¢) be a Poisson process with rate A and initial condition X (0) =0. If X(t) =n
we will say that until time ¢ there have been exactly n events. Textbook calculations
show that for any fixed ¢, the number of events n is distributed according to a Poisson

distribution
(At)"exp(—Ar)

P{X(r)=n|X(0)=0}= o , (1.1)
which implies also that for u <t
n—k
PUX(1) = n| X(u) = ky = U exp(“A(—u)) (1.2)

(n—k)!
holds.
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Now we would like to show that under the condition of a fixed number n of events until
time ¢, the time points at which the n events arose are uniformly distributed in [0,7). To
proceed with this comparison, we shall first state one of the elementary properties of the
uniform distribution. Imagine to throw n points at random on a line of length 7 such that
each throw is independent and the probability density function of the position of each
point is uniform. Let now be u an arbitrary point in [0,7) and let ¥, be the number of
points, out of the n points thrown in total over the line, that fall into the segment [0, u).
Since each point has probability #/; to fall over this segment, the probability distribution

for Y, is given by the binomial distribution

P{Y, = k} = (Z) (?)k (1 - %)H . (13)

Let us turn our attention back to the Poisson process and let us consider the ensemble
of Poisson processes with rate A conditioned that X (¢) = n, namely conditioned that the
number of events up to time ¢ is n. Under this condition, we would like to know what
is the distribution of the number of events of the process occurring during the interval of
time [0, u) for u € [0,7). This is equivalent to ask about the probability distribution of the
stochastic variable X («). This leads to

P{X(u) = k | X(0) =0, X(t) = n}
_ P{X() =k.X(1) =n|X(0) =0}
P{X(t) =n[X(0) =0}
_ P{X() =n | X(u) = K}P{X () = k| X(0) = 0}
P{X(r) =n|X(0) =0}

~ o () (-9 4

where the last line arises after using (1.1) and (1.2). The comparison between (1.3)

and (1.4) should be enough to convince ourselves that the distribution of the number of
events falling into any interval of time in the conditioned Poisson process is identical to
the distribution of the number of points falling into the same interval. We conclude that
the position in time of the events of the conditioned Poisson process follows a uniform
distribution.
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3 The time dependent distribution of the number of molecules

In this section we will assume that the pulse phase starts at time zero and that the
molecules under consideration have an arbitrary life time distribution. We will first derive
the distribution of the number of molecules at time ¢ after the start of the pulse. Later we
will assume that the pulse phase is interrupted at time #, and derive the time dependent
distribution of the number of molecules at time 7, + At during the chase phase. Finally,
we will derive the time dependent age and rest-life distributions of the molecules as a
function of time. To simplify the discussion, in the rest of these notes we will concen-
trate on the analysis of mRNA decay as an example of application. The extension of the
analysis and modeling to protein decay is then easy.

3.1 Basic assumptions about transcription and degradation

As specified earlier, mRNA molecules are synthesized from their DNA template through
a process called transcription. For the whole content of this section we will assume that
transcription occurs at a fixed constant rate @, and that at each transcription event only
one mRNA is synthesized. To be precise, in eukaryotic cells the process of transcription
does not directly deliver mRNA molecules. In this kind of cells, our @, is then the rate
of mRNA delivery in the cytoplasm of the cell. Let R(¢) be the stochastic variable that
gives the number of labeled mRNA found at time ¢ after the start of the pulse phase. We
assume that the pulse phase starts at time zero and that thus the initial condition of our
process is given by R(0) = 0. Thus, in the absence of mRNA degradation, the process
of transcription is a Poisson process with constant rate .. Another assumption that we
make concerns the life time distribution of each mRNA molecule. Let U € [0, ) be the
random life time of an mRNA molecule. We will assume that the probability function
G(1,) of U is given by

G(t) = P{U <1} = /Ol“ oy (T)dt, (1.5)

where ¢, is the probability density function of U. We will not make any special restriction
concerning the form of the density ¢, apart from the fact of being integrable in [0, o) and

having well defined moments. In particular, we will not impose that ¢;; is an exponential
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Figure 1.1: This figure shows the process of origination of the mRNA chains at random times
starting from an arbitrary point in time, + = 10. The units of time have been arbi-
trarily fixed to be equal to a)tgl, In this illustration, we have set (U) = IOa)tgl, We
see that the mRNA chains are generated at random points and have a random dura-
tion. In this example, just to fix the ideas, we have considered the gamma distribution
¢y (t) = (A*1/2) exp(—Ar). At any arbitrary point in time, one can count the number of
chains that are still intact at that point. By following this number in time, one obtains
the trajectory of the number of mRNA molecules originating from one gene in one cell.
This statistics is shown in Figure 1.2.

