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Femtosecond optical pulses at mid-infrared frequencies1 have opened up the nonlinear 

control of lattice vibrations in solids2. So far, all applications have relied on second order 

phonon nonlinearities3, which are dominant at field strengths near 1 MVcm-1. In this regime, 

nonlinear phononics can transiently change the average lattice structure, and with it the 

functionality of a material4-10. Here, we achieve an order-of-magnitude increase in field 

strength, and explore higher-order lattice nonlinearities. We drive up to five phonon 

harmonics of the A1 mode in LiNbO3. Phase-sensitive measurements of atomic trajectories in 

this regime are used to experimentally reconstruct the interatomic potential and to 

benchmark ab-initio calculations for this material. Tomography of the Free Energy surface 

by high-order nonlinear phononics will impact many aspects of materials research, including 

the study of classical and quantum phase transitions. 

 

  



In the experiments reported here, the highest frequency A1 mode of LiNbO3 was excited with mid-

infrared femtosecond pulses, with peak field strengths up to 20 MV/cm. These pulses were tuned 

to 17.5 THz, slightly to the red of the TO phonon frequency ( TO = 19 THz)11,12. A time-delayed, 

30-fs-long probe pulse at 800-nm wavelength was used to sample these lattice dynamics. We 

recorded both the time-dependent probe polarization rotation (PR) and second harmonic (SH) 

intensity (Fig.1c and d). The polarization rotation measured time-dependent changes of the 

dielectric permittivity of the crystal ( )r  , whereas the second harmonic sampled the changes in 

the optical second-order susceptibility
(2)
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13,14, and with it the polar component of the 

lattice motion. The stable absolute carrier-envelope-phase1 of the pump field made it possible to 

directly follow the atomic trajectories in a pump-probe geometry (see Fig. 1b). Spectral 

interferometry between the frequency upshifted probe and a local oscillator derived from the same 

probe pulse was used to detect both phase and amplitude of these dynamics15,16. Details of the 

experimental setup and detection process are found in the methods section and Extended Data Fig. 

1-3. 

As shown in Fig. 1a, the A1 mode involves rotations of the oxygen octahedra, accompanied by c-

axis motions against the Nb and Li sublattices (see Fig. 1a). Due to the broken inversion symmetry 

of the crystal, the A1 mode is both Raman and infrared active11,12, with a net electric dipole moment 

along the c-axis.  

For small amplitude excitation (0.1 MV/cm), both PR and SH measurements yielded harmonic 

oscillations (see Fig. 1c and d dashed lines), which were readily attributed to a combination of a 

15-THz phonon-polariton and the 19-THz TO phonon of the A1 mode17. As shown in Fig. 2, the 

pump-probe spectrum of the small-field response is well understood by considering the phase-



matching between the probe light and the phonon-polariton propagating into the crystal18, 19. The 

dispersion of the phonon-polaritons in LiNbO3 (black line) is plotted as 0

( )p
c q
 

 , where c0 

is the speed of light in vacuum and ( )   the dielectric function. The two light lines gv q   of the 

800 nm (red) and 400 nm (blue) probe (ng,800 =2.30, ng,400 =3.03)20 are also shown, where vg and q 

denote the group velocity and wave number of the probe light, respectively. Phase-matching occurs 

at those frequencies for which the light lines intersect the phonon-polariton dispersion curve18,21, 

i.e. at 15 THz (PR) and 16 THz (SH).  

At high pump fields (20 MV/cm, Fig. 1c and d solid lines), a strongly anharmonic response was 

observed, with asymmetric oscillations in both PR and SH signals. Figure 3a and b display the 

corresponding amplitude spectra. In addition to the 15 and 19 THz frequency components observed 

in the linear response, harmonics of these two frequencies appeared in both PR and SH spectra. 

The most pronounced peaks were found at multiples of the 15-THz phonon-polariton mode, clearly 

visible up to n = 5 (75 THz). Correspondingly, the amplitudes of the first three harmonics at  

15, 30 and 45 THz displayed a linear, quadratic and cubic dependence on the excitation field (s. 

