Investigation of turbulence properties via spectral broadening of Doppler reflectometry signals in ASDEX Upgrade G.D.Conway¹, C.Lechte², P.Hennequin³, P.Simon^{1,2,4}, and the ASDEX Upgrade Team ¹Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany ²IGVP, Universität Stuttgart, 70569 Stuttgart, Germany ³Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau, France ⁴Institut Jean Lamour, Université de Lorraine, 54011 Nancy, France #### 1. Introduction Doppler reflectometry (backscatter, BS) is an established microwave diagnostic technique for measuring plasma flows and turbulence in magnetically confined plasmas with sub-millisecond temporal and mm spatial (radial) resolution. Fig. 1 shows a typical signal spectrum from an ASDEX Upgrade (AUG) L-mode edge plasma (limiter, $B_T = -2.2$ T, $\bar{n}_{eo} \approx 2.5 \times 10^{19}$ m⁻³) using an X-mode, 50 - 75 GHz stepped frequency reflectometer [1]. From the Doppler shift f_D (obtained by Gaussian fit to the asymmetric spectral component [1]) the turbulence velocity $u_{\perp} = v_{E \times B} + v_{ph} = 2\pi f_D/k_{\perp}$ is extracted. $k_{\perp} = 2N_{\perp}k_o$ is the turbulence wavenumber at the beam turning point, obtained from beamtracing (TORBEAM). Further, the peak power A_D , or rather the integrated peak $S(k_{\perp}) \propto A_D \cdot w_D$, gives a measure of the turbulence level $|\delta n|^2$ at the probed k_{\perp} . Here w_D is the 1/e power spectral halfwidth, usually assumed to be determined by the diagnostic wavenumber resolution δk_{\perp} , set by the probing beam width/divergence and curvature effects [2]. However, in AUG, w_D is much wider than expected from the intrinsic δk_{\perp} alone. In fact, peak broadening may arise from several factors: turbulent and coherent flow oscillations, such as GAMs; Fig. 1: (a) Typical Doppler refl. spectrum from AUG edge with (b) symmetric and asymmetric components. flow shear; non-linear turb. interactions; as well as beam spreading from low k forward-scattering (FS). These effects are investigated with an eye to the turbulence properties. ## 2. Doppler k_{\perp} resolution Fig. 2(a) shows a radial profile of the intrinsic diagnostic δk_{\perp} for the L-mode shot #33953, obtained with the IPF-FD3D full-wave FDTD code [3]. The O and X-mode 2D simulations use experimental equilibria, antenna geometry and density profiles as input, and produce 2D maps of the wave E^2 field. Taking a Fourier transform of the field pattern along a poloidal slice through the beam turning point gives the (ideal, no turbulence) instrument response - i.e. replicating a real reflectometer measurement [4]. δk_{\perp} is the 1/e half-width Fig. 2: (a) full-wave δk_{\perp} and ray-trace k_{\perp} , (b) $\delta f_{\delta k}$ (diamonds) & measured w_D (triangles), (c) u_{\perp} and (d) shear $\delta f_{\nabla u}$: Limiter L-mode #33953. of the E^2 k-spectral power, which ranges between 0.7-1.5 rad/cm. Converting to $\delta f_{\delta k} = u_{\perp} \delta k_{\perp}/2\pi$ gives the red points in fig. 2(b). Compared with the measured Doppler peak width w_D (black) $\delta f_{\delta k} < w_D$ by a factor of 5-10 or more. This is a general feature of all AUG shots and is particularly evident around the separatrix where the u_{\perp} velocity reverses, fig. 2(c) and $\delta f_{\delta k}$ dips, but w_D peaks. ## 3. Flow shear & radial resolution The peak in w_D at the separatrix may be explained by the finite volume of the Doppler backscatter region around the beam turning point. In regions of strong radial shear in u_{\perp} this results in a smearing of the Doppler shift [5] (f_D broadening but no peak splitting in AUG L-mode), the magnitude of which may be estimated via $\delta f_{\nabla u} = \nabla u_{\perp} \Delta r \, k_{\perp}/2\pi$ where ∇u_{\perp} is the velocity gradient and Δr the diagnostic radial resolution. Here, the radial extent is estimated as the fwhm of the first Airy lobe of E^2 , obtained from the 2D full-wave simulations by taking a radial slice through the beam turning point. For a range of AUG simulations the lobe width is found to be in reasonable agreement with the 1D formula $\Delta r = 1.63 L_{\epsilon}^{1/3} k_o^{-2/3}$, where $L_{\epsilon} = (dN^2/dr)^{-1}$ is the dielectric constant scale length at the beam turning point [4,6]. The example in fig. 2(d) shows the strong negative and positive u_{\perp} shear regions account largely for the magnitude and shape of the w_D peaks. However, the flow shear does not explain w_D in the SOL or in the E_r well. #### 4. Flow perturbations - coherent & random In the L-mode edge region (usually between pedestal and separatrix) there is strong GAM activity. The GAM is a few kHz coherent $E \times B$ flow oscillation, shown in the f_D spectra in fig. 3(a), which can reach magnitudes of 10-30% of u_{\perp} on the tokamak outboard plane. The p.t.p. contribution of the GAM u_{\perp} modulation may be estimated directly by integrating the GAM peak in the f_D fluctuation spectra [7]. The resulting $\delta f_{\rm GAM}$ are shown as crosses in fig. 3(c). Although $\delta f_{\rm