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ABSTRACT: Aqueous two-phase systems and water-in-water emulsions have attracted much recent interest. Here, we theoret-
ically study the interactions of such systems with biomimetic membranes and giant unilamellar vesicles (GUVs). For partial
wetting, the water−water interface and the membrane form a three-phase contact line that partitions the membrane into two
distinct segments with different tensions and different curvature-elastic properties. On the nanometer scale, the capillary forces
arising from the water−water interface lead to a smoothly curved membrane that forms an intrinsic contact angle with the
interface. The corresponding balance conditions are derived here for general curvature-elastic parameters of the two membrane
segments. On the micrometer scale, the capillary forces deform the membrane segments into spherical caps with an apparent
kink along the contact line. A new computational method is introduced by which these piece-wise spherical vesicle shapes can be
analyzed in a systematic manner. The method is based on a general relationship that is reminiscent of Neumann’s triangle but
depends explicitly on the curvatures of the membrane segments. For certain regions of the parameter space, corresponding to
small or large spontaneous curvatures, the force balance along the apparent contact line can be described in a self-consistent
manner and then leads to curvature-independent relationships that involve the total membrane tensions. The different relation-
ships can be used to determine the material parameters of the droplet−vesicle system from the observed morphologies of the
GUVs. The approach described here is quite general and can be applied to different membrane compositions and aqueous two-
phase systems. The same computational approach can also be used to elucidate the response of biological membranes to the
recently discovered membrane-less, droplet-like organelles.

■ INTRODUCTION

Aqueous two-phase systems, also called aqueous biphasic sys-
tems, have been used for a long time in biochemical analysis
and biotechnology and are intimately related to water-in-water
emulsions.1,2 Renewed interest in these systems arose from
several recent developments such as the use of ionic liquids,3

improved control of the biphasic partitioning of biomolecules,4,5

the production and handling in microfluidic devices,6 and the
Pickering stabilization of water-in-water droplets by various types
of particles.7−10 Aqueous two-phase systems based on biopolymers
such as PEG and dextran undergo phase separation when the
weight fractions of the polymers exceed a few percent. The cor-
responding interfacial tensions are ultralow, of the order of
10−7−10−4 N/m, reflecting the vicinity of a critical demixing
point in the phase diagram.11−14

When two liquid phases partially wet an extended surface,
the liquid−liquid interface forms a contact line and certain con-
tact angles with this surface. For a solid or rigid surface, the
associated contact angle is governed by Young’s equation aris-
ing from the balance of the force components tangential to the
surface. When the surface represents another liquid−liquid

interface with a third liquid phase, the force balance along the
contact line leads to Neumann’s triangle that describes this
balance both in the tangential and in the normal direction.15

These force balance equations are quite general and apply to
any phase-separated liquid including aqueous two-phase sys-
tems. For two aqueous phases in contact with rigid surfaces, the
contact angles have been recently measured for a variety of
surface materials in the context of Pickering stabilization.7−10

In this paper, we consider aqueous two-phase systems in con-
tact with biomimetic membranes such as lipid bilayers, which
represent surfaces with unusual properties. First, similar to liquid−
liquid interfaces, these membranes are two-dimensional fluids
and characterized by fast lateral diffusion. As a consequence,
they can change their local composition in response to the molec-
ular interactions with their local aqueous environment. Therefore,
when a multicomponent membrane is in contact with two
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aqueous phases, α and β, it is partitioned into two types of seg-
ments that will, in general, differ in their molecular composi-
tion. Second, in contrast to liquid−liquid interfaces, the shape
of membranes is usually dominated by curvature elasticity.16−19

The latter type of elasticity involves two material parameters,
bending rigidity and spontaneous (or preferred) curvature, both
of which depend on the molecular composition of the membranes
and on their molecular interactions with the aqueous environ-
ment. As a consequence, the membrane segments in contact with
the α and β phases will in general have different curvature-elastic
properties. Third, the membranes are so flexible that they can
undergo strong morphological changes in response to the cap-
illary forces arising from the water−water interfaces even though
these interfaces are characterized by ultralow interfacial tensions.
Contact angles between water−water interfaces and mem-

branes were first measured for giant unilamellar vesicles (GUVs)
formed by lipid bilayers in contact with PEG−dextran solutions.20
In the latter case, it is possible to confine the aqueous phase
separation to the interior compartments of the GUVs. For the
PEG−dextran systems, two methods have been used to achieve
such a confinement. First, the system was prepared at a suffi-
ciently high temperature at which the polymer solution forms a
uniform liquid and phase separation was then initiated by cooling
the system down.21−23 Second, the system was prepared at room
temperatue and the GUVs were then osmotically deflated by
increasing the osmolarity of the exterior solution.20,24−26 The
permeation of water from the interior to the exterior solution
increases the weight fractions of the polymers within the inte-
rior solution which then undergoes phase separation. Temper-
ature changes affect both the vesicle volume and the membrane
area, whereas osmotic deflation changes only the vesicle volume
and keeps the membrane area unchanged.
Phase separation into two aqueous phases, α and β, within a

GUV can lead to different in-wetting morphologies, as displayed
in Figure 1. For all morphologies, the vesicle is surrounded by a
third aqueous phase γ that plays the role of an inert spectator
phase. The morphologies in Figure 1a and b have been observed
by optical microscopy for phase separated PEG−dextran solutions
which eventually form one PEG-rich α and one dextran-rich
β droplet inside the GUV.20,24−26 The morphology in Figure 1a
corresponds to partial wetting of the vesicle membrane by both
α and β, and the morphology in Figure 1b, to complete wetting
by the PEG-rich α phase. The partial wetting morphology is

characterized by a three-phase contact line at which the αβ inter-
face between the two liquid phases meets the vesicle membrane
and partitions the membrane into two segments. The partially
wetted shapes were observed to have an apparent kink close to
this contact line,24,25 as schematically shown in Figure 1a. In
addition, the shapes of the partially wetted membranes form
piece-wise spherical caps, quite different from the smoothly curved
shapes that the membranes form in the absence of partial wet-
ting and capillary forces. The same three-spherical-cap morphol-
ogy applies to two liquid droplets composed of the phases α and
β that coexist with the bulk liquid γ in the absence of the vesi-
cle, as will be discussed further below.
Wetting of vesicle membranes has also been observed when

the PEG−dextran solutions underwent phase separation out-
side the GUVs.27 In the latter case, the aqueous minority phase
forms aqueous droplets that can interact with the vesicle mem-
brane, leading to different out-wetting morphologies. The main
body of this paper will focus on the case of in-wetting; the
behavior of out-wetting will be briefly discussed at the end.
The apparent kink in the membrane shape as observed for

partial wetting, see Figure 1a, directly reveals the capillary forces
that the αβ interface exerts onto the vesicle membrane. These
forces are balanced by tensions in the two membrane segments.
One objective of the present paper is to elucidate this force
balance between the αβ interface and the vesicle membrane
along the contact line. Previous theoretical studies of this bal-
ance have been quite limited. The first study was based on energy
minimization of axisymmetric vesicle−droplet shapes under
the assumption that both membrane segments have the same
curvature-elastic properties and zero spontaneous curvatures.24

Later experiments revealed, however, that one of the two mem-
brane segments formed many nanotubes which implies a large
spontaneous curvature of this segment.25,28 In order to address
these observations, a second theoretical approach was based on
the assumption that the balance between the interfacial tension
of the water−water interface and the tensions in the two mem-
brane segments can be described by a generalized Neumann’s
triangle. The latter approach is appealing from an intuitive
point of view but remains to be justified, in particular because
the membrane tensions are composite in nature and consist of
several contributions that are generated by different mechanisms.
Here, we will first reconsider axisymmetric vesicle−droplet

shapes and derive the balance between capillary forces and

Figure 1. In-wetting morphologies arising from phase separation into two aqueous phases, α (yellow) and β (blue), within a giant vesicle. The vesicle
is surrounded by the bulk liquid γ (white) which plays the role of an inert spectator phase. Red and purple segments of the vesicle membrane are in
contact with the α and β droplets, respectively. The αβ interfaces are depicted as dashed orange lines: (a) Partial wetting of the vesicle membrane by
both the α and the β phase. This morphology exhibits a three-phase contact line (black circles). On the micrometer scale, the vesicle shape exhibits a
kink along this contact line which directly reveals the capillary forces acting onto the vesicle membrane. (b) Complete wetting of the membrane by
the α phase. (c) Complete wetting by the β phase. (d) Special morphology for which the α and the β droplet are separated by a closed membrane
neck. The latter morphology, which resembles complete wetting by the γ phase, is only possible if the membrane has a certain minimal area to
enclose both spherical droplets completely.
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membrane tensions without any simplifying assumptions about
the curvature-elastic properties of the two membrane segments.
The resulting equation contains additional terms that depend
on the highly curved membrane shape along the contact line. At
present, this balance equation cannot be used to analyze the
GUV shapes obtained by optical microscopy because the micros-
copy images do not resolve the highly curved membrane shape
along the contact line but exhibit an apparent kink instead. On
the other hand, the experimental observations revealed one uni-
versal feature of the partial wetting morphologies, namely, that
the shapes of the two membrane segments are very well described
by spherical caps that meet at an apparent contact line; see
Figure 1. As shown below, the spherical caps are described by
shape equations that depend on the curvature radii of the spher-
ical segments and on certain combinations of curvature-elastic
parameters. Because the curvature radii can be directly obtained
by optical microscopy, these shape equations can be used to
deduce the curvature-elastic properties of both membrane seg-
ments. In addition, starting from the (free) energy of the spher-
ical cap segments, force balance equations along the apparent
contact line can also be obtained which are shown to apply to
certain regimes of the curvature-elastic parameters.
In the experimental studies of deflation-induced phase sep-

aration and in-wetting by PEG−dextran solutions,25,26 the adsorp-
tion of PEG molecules onto the membrane generated a relatively
large spontaneous curvature of the membrane segments that
were in contact with the PEG-rich liquid phase. In order to relax
the spontaneous tension of the weakly curved GUV membranes,28

these membranes formed membrane nanotubes that protruded
into the vesicle interior. For partial wetting, the nanotubes accu-
mulated at the liquid−liquid interface between the PEG-rich
and the dextran-rich droplet in order to form additional three-
phase contact lines along the tubes. Thus, deflation of the PEG−
dextran solutions led simultaneously to both wetting and tubulation
of the GUVs. However, these two processes do not have to be
coupled and can occur independently. First, nanotubes can be
formed in the absence of aqueous phase separation, as observed
experimentally for GUVs exposed to asymmetric PEG solutions
without dextran.26 Second, membrane wetting is expected to
always generate some spontaneous curvature but tubulation can
only occur if the spontaneous curvature is sufficiently large com-
pared to the inverse vesicle size. In the following, we will focus on
wetting and first ignore the possibility of tube formation. The
additional aspects related to spontaneous tubulation will be
addressed further below.
The paper is organized as follows. The next section on

