Investigation of turbulence properties via spectral broadening of Doppler reflectometry signals in ASDEX Upgrade

G.D.Conway¹, C.Lechte², P.Hennequin³, P.Simon^{1,2,4}, and the ASDEX Upgrade Team

¹Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany

²IGVP, Universität Stuttgart, 70569 Stuttgart, Germany

³Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau, France

⁴Institut Jean Lamour, Université de Lorraine, 54011 Nancy, France

1. Introduction

Doppler reflectometry (backscatter, BS) is an established microwave diagnostic technique for measuring plasma flows and turbulence in magnetically confined plasmas with sub-millisecond temporal and mm spatial (radial) resolution. Fig. 1 shows a typical signal spectrum from an ASDEX Upgrade (AUG) L-mode edge plasma (limiter, $B_T = -2.2$ T, $\bar{n}_{eo} \approx 2.5 \times 10^{19}$ m⁻³) using an X-mode, 50 - 75 GHz stepped frequency reflectometer [1].

From the Doppler shift f_D (obtained by Gaussian fit to the asymmetric spectral component [1]) the turbulence velocity $u_{\perp} = v_{E \times B} + v_{ph} = 2\pi f_D/k_{\perp}$ is extracted. $k_{\perp} = 2N_{\perp}k_o$ is the turbulence wavenumber at the beam turning point, obtained from beamtracing (TORBEAM). Further, the peak power A_D , or rather the integrated peak $S(k_{\perp}) \propto A_D \cdot w_D$, gives a measure of the turbulence level $|\delta n|^2$ at the probed k_{\perp} . Here w_D is the 1/e power spectral halfwidth, usually assumed to be determined by the diagnostic wavenumber resolution δk_{\perp} , set by the probing beam width/divergence and curvature effects [2]. However, in AUG, w_D is much wider than expected from the intrinsic δk_{\perp} alone. In fact, peak broadening may arise from several factors: turbulent and coherent flow oscillations, such as GAMs;

Fig. 1: (a) Typical Doppler refl. spectrum from AUG edge with (b) symmetric and asymmetric components.

flow shear; non-linear turb. interactions; as well as beam spreading from low k forward-scattering (FS). These effects are investigated with an eye to the turbulence properties.

2. Doppler k_{\perp} resolution

Fig. 2(a) shows a radial profile of the intrinsic diagnostic δk_{\perp} for the L-mode shot #33953, obtained with the IPF-FD3D full-wave FDTD code [3]. The O and X-mode 2D simulations use experimental equilibria, antenna geometry and density profiles as input, and produce 2D maps of the wave E^2 field. Taking a Fourier transform of the field pattern along a poloidal slice through the beam turning point gives the (ideal, no turbulence) instrument response - i.e. replicating a real reflectometer measurement [4]. δk_{\perp} is the 1/e half-width

Fig. 2: (a) full-wave δk_{\perp} and ray-trace k_{\perp} , (b) $\delta f_{\delta k}$ (diamonds) & measured w_D (triangles), (c) u_{\perp} and (d) shear $\delta f_{\nabla u}$: Limiter L-mode #33953.

of the E^2 k-spectral power, which ranges between 0.7-1.5 rad/cm. Converting to $\delta f_{\delta k} = u_{\perp} \delta k_{\perp}/2\pi$ gives the red points in fig. 2(b). Compared with the measured Doppler peak width w_D (black) $\delta f_{\delta k} < w_D$ by a factor of 5-10 or more. This is a general feature of all AUG shots and is particularly evident around the separatrix where the u_{\perp} velocity reverses, fig. 2(c) and $\delta f_{\delta k}$ dips, but w_D peaks.

3. Flow shear & radial resolution

The peak in w_D at the separatrix may be explained by the finite volume of the Doppler backscatter region around the beam turning point. In regions of strong radial shear in u_{\perp} this results in a smearing of the Doppler shift [5] (f_D broadening but no peak splitting in AUG L-mode), the magnitude of which may be estimated via $\delta f_{\nabla u} = \nabla u_{\perp} \Delta r \, k_{\perp}/2\pi$ where ∇u_{\perp} is the velocity gradient and Δr the diagnostic radial resolution. Here, the radial extent is estimated as the fwhm of the first Airy lobe of E^2 , obtained from the 2D full-wave simulations by taking a radial slice through the beam turning point. For

a range of AUG simulations the lobe width is found to be in reasonable agreement with the 1D formula $\Delta r = 1.63 L_{\epsilon}^{1/3} k_o^{-2/3}$, where $L_{\epsilon} = (dN^2/dr)^{-1}$ is the dielectric constant scale length at the beam turning point [4,6]. The example in fig. 2(d) shows the strong negative and positive u_{\perp} shear regions account largely for the magnitude and shape of the w_D peaks. However, the flow shear does not explain w_D in the SOL or in the E_r well.

4. Flow perturbations - coherent & random

In the L-mode edge region (usually between pedestal and separatrix) there is strong GAM activity. The GAM is a few kHz coherent $E \times B$ flow oscillation, shown in the f_D spectra in fig. 3(a), which can reach magnitudes of 10-30% of u_{\perp} on the tokamak outboard plane. The p.t.p. contribution of the GAM u_{\perp} modulation may be estimated directly by integrating the GAM peak in the f_D fluctuation spectra [7]. The resulting $\delta f_{\rm GAM}$ are shown as crosses in fig. 3(c). Although $\delta f_{\rm GAM} < w_D$ it adds to $\delta f_{\delta k}$ and thus the GAM can make a significant contribution when present. Also shown in fig. 3(c) is the broadband

 f_D standard deviation σ_{f_D} , i.e. the total f_D spectral integral, with GAM. σ_{f_D} includes the turbulence mutation (see below) i.e. forward cascade, as well as the non-linear turbulence/zonal-flow interaction. σ_{f_D} tends to follow w_D in the edge (qualitatively), there is a notable dip in σ_{f_D} when the GAM is present. Away from the GAM region, i.e. around the $E_{\rm r}$ well, the SOL, and inside of the pedestal top, where the flow shear is weak and the GAM is suppressed, the f_D spectra show a broad enhancement of the random flow perturbations. In the SOL, low frequencies dominate the spectra, which tends to 1/f-like, while the core flow spectra are more flat.