distribution. As mentioned earlier, the exponential distribution has been considered so
far as a suitable approximation but the available experimental data show that for most
mRNAs there is no simple exponential fall off and we should consider more complex
processes. Therefore, in order to leave the modeling open to any possible functional
form of ¢,;, we will henceforth consider the generic form given in (1.5). On the basis
of these assumptions we have therefore that transcription at a fixed rate generates new
mRNAs while degradation eliminates them. During the pulse phase, these new mRNAs

are labeled. We should expect that after a certain amount of time, typically longer than
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Figure 1.2: Number of mRNA molecules over time. From Figure 1.1 one can derive the number of
mRNA chains present in the cell at any given point in time. By following this process
over a long period of time, one can obtain a pictorial view of the kind of fluctuations
that characterize the number of mRNA molecules. We see in this plot that the number
of molecules attains a stationary value until, at the end of the process, the pulse phase
is interrupted. Despite the stationarity of the process during a long period of time, the
figure shows that the fluctuations are particularly strong. In this work we will provide a
detailed analytical and exact description of such fluctuations.

the pulse duration in any common experimental set-up, the processes of synthesis and
degradation reach a steady state and that the number of labeled mRINA R attains a stable

distribution.

3.2 Formal derivation of the distribution of the amount of mRNA

Consider an experimental set-up in which the pulse duration is 7,. For a time ¢ < 1,
let X () be the underlying Poisson process that describes the amount of labeled mRNA
molecules synthesized until time ¢ with transcription rate @,. The stochastic variable

R(t) is instead the random number of labeled mRNA molecules present in the cell at time
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t. Therefore, while X (¢) just counts the number of synthesized molecules, R(z) takes into
account also the possibility that some molecules synthesized until time ¢ might have been
already degraded. Thus, it holds that 0 < R(r) < X(¢) for all # > 0. Under the general
assumptions made before, we wish to compute the distribution of R(), which we can
formally write as

P{R(t) =k | X(0) =0}, (1.6)

for any k > 0 and ¢ < t,,. To approach this problem, we first write this probability by using
the law of total probability as [7]

P{R(z) = k| X(0) = 0}

— Y P{R(H) = k| X(0) = 0.X(r) = n}P{X () =n | X(0) =0}, (L7)
n=k

and consider first P{R(¢) = k | X(0) = 0,X(¢t) = n}.

We have learned in Section 2 that conditioned on the number of events up to time ¢, the
time position of the events is uniformly distributed in [0,¢). Let now be O the origination
time of a randomly chosen mRNA and let U be its random lifetime. This mRNA molecule
will be present at time ¢ only if the variable Z = O+ U satisfies Z > t. The probability p
of this event gives the probability per mRNA to be present at time . We have therefore

p=P{Z>1) = ;/O’ P(Z>1]0=s}hds = %/()I(I—G(u))du, (18)

where G(t,) is defined in (1.5) and we have made use of the fact that P{Z >t |0 =1,} =
P{U >t —1,}. Finally, it results that conditioned on X (¢) = n the number of labeled

mRNA still present at time ¢ is binomially distributed according to
PARIE) =k | X(0)=0.X(0) =1} = (})H(1 - p . (19)

At this point, we are ready to consider again (1.7) by plugging in both (1.1) and (1.9).
This simple computation delivers the time dependent distribution of the number of labeled

mRNA at time ¢ after the start of pulse phase, given by

[wtcA (t)}k exp [_ wtcA (t)]

P{R() = k| X(0) = 0} = ! ,

(1.10)
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where .
Alt) = /0 (1-G(u)) du.

One can notice that (1.10) is a time dependent Poisson distribution with parameter
. A(t). Nevertheless, one can easily see that A(z) — (U) as t — oo with

) = /0 "y () du,

being the average life time of the mRNA molecules. Thus, for very long pulse durations
(tp — o) the limit # — oo leads to the stationary distribution

P{Rst _ k} _ [(Dtc<U>]k€Xp [7wtc<U>}

. , (1.11)

which depends only on the average life time and not anymore on the details of the degra-
dation process. For the sake of illustration, a comparison between the theoretical distri-
bution and its numerical estimation for a particular choice of (U) is shown in Figure 1.3.