“Theoretical Description” describes the different energy terms
of the vesicle−droplet systems and clarifies the composite nature
of membrane tension by considering the adhesion free energies
between the membrane and the aqueous phases and by includ-
ing an additional term corresponding to the lateral membrane
stress that acts to stretch (or compress) the membrane. Both
the adhesion terms and the lateral stress term contribute to the
general shape functional for the vesicle shape and to the cor-
responding Euler−Lagrange or shape equations for the two
membrane segments as obtained from the first variation of the
shape functional. The shape equations simplify for spherical
membrane segments and are then applied to the partial wetting
morphology in Figure 1a. We also examine the (free) energy of
the spherical cap segments and derive tension−angle relation-
ships that apply to certain regions of the parameter space and
describe the force balance along the apparent contact line. Another
in-wetting morphology that will be discussed is the special mor-

phology in Figure 1d which involves a closed membrane neck.
The paper concludes with a brief discussion of out-wetting mor-
phologies and some perspectives for future work on wetting of
membranes and vesicles.

■ THEORETICAL DESCRIPTION

Basic Assumptions about the Composition of the
Vesicle Membrane. As mentioned before, multicomponent
membranes exposed to two different aqueous solutions are parti-
tioned into two segments that will, in general, differ in their
molecular compositions, as illustrated in Figure 1a. These dif-
ferent compositions reflect the different molecular interactions
between the membrane molecules and the two aqueous phases.
Membrane segmentation can also arise via two alternative mech-
anisms. One such mechanism is provided by phase separation
within the membranes which leads to two types of membrane
phases that differ in their lipid or lipid−protein composition.
Another alternative mechanism for segmentation corresponds
to curvature sorting, i.e., the preference of some membrane mol-
ecules for highly curved membrane segments.
Here, we consider membrane compositions that belong to the

one-phase region when the vesicle membrane is exposed to a uni-
form aqueous environment provided by any of the three liquid
phases α, β, and γ. Furthermore, we will assume that curvature
sorting of the membrane components is negligible and can be
ignored. In such a situation, the different molecular composi-
tions of the αγ and βγ membrane segments are determined by
the different molecular interactions of the membrane molecules
with the two distinct aqueous phases, molecular interactions
that will be described by the corresponding adhesion free energies.

Geometry of Partial Wetting Morphology. The partial
in-wetting morphology in Figure 1a involves two droplets of α
and β phase with volumes Vα and Vβ. The total volume of the
vesicle is then given by V = Vα + Vβ. The two droplet volumes
are bounded by three surface segments: the αβ interface between
the α and the β droplet as well as two membrane segments, the
αγ segment in contact with the α droplet and the βγ segment
exposed to the β droplet. All three surface segments meet along
the three-phase contact line.
The αβ interface has the area Aαβ that can change in order to

adapt to changes in the droplet volumes and in the vesicle
shape. The two membrane segments have the areas Aαγ and Aβγ

which add up to the total area A = Aαγ + Aβγ of the vesicle mem-
brane. Because of the ultralow solubility of the lipid molecules
and the low area compressibility of the membrane, the value of
the total membrane area A is essentially fixed at constant tem-
perature. More precisely, the area dilation, (A − A0)/A0, from a
relaxed membrane state with area A0 is related to the lateral
membrane stress Σ via the area compressibility modulus KA

according to Σ = −KA
A A

A
0

0
. For the wetting morphologies con-

sidered here, the lateral stresses that act on the GUV mem-
branes are typically26 within the range 10−4−10−2 mN/m and
are therefore much smaller than the area compressibility modu-
lus KA that has a typical value29 above 200 mN/m. As a con-
sequence, the area dilations (A − A0)/A0 are of the order of
10−6−10−4 and much too small to be experimentally detectable.
The vesicle−droplet system is thus characterized by three

geometric constraints, as provided by the volumes Vα and Vβ of
the two droplets as well as by the total membrane area A.
In order to determine the morphology of the vesicle−droplet
system, we will minimize the (free) energy of the system, taking
these three constraints into account.
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Different Energetic Contributions. The three surface
segments and the contact line make different contributions to
the total (free) energy of the vesicle−droplet system. One con-
tribution arises from the interfacial tension Σαβ of the interface
between the two liquid phases α and β. The latter contribution
is proportional to the interfacial area Aαβ and given by ΣαβAαβ.
The curvature elasticity of each membrane segment jγ makes
two contributions, a bending energy that depends on the bend-
ing rigidity κjγ and the spontaneous curvature mjγ as well as a
contribution from the Gaussian curvature modulus κG,jγ. When
we combine the contributions from both segments, we obtain
the bending energy

∫∑ κ= −
α β

γ γ γ
=

E A M m2 d ( )
j

j j jbe
in

,

2

(1)

which depends on the (local) mean curvature M of the mem-
brane, and the Gaussian curvature energy

∮κ κ π κ κ= − + +αγ βγ αγ βγE lC( ) d 2 ( )G G, G, g G, G, (2)

where the first term involves the line integral over the geodesic
curvature Cg (see, e.g., ref 30) along the three-phase contact
line as follows from the Gauss−Bonnet theorem. To obtain the
correct sign of this term, the orientation of the line element dl
has to be chosen in such a way that the αγ segment is sur-
rounded in a clockwise manner when one looks down onto this
segment from the exterior phase γ.
The two energy contributions (1) and (2) correspond to an

extension of the spontaneous curvature model16,17,31 to two dis-
tinct membrane segments. In the absence of flip-flops between
the two leaflets of the bilayer membrane, the number of mem-
brane molecules is conserved in each bilayer leaflet separately
which leads to an additional elastic term that depends on the area
difference of the two leaflets.32,33 On the one hand, the latter
term involves additional curvature-elastic parameters that are, in
general, difficult to determine. On the other hand, this additional
elastic term is irrelevant if the membrane contains (at least) one
molecular species such as cholesterol that undergoes frequent
flip-flops between the two leaflets. Here, we will focus on such
multicomponent membranes and thus ignore contributions from
area-difference-elasticity. As emphasized at the beginning of this
section, we will also assume that the multicomponent membranes
have no tendency to phase separate and have a uniform composi-
tion when exposed to a uniform aqueous environment.
Finally, the molecular interactions between the aqueous

droplets and the membrane lead to two additional contribu-
tions, the adhesion free energies of the droplets and the free
energy of the three-phase contact line. The latter contribution
is proportional to the length Lco of the contact line and given by
Lcoλco with the contact line tension λco. The adhesion free
energies will now be discussed in more detail.
Adhesion Free Energies of Droplets. In order to

determine the adhesion free energy of the droplets in contact
with the vesicle membrane, we denote the outer and inner leaf-
let of the bilayer membrane by the subscript “ol” and “il”, respec-
tively, and view the leaflet−water interfaces as “walls” with
different interfacial tensions, depending on whether they are
exposed to the α or to the β phase.
First, let us consider a reference system in which both the

α and β droplets have been replaced by the γ phase. The inter-
molecular interactions between the leaflets and the adjacent γ
phases then lead to the interfacial tensions Σol,γ and Σil,γ of the

corresponding leaflet−water interfaces, and the combined inter-
facial free energy of both leaflet−water interfaces has the form

= Σ + Σ = Σ + Σ +γγ γ γ γ γ αγ βγE A A A( ) ( )( )ol, il, ol, il, (3)

We will now make the plausible assumption that we can ignore
the dependence of the interfacial tensions on the interfacial
curvatures which implies that both leaflet−water interfaces are
governed by the same interfacial tension

Σ = Σ = Σγ γ γl ol, il, (4)

corresponding to planar leaflet−water interfaces of a planar
bilayer membrane.
If we now go back to the wetting morphology in Figure 1a, the

interfacial free energy of the leaflet−water interfaces becomes

= Σ + Σ + Σ + Σαβ α γ αγ β γ βγE A A( ) ( )l l l l (5)

The adhesion free energy Ead of the α and the β droplet in
contact with one of the leaflets is then defined by

≡ − = +αβ γγ αγ αγ βγ βγE E E W A W Aad (6)

with the adhesion free energies per unit area,Wαγ andWβγ, given
by

≡ Σ − Σ ≡ Σ − Σαγ α γ βγ β γW Wandl l l l (7)

for the α and β droplet, respectively, in contact with one of the
membrane leaflets. Because the term “adhesion free energy per
unit area” is somewhat clumpsy, I will use the shorter term
“adhesive strength” instead. When the leaflet prefers the α phase
over the γ phase, the adhesive strength isWαγ < 0. Likewise, when
the leaflet prefers the β phase over the γ phase, Wβγ < 0. The
adhesive strengthWjγ also represents the reversible work that has
to be expended per unit area to replace the γ phase by the phase
j with j = α, β. In addition, we can also compare the adhesion of
the α and β droplets to one of the leaflets without any reference
to the γ phase. Thus, the reversible work per unit area to replace
the β phase in contact with a leaflet by the α phase is given by

≡ Σ − Σ = −αβ α β αγ βγW W Wl l (8)

If the leaflet prefers the α phase over the β phase, the adhesive
strength is Wαβ < 0.