Fig. 3: (a,b) Flow \tilde{f}_D and turb. \tilde{A}_D spectra, (c) w_D (black), $\delta f_{\rm GAM}$ (crosses), σ_{f_D} (green) for limiter L-mode #33953.

5. Zero-frequency peaks & Forward-scattering

Towards the core both the w_D and the random flow σ_{f_D} increase again (as seen in fig. 3(c), and more clearly in fig. 4 for the high density $\bar{n}_{eo} = 7 \times 10^{19} \text{ m}^{-3}$, 1 MA, $B_T = -2.5 \text{ T}$,

Fig. 4: (a) w_D (black) and w_o (blue) and (b) Doppler peak $A_D \cdot w_D \propto |\delta n|^2$ and fluctuation σ_{A_D} profiles for LSN L-mode #27969.

lower-single-null, NBI heated L-mode, with O and X-mode probing) although the turbulence falls progressively, as shown by the Doppler peak intensity $A_D.w_D$ (filled) and the σ_{A_D} (open symbols). The peak broadening in the core is often accompanied by the appearance of a 2nd spectral peak close to zero frequency with a fairly constant amplitude and width w_o (fig. 4(a) blue points) in radius. The zero-frequency peak generally only becomes evident when the main Doppler BS peak is both weak (i.e. low turbulence, $\sim 15-20~\mathrm{dB}$ down on edge values - cf. fig. 4) and well shifted in frequency, as shown in the example spectrum of fig. 5(a) with peaks of comparable magnitude. A

zero-frequency peak can arise from a direct beam reflection from in-vessel components (not evident here), or an antenna side-lobe radiating at normal incidence to the plasma. However, as shown by the beam-tracing plot in fig. 5(b) for the 71 GHz O-mode case of fig. 4, the main beam incidence angle is rather large, requiring $k_{\perp} \sim 0$ side-lobe reflections at $\sim 15-17^{\circ}$ to be more than 30 dB stronger than the $k_{\perp} \approx 10$ cm⁻¹ Doppler BS.

An additional effect is non-localized, small-angle FS and large angle BS of the beam due to low-k turbulence along the beam path [8,9]. The BS may create a zero/low-frequency peak while the FS can lead to beam broadening [10], thus modifying the intrinsic δk , or in extreme cases to complete distortion of the beam phase-front etc. A low-k BS induced peak would suggest FS broadening may also be present. Note, around the beam turning point there is also a localized non-zero k_r sensitivity due to the finite scattering volume.

6. Non-linear interactions

Linear, single-scattering should prevail in the weakly turbulent core region. But, as the beam traverses the more turbulent edge, nonlinear, small-angle multiple-scattering can impact the beam, enhancing the above effects [8,9]. However, numerical estimates indicate the non-linear threshold is not exceeded for the cases here.

Finally, the turbulence itself has an intrinsic mutation

Fig. 5: (a) Doppler spectra and (b) beam-trace plus side-lobe rays, for 71 GHz (O), LSN L-mode #27969.

rate or correlation time, which translates directly to a broadening of the Doppler frequency peak [11]. It may appear as a random (diffusive-like) \tilde{f}_D with a more Lorentzian, rather than pure Gaussian line profile. Its effect will be more evident when u_{\perp} is small (low convection rate), as in the L-mode cases studied here. The turbulence mutation essentially accounts for the missing component in the measured w_D .

7. Conclusion

Various effects impact the Doppler peak w_D in different regions. After accounting for these effects (if possible), the excess w_D may give information on the intrinsic turbulence diffusive profile, which is important in the study of turbulent transport [11]. A direct comparison of experimental data with non-linear modelling [9] is currently in progress.

References

- [1] G.D.Conway *et al.* Plasma Fusion Res. **5**, S2005 (2010)
- [2] M.Hirsch & E.Holzhauer, Plasma Phys. Control. Fusion 46, 593 (2004)
- [3] C.Lechte *et al.* Plasma Phys. Control. Fusion **59**, 075006 (2017)
- [4] G.D.Conway et al. Proc. 12th Intl. Reflectometer Workshop (Jülich) IRW12 (2015)
- [5] F.da Silva et al. Nucl. Fusion 46, S816 (2006)
- [6] I.H.Hutchinson, Plasma Phys. Control. Fusion **34**, 1225 (1992)
- [7] G.D.Conway et al. Plasma Phys. Control. Fusion **50**, 085005 (2008)
- [8] E.Z.Gusakov & A.V.Surkov, Plasma Phys. Control. Fusion 46, 1143 (2004)
- [9] A.V.Surkov, Plasma Phys. Control. Fusion 48, 901 (2006)
- [10] F.da Silva et al. IEEE Trans. Plasma Sci. 38, 2144 (2010)
- [11] P.Hennequin et al. Proc. 26th EPS Conf. (Maastricht), ECA vol. 23J, 977 (1999)