GAM} < w_D$ it adds to $\delta f_{\delta k}$ and thus the GAM can make a significant contribution when present. Also shown in fig. 3(c) is the broadband f_D standard deviation σ_{f_D} , i.e. the total f_D spectral integral, with GAM. σ_{f_D} includes the turbulence mutation (see below) i.e. forward cascade, as well as the non-linear turbulence/zonal-flow interaction. σ_{f_D} tends to follow w_D in the edge (qualitatively), there is a notable dip in σ_{f_D} when the GAM is present. Away from the GAM region, i.e. around the $E_{\rm r}$ well, the SOL, and inside of the pedestal top, where the flow shear is weak and the GAM is suppressed, the f_D spectra show a broad enhancement of the random flow perturbations. In the SOL, low frequencies dominate the spectra, which tends to 1/f-like, while the core flow spectra are more flat. Fig. 3: (a,b) Flow \tilde{f}_D and turb. \tilde{A}_D spectra, (c) w_D (black), $\delta f_{\rm GAM}$ (crosses), σ_{f_D} (green) for limiter L-mode #33953. # 5. Zero-frequency peaks & Forward-scattering Towards the core both the w_D and the random flow σ_{f_D} increase again (as seen in fig. 3(c), and more clearly in fig. 4 for the high density $\bar{n}_{eo} = 7 \times 10^{19} \text{ m}^{-3}$, 1 MA, $B_T = -2.5 \text{ T}$, Fig. 4: (a) w_D (black) and w_o (blue) and (b) Doppler peak $A_D \cdot w_D \propto |\delta n|^2$ and fluctuation σ_{A_D} profiles for LSN L-mode #27969. lower-single-null, NBI heated L-mode, with O and X-mode probing) although the turbulence falls progressively, as shown by the Doppler peak intensity $A_D.w_D$ (filled) and the σ_{A_D} (open symbols). The peak broadening in the core is often accompanied by the appearance of a 2nd spectral peak close to zero frequency with a fairly constant amplitude and width w_o (fig. 4(a) blue points) in radius. The zero-frequency peak generally only becomes evident when the main Doppler BS peak is both weak (i.e. low turbulence, $\sim 15-20~\mathrm{dB}$ down on edge values - cf. fig. 4) and well shifted in frequency, as shown in the example spectrum of fig. 5(a) with peaks of comparable magnitude. A zero-frequency peak can arise from a direct beam reflection from in-vessel components (not evident here), or an antenna side-lobe radiating at normal incidence to the plasma. However, as shown by the beam-tracing plot in fig. 5(b) for the 71 GHz O-mode case of fig. 4, the main beam incidence angle is rather large, requiring $k_{\perp} \sim 0$ side-lobe reflections at $\sim 15-17^{\circ}$ to be more than 30 dB stronger than the $k_{\perp} \approx 10$ cm⁻¹ Doppler BS. An additional effect is non-localized, small-angle FS and large angle BS of the beam due to low-k turbulence along the beam path [8,9]. The BS may create a zero/low-frequency peak while the FS can lead to beam broadening [10], thus modifying the intrinsic δk , or in extreme cases to complete distortion of the beam phase-front etc. A low-k BS induced peak would suggest FS broadening may also be present. Note, around the beam turning point there is also a localized non-zero k_r sensitivity due to the finite scattering volume. #### 6. Non-linear interactions Linear, single-scattering should prevail in the weakly turbulent core region. But, as the beam traverses the more turbulent edge, nonlinear, small-angle multiple-scattering can impact the beam, enhancing the above effects [8,9]. However, numerical estimates indicate the non-linear threshold is not exceeded for the cases here. Finally, the turbulence itself has an intrinsic mutation Fig. 5: (a) Doppler spectra and (b) beam-trace plus side-lobe rays, for 71 GHz (O), LSN L-mode #27969. rate or correlation time, which translates directly to a broadening of the Doppler frequency peak [11]. It may appear as a random (diffusive-like) \tilde{f}_D with a more Lorentzian, rather than pure Gaussian line profile. Its effect will be more evident when u_{\perp} is small (low convection rate), as in the L-mode cases studied here. The turbulence mutation essentially accounts for the missing component in the measured w_D . #### 7. Conclusion Various effects impact the Doppler peak w_D in different regions. After accounting for these effects (if possible), the excess w_D may give information on the intrinsic turbulence diffusive profile, which is important in the study of turbulent transport [11]. A direct comparison of experimental data with non-linear modelling [9] is currently in progress. ## References - [1] G.D.Conway *et al.* Plasma Fusion Res. **5**, S2005 (2010) - [2] M.Hirsch & E.Holzhauer, Plasma Phys. Control. Fusion 46, 593 (2004) - [3] C.Lechte *et al.* Plasma Phys. Control. Fusion **59**, 075006 (2017) - [4] G.D.Conway et al. Proc. 12th Intl. Reflectometer Workshop (Jülich) IRW12 (2015) - [5] F.da Silva et al. Nucl. Fusion 46, S816 (2006) - [6] I.H.Hutchinson, Plasma Phys. Control. Fusion **34**, 1225 (1992) - [7] G.D.Conway et al. Plasma Phys. Control. Fusion **50**, 085005 (2008) - [8] E.Z.Gusakov & A.V.Surkov, Plasma Phys. Control. Fusion 46, 1143 (2004) - [9] A.V.Surkov, Plasma Phys. Control. Fusion 48, 901 (2006) - [10] F.da Silva et