Energy Functional for In-Wetting. Now, let us consider
any shape S of the vesicle−droplet system with area Aαβ of the
water−water interface, areas Aαγ and Aβγ of the two membrane
segments, and length Lco of the three-phase contact line. The
(free) energy of this shape includes the bending energy Ebe

in and
the Gaussian curvature energy EG as given by (1) and (2) as
well as the adhesion free energy Ead in (6). When we collect the
different contributions to the energy of the partial in-wetting
morphology, we obtain the energy functional

λ≡ Σ + + + +αβ αβS A E E E L{ }in
be
in

G ad co co (9)

for in-wetting. The superscript “in” indicates that this energy
functional corresponds to in-wetting and should be distinguished
from out-wetting. In fact, the only energy contribution that is
different for in- and out-wetting is the one that arises from the
bending energy of the membrane segments because the spon-
taneous curvatures assume different values when we swap the
α and β phases with the γ phase; see further below.

Shape Functional for In-Wetting. In addition to the dif-
ferent energetic contributions of the vesicle−droplet system, we
have to take certain constraints on the membrane area A and
the droplet volumes Vα and Vβ into account. The constraint on
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the membrane area A is implemented by the Lagrange multi-
plier Σ which can be identified with the lateral stress that acts to
stretch (or compress) the membrane, as has been explicitly
shown for uniform membranes in ref 34. In addition, we have
to enforce certain values for the volumes Vα and Vβ of the α and
β droplets. These volumes are determined by the pressures Pα,
Pβ, and Pγ within the three liquid phases α, β, and γ or, more
precisely, by the pressure differences Pα − Pγ and Pβ − Pγ. We
are then led to study the stationary shapes (minima, maxima,
and saddle points) of the shape functional

= − + − + Σ +γ α α γ β βS P P V P P V A S{ } ( ) ( ) { }in in
(10)

where the last term S{ }in represents the energy functional for
in-wetting as given by (9). Both the pressure differences Pγ − Pα
and Pγ − Pβ as well as the lateral stress Σ will be used as Lagrange
multipliers to fulfill the geometric constraints that the droplet
volumes Vα and Vβ as well as the total membrane area A have
certain prescribed values.
Terms Proportional to Individual Segment Areas. The

shape functional as given by (10) contains the term ΣA which
depends on the lateral membrane stress Σ and the adhesion
free energy Ead in (6) which depends on the adhesive strengths
of the two aqueous phases. When we combine these two terms,
we obtain

Σ + = Σ + Σαγ αγ βγ βγA E A Aad (11)

with the segment tensions

Σ ≡ Σ + Σ ≡ Σ +αγ αγ βγ βγW Wand (12)

Thus, each segment tension Σjγ depends both on the lateral
membrane stress Σ and on the adhesive strength Wjγ. For a
given batch of GUVs, the lateral stress Σ depends on the vesicle
size and shape and thus varies from vesicle to vesicle. In con-
trast, the adhesive strength Wjγ is determined by the molecular
interactions across the leaflet−water interfaces and should have
the same value for all GUVs from the same batch, assuming that
their membranes have the same molecular composition and are
exposed to aqueous solutions with the same solute composition.
As a consequence, the difference

Σ − Σ = − =αγ βγ αγ βγ αβW W W (13)

of the two segment tensions is only determined by the adhesive
strengths and should also have the same value for all GUVs from
the same batch.

■ SHAPE EQUATIONS AND FORCE BALANCE
Shape Equations for Membrane Segments. The first

variation of the shape functional (10) for in-wetting leads to
two Euler−Lagrange or shape equations for the two membrane
segments αγ and βγ, in close analogy to the single shape
equation as obtained in ref 35 for the spontaneous curvature
model of uniform membranes. The shape equations for the two
membrane segments have the form

κ κ− = Σ − ∇ − −

× + −

γ γ γ γ γ

γ

P P M M M m

M M m G

2 2 4 ( )

[ ( ) ]

j j j j j

j

LB
2

(14)

with j = α, β and depend, in general, on the (local) mean cur-
vature M and on the (local) Gaussian curvature G of the mem-
brane segments. The ∇LB

2 symbol represents the Laplace−
Beltrami operator.30 For the typical shapes depicted in Figure 1a,
the pressure differences Pα − Pγ and Pβ − Pγ are positive.

Furthermore, the segment tensions Σαγ and Σβγ are given by (12).
The shape equations (14) also hold for other curvature models
provided one uses an appropriate mapping of the parameters
that enter the corresponding shape functionals as shown for
uniform membranes in ref 32.

Boundary or Matching Conditions for Axisymmetric
Shapes. In addition to the shape equations for the two mem-
brane segments, the first variation of the shape functional also
leads to certain boundary or matching conditions for the curva-
tures of the two segments along the contact line. For axisym-
metric vesicles as depicted in Figure 2, these matching conditions

can be obtained by generalizing the corresponding conditions for
two-domain vesicles.31

The shape of an axisymmetric vesicle is uniquely determined
by the symmetry axis and the shape contour. In Figure 2, the sym-
metry axis is provided by the z-axis. We could then use cylindrical
coordinates, r and z, to describe the vesicle shape, but it is more
convenient to parametrize the contour in terms of its arc length
s and to use the radial coordinate r as well as the tilt angle ψ as
defined in Figure 2a. The north pole of the shape is located at
s = 0, the south pole at s = s2, and the contact line at s = s1.
The two principal curvatures of the membrane shape are then

given by the contour curvature C1(s) = dψ/ds and the orthog-
onal curvature C2(s) = sin ψ/r. In general, the contour curvature
C1 attains two different values, C1(s1 − ϵ) and C1(s1 + ϵ), when we
approach the contact line from the αγ and βγ segments,
respectively, while the orthogonal curvature C2 is continuous
across the contact line. The first variation of the shape functional
with respect to the variable ψ(s1) leads to the discontinuity

κ κ

δκ κ κ

+ ϵ − − ϵ

= + −
βγ αγ

βγ βγ αγ αγ

C s C s

C s m m

( ) ( )

( ) 2 2

1 1 1 1

2 1 (15)

of the contour curvature C1 with the parameter

δκ κ κ κ κ≡ − + −αγ βγ αγ βγG, G, (16)

Figure 2. (a) Axisymmetric shape corresponding to partial in-wetting:
The two-dimensional shape is uniquely determined by the one-
dimensional shape contour (red-purple) in the (r, z)-plane defined by
the coordinate z along the symmetry axis and the radial coordinate r.
The shape contour is parametrized by its arc length s, with the north
and south poles of the vesicle being located at s = 0 and s = s2,
respectively, and the contact line at s = s1. The angle ψ describes the
tilt of the tangent vector at the shape contour from the horizontal r-
direction. (b) The αγ segment (red) and the βγ segment (purple)
meet at the contact line with a common tangent. The angles between
this tangent and the tangent to the αβ interface (dashed orange)
represent the intrinsic contact angles θα* and θβ* with θα* + θβ* = π.
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Note that the individual contour curvatures C1(s1 + ϵ) and
C1(s1 − ϵ) are usually quite large compared to the orthogonal
curvature C2(s1) that satisfies C2(s1) = sin ψ(s1)/r(s1) ≤ 1/r(s1).
The discontinuity C1(s1 + ϵ) − C1(s1 − ϵ) of the contour
curvature vanishes if the two membrane segments have the same
curvature-elastic properties, i.e., the same spontaneous curvature,
bending rigidity, and Gaussian curvature modulus. The latter situa-
tion applies in particular to the case mαγ = mβγ = 0 studied in ref 24.
Balance between Interfacial and Segment Tensions.

A second boundary or matching condition is obtained from the
first variation of the shape functional with respect to the vari-
able r1 ≡ r(s1) which represents the radius of the contact line.
The latter variation leads to

θ λ
ψ

Σ − Σ = Σ * + + Δβγ αγ αβ α Σr
cos

cos
co

1

1
,co

(17)

with ψ1 ≡ ψ(s1). The last term in (17) has the explicit form

κ κΔ = + ϵ − − ϵβγ βγ αγ αγΣ Q s Q s
1
2

( )
1
2

( ),co 1 1 (18)

with the curvature-dependent terms

α β≡ − − =γ γQ s C s C s m j( ) ( ) [ ( ) 2 ] for ,j j1
2

2
2

(19)

These relations describe the balance between the capillary
forces arising from the interfacial tension Σαβ, the tensions Σβγ

and Σαγ of the two membrane segments, and the line tension
λco. The additional term ΔΣ,co in (17) arises from the different
curvature-elastic properties of the two membrane segments.
Indeed, the term ΔΣ,co vanishes if the two membrane segments
have the same curvature-elastic properties. In the latter case, we
obtain from (17) and (13) that