Thus we see that the distribution of the amount of mRNA molecules after the start of
the pulse phase and before time 7, is Poisson at each time point with a parameter that
depends on time. In particular, the transient time to stationarity depends critically on
the life time distribution of the mRNA [7]. Moreover, the transient time is large if the
life distribution is very broad. This must be particularly long in eukaryotic cells, if we
interpret @, as the rate of delivery of the mRNA. We know indeed that in eukaryotic cells
the average life time of the mRNA can be particularly long. In prokaryotic cells instead,
the life time of most mRNA molecules is relatively short so that in most of the cases
the stationary state is reached in about 20 minutes. The limiting (stationary) distribution
given in (1.11) depends instead only on the mean life time of the mRNA chains and not
on any other details of the degradation process as long as this process does not modify
the average lifetime (U).

3.2.1 Time dependent life time distributions

This subsection can be omitted on a first reading. In this section we derive the distribution
of the number of mRNA molecules for those cases when the time of origin of the mRNA
is relevant. This is usually the case if the experimental conditions change with time.

It is of a certain interest at this point to have a brief look at the special case in which
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Figure 1.3: Age and rest life time distributions at steady state. Inset: stationary distribution of the
number of mRNA. Under the same conditions of Figures 1.1 and 1.2 the main plot
shows a comparison between the numerical estimation at steady state of the age of the
mRNA taken at any random point in time (circles), the rest life time distribution (stars)
and the theoretical predictions given in (1.28) and (1.29), respectively. In the inset, we
see the comparison between the statistics from a computer simulation for the number
of mRNA at stationary state with (U) = 10 wlgl with the corresponding theoretical
distribution derived in (1.11).

the life time distribution of the mRNA depends on time ¢ after the initiation of the ex-
periment. This dependence may be due to changing environmental conditions during the
experiments both because of intrinsic and extrinsic origins. Putting it in simple terms, this
means the the time of origin of an mRNA cannot be forgotten because this determines the
history of that chain.

Formally, let us define the random variable C(7,¢) that gives the state of a mRNA chain
of age 7 at time 7. This stochastic variable takes values in the state space {0, 1} such that

0 is the degraded (absorbing) state and 1 is the intact state. We assume to have

P{C(t+h,t+h) =0|C(t,t) = 1} = o(t,1)h + o(h), (1.12)
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for h — 0. In this case, it is an easy calculation to find out that

Tu

P{U>1t 0=t} =exp (— o(x,t, +x) dx) , (1.13)
0

where ¢, is the time at which the mRNA chain was originated. Finally, this leads to the

probability function

Tu

P{U<t, 0=t} = G(ty,t,) =1 —exp < a)(x,t(,+x)dx> , (1.14)
0

which depends both on 7, and on ¢, and not only on their difference. Therefore, to evaluate

p we cannot follow the same route that led to (1.8). In this case, we need to consider that
P{Z>t10=t,} =P{U>t—1,|0=t,} = 1 =Gt —tp,1,), (1.15)

and thus the probability p becomes

t
p=1 [ (1=Ga=ss)as= =1, (1.16)

with the additional property that the limit of large 7 for H(¢) may not be known or even
be unbounded. At this point we impose that

lim G(x,y) = 1 (1.17)

X—o0

for any value of y. Note that Eq. (1.17) is not contained in the definition of the degradation
rate given in (1.12). By using the same formalism set in (1.12) we can then rewrite H ()

as

H(t) = /Otexp (—/Otsm(x,sﬂ)dx) ds = /Otexp (—/Sta)(x—s,x)dx> ds, (1.18)

which should converge for t — oo if @(x,y) > @_, > 0 for any x, y > 0. Finally, the time
dependent distribution of the number of mRNA at time ¢ after the start of transcription is

given by

[ H (1)) exp(~ e H (1))

P{R(t) = k| X(0) =0} = b

(1.19)
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3.3 The number of mMRNA molecules after the pulse

In this section we consider the case in which the pulse is stopped (or interrupted) at some
time 7, and we observe the number of mRNA molecules an interval At during the chase
phase.

Let us assume that pulse phase is terminated at time #,, after having started at time zero.
We have seen that the distribution of the number of labeled mRNAs for the transcribed
gene is given by (1.10) for  =¢,. Since labeling is terminated, we expect that no further
labeled mRNAs are produced and that, therefore, there is no increase in the number of
labeled mRNAs after time #,, and, rather, we expect to witness a decrease of those mRNAs
due to the effect of the degradation mechanisms.