Fig.2 c). The PR spectrum also exhibited peaks at the sum and difference frequencies of these 

harmonics, likely descending from nonlinear mixing of the TO phonon and the polariton modes 

(see Extended Data Fig. 4 for a detailed assignments of all peaks). Note that these results are 

reminiscent of what has been extensively reported in the literature in the context of non-resonant 

THz and mid-IR harmonic generation22-27. However, in the present case the harmonics appear at 

multiples of the phonon-polariton, instead of the central frequency of the optical pump field, 

indicating a fundamentally different physical origin. 



To analyze these data, we first consider the local lattice response. We start from the anharmonic 

lattice potential of the driven mode at TO , and ignore phonon-polariton propagation. Ab initio 

density functional theory (DFT) calculations yielded an expression for the anharmonic lattice 

potential (see methods section) 

                                            2 2 3 4
3 4

1 1 1( )
2 3 4IR TO IR IR IRV Q Q a Q a Q   ,                                          (1) 

where a3 and a4 are the coefficients of the cubic and quartic potential term (see top panel of Fig. 

4). The equation of motion for this mode, when driven by a light pulse with carrier frequency TO  

and duration T, is then given by 

 2 2 3 *
3 42 ( )IR IR TO IR IR IRQ Q Q a Q a Q Z E t        (2) 

where *Z  denotes the effective charge of the phonon mode,   is a dissipation term, and 

     2 2
0 sin exp -4ln 2 /TOE t E t t T    the excitation pulse profile. The calculated dynamics at 

field strengths comparable to our experiment, reported in Fig. 4, shows peaks at harmonics of the 

fundamental frequency TO . As expected28,29,  the strongly driven overtones are also slightly red-

shifted, an effect that increases with harmonic order (see Extended Data Fig. 5).  

A more comprehensive description of our experimental observations was obtained with finite 

difference time-domain simulations of phonon-polariton propagation30, which are reported in Fig. 

5. In these simulations, we combined the linear optical properties of LiNbO3 with the nonlinear 

lattice potential of Eq. (1) (see methods and Extended Data Fig. 6 and Table 1). Figure 5a displays 

the amplitude of the propagating electric field as a function of sample depth and time. Both the 

phonon-polaritons and the broadband radiation emitted from the anharmonic polar motions 

propagate from the surface into the bulk following the dispersion imposed by the material. By 



integrating the simulated electric field along the 800 nm light line, we extracted the response shown 

in Fig. 5b, yielding good agreement with the polarization-rotation measurement. Figure 5c displays 

the corresponding amplitude spectrum obtained by Fourier transformation, which comprises peaks 

at all sum and difference frequencies of the polariton and the TO mode, also in good agreement 

with the experiment (cf. Fig. 2a).  

We next turn to the key results of this paper, which are extracted from the time-dependent changes 

in the second harmonic intensity ISH(). As discussed in references 13 and 14, changes in ISH 

induced by a coherent phonon of frequency  , can be described as a hyper-Raman scattering 

process, which involves the generation of sidebands with frequency offset  . The signal on the 

detector involves a frequency integral over the hyper-Raman sidebands at all phonon harmonics, 

and is therefore linearly proportional to ( )Q  31,32. For a sinusoidal field ( )Q  , ( )Q  is 

proportional to the time derivative ( )Q  . To compare simulations with experiments, we integrate 

the time derivative of the calculated phonon field Q  along the blue line of Fig. 5d over the first 2 

m  beneath the surface, where the SH light is being generated10 (see Fig. 5e and f). We find good 

agreement between measured and simulated SH response, which both display broad peaks at 

multiples of 16 and 19 THz. 