θ λ
ψ

Σ − Σ = − = Σ * +βγ αγ βγ αγ αβ αW W
r

cos
cos

co
1

1 (20)

which depends on the adhesion strengths Wβγ and Wαγ of the
two membrane segments, the interfacial tension Σαβ, and the
contact line tension λco. Thus, if the vesicle membrane continued
to have uniform curvature-elastic properties even when it is par-
tially wetted by the two aqueous droplets, the force balance (20)
along the contact line would involve neither the bending rigid-
ity nor the spontaneous curvature of the membrane. For GUVs,
the radius r1 of the contact line is typically of the order of many
micrometers. In such a situation, the term proportional to the
line tension λco in (20) can be neglected, which implies that the

intrinsic contact angle θα* depends only on three material
parameters, the adhesive strengths Wβγ and Wαγ as well as the
interfacial tension Σαβ of the water−water interface.
If the two membrane segments have different spontaneous

curvatures but the same bending rigidities κ and the same
Gaussian curvature moduli, the additional term ΔΣ,co becomes

κΔ = − − ϵ −βγ αγ αγΣ m m M s m4 [ ][ ( ) ],co 1 (21)

with the mean curvature = +M C C( )1
2 1 2 which satisfies, for

καγ = κβγ = κ and κG,αγ = κG,βγ, the matching condition

+ ϵ − = − ϵ −βγ αγM s m M s m( ) ( )1 1 (22)

along the contact line as follows from (15). Thus, the discon-
tinuity in the mean curvature, M(s1 + ϵ) − M(s1 − ϵ), is now
equal to the difference in the spontaneous curvatures, mβγ − mαγ,
and the additional term ΔΣ,co is proportional to this discontinuity.
At present, both the curvature discontinuities and the addi-

tional term ΔΣ,co that enters the force balance relation (17)
cannot be used to analyze the shapes of GUVs because the local
membrane curvatures along the contact line are not resolved by
optical microscopy. Therefore, these matching conditions will
not be further pursued in the following. On the other hand, the
experimental observations revealed one universal feature of the
partial wetting morphologies for GUVs, namely, that the shapes
of the two membrane segments are very well described by spher-
ical caps which is a direct consequence of the capillary forces
exerted by the αβ interface onto the vesicle membrane. Because
the αβ interface necessarily forms a spherical cap as follows
from the classical Laplace equation, the partial wetting morphol-
ogies consist of three surface segments that form three spherical
caps and meet along the three-phase contact line; see Figure 3a.

■ THREE SPHERICAL CAPS: GEOMETRIC RELATIONS
Geometry of Three-Spherical-Cap Shapes. From the

optical microscopy images, we can directly deduce the curvature
radii of the three spherical caps which will be denoted by Rαβ, Rαγ,
and Rβγ, respectively, see Figure 3b,c, and the centers of the
spherical caps by αγ , βγ , and αβ. We will use the sign conven-
tion that all radii are always taken to be positive. Because the three
spherical caps meet along a common contact line, the three cap
centers αγ , βγ , and αβ are necessarily colinear. The straight
line through these centers represents the axis of rotational
symmetry for the three-spherical-cap shape corresponding to

Figure 3. Cross section of partial in-wetting morphology as observed experimentally: (a) Three spherical surface segments corresponding to the αβ
interface (orange) and to the two membrane segments αγ (red) and βγ (purple). These three spherical caps meet along an apparent contact line (black
circles). (b, c) The three-spherical-cap shape is determined by the three curvature radii Rαγ, Rβγ, and Rαβ as well as by the contact line radius Rco. The three
centers αγ , βγ , and αβ of the three spherical caps are located on the rotational symmetry axis (vertical dashed line). In order to obtain a unique shape,
we also need to specify the locations of these cap centers relative to the contact line plane pco (full horizontal line); see main text. (d) At the contact line,
the tangent planes to the three spherical surface segments define the three apparent contact angles θα

ap, θβ
ap, and θγ

ap with θα
ap + θβ

ap + θγ
ap = 2π.
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the vertical dashed line in Figure 3b,c. To obtain a certain
three-spherical-cap shape, we also need to specify the radius Rco
of the apparent contact line in addition to the curvature radii;
see Figure 3c. In fact, the four length scales Rαβ, Rαγ, Rβγ, and
Rco are not quite sufficient to uniquely define the three-
spherical-cap shape because we still need to specify whether the
αβ interface bulges toward the α or toward the β droplet.
In Figure 3, the α-rich and β-rich droplets are located above

and below the contact line plane pco corresponding to the full hor-
izontal line. In addition, the center αβ of the αβ interface is
located below the plane pco which implies that the αβ interface
bulges toward the α droplet corresponding to a pressure Pβ in
the β droplet that exceeds the pressure Pα in the α droplet.
Keeping the four length scales fixed as well as the locations of the
two cap centers αγ and βγ , we may also locate the center αβ on
top of the contact line plane pco which then leads to an αβ inter-
face that bulges toward the β droplet corresponding to Pα > Pβ.
We now introduce the sign convention that the mean

curvature Mαβ of the αβ interface is positive, i.e.,

= > >αβ
αβ

α βM
R

P P
1

0 for
(23)

and negative with

= − < >αβ
αβ

β αM
R

P P
1

0 for
(24)

With this sign convention, the classical Laplace equation for the
αβ interface assumes the form

− = Σ = ±
Σ

α β αβ αβ
αβ

αβ
P P M

R
2

2

(25)

where the plus and minus sign corresponds to Pα > Pβ and Pβ >
Pα, respectively.
Family of Three-Spherical-Cap Shapes with Geometric

Constraints. As explained at the beginning of the last section,
the vesicle−droplet systems are characterized by three geometric
constraints as provided by the droplet volumes Vα and Vβ as well
as by the total membrane area A. These three quantities can be
expressed in terms of the four radii Rαβ, Rαγ, Rβγ, and Rco which
leads to three equations between the four radii. The solution of
these three equations may be parametrized in terms of Vα, Vβ, A,
and a suitable reaction coordinate such as the contact line radius
Rco, which then provides a one-parameter family of three-
spherical-cap shapes that fulfill all three geometric constraints.
Apparent Contact Angles. Another set of geometric

quantities that can be directly deduced from the optical
microscopy images are the apparent contact angles θα

ap, θβ
ap, and

θγ
ap, with θα

ap + θβ
ap + θγ

ap = 2π; see Figure 3d. These angles can
be expressed in terms of the three curvature radii and the
contact line radius Rco. For the case displayed in Figure 3, one
then obtains the explicit relations

θ = − + −α
αγ αβ

αγ αβ
R

R R
R R R Rsin ( )ap co 2

co
2 2

co
2

(26)

θ = − − −β
αβ βγ

αβ βγ
R

R R
R R R Rsin ( )ap co 2

co
2 2

co
2

(27)

with Rαβ ≥ Rβγ and

θ = − + −γ
αγ βγ

αγ βγ
R

R R
R R R Rsin ( )ap co 2

co
2 2

co
2

(28)

Angle−Curvature Relationship. Finally, using some
trigonometric relations, it is not difficult to show that the curva-
ture radii and the apparent contact angles satisfy the relation

θ θ θ
∓ = −γ

αβ

α

βγ

β

αγR R R

sin sin sinap ap ap

(29)

where the minus and plus sign applies to an αβ interface that
bulges toward the β and the α droplet, respectively. The equal-
ities in (29), which do not depend on the contact line radius
Rco, may be used to estimate the accuracy of the measured
values for the curvature radii and apparent contact angles.
When expressed in terms of the mean curvatures, the purely
geometric relation (29) becomes

θ θ θ= −αβ γ αγ β βγ αM M Msin sin sinap ap ap
(30)

■ THREE SPHERICAL CAPS: SHAPE EQUATIONS
Shape Equations for Spherical Membrane Segments.

When the membrane segments αγ and βγ assume spherical cap
shapes, the shape equations (14) assume the simplified form

κ κ

α β

− = Σ + −

=

γ γ γ γ γ γ γ γ γP P M m M m M

j

2 4 4 with

,

j j j j j j j j j
2 2

(31)

which can be rewritten as

α β− = Σ =γ γ γP P M j2 for ,j j j
eff

(32)

with the effective tensions defined by

κΣ ≡ Σ + −γ γ γ γ γ γm m M2 ( )j j j j j j
eff

(33)

Note that these shape equations now determine the constant mean
curvatures Mαγ and Mβγ of the two spherical membrane segments.
The second term on the right-hand side of (33) represents

the spontaneous tensions28

σ κ≡γ γ γm2j j j
2

(34)

which are the natural tension scales for the two membrane
segments. Using the decomposition (12) for the segment
tensions Σjγ, the effective tensions Σjγ

eff become

σ κΣ ≡ Σ + + −γ γ γ γ γ γW m M2j j j j j j
eff

(35)

with the lateral membrane stress Σ, the adhesive strengths Wjγ,
and the spontaneous tensions σjγ.
A linear combination of the Laplace equation (25) for the αβ

interface and the shape equations (32) for the two membrane
segments can be used to eliminate the three pressure differ-
ences. As a result, we obtain the relation

Σ = Σ − Σαβ αβ αγ αγ βγ βγM M Meff eff
(36)

between the interfacial tension Σαβ and the effective tensions
Σαγ
eff and Σβγ

eff experienced by the two membrane segments.
Relationships between Tensions, Contact Angles, and

Curvatures. Using a combination of the geometric relation
(30) and the curvature−tension relation (36), we can now
eliminate the mean curvature Mαβ of the αβ interface which
leads to the relationship