We would like to find out what is the distribution of the number of mRNAs at time
t = t, + At, namely At time units after the interruption of labeled synthesis [9]. By using

the same notation as in the previous calculations, we shall find
P{R(t, +At) =k | X(0) = 0, @, >0 for r € [0,2,), @, =0 for 1 € [t,,00)}, (1.20)

where, in the condition, we have explicitly written the change in the synthesis (label-
ing) rate @, underlying the interruption of labeling. To simplify the notation, we will
henceforth omit the condition on the synthesis rate @, of labeled molecules. In order to
compute (1.20) we shall proceed in a fashion similar to what was done previously. The
important information that has to be kept in mind is that here the time origin O of the
mRNAS is in the interval [0,7,).

Rephrasing the formalism used in (1.7), we find
P{R(t,+Ar) = k| X(0) = 0}

=Y P{R(t,+Ar) =k |X(0) =0,X(t,) =n}P{X(1,) =n | X(0) =0}, (1.21)
n=k
and consider first P{R(t,+Ar) =k | X (0) = 0,X(t,) = n}. From the equivalence between
Poisson processes and uniform distribution introduced in Section 2, conditioned on the
number of events up to time ¢,, the time position of the origin of each mRNA is uniformly
distributed in [0,7,). Let now be O the random origination time of a randomly chosen
mRNA and let U be its random life time. This mRNA molecule will be present at time
t, + At only if the variable Z = O + U satisfies Z > t, + At. The probability p. of this
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event gives the probability per mRNA to be present at time 7, + Az. We have therefore

1 1 1 1p+AL
pe=P{Z>1,+ A} = */ P{Z>1,+At|O=s}ds = */ (1-G(w) du,
t[] 0 tp At

(1.22)

where G(t,) is defined in (1.5). Finally, it results that conditioned on X(z,) = n the
number of labeled mRNA still present at time ¢, + At is binomially distributed according

to
n

PRI + &) = k| X(0) = 0.X(1,) =n) =

>p';(1 —p)" . (1.23)

Using now (1.1) and (1.21) the time dependent distribution of the number of labeled
mRNA at time 7, + Ar after the start of the pulse and Ar time units after the interruption
of the pulse phase and beginning of the chase phase is given by

[@cAc(ty +A)]* exp(—@cAc(t, + At))
k! ’

P{R(1,+At) =k | X(0) = 0} = (1.24)

where
tp+At

Aoty +A1) = /At (1-G(u)) du.
This relation is similar to (1.10) but not identical. In fact, in (1.24) we have that A.(r, +
At) — 0 as At — oo, expressing the fact that in the chase phase the number of mRNAs
cannot increase. An important point from the experimental point of view is to realize that
in (1.24) there is an explicit dependence on the length of the pulse 7,. This means that
the distribution will be different for the same target mRNA depending on the value of #,.

This point plays a very important role in the analysis of decay data [13].

To describe the expression of a given gene after a very long pulse phase, it is sufficient
to take the limit #, — oo in (1.24). This simple limit gives an expression for the number
of mRNA At units of time after the start of the chase phase, which is again a Poisson

distribution with parameter
A(Ar) = wm/ (1-G(w)) du, (1.25)
Jae

where we see that the life time distribution determines also the behavior of the distribution

during the chase phase.
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3.4 The decay law of the mean humber of mRNA

In experiments aimed at investigating the decay of the number of mRNA in order to
deduce its half time 7,,, it is not the distribution of the number of mRNA that is measured
but the mean number over an ensemble of cells. This measurement is performed by
interrupting the transcription and by measuring the relative amount of mRNAs at different
time points after interruption.

To compare our results with the experiments we therefore need the average number N,
of mRNA as a function of time after the interruption of transcription [13]. This is simply
given by the average performed over the distribution (1.24) and gives

1p At

Ny(ty+ A1) = @Aty + A) = @ /A (1-G(w)) du, (1.26)
J At

where the half time ¢, measured in the experiments is then given by solving

1
N (tp+1,) = gNr(tp), (1.27)

as a function of 7,. By substituting (1.26) into (1.27) we find that #, must satisfy
tp+t 1 7
/' "(1-G(u)) du = f/"(l — G(u)) du,
th 2 Jo
which, in the case in which #, — oo leads to
/ (1-Gw) du = ~(U).
t 2

To fix the ideas about this relationship, we will consider the example in which the life

time probability density is a Gamma function of order n = 0 and n = 1, where

A(Ar)" exp(—At)

n!