Crucially, from the knowledge of ( )Q   and ( )Q  , we can reconstruct the microscopic lattice 

potential explored during each oscillation cycle. Assuming that the envelope of the driving pulse 

varies slowly within one phonon period T, and that the damping rate , we can approximate 

the total energy of the lattice to be a constant E during each cycle, ( ) ( ) .kinE U Q E Q const    

Because 21( ) ( )
2kinE Q    is known to a proportionality factor, we can retrieve the instantaneous 

potential energy at each time delay ( ) ( )kinU E E   .  By integrating the experimental data over 



time we recover the corresponding phonon coordinate ( )Q   and obtain the time independent lattice 

potential energy ( )U Q . Furthermore, different cycles with different amplitudes and different total 

energy E trace fractions of the potential energy ( )U Q  many times, making its reconstruction highly 

over-determined.  

Figure 6 compares the experimentally reconstructed energy potential of the highest frequency A1-

mode of LiNbO3 (filled circles) with the potential obtained from DFT calculations (grey line). The 

unknown proportionality factor mentioned in the derivation above was chosen from a fit of the 

experimental data to this calculated potential. More details of this procedure are found in the 

methods section. We find excellent agreement between the potentials up to the highest excursions 

in the strongly anharmonic regime reached in our experiment. Hence, strong-field nonlinear 

phononics can be used to reconstruct interatomic potentials of solids, yielding information not 

easily retrieved with any other technique.  

The tomography of the force field discussed above is straightforwardly extensible to all materials 

with a large bandgap, like ferroelectrics, for which acceleration of quasi-particles in the field is 

neglected to first order. A full reconstruction of the force field of a material with N atoms requires 

the measurement of 3N-3 lattice modes without symmetry considerations. Recent advances in the 

generation of mid infrared and THz pulses that are both widely tunable and intense33, make these 

prospects realistic. Tomographic measurements of force potentials in the vicinity of equilibrium 

phase transitions will yield crucial information not accessible otherwise. Finally, as the sampling 

of the potential can be retrieved within one cycle of the pump light, one could envisage 

measurements of rapidly evolving potential energy surfaces.  

 

 



 

Figure 1| Experimental setup and time-resolved optical changes. a, schematic of the pump-

probe configuration and the excited A1 phonon mode in LiNbO3, which has a net polar component 

along the crystal c-axis. b, electro-optic sampling measurement of the 150 fs, carrier envelope 

phase stable mid-infrared pulses, centered at 17.5 THz with 4 THz bandwidth, used for excitation 

of the A1 mode. c and d, time resolved changes of the polarization rotation of the 800nm probe and 

second harmonic intensity, respectively, both for high (solid colored lines) and low (dashed lines) 

excitation fields. 

  



 

Figure 2| Phonon-Polariton dispersion. Phonon-Polariton dispersion in LiNbO3 (black curve) 

and two lines representing the relation gv q   for 800 nm (red) and 400 nm (blue) light. The dots 

mark the points of intersection with the dispersion relation, which precisely correspond to the 

observed fundamental frequencies (left and right panel). 

  



 

Figure 3| Amplitude spectra and excitation field dependence. a and b, FFT amplitude spectra 

of the polarization rotation and second harmonic intensity measurements, respectively, both for the 

high excitation field shown in Figure 1. The blue and read peaks correspond to multiples of the 

polariton frequency p and TO . The fundamental phonon-polariton frequency for 800 nm and SH 

probe are 15.3 THz and 16.2 THz respectively. The grey peaks in panel a label sum and difference 

frequencies of p and TO , which are absent in the SH response. c, Excitation field dependence of 

the peak area at the first, second and third harmonic of p , revealing a linear, quadratic and cubic 

trend.  

 



 

Figure 4| Anharmonic lattice potential. Lattice potential energy of LiNbO3 (red) along the A1 

mode of Fig. 1a compared to a harmonic potential (grey) with the same fundamental frequency TO

. The arrows denote the expected positive and negative excursions for an energy of 0.6 eV, roughly 

corresponding to the energy deposited per unit cell by the excitation pulses. The lower graph shows 

the solution of the equation of motion and its amplitude spectrum (see text). 