θ
θ

θ
θ

Σ
Σ

− =
Σ
Σ

−αγ
αγ

αβ

β

γ
βγ

βγ

αβ

α

γ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M M

sin

sin
sin
sin

eff ap

ap

eff ap

ap
(37)
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between the effective tensions, the apparent contact angles, and
the mean curvatures of the αγ and βγ membrane segments. It is
important to note that the derivation of (37) was based (i) on
the purely geometric relation (30) which applies to three spher-
ical caps that intersect along a common contact line and (ii) on
the shape equations for the spherical membrane segments and
the αβ interface. In particular, this derivation did not make any
assumptions about the mechanical balance of the interfacial and
membrane tensions along the contact line.
Digression: Droplets without Vesicle. It is instructive to

briefly consider the related but somewhat different wetting mor-
phologies corresponding to two liquid droplets composed of the
aqueous phases α and β, both of which coexist with the bulk
liquid phase γ as depicted in Figure 4 in the absence of the ves-
icle. The latter system is characterized by the three interfacial
tensions Σαβ, Σαγ, and Σβγ. Comparison with the in-wetting
morphologies of GUVs as shown in Figure 1 reveals that the
two-droplet morphologies in Figure 4 can be obtained from
those in Figure 1 by simply removing the vesicle membrane.
Using the same line of reasoning as for GUVs, we then

obtain the relationship

θ
θ

θ
θ

Σ
Σ

− =
Σ
Σ

−αγ
αγ

αβ

β

γ
βγ

βγ

αβ

α

γ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M M

sin

sin
sin
sin (38)

for the partial wetting morphology of two droplets in the absence
of the vesicle membrane. The latter relationship has the same
form as the relationship (37) for partial in-wetting of GUVs.
However, in contrast to the effective tensions Σjγ

eff in (37), the
interfacial tensions in (38) represent material parameters that
do not depend on the size of the droplets. Furthermore, for
large droplet sizes, the contact angles θα, θβ, and θγ should not
depend on the droplet sizes either. We can then conclude that
the two parentheses in (38) enclose expressions that are inde-
pendent of the droplet size. On the other hand, changes in the
droplet shape obvioulsy change the mean curvatures Mαγ = 1/Rαγ

and Mβγ = 1/Rβγ. Therefore, the relation (38) can only hold in
general if the expressions in the two parentheses vanish sep-
arately, i.e., if

θ
θ

θ
θ

Σ
Σ

=
Σ
Σ

=αγ

αβ

β

γ

βγ

αβ

α

γ

sin

sin
and

sin
sin (39)

which relate the interfacial tensions to the contact angles. The
latter relations are equivalent to

θ θ θ
Σ

=
Σ

=
Σαβ

γ

αγ

β

βγ

αsin sin sin (40)

which represent the law of sines for a triangle, the sides of
which are formed by the three interfacial tensions. In the con-
text of interfacial wetting, the latter triangle is known as
Neumann’s triangle.15

Size Dependence of Effective Tensions and Apparent
Contact Angles. Let us now return to the partial in-wetting
morphologies of GUVs and to the general relationship (37) for
the two membrane segments. In this case, the two expressions
in parentheses are expected to depend on the geometry of the
vesicle−droplet system in a complicated manner. First, the
apparent contact angles depend on the volumes Vα and Vβ, as
observed experimentally in ref 24. Second, the effective tensions
Σjγ
eff as given by (35) also depend on the geometry, both via the

overall membrane stress Σ and via the terms proportional to
Mjγ = 1/Rjγ. Because of these dependencies, the two paren-
theses in the relationship (37) do not have to vanish separately.
However, we can still obtain useful relations from (37) if we
consider GUVs for which the mean curvatures Mαγ and Mβγ

fulfill certain conditions and/or if the overall membrane stress
is small and can be neglected.
Indeed, the relationship (37) becomes

θ
θ

Σ
Σ

≈αγ

αβ

β

γ
βγ αγM M

sin

sin
for small /

eff ap

ap
(41)

and

θ
θ

Σ
Σ

≈βγ

αβ

α

γ
αγ βγM M

sin
sin

for small /
eff ap

ap
(42)

Furthermore, the relationship (37) assumes the form

θ θ
θ

Σ − Σ
Σ

=
−

=αγ βγ

αβ

β α

γ
αγ βγM M

sin sin

sin
for

eff eff ap ap

ap
(43)

The latter relation, which is independent of the overall lateral
stress Σ, does not require that the volumes Vα and Vβ are
roughly equal. Indeed, GUVs with Mαγ ≃ Mβγ have been
previously observed20,24 when the total volume V = Vα + Vβ was
close to the volume of a sphere with surface area A = Aαγ + Aβγ.
Another special case is obtained for a planar αβ interface with

Mαβ = 0. In this case, the two relations (36) and (30) lead to
Mβγ/Mαγ = Σαγ

eff/Σβγ
eff and Mβγ/Mαγ = sin θβ

ap/sin θα
ap, which

implies

θ
θ

Σ

Σ
= =αγ

βγ

β

α
αβM

sin

sin
for 0

eff

eff

ap

ap
(44)

Figure 4. Wetting morphologies for two liquid droplets composed of the aqueous phases α (yellow) and β (blue), both of which coexist with the
bulk liquid phase γ (white): (a) Partial wetting of the three phases which leads to a three-phase contact line (black circles); (b) complete wetting of
the βγ interface by the α phase; (c) complete wetting of the αγ interface by the β phase; and (d) complete wetting of the αβ interface by the γ phase.
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The four relations (41)−(44) can be used to analyze
different GUVs from the same batch which are formed by
membranes with the same lipid composition and are exposed to
aqueous two-phase systems with the same solute and polymer
concentrations. What we would like to do in particular is to use
these relations to estimate the material parameters of the
vesicle−droplet systems.
Material Parameters of Vesicle−Droplet Systems. The

left-hand sides of the relations (41)−(44) depend on the
effective tensions Σjγ

eff and on the interfacial tension Σαβ. The
interfacial tension represents a material parameter that can be
measured independently by studying macroscopic interfaces
between two bulk phases α and β, as has been done for PEG−
dextran solutions in ref 12. In addition, the effective tensions
Σαγ
eff as given by (35) can be rewritten in the form

Σ = Σ + +γ γ γ γX Y Mj j j j
eff

(45)

with the material parameters

σ κ≡ + ≡ −γ γ γ γ γ γX W Y mand 2j j j j j j (46)

When we insert these expressions for the effective tensions Σjγ
eff

into the relationships (41)−(43), we see that these relation-
ships contain three different types of quantities: (i) the mean
curvatures of the spherical membrane segments and the appar-
ent contact angles, two types of geometric quantities that can
be directly deduced from the microscopy images; (ii) the mate-
rial parameters Xjγ and Yjγ; and (iii) the lateral membrane
stress Σ that depends on the size and shape of the GUVs
and represents a hidden variable from the experimental point of
view.
The adhesive strengths are governed by the molecular inter-

actions across the leaflet−water interfaces. Likewise, the spon-
taneous curvatures and spontaneous tensions are generated by
the molecular asymmetry between these two leaflets. Both the
adhesive strengths Wjγ and the spontaneous tensions σjγ will
hardly change when the GUVs are slightly deflated. In contrast,
the lateral stress Σ will be strongly reduced even by small
deflation steps. Thus, using such a deflation step, we should be
able to obtain effective tensions that are well approximated by

Σ ≡ +γ γ γ γX Y Mj j j j,0
eff

(47)

In such a situation, we can deduce the values of Xαγ =Wαγ + σαγ
and Yαγ = −2καγmαγ by applying the relationship (41) to two
GUVs with different values of Mαγ, both of which are large
compared to Mβγ. Likewise, we can deduce the values of
Xβγ =Wβγ + σβγ and Yβγ = −2κβγmβγ by applying the relationship
(42) to two GUVs with different values of Mβγ, both of which
are large compared to Mαγ. The values for Xjγ and Yjγ obtained
in this way can be cross-checked and scrutinized by examining
(i) additional GUVs with Mβγ ≪ Mαγ and (ii) additional GUVs
with Mβγ ≫ Mαγ as well as (iii) by selecting vesicles for which
we can use the relationships (43) and (44).
Furthermore, when we assume the typical value κjγ ≃ 10−19 J

for the bending ridigities of the two membrane segments, we
obtain rough estimates for the spontaneous curvatures mjγ and
the spontaneous tensions σjγ from the values of Yjγ. Finally, we
can deduce the values of the adhesive strengths Wjγ from the
values of σjγ and Xjγ. In this way, the relationships (41)−(44)
lead to estimates for all material parameters of the vesicle−
droplet systems.
Regime of Small Lateral Stress. As described in the pre-

vious paragraph, osmotic deflation could be used to obtain

GUVs with a small lateral stress Σ. If we can ignore this overall
membrane stress, the general relationship (37) becomes

̅ + ̅ − ̅ − ̅ = Ξαγ αγ αγ αγ βγ βγ βγ βγM X M Y M X M Y2 2
(48)

with the variables

̅ ≡
Σ

̅ ≡
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γ
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Y
andj

j
j

j

(49)

as well as the experimentally accessible curvature
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θ
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γ
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γ
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sin
sin
sin

ap

ap

ap

ap
(50)

The relationship (48) contains the four unknowns X̅αγ, Y̅αγ, X̅βγ,
and Yβ̅γ. In order to determine these four unknowns, we need
(at least) four equations of the form (48); i.e., we need to deter-
mine the two spherical cap radii Rjγ = 1/Mjγ and the three apparent
contact angles for (at least) four GUVs from the same batch.