Py (t) =

)

withn=0,1,... and A = (»+1)/(v). For n = 0, namely for an exponentially distributed

life time, the half time #, is related to the mean life time (U) through

(n=0) _ ~
t = (U)log2 ~0.69(U),
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as is well known. On the other hand, for n = 1 the relationship is

=1
=1~ 0.57(U),
for the same mean value. If one would now ignore that the result for n = 1 does not come
from an exponential density and one would assume that it comes from an exponential,

one would try to derive the mean value (U)’ such that #, = (U)"log2. This would lead to
Y = 0.83(U),

namely it would lead to an underestimation of the mean life time by about 20%.

3.5 Age and rest life time distributions

Given that there is a turn-over of the mRNA, there is an age distribution of the molecules.
This age distribution depends on the length of the pulse phase and on the time point of
measurement after the start of the chase phase. The same holds also for the rest life time.
There is a connection with renewal theory here. In renewal theory the age is called current

life and the rest life time is called excess life.

3.5.1 The age distribution of one chain

We shall start by considering the age distribution of one mRNAs at any arbitrary point in
time ¢ -+ At after the start of the pulse phase'. At this point in time, the only age distribu-
tion that can be computed is the one of mRNAs that at this time are not yet degraded. In
other words, one can compute the age distribution of an mRNA only under the condition
that this molecule still exists at the moment of measurement. Using the same notation as
before, let us call O the time of origination of a randomly chosen labeled mRNA and U
its random life time. The random time of origination, O, must be contained in the interval
[0,7). The given mRNA will be present at time ¢ + Az only if the variable Z = O+ U
satisfies Z > ¢ 4+ At. Then, the age distribution of the mRNA is given by the distribution
of A =t -+ Ar — O under the condition Z > ¢ + Ar.

The choice of ¢ + At for the measurement time may seem to be a bit unusual at this point. We shall see
that this choice allows for a natural derivation of a number of useful limits
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In order to compute this quantity we shall first compute the probability density for O
conditional that Z > ¢t + Ar. Thus, we have

P{O<x,Z>t+ At
P{O<x|Z>t+At} = {0 x2>1+A1)

P{Z > t+ At}
> P{O<x,Z>t+AM|U=u}
= = d
/¢+At—x P{Z>t+At} Oy (u) du
* P{t+At—u<O<x
= { }¢U(u)du

t+ar—x  P{Z>t+ At}

for 0 <x < ¢ by making a simple use of the definition of conditional probability and of the
law of total probability. We shall now use the fact that the random variable O is uniformly
distributed in [0,7) (because we have conditioned that there is one mRNA alive at time
¢+ At) and thus that P{Z > 7+ Ar} is given by a formula similar to (1.22). After canceling

the normalization factors ¢ + At in the numerator and denominator, this leads to

o P{t+At—u<0O<x
/ { }¢U(u)du
t+At—x

P{Z >t+ At}

|

from which we can compute the distribution of the age A = ¢+ A¢ — O under the condition
Z >t + At. This distribution is given by

t+Ar -1
/At (1-G(y)) dy] /HN_X [x —max (0,1 + At —u) | ¢y (u) du,

PlA<a|Z>t+At} =1-P{O<t+At—a|Z>t+At}

=1- {/Hﬁ(l - G(y)) dy] h /: [min(u,t +At) — a| ¢, (u)du,

At

which finally leads to the probability density function after differentiation

0,(ali+Ar) = {/HN(I—G()}))dy}I (1-Gla))

At

for At < a <t + At and zero otherwise. One can discuss the following limiting cases:

o At >0t =t,>0. In this case ¢,(a |1, + At) gives the age distribution of the
mRNAs at time ¢, + Az after the start of labeling given that the pulse phase has
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been interrupted at time ¢,.

At =0andt <t,. In this case ¢, (a | t) gives the age distribution of the mRNAs at

time ¢ after the start of pulse.

At =0 and 7, — oo. In the case

() = lim ¢y (a 1) = ?T (1.28)

gives the stationary age distribution of the mRNAs assuming that labeling was
active since very long time. A comparison between this result and its numerical

estimation is given in Figure 1.3.

At > 01, — oo. In this case

lim 9, (a |1+ A7) = [/:(1 —G(y))dy} (- 6)

gives the age distribution of the mRNAs At time units after the beginning of the
chase phase, assuming that the pulse duration was so long that all the mRNAs are
labeled.