 



 

Figure 5| FDTD phonon-polariton propagation simulations. a, Electric field as a function of 

depth and time inside LiNbO3 after MIR excitation, the red line shows the propagation of the 800 

nm probe pulse for one time delay. b,c Time trace derived by integrating along the red line in a for 

all time delays and the corresponding amplitude spectrum. The spectrum shows harmonics of p

and TO as well as mixed frequencies. d, Phonon-field IRQ from the same simulation as in a. The 

blue line shows the propagation of the SH light. e, Time trace derived from an integration along 

the blue line within the first 2 µm, where the SH light is generated. f, Amplitude spectrum of e, 

which only shows broad peaks at the harmonics of p and TO , the mixed frequencies are absent. 



 

Figure 6| Reconstructed A1 mode potential energy. Experimentally reconstructed potential 

energy of the A1 mode (red colored circles) derived from different cycles of the experimental data, 

which are shown in the inset. The grey solid line is the mode potential obtained by DFT 

calculations. The experimental potential is scaled by a fit to the calculated potential using only one 

scaling factor with preserved aspect ratio. From this comparison, we estimate maximum mode 

excursions of 1.4 Å amu , corresponding to a ~14 pm displacement of the oxygen atoms from 

their equilibrium positions. The dashed curve is the potential in the harmonic approximation.  
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Methods 
 

Experimental Setup 

The carrier envelope phase stable 150 fs long 17.5-THz (4 Thz FWHM-bandwidth) mid-infrared 

pulses were obtained by difference frequency generation of two signal beams from two optical 

parametrical amplifiers, which were seeded by the same white light and pumped by 30-fs, 800-nm 

pulses at 1 kHz repetition rate. The dynamics were probed in non-collinear geometry with a 30° 

angle between the mid-IR pump and 800-nm probe pulses. (see Extended Data Fig. 1). 

Due to the large second-order nonlinear susceptibility of LiNbO3, the transmitted 800-nm pulses 

generated a second harmonic (SH) signal at 400 nm, which was separated from the fundamental 

beam after the sample using a dichroic mirror. Changes in the second harmonic intensity were 

measured with a photo multiplier tube. The probed SH dynamics originate from a layer of one 

coherence length lc = 1.3 µm below the surface (see supplementary information of Ref. 10 and Ref. 

34 for details).  

The pump induced polarization rotation of the 800-nm beam was detected by balancing the 

intensity on two photodiodes using a half-wave plate and a Wollaston prism. All experiments were 

conducted at room temperature and at ambient pressure. The sample used in the experiments was 

a commercially available LiNbO3 single crystal (5x5x5 mm).  

 

 

 

 



 

Detection process of polarization rotation and second harmonic measurements 

The interaction of the probe beam with the phonon polariton can be descried as a nonlinear mixing 

of the oscillatory atomic motions with the probe beam, resulting in the generation of sidebands in 

the probe spectrum. These oscillations are detected by interfering the sidebands with a local 

oscillator on the detector15,16. The nonlinear mixing process is due to hyper-Raman scattering in 

the second harmonic measurements, and electro-optic mixing as well as Raman scattering in the 

polarization rotation measurements13,14. After interaction with a phonon-polariton of frequency 

, at a specific pump-probe time-delay   the spectrum of the transmitted probe consists of two 

terms:  

0( ) ( ) ( ) exp( ) . .QE E E i c c           

The first term denotes the spectrum of the unperturbed probe beam and the second term accounts 

for the generated sideband with amplitude spectrum ( )QE   , which is proportional to the 

phonon amplitude. The sideband further acquires a time-delay dependent phase exp( )i  , which 

is modulated at the phonon frequency. A phase sensitive measurement of the sideband thus carries 

information about both frequency and amplitude of the atomic motions involved in its generation 

(for a more detailed derivation see Ref. 31 and 32). 

Both phase and amplitude can be detected by recording the time-delay dependent interference 

signal of the generated sidebands with transmitted unperturbed probe light. The recorded intensity 

on a detector is the spectral integral of this interference term: 

 2
0( ) ( ) ( ) exp( ) . .QI d E E i c c           

0 ( ) cos( ) ( ) cos(2 )I A B        . 



As the homodyne component ( )B   is much smaller than the heterodyne component ( )A  , it can 

be disregarded.  