Several Droplets Adhering to the Same GUV. As
previously emphasized, the overall lateral stress Σ within the
vesicle membrane cannot be directly measured but depends
on the preparation of the vesicle and varies, in general, from
vesicle to vesicle. Therefore, in the two preceding subsections, we
assumed osmotic conditions for which the contribution of Σ to
the effective membrane tensions Σjγ

eff as defined by (35) can be
neglected. This assumption becomes unnecessary if we observe
several α or several β droplets in contact with the same vesicle
membrane.
Thus, consider a situation in which several α droplets adhere

to the interior leaflet of the same GUV membrane. These drop-
lets are in contact with one large β droplet inside the GUV. The
different α droplets are labeled by n = 1, 2, ..., N. The vesicle
membrane is then partitioned into N + 1 segments labeled by
nγ and βγ. The different nγ segments experience the effective
membrane tensions

σ κΣ = Σ + + −αγ αγ αγ αγ αγ αγW m M2n n( ) ( )
(51)

where all parameters on the right-hand side are independent of
n apart from the mean curvatures Mαγ

(n) of the nγ segments. In
addition, the apparent contact line of the α droplet n can be
characterized by the apparent contact angles θα

(n), θβ
(n), and θγ

(n).
For such a geometry, we obtain N relationships of the form

θ
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(52)

with n = 1, 2, ..., N. This set of equations implies that

ϒ = ϒ = = ϒαγ αγ αγ... N(1) (2) ( )
(53)

Therefore, from three different nγ segments with three distinct
mean curvatures Mαγ

(n) and, thus, three distinct expressions ϒαγ
(n),

we obtain two linearly independent equations from which we
can deduce the two parameter combinations (Σ +Wαγ + σαγ)/Σαβ

and καγmαγ/Σαβ for any value of Σ.

■ THREE SPHERICAL CAPS: FORCE BALANCE
As shown in Figure 3, the geometry of three spherical caps that
meet at a common contact line can be parametrized by the
three curvature radii Rαβ, Rαγ, and Rβγ, as well as by the contact
line radius Rco. In the previous section, we combined the purely
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geometric relation (29) for the three-spherical cap shapes with
(i) the classical Laplace equation (25) for the curvature radius
Rαβ of the αβ interface and (ii) the shape equations (32) for the
curvature radii Rαγ and Rβγ of the two membrane segments. The
resulting relationships (37) as well as (52) and (53) were
derived without any use of the contact line radius Rco.
In the present section, we will describe a somewhat different

approach, starting from the energy functional S{ }in and the
shape functional S{ }in , as given by (9) and (10) and applying
these functionals to the three-spherical-cap shapes S = Ssc. The
energy functional then assumes the form

≡ = αβ αγ βγS E R R R R{ } ( , , , )sc
in in

sc sc
in

co (54)

where Esc
in represents an explicit function of the four variables

Rαβ, Rαγ, Rβγ, and Rco. Likewise, the shape functional

≡ = αβ αγ βγS F R R R R{ } ( , , , )sc
in in

sc sc
in

co (55)

also becomes an explicit function of the four radii. Constrained
energy minimization within the subspace of three-spherical-cap
shapes then implies the four stationarity relations

∂
∂

=
∂
∂

=
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∂

=
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F
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R

F
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(56)

It is not difficult to show that the first condition =∂
∂ αβ

0F
R

sc
in

is

equivalent to the classical Laplace equation (25) for the cur-
vature radius Rαβ of the αβ interface. We should also require

that the two stationarity relations =∂
∂ αγ

0F
R

sc
in

and =∂
∂ βγ

0F
R

sc
in

lead back

to the shape equations (32) for the curvature radii Rαγ and Rβγ of
the two membrane segments. The latter requirement is, however,
not fulfilled in general but only for certain regions of the param-
eter space corresponding to small and large spontaneous curva-
tures. In these parameter regions, we can neglect those contri-
butions to the bending energy (1) that involve the integrals over
the mean curvature and over the mean curvature squared and
focus on the remaining contributions to the energy functional

S{ }in
sc that depend on the four radii only via the three surface

areas Aαβ, Aαγ, and Aβγ.
Small Spontaneous Curvatures of Membrane Seg-

ments. The membrane segment jγ of the three-spherical-cap
shape Ssc has the bending energy

κ≡ −γ γ γ
γ
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(57)

The regime of small spontaneous curvature mjγ is now defined
by

− ≤ ≤
γ

γ
γ

γR
m

R
m

1
2

5
2

(regime of small )
j

j
j

j
(58)

Because Ajγ = 4πRjγ
2ζjγ with a dimensionless coefficient ζjγ that

satisfies 0 < ζjγ < 1, the bending energy (57) of the jγ segment
can then be bounded from above by

πζ κ≤γ γ γ γE m18 (regime of small )j j j j
in

(59)

Therefore, the contribution of the bending energy Ejγ
in to the

energy functional can be neglected compared to the contri-
bution of the water−water interface if

πζ κ≤ ≪ Σγ γ γ αβ αβE A18j j j
in

(60)

which is fulfilled for

πκ≫ Σαβ γ αβA 18 /j (61)

The bending rigidity κjγ has the typical value κjγ ≃ 10−19 J, whereas
the observed values of the interfacial tension Σαβ vary between
10−7 and 10−4 N/m. As a consequence, the bending energy of the
membrane segment jγ can be neglected compared to the free
energy of the liquid−liquid interface if the spontaneous curvature
is sufficiently small as in (58) and if the interfacial area Aαβ is
sufficiently large and satisfies Aαβ ≫ (7.5 μm)2 for Σαβ = 10−7

N/m and Aαβ ≫ (0.24 μm)2 for Σαβ = 10−4 N/m.
If the bending energies Eαγ

in {Ssc} and Eβγ
in {Ssc} of both mem-

brane segments can be neglected compared to the interfacial
free energy, the stationarity relations (56) lead to the tension−
angle relationships
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θ
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sin

ap
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ap
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(62)

which describes the force balance along the apparent contact
line. This force balance can be visualized as a triangle, the sides
of which are formed by the three tensions Σαβ, Σ + Wαγ, and
Σ + Wβγ, in close analogy to Neumann’s triangle corresponding
to the relationships (39) for the α and β droplets in the absence
of the vesicle membrane.

Large Spontaneous Curvatures of Both Membrane
Segments. The bending energy Ejγ

in of the membrane segment
jγ becomes asymptotically equal to

σ≈ | | ≫γ γ γ γ γE S A m M{ } for largej j j j j
in

sc (63)

with the spontaneous tension σjγ = 2κjγmjγ
2. If the bending

energies of both membrane segments can be estimated by the
expression (63), the stationarity conditions (56) lead to the
generalized tension−angle relationships
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(64)

which again describes the force balance along the apparent
contact line. Now, this force balance corresponds to a triangle
that is formed by the three tensions Σαβ, Σ + Wαγ + σαγ, and
Σ + Wβγ + σβγ.

One Large and One Small Spontaneous Curvature.
Another special parameter region is obtained if one
spontaneous curvature is large whereas the other one is small.
If mαγ is large, the bending energy of the αγ membrane segment
can be estimated by the relation (63) with j = α. Furthermore,
if mβγ is small and satisfies the inequalities (58) with j = β, the
bending energy of the βγ segment can be neglected for a suf-
ficiently large area Aαβ of the αβ interface as described by (61)
with j = β. For this parameter regime, we obtain the tension−
angle relationships

σ θ
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(65)

Formation of Membrane Nanotubes. A GUV membrane
with a large spontaneous curvature and, thus, a large spon-
taneous tension can relax this tension by forming membrane
nanotubes.28 Therefore, if one of the membrane segments
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acquires a large spontaneous curvature because of wetting, this
segment has a tendency to form nanotubes. Such a tubulation
process has indeed been observed during the deflation of GUVs
that contained aqueous PEG−dextran solutions.25,26 Both
experiments and simulations provide strong evidence that the
PEG molecules are adsorbed onto the GUV membranes. When
the two leaflets of the bilayer membranes are exposed to
different PEG concentrations, the two adsorption layers are
asymmetric and can generate large spontaneous curvatures and
large spontaneous tensions.
The phase diagram of aqueous PEG−dextran solutions is

schematically depicted in Figure 5. This phase diagram exhibits

a two-phase coexistence region with both a complete wetting
regime close to the critical point and a partial wetting regime
further away from this point. The two wetting regimes are sep-
arated by a certain tie line, as indicated by the dashed straight
line in Figure 5. In the complete wetting regime, the whole
vesicle membrane is in contact with the PEG-rich phase α and
forms nanotubes. In contrast, in the partial wetting regime, only
the αγ membrane segment in contact with the PEG-rich phase
formed such tubes. Furthermore, for complete wetting, the tubes
stayed away from the αβ interface, whereas they accumulated
on this interface for partial wetting. In the latter case, the
adhesion of the tubes to the αβ interface lowers the (free)
energy of the vesicle−droplet system, as explicitly shown in
ref 26. Each tube that adheres to the αβ interface is in contact
with both the α and the β phase and, thus, forms both an αγ
and a βγ membrane segment separated by a contact line parallel
to the long tube axis. Along these microscopic contact lines, the
angle between the αβ interface and the αγ tube segments is
again given by the intrinsic contact angle θα* with the same local
geometry as depicted in Figure 2b, where γ now represents the
liquid phase within the tubes.