At =0and ¢ < 1leads to ¢,(a |t) =¢" and thus gives an age distribution that is
asymptotically flat between 0 and ¢.

3.5.2 The rest life time distribution

The determination of the distribution of the rest life time L proceeds in a similar fashion.
Let Z = O+ U be the sum of the time origin and of the life time of a given mRNA and let
t + At the time of observation or measurement after the start of the pulse phase. The rest

life time is clearly given by L = Z — (¢ 4+ Ar). We start then by looking at the statistics of
Z. We have

P{Z<t+M+x|Z>t+At} =

P{t+At <Z <t+Ar+x}
P{Z > 1+ At}

/HN(I—G(y))dy]l (./:A[(l—G(y))dy— /HAIH(l—G(y))dy) 7

|:. At Ar+x
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where one can easily verify that this expression satisfies the conditions to be a probability

function. Using this result, one can easily find out that the following relationship holds
P{LSr|Z>t4+At} =P{Z<t+AN+r|Z>1+At},

which leads to the probability density for L upon derivation by r, thus leading to

t-+AL -1
O (r|t+Ar) = |:/At (1-G(y)) dy} (G(t+At+r)—G(Ar+71)),

for r > 0. One can discuss the following limiting cases:

o At >0t =t, > 0. Inthis case ¢, (r | t, + Ar) gives the rest life time distribution of
the mRNAs at time 7, + Az after the start of labeling given that the pulse duration

was .

o At = 0. In this case ¢, (r | 1) gives the rest life time distribution of the mRNAs at
time ¢ after the start of the pulse phase.

o Ar =0 and t — oc. In the case

1-G(r)

1.29
) (1.29)

st :
r)y=Ilim¢,(r|t) =
031(r) = lim 9, (r |1
gives the stationary rest life time distribution of the mRNAs assuming that the
pulse duration was so long to reach steady state. A comparison between the the-
oretical prediction and its numerical estimation is given in Figure 1.3. One can
notice that the stationary age and stationary rest life time distributions are identi-

cal.

¢ At > 0and t — . In this case

w -1
}LTG¢L(V|I+N): [/At (I—G(y))dy} (1-G(At+7)),

gives the rest life time distribution of the mRNAs Az time units after the start of
the chase phase assuming that labeling was active since very long time and the
number of labeled mRNAs had reached steady state.
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o Ar=0andr— 0leads to ¢, (r |t = 0) = ¢, (r) as it is intuitively clear since the

rest life of a new born mRNA is given by its whole life.

3.5.3 Heuristic derivation of the age and rest life time distributions

At any given moment of observation far away from the initial condition we will detect
an mRNA with a probability that is proportional to its life time U. This means that the
probability to catch an mRNA of total life time between u and u + du is proportional to
u¢y, (u) du. Thus, normalizing accordingly we obtain that this probability is governed by
the density 9y (0)/(v).

Now, conditional that the life time of an mRNA is U = u, both the age and the rest life
of this mRNA are uniformly distributed in [0, «) with density 1/u, namely

1
Ou(x U =) = 9| U =) = -
with 0 < x < u. Finally,

0u(x) = 9,(x) = / wi“%w iy — 1—< 5><x> |

in agreement with the previous calculations.

4 Time dependent transcription rates

In this section we abandon the experimental set-up of pulse and chase and we describe
more closely a situation in which the synthesis (or transcription) rate changes with time.
This situation is biologically meaningful because the life of a single cell is made of dif-
ferent phases (cell-cycle phases) in which the expression of certain genes is turned on
or off. Here we will assume that the changes of the transcription rate follow a known
temporal, deterministic pattern. As before, we will describe the distribution of the num-
ber of mMRNA molecules and other statistical properties of the system under the condition
that the transcription rate is not constant. Here, we will consider the simple problem of a

deterministic series of changes in transcription rate.
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4.1 Two consecutive transcription phases

In the previous sections we have considered always the initial condition in which the
number of mRNA chains present at time zero (or at any initial arbitrary time) was zero.
This was useful in order to single out the pattern of growth of the number of mRNA chains
without the complication of a different initial condition. It is perfectly possible to perform
the computation with a different initial condition but it is certainly more convenient to deal
with this question according to the following scheme. We start by considering here the
case in which at time tl,(l) starts a transcription process with rate a)t(cl) which is concluded
at time ts(l) followed by a second transcription process starting at time ti(z) = ts(l) with
rate wt(cz) and concluded at time ts(z). We assume here that the life time distribution ¢,
is unaffected by these changes and that it is not dependent on the time at which the
measurements are made. We also assume that at time tl,(l) there are no mRNA chains of
this kind, so that X (:(!)) = 0.