Hence, the detected second harmonic light is sensitive to 0 ( ) cos( )I A      . The first term is a 

constant background, while the second term is proportional to ( )Q  , where ( )Q   is the atomic 

motion (see Ref. 31 and 32). Generally, the proportionality constant depends on the phonon 

frequency due to different penetration depths. However, as the SH light was generated in a thin 

layer of 1.3 µm below the sample surface, its interaction length with the phonon-polariton 

harmonics was the same at all frequencies (see supplementary information of Ref. 10 and Ref. 34). 

The SH bandwidth supports efficient detection up to 60 THz (see Extended Data Fig. 3 a and b). 

A narrow bandpass filter on the high-energy side of the spectrum was used to shape the spectral 

response function and balance the detection efficiency of the first three harmonics15 (15, 30 and 45 

THz). We subtracted a slowly varying background from the experimental data to extract the 

oscillatory component. This background can be attributed to the modification of (2)  due to 

anharmonic phonon coupling to the ferroelectric soft mode (see Ref. 10). The resulting oscillatory 

changes in the SH measurements are directly proportional to the atomic motions of the excited high 

frequency A1 mode of LiNbO3 ( )Q  .  

The polarization rotation of the transmitted 800-nm light is measured by two balanced photodiodes 

placed behind a polarizing beamsplitter. Their difference signal is sensitive only to the heterodyne 

component ( ) ( ) ( ) 2 ( ) cos( )I I I A           , which enhances the sensitivity to its 

oscillatory contribution. The large bandwidth of 90 THz of the 800 nm light was generated by 

pronounced spectral broadening due to self-phase modulation in the LiNbO3 crystal35,36 as shown 

in Extended Data Fig. 3 c. The calculated sampling efficiency is shown in panel d. In contrast to 

the SH measurements, the interaction length between 800nm and phonon-polariton harmonics 



strongly depends on their frequency. Thus, these measurements cannot straight forwardly be used 

to derive the atomic motions. The grey curve in Extended Data Fig. 3 d displays the penetration 

depth, which significantly increases with ascending frequency.  

Assignment of all peaks in the PR amplitude spectrum 

Extended Data Figure 4 displays a detailed assignment of all peaks in the amplitude spectrum of 

the polarization rotation measurement. Circles/triangles represent a shift of the probe light by p  

and TO , respectively. Multiple symbols indicate a shift by multiples of the fundamental frequency. 

Blue and red colors indicate up and down shifts, corresponding to sum and difference frequency 

mixing, respectively. 

Anharmonic frequency renormalization  

The black solid line in Extended Data Fig. 5 shows a copy of the amplitude spectrum of the second-

harmonic measurement presented as Fig. 3b of the main text. The observed harmonics of the 

polariton frequency are slightly red-shifted with respect to integer multiples of the fundamental 

frequency (blue vertical lines). This effect is also observed in simulations of a resonantly driven 

anharmonic oscillator using the potential obtained from DFT calculations (red curve). This 

frequency renormalization is well known to occur for anharmonic oscillators at large oscillation 

amplitudes28,29. This behavior clearly distinguishes the discussed high-harmonic generation from 

cascaded Raman processes, which would produce equally spaced peaks in the spectrum. 

Linear Optical Properties 

The THz linear optical properties along the crystal c-axis of LiNbO3 are dominated by two optical 

phonons at 7.8 THz and 18.9 THz. It further includes a weak mode at 8.2 THz and a feature at 

21 THz which has been attributed to two phonon absorption12. The measured THz reflectivity 

spectrum of the investigated sample is shown in Extended Data Fig. 6 (grey line), together with a 



fit using four Lorentzian oscillators (red line). The resulting fit parameters for the two dominating 

optical phonons were used in the FDTD simulations of the phonon polariton propagation and are 

shown in Extended Data Table 1. Extended Data Figure 6 further shows the reflectivity fit 

considering only the two dominating oscillators only (blue line) and the reflectivity obtained from 

the FDTD simulation using these two modes (green line). Both yield a satisfactory description of 

the optical properties in the region of interest (12-20 THz). 