If the αγ membrane segment forms nanotubes, the segment
tension Σαγ = Σ + Wαγ is small compared to the spontaneous
tension σαγ of this segment as follows from the mechanical equilib-
rium between the highly curved tubes and the weakly curved
spherical αγ segments.28 The corresponding tension−angle
relationship in (64) and (65) then assumes the simplified form

σ κ θ
θ

αγ
Σ

=
Σ

≈αγ

αβ

αγ αγ

αβ

β

γ

m2 sin

sin
(tubulated segments)

2 ap

ap
(66)

which can be used to estimate the spontaneous curvature mαγ

from the apparent contact angles.26

■ TWO-DROPLET VESICLES WITH CLOSED NECKS
For partial in-wetting, the vesicle membrane is in contact with
two enclosed droplets, as displayed in Figure 3a,b. When we deflate
such a two-droplet vesicle, it can decrease its interfacial energy
by reducing the area of the αβ interface. The corresponding
energy gain is ΔAαβΣαβ, where ΔAαβ is the change in the inter-
facial area. Such a morphological change is, in fact, rather likely
unless one of the membrane segments has a sufficiently large
spontaneous curvature to form nanobuds and nanotubes. Thus,
let us assume that the αγ segment forms such protrusions. The
corresponding energy gain is ΔAαγσαγ with the area ΔAαγ stored
in the nanotubes and the spontaneous tension σαγ = 2καγmαγ

2.
Therefore, the osmotic deflation of a partially wetted vesicle
should reduce the area of the αβ interface whenever ΔAαβΣαβ

≫ ΔAαγσαγ which is typically fulfilled for Σαβ ≫ σαγ.
In the absence of nanobud or nanotube formation, the area

of the αβ interface will eventually shrink to zero and the vesicle
membrane will then form a closed membrane neck around this
point-like interface, as depicted in Figure 1d. This special in-wetting
morphology, which resembles complete wetting by the γ phase,
is only possible if the vesicle membrane can enclose both liquid
droplets which implies that the membrane area A must satisfy
the inequality

π π≥ = +α βA A V V(4 ) (3 ) (4 ) (3 )2sp
1/3 2/3 1/3 2/3

(67)

with the volumes Vα and Vβ of the two spherical droplets.
Two-sphere shapes with closed membrane necks can also be

formed by two-domain vesicles arising from lipid phase sep-
aration within multicomponent membranes.31 Compared to
such two-domain vesicles, the closed neck of a two-droplet
vesicle is further stabilized by the formation of the αβ interface
during neck opening. If we ignore the possible difference of the
Gaussian curvature moduli κG,αγ and κG,βγ, the contact line is
located within the membrane neck and the contact line radius
r1 is equal to the neck radius Rne. The free energy of the mem-
brane neck then includes a contribution from the neck-spanning
αβ interface which has the form

π
θ

Σ =
+ * Σαβ αβ

α
αβA R

2
1 sin ne

2

(68)

which depends on the intrinsic contact angle θα*, see Figure 2b, and
grows quadratically with increasing neck radius Rne. The bend-
ing energy of the vesicle membrane that consists of two mem-
brane segments and forms an open neck of radius Rne can be
obtained from the corresponding expression for two-domain
vesicles as derived in ref 31. Adding the free energy of the
contact line, we then obtain

π λ π+ ≈ = −E R R E R E R R( ) 2 ( 0) 4 for smallbe ne ne co be ne 1 ne ne

(69)

Figure 5. Schematic phase diagram of aqueous PEG−dextran solutions
as a function of the weight fractions wd and wr for dextran and PEG,
experimentally determined in ref 26. The coexistence region of the
PEG-rich phase α and the dextran-rich phase β contains two
subregions, a complete wetting (pink) and a partial wetting (turquois)
region. In the pink subregion close to the critical point, the membrane
is completely wetted by the PEG-rich phase α which encloses the
dextran-rich phase β; see left inset. In the turquoise subregion, the
membrane is partially wetted by both phases; see right inset. The
boundary between the complete and partial subregions is provided by
a certain tie line (dashed straight line), the precise location of which
depends on the lipid composition of the membrane. Along this tie line,
the system undergoes a complete-to-partial wetting transition. The αγ
membrane segments are observed to form membrane nanotubes (not
shown) that stay away from the αβ interface for complete wetting but
adhere to this interface for partial wetting.
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with

κ κ λ≡ − + − −αγ αγ αγ βγ βγ βγE M m M m( ) ( )
1
21 co (70)

The closure of the neck and the stability of the closed neck
are governed by the behavior of the combined free energy
ΣαβAαβ + Ebe(Rne) + 2πRneλco for small Rne. In the latter limit,
the leading term is provided by the E1-term in (69) because the
interfacial free energy is ΣαβAαβ ∼ Rne

2. Therefore, we obtain
the stability criterion E1 ≤ 0 which is equivalent to

κ κ λ κ κ− + − ≤ ≃βγ βγ βγ αγ αγ αγ βγ αγM m M m( ) ( )
1
2

( )co G, G,

(71)

The equality in eq 71 describes the neck closure condition for
the limit shapes as obtained from vesicle shapes with open necks,
whereas the inequality describes the stability of closed necks.

■ OUT-WETTING MORPHOLOGIES

So far, we have discussed in-wetting morphologies of GUVs that
arise from aqueous phase separation within the vesicles. As men-
tioned in the Introduction, wetting of vesicle membranes has also
been observed when the PEG−dextran solutions underwent phase
separation outside the GUVs.27 The aqueous minority phase then
forms droplets that can adhere to the vesicle membrane. The
adhesion of one such droplet leads to several out-wetting mor-
phologies, as shown in Figure 6. The morphologies in Figure 6a
and b have been observed for PEG−dextran solutions.27 The mor-
phology in Figure 6a corresponds to partial wetting of the vesicle
membrane by both α and β. This morphology is again charac-
terized by a three-phase contact line that partitions the membrane
into two segments. When viewed with optical resolution, the
shape contour had again an apparent kink close to the contact
line which should be replaced by a smoothly curved membrane
segment when we look at this line with nanoscale resolution.
For partial out-wetting, the αβ interface partitions the vesicle

membrane into an γα segment and a γβ segment. At first
sight, swapping the subscripts γ and α as well as γ and β for
out-wetting compared to in-wetting morphologies might seem
a bit pedantic but turns out to be important because of the spon-
taneous curvatures. These curvatures have a sign that is taken to
be positive and negative if the membrane prefers to bulge toward
the exterior and interior solution, respectively. Therefore, when
we swap the interior and exterior solutions, the spontaneous

curvature mγj for out-wetting morphologies differs from the
spontaneous curvature mjγ = −mγj for in-wetting morphologies.
The theory for out-wetting can be developed in close analogy

to the theory for in-wetting as described above. Thus, we define
the three mean curvatures Mγα = 1/Rγα > 0, Mγβ = ±1/Rβγ, and
Mαβ = 1/Rαβ > 0 of the three spherical surface segments in
Figure 6a. Note that Mγβ is positive if Pγ > Pβ and negative
otherwise. Likewise, we introduce three apparent contact angles
θγ
ap, θβ

ap, and θα
ap that open up toward the three liquid phases γ,

β, and α as well as the effective tensions

σ κΣ ≡ Σ + + −γ γ γ γ γ γW m M2j j j j j j
eff

(72)

with j = α, β. The tension−angle−curvature relationship for
partial out-wetting is then given by
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In contrast to in-wetting, the mean curvature Mγβ of the γβ
membrane segment can now be negative corresponding to a γβ
segment that bulges toward the γ phase within the vesicle. When
we apply the relationship (73) to GUVs for which the two mean
curvatures Mγα and Mγβ fulfill certain relationships, see the in-
wetting relationships (41)−(44), we can again obtain estimates
for the material parameters of the vesicle−droplet system. Further-
more, when we consider special parameter regimes corresponding
to small and large spontaneous curvatures mγj as defined in
analogy to (58) and (63), we again obtain tension−angle rela-
tionships for the force balance along the apparent contact lines.
In order to avoid any assumptions about the magnitude of

the overall stress Σ, we can now consider several β droplets
adhering to the exterior leaflet of the same GUV membrane.
We then obtain several γβ segments which we distinguish by
the label n = 1, 2, ..., N. These γβ segments have the mean
curvatures Mγβ

(n) and experience the effective tensions Σγβ
(n). We

then obtain the relations ϒγβ
(1) = ϒγβ

(2) = ··· = ϒγβ
(N) with
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(74)

in close analogy to the relations (52) and (53) for in-wetting.
Thus, from three different γβ segments with three distinct mean
curvatures Mγβ

(n), we can obtain the two parameter combinations
(Σ +Wγβ + σγβ)/Σαβ and κγβmγβ/Σαβ that determine the tension
ratios Σγβ

(n)/Σαβ.

Figure 6. Out-wetting morphologies arising from phase separation into two aqueous phases, α (white) and β (blue), outside a giant vesicle which is
filled with the aqueous spectator phase γ. The β phase forms a droplet or layer that coexists with the bulk liquid α: (a) Partial wetting of the vesicle
membrane by α and β as observed on the micrometer scale. The apparent kink at the contact line (black circles) again reveals the capillary forces that
the αβ interface exerts onto the vesicle membfane. (b) Special morphology for which the β droplet and the bulk phase α are separated by a closed
membrane neck. This morphology, which resembles complete wetting by the γ phase, is only possible if the membrane has a certain minimal area.
(c) Complete wetting of the membrane by the β phase. (d) Complete wetting by the α phase. The color code for the two membrane segments and
the αβ interface is the same as that in Figure 1.
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■ CONCLUSIONS AND PERSPECTIVES