We consider now a measurement time ¢ at some point in the middle of the second
transcription phase. Thus, tl.(z) <t < ts(z) and therefore 1 > tS“). We want to know what
is the distribution of the number of mRNA chains at this time ¢. The first observation to
make is that this distribution has two contributions. The first contribution comes from the
mRNAs that originated in the first period and did not degrade before time ¢. The second
contribution comes from the mRNAs that originated in the second period, before time
t, and did not degrade before time ¢. These two contributions are independent of each
other and thus the number of mRNA that we observe at time ¢ is made of the sum of two
independent random numbers.

The contribution from the mRNAs that originated in the first period leads to a Poisson
distribution that was derived in Section 3.3 Eq. (1.24). In the present contest, this is a

Poisson distribution with parameter

t—t()

At) = wt(cl)/t_m: (1-G(u)) du, (1.30)

where we have substituted the time intervals in (1.25) in explicit time differences. The
contribution arising from the second period, instead, can be derived using the results of
Section 3.2 Eq. (1.10). This leads to a Poisson distribution with parameter

1—1?)

Az(z)zwt?/o " (1-G(w) du, (1.31)
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where the lower integration limit is zero because ¢ < ts(,z). Although the present status of
the derivation may look discouraging, especially if one thinks about its generalization to

more than two periods, here it follows a result that saves the day.

Let X, and X, two independent Poisson distributed random numbers, whose distribu-
tions have parameters A, and A,, respectively. Let Y be the random number given by the
sum of X, and X,

Y =X +X,,

then the probability distribution of Y is also Poisson with parameter A, +4,. The simplest
way to see this, is by means of the generating functions. Indeed, the generating function
g;(s) of the variables X; is given by

8i(s) = exp[=A;(1—s)]

and thus the generating function g(s) of their sum is the product of the g;, given by

8(s) = 81(5)8,(s) = exp [=(A +24,)(1—5)] ,

which concludes the demonstration.

Therefore, the distribution of the number of mRNA at time ¢ at any point in the middle

of the second transcription period is a Poisson distribution with parameter

t—t_(l) t—t_(z)
Alt) = wgg)/l? N (I—G(u))dquwt(Cz)/o (1—G(u))du, (1.32)

s

with the first term from (1.30) and the second from (1.31).

4.1.1 Change of transcription and degradation

The switching point between two different transcription rates can be the time point at
which also the degradation changes. This would imply that before the switching point the

mRNA are transcribed with rate oot(c1> and have a lifetime probability density (I)l(]l) while

after the switching they are generated with a rate a)t<cz) and have a lifetime probability

density ¢52). Under these conditions, the parameter of the Poisson distribution for the
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mRNAs generated after the switching point tl,(z) is given by (1.31) with the modification

— t(z

) = of / (1— G, (u)) du, (1.33)

where G,(t) is the probability function. The fate of the mRNAs generated before the
switching, i.e. before time ti(z) is more complicated and could be characterized in different
ways depending on the biological processes of aging. The simplest assumption is that the
age accumulated by each mRNA during the first period is carried over or recognized by
the environment in the second period as well (for instance, only some of the microscopic
rates are changed). Under this scenario, we have that the conditional probability given in
Eq. (1.10) must be modified as follows

P{U>1—s} = P{U, > —s}P{U2>t—s|U2>t —s},

where the conditional probability in the rhs expresses the fact that also according to the
degradation process that determines U, the mRNAs have the same age as under the pro-
cess that determines U,. Notice that in all these equations the identity 7{!) = tl.(z) holds.

Thus, now one obtains

t—t(D 1—-G (l‘(l) )
— »(D) f s _ _
2,(0) = o /Hp) e )(1 Gyt —s))ds, (1.34)

1

which obeys the obvious property that it goes back to (1.30) when the two degradation
processes are identical. Finally, at any time ¢ > tl@ the number of mRNA is distributed

according to a Poisson distribution with parameter
Alt) = A, (1) + 4,(1),

given by (1.34) and (1.33).

4.2 A long series of transcription phases

It is not difficult to generalize the result derived in (1.32) to accomplish a row of n+ 1

such phases, each characterized by its own transcription rate a)t<cj). Indeed, also the sum
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on many independent Poisson distributed random numbers is Poisson distributed with

parameter given by the sum of the parameters.