FDTD phonon polariton simulations 

The phonon-polariton propagation dynamics in LiNbO3 have been calculated by solving Maxwell’s 

equation in space and time. To this end we used a finite difference time domain approach in one 

spatial dimension30.   

To capture the linear response of the material we used the parameters obtained from Fourier 

transform infrared spectroscopy measurements and implemented two separate sets of equations to 

model the two dominant optical phonons along the crystal c-axis. For each mode, the equation of 

motion is given by 

2 *2 ( )IR IR TO IRQ Q Q Z E t     . 

Here, the damping term  , the phonon frequency TO  and the born effective charge *Z  are the 

experimentally obtained parameters. *Z  can be expressed in terms of parameters derived from 

infrared spectroscopy as 0
0( )TO n

  


 , where n  is the oscillator density, 0  and    are the 

low and high frequency limit of the dielectric function respectively. Due to the presence of multiple 

modes, 0  and   had to be derived for every mode from the generalized Lydanne-Sachs-Teller 

relation37. The oscillator density was approximated as one oscillator per unit cell.  



The above equation was solved at every discrete point of the grid in space and time using the 

calculated values of the electric field via Maxwell’s equation. The oscillator equation and 

Maxwell’s equation are coupled via the electric displacement field 

 0 0 0( )TO IRD E nQ          

By adding also the second oscillator equation to the dielectric displacement field, these relations 

reproduce the linear optical properties of LiNbO3 (see Extended Data Fig. 6).  

To describe the observed nonlinear effects, the lattice anharmonicities of the driven mode were 

introduced into the equation of motion of the excited  A1 mode at 19 THz: 

2 2 3 *
3 42 ( )IR IR TO IR IR IRQ Q Q a Q a Q Z E t       . 

Here, a3 and a4 are the anharmonic constants taken from ab-initio Density Functional Theory 

calculations as described below ( 3/2 3
3 1567.65 / / Åa meV amu , 2 4

4 900.8 / / Åa meV amu ). 

Here, the mid-infrared pump pulse was set to a field strength of 30 MV/cm, carrier frequency 17.5 

THz and 180 fs duration, comparable to the experiment. We evaluated the equations with a time 

stepping of 0.5 fs and spatial grid of 0.5 µm. At the boundaries of the simulated area, perfectly 

matched boundary conditions were implemented to impede back reflection. 

DFT calculations of the full anharmonic potential 

To explore the nonlinear response of a resonantly excited phonon mode we performed first-

principle computations within the framework of density functional theory (DFT). All our 

computations were carried out using DFT as implemented in the Quantum Espresso code38. We 

used ultrasoft pseudopotentials, which contain as valence states the 2p 2s for Lithium, 4s24p64d45s1 

for Niobium and 2s22p4 for Oxygen. As numerical parameters, we applied a cutoff energy for the 



plane wave expansion of 80 Rydberg and five times this value for the charge density. For all 

computations, we sampled the Brillouin zone by a 17x17x17 k-point mesh generated with the 

Monkhorst and Pack scheme39 and reiterated total energy calculations until the total energy became 

less than 10-10 Rydberg. Before calculating phonon-modes we fully structural relaxed the unit-cell 

regarding forces and pressure below the threshold of 5 µRy/a0. We finally performed density 

functional perturbation theory40 calculations to obtain phonon modes eigenvectors and frequencies. 

Finally, we compute the anharmonic phonon potential by calculating the total energy for structures, 

which have been modulated with the phonon eigenvector. Least mean square fits of this total energy 

landscape reveal the anharmonic coefficients of eq. 2 of the main text and the phonon mode 

eigenvector as shown in Fig. 1a. 