Partial wetting morphologies of giant vesicles exposed to aque-
ous two-phase systems as depicted in Figure 1a and Figure 6a
for in- and out-wetting, respectively, are characterized by a
three-phase contact line that partitions the vesicle membrane into
two segments, an αγ or γα segment in contact with the aqueous
α phase, and a βγ or γβ segment in contact with the aqueous
β phase. In contrast to previous theoretical studies, the theory
presented here includes both the adhesion free energies of the
two droplets and the overall lateral stress within the vesicle
membrane.
The curvature elasticity of the vesicle membrane implies that,

on the nanometer scale, this membrane bends smoothly along
the contact line and then defines an intrinsic contact angle, as
depicted in Figure 2 for partial in-wetting. This angle is related
to the difference of the segment tensions as given by the force
balance eq 17. The latter equation also depends on the local
curvatures of the two membrane segments at the contact line.
At present, these curvatures cannot be determined experimentally,
which implies that the relations (17)−(19) cannot be used to
analyze experimental observations. However, the experiments
revealed that the two membrane segments form spherical caps
which define an apparent contact line and apparent contact
angles as displayed in Figure 3 for partial in-wetting. The spher-
ical cap geometry leads to the simplified shape equations (31)
which imply the general relationship (37) for partial in-wetting.
The latter relationship depends on the effective tensions and
curvature radii of the two membrane segments as well as on the
apparent contact angles. This relationship, which is reministent
of Neumann’s triangle but depends on the droplet radii Rαγ =
1/Mαγ and Rβγ = 1/Mβγ, can be used to deduce the material
parameters of the vesicle−droplet system from the observed
wetting morphology. Vesicles with several adhering droplets
lead to the relationships (52) and (53) by which we can deduce
certain parameter combinations without making any assump-
tions about the overall lateral stress Σ or about the mean
curvatures of the membrane segments. The analogous relation-
ships for partial out-wetting are given by eq 73 and eq 74.
For certain regions of the parameter space corresponding to

small and large spontaneous curvatures, another set of tension−
angle relationships can be derived which describe the force bal-
ance along the apparent contact lines. For small spontaneous
curvatures as defined by (58), the bending energies can be
neglected compared to the interfacial free energy of the αβ inter-
face provided the interfacial area Aαβ is sufficiently large and
satisfies the inequality (61). In this parameter regime, we obtain
the tension−angle relationships (62). For large spontaneous
curvatures for which the bending energy is dominated by the
spontaneous tension and behaves as in (63), the force balance
is given by the generalized tension−angle relationships (64). If
one of the membrane segments forms membrane nanotubes,
the corresponding tension−angle relationship simplifies and one
can use the resulting relationship (66) to estimate the spon-
taneous curvature of the tubulated segment.
The material parameters determined from the different rela-

tionships derived above remain unchanged when we move along
a tie line within the phase diagram of the aqueous two-phase
system; compare Figure 5. Thus, it would be particularly useful
to experimentally study several two-phase systems that belong
to the same tie line, including the two end points of this line. At
these end points, the GUVs are completely filled with one of
the two coexisting phases and the GUV membranes consist of a

single segment. The material properties of these single mem-
brane segments must be identical with the corresponding prop-
erties of the membrane segments that govern the partial wetting
morphologies along the whole tie line between the two end points.
In the present study, we have largely ignored the line tension

λco of the contact line which is justified if the contact line radius
is sufficiently large as implied by the force balance relation (17).
One exception is two-droplet vesicles with closed necks for
which the contact line radius vanishes. The stability of this neck
is described by (71) which depends explicitly on the line ten-
sion λco. The latter tension will also play an important role for
nucleation and growth of aqueous nanodroplets at membranes.
In contrast to the line tension of domain boundaries which
must be positive to ensure the stability of the domains, the line
tension of the contact line can be positive or negative. This
aspect can be studied by molecular dynamics simulations as will
be described elsewhere.
One open problem that could be addressed by numerical stud-

ies of the shape equations is the dependence of the intrinsic con-
tact angle on the vesicle geometry. For zero spontaneous curva-
tures and large contact line radius, the intrinsic contact angle
depends only on the adhesive strengths of the two droplets and
on the interfacial tension of the water−water interface, see the
force balance equation (20), which implies that the intrinsic con-
tact angle is a material parameter as one might expect intu-
itively. However, for two membrane segments with different
curvature-elastic properties, the intrinsic contact angle also depends
on the local membrane curvatures at the contact line, see the
relations (17)−(19), and these curvatures are expected to
depend on the vesicle geometry.
Another aspect of vesicle−droplet morphologies that pro-

vides an interesting challenge for future studies is the possible
interplay between aqueous phase separation leading to liquid
droplets and membrane phase separation leading to intramem-
brane domains. From the theoretical point of view, this inter-
play leads to a variety of interesting cases. For example, each of
the two aqueous phases α and β may prefer one of the two
membrane phases, say a and b. In such a situation, the nucle-
ation of α and β droplets will be facilitated on the a and b
domains, respectively. Furthermore, once the aqueous phase
separation has been completed into one large α droplet and
one large β droplet, the a and b domains will try to maximize
their contact area with the α and β droplets. It is certainly of
interest to study these processes in a systematic manner, both
by theory and by experiment.
Aqueous two-phase systems are frequently used in chemical

analysis and biotechnology for the sorting and separation of
cellular membranes, membrane-bound organelles, and cells.1 Dur-
ing these processes, the different cellular membranes are exposed
to two aqueous phases. Understanding the wetting properties
of these systems is of some practical value. On the one hand, it
may be desirable to ensure that the cellular membranes are always
completely wetted by one of the aqueous phases. On the other
hand, the response of partially wetted membranes to capillary
forces could be used to elucidate the mechanical properties of
organelles and cells as well.
A particularly interesting class of aqueous droplets is pro-

vided by membrane-less or droplet-like organelles that have
been recently discovered in vivo36 and are enriched in intrin-
sically disordered proteins37 such as FUS. These droplet-like
organelles can be reconstituted in vitro which leads to novel kinds
of water-in-water emulsions. The interaction of the resulting
water-in-water droplets with biomimetic and biological membranes
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represents another intriguing topic for future research with
direct implications for molecular cell biology.
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■ GLOSSARY WITH MATHEMATICAL SYMBOLS
A total membrane area, A = Aαγ + Aβγ

Aαβ surface area of the αβ interface
Aαγ surface area of the αγ membrane segment.
Aβγ surface area of the βγ membrane segment
α, β two coexisting liquid phases, Figure 1
αβ indicates the interface between the α and β phases
αγ indicates the membrane segment between the α and γ

phases
βγ indicates the membrane segment between the β and γ

phases
C1 principal curvature along the contour of an axisymmetric

shape
C2 principal curvature orthogonal to C1
Ebe
in bending energy of membrane for in-wetting morphology

Ejγ
in bending energy of the jγ membrane segment forming a

spherical cap, eq 57
EG Gaussian curvature energy
Ead adhesion free energy of the vesicle−droplet system

in energy functional of the vesicle−droplet system for in-
wetting, eq 9

in shape functional of the vesicle−droplet system for in-
wetting, eq 10

G Gaussian curvature
γ liquid phase that plays the role of a spectator phase,

Figure 1 and Figure 6
j index with j = α or j = β
KA area compressibility modulus
καγ bending rigidity of the αγ membrane segment
κβγ bending rigidity of the βγ membrane segment
κG,αγ Gaussian curvature modulus of the αγ membrane

segment
κG,βγ Gaussian curvature modulus of the βγ membrane

segment
Lco length of the contact line between the αβ interface and

the vesicle membrane
λco line tension of contact line
mαγ spontaneous curvature of the αγ membrane segment
mβγ spontaneous curvature of the βγ membrane segment
M mean curvature
Mαβ mean curvature of the αβ interface
Mαγ mean curvature of the αγ membrane segment forming a

spherical cap
Mβγ mean curvature of the βγ membrane segment forming a

spherical cap
Pα pressure in the liquid phase α

Pβ pressure in the liquid phase β
Pγ pressure in the liquid phase γ
ψ tilt angle used to parametrize axisymmetric vesicle shape,

Figure 2
r radial coordinate for axisymmetric vesicle shape, Figure 2
r1 radius of contact line, r1 = r(s1)
Rαβ curvature radius of the αβ interface, Figure 3
Rαγ curvature radius of the αγ membrane segment forming a

spherical cap, Figure 3
Rβγ curvature radius of the βγ membrane segment forming a

spherical cap, Figure 3
Rco radius of the contact line, Figure 3
Rne radius of the membrane neck
s arc length of the contour of an axisymmetric vesicle
s1 arc length value for the contact line position
S shape of the vesicle−droplet system
Ssc three-spherical-cap shape of the vesicle−droplet system
σαγ spontaneous tension of the αγ membrane segment, σαγ =

2καγmαγ
2

σβγ spontaneous tension of the βγ membrane segment, σβγ =
2κβγmβγ

2

Σ overall lateral stress within the vesicle membrane
Σαβ interfacial tension of the αβ interface
Σαγ mechanical tension of the αγ membrane segment, Σαγ =

Σ + Wαγ, in-wetting
Σβγ mechanical tension of the βγ membrane segment, Σβγ = Σ

+ Wβγ, in-wetting
Σjγ
eff effective tension of the jγ membrane segment for in-

wetting, eq 35
Σαγ
(n) effective tension Σαγ

eff of the αγ segment with number n,
in-wetting

Σγα mechanical tension of the γα membrane segment, Σγα =
Σ + Wγα, out-wetting

Σγβ mechanical tension of the γβ membrane segment, Σγβ = Σ
+ Wγβ, out-wetting

Σγj
eff effective tension of the γj membrane segment for out-

wetting, eq 72
Σγβ
(n) effective tension Σγβ

eff of the γβ segment with number n,
out-wetting

θ contact angle
θα* intrinsic contact angle between the αβ interface and the

αγ membrane segment
θβ* intrinsic contact angle with θβ* = π − θα*
θα
ap apparent contact angle that opens up toward the α phase
θβ
ap apparent contact angle that opens up toward the β phase
θγ
ap apparent contact angle that opens up toward the γ phase,

θγ
ap = 2π − θα

ap − θβ
ap

θα
(n) apparent contact angle θα

ap for droplet number n
θβ
(n) apparent contact angle θβ

ap for droplet number n
θγ
(n) apparent contact angle θγ

ap for droplet number n
Vα volume of α droplet
Vβ volume of β droplet
W adhesion energy per unit area or adhesive strength
Wαγ adhesive strength between membrane and α droplet
Wβγ adhesive strength between membrane and β droplet
z Cartesian coordinate and axis of rotational symmetry,

Figure 2
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