Thus let us assume that there are n+ 1 phases. Each phase j starts at time tl_(j) and
terminates at time ts(/) with transcription rate a)t<cj). We make a measurement at time ¢
such that it is in the middle of the n+ 1 phase, namely tl‘(”+1> <t < ts(”“). Thus, the
distribution of the number of mRNA molecules at time ¢, will be a Poisson distribution

with parameter
f—t (n+1)

=t -
a,tg)/ f (1—G(”))du+w¥*”/ " (1-G(w)du, (135
_ 0

which in the limit of large n would give a distribution that does not depend on the initial
conditions at time tl,(l) and where we still assume that the sequence of all a)tg) is known

and deterministic.

Now we notice that we can rewrite (1.35) by using the following definition. Let
wtc(f) - wt(c) )

1ft( /) < ¢ <1U). Then from (1.35) we obtain

n+l

no pr—t\)
Alt) = Z/t Lot —u)(1-G( du+/ O (t —u) (1 - G(u)) du, (1.36)

=1 =)
which then, taking into consideration that ti(j 1) = ts(j ) leads to
)

! t(
l(t):/o Do (t—u)(1—G(u))du. (1.37)

If we, without loss of generality, arbitrarily set now tl,(l) = 0 and apply a rather intuitive
change of variable, we obtain that the distribution of the number of mRNA during a
process with any arbitrary number of transcription phases can be expressed as a Poisson

distribution with parameter

/ (1) (1 - Gt — ) du, (1.38)
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where we see that the major contribution arises from the recent events, close to ¢, if we
remind that (1 -G (x)) — 0 as x — oo. For the present and future reference we write then

the full form of the distribution as

[A(1)]* exp(—A(r))

P{R(t)=k|X(0)=0, 0 (u) 0<u<t} = o ,

(1.39)

with A(¢) given in (1.38). We shall notice that until one does not know the complete
behavior of @, (¢) for large ¢ it is not possible to discuss the question of the stationary

distribution.

5 Conclusions

The previous sections have provided a general framework to describe any kind of non-
exponential decay pattern. We have found out that as long as the synthesis rate is either
constant or varies deterministically in time, the distribution of the number of molecules
in the cell is a time-dependent Poisson distribution. Nevertheless, when dealing with
experimental data we would like to find out some properties associated to the molecule
that has been measured, such as the mean lifetime. The framework outlined above, thus,
has to be complemented with a parametric way to obtain the lifetime distribution of the
molecules.

An important hint in this direction comes from biochemistry. The degradation mech-
anisms are characterized by the interaction of the target molecule with other molecules,
complexes or enzymes present in the cell environment. For instance, in miRNA mediated
degradation, the target mRNA is first recruited by a complex made of miRNA and other
molecules. Afterwards, once the miRNA and its partners are bound to the target mRNA,
more enzymes are recruited that start modifying the structure of the mRNA and start de-
grading the mRNA one nucleotide per step. In general, thus, the degradation process
can be described at the single molecule level as a network of biochemical interactions.
In this network, the vertices are biochemical state of the target mRNA. One or more of
these states then lead to the degradation, which is obviously irreversible. If we take this
idea, we can generalize it by describing the target molecule as visiting a network of states
during its life until a final absorbing state is reached, which is the complete degradation

[15]. For our purposes, a molecule is degraded when it is no longer detectable by the
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experimental technique. In an even more abstract step, we assume that it is possible to
describe the single-molecule process of degradation as a continuous time Markov chain
which has a well defined initial condition (the newly synthesized mRNA) and has one
well defined absorbing state (the degraded state). In this way, the life time probability
density ¢, (¢) is just the probability density of the absorption time on this network.

When the details of the biochemical process of degradation are known, the network of
states, or at least its starting structure, can be taken from it. In that case, the data are used
to estimate the parameters (the transition rates) of the network and the analysis can be
used to validate the hypothesized biochemical process [15]. When the biochemical net-
work is unknown, the network of states has to be chosen among the most parsimonious
networks that are able to fit the data in a satisfactorily manner. Here, the analysis pro-
vides important kinematic properties of the degradation process and some hint to further
experimental clarification of the underlying biochemistry.

Alternatively, one can define an age dependent degradation rate by using results from
hazard rate theory [8], whenever there is a mechanistic model of degradation that cannot

be cast into the framework of a stochastic process with a finite number of discrete states.
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