Rescaling of the reconstructed potential 

In order to obtain the proportionality factor B in /SHdI dQ B Q   , the experimentally 

reconstructed potentials are fitted by the potential derived from DFT calculations. With 

/SHdI dQ B Q   , 
2

2

( / )1
2

SH
kin

dI dQE
B

  and ( / )SHQ B dI dQ dt   . The constant B can then be 

derived by fitting the function 2( ) ( / )f Q B U Q B   to the experimental data, where U(Q) is the 

potential obtained by DFT. With this we can rescale the experimental x and y axis and obtain the 

phonon amplitude in terms of  Å amu  and the potential energy in eV. The maximum displacement 

of the oxygen atoms involved in the vibration, can be calculated with the knowledge of the phonon 

eigenvectors which we obtained from DFT calculations. This calculation yields a maximum 

displacement of the oxygen atoms of approximately 14 pm which amounts to 7% of the Nb-O and 

5% of the O-O nearest neighbor distance at the corresponding potential energy (0.7 eV), which 

agrees with the estimated energy deposited per unit cell (0.6 eV at 3 µJ pulse energy). 
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Extended Data 

 

 

Extended Data Figure 1 Schematic representation of the experimental setup. 30-fs pulses from a 

Ti:sapphire are used to pump two optical parametric amplifiers (OPA), which are seeded by the 

same white light continuum (WLC) . Carrier envelope phase stable 3-µJ 150-fs pulses at 17 µm 

wavelength are obtained by difference frequency generation of the two signal beams from the 

OPAs. The mid-infrared is focused to a spotsize of approximately 65 µm using a telescope and 

overlapped with the 800-nm probe beam (40 nJ, 35 µm spotsize). 

  



 
 

Extended Data Figure 2 The black solid line is the incident spectrum of the 800-nm probe pulses 

with a bandwidth of ~ 30 THz. After interaction with the mid-infrared excited sample volume 

several sidebands are superimposed (grey lines). The red line is a guide to the eye of the resulting 

spectral broadening. Due to conservation of momentum the sidebands propagate in a slightly 

different directions compared to the unperturbed 800 nm. The differently shaded grey curves have 

been taken by scanning the half space behind the LiNbO3 crystal. 

  



 

Extended Data Figure 3 a, Spectrum of the 800 nm probe beam before (red) and after (grey) 

propagation through the LiNbO3 crystal. b, sampling efficiency of the 800 nm light calculated with 

the spectrum in shown in a (red curve) and the penetration depth in the min-infrared region obtained 

from FT-IR spectroscopy. c, spectrum of the generated SH light and the acceptance range of the 

bandpass filter in front of the detector (dashed curve). d, sampling efficiency of the SH light with 

the spectrum shown in c. The sampling efficiency is almost constant in the region 15-45 THz 

allowing unperturbed measurement of the first three phonon harmonics. 

 

  



 
Extended Data Figure 4 Amplitude spectrum of the polarization rotation measurement. Blue 

symbols denote a frequency blueshift of 15 THz (triangles) and 19 THz (circles). Multiple symbols 

represent a shift by multiples of the corresponding frequency. Red symbols denote a red shift. 

  



 

 
Extended Data Figure 5 Amplitude spectrum of the second harmonic measurement (black 

curve). The blue lines denote multiples of the fundamental polariton frequency. The observed 

peaks associated with harmonics of the fundamental frequency are all shifted to the red with 

respect to the blue lines as expected for a strongly driven anharmonic oscillator. The red solid 

line is a simulation reproducing the red shift of the phonon harmonics. 



 
Extended Data Figure 6 The grey solid line is the measured THz reflectivity spectrum of 

LiNbO3 with light polarized along the c-axis. The red line is a fit to the data considering 4 

Lorentzian oscillators. The dashed blue line is the fitted reflectivity only considering the two 

dominant phonon modes at 7.5 THz and 19 THz. The green line is the simulated reflectivity 

when only these oscillators are considered in the FDTD simulations (see Supplementary 

Information S6). 

  



 

 

 

Extended Data Table 1 Values obtained from a fit of 4 Lorentzian oscillators to the reflectivity 

spectrum of our LiNbO3 sample. 

 

 

Oscillator # Frequency ( 1cm ) 

Oscillator strength( 1cm ) 

0TO    
Damping ( 1cm ) 

1 249.3 922.8 27.7 

2 271.6 384.1 20 

3 632 955.9 33.5 

4 696.7 352.5 76.2 

   4.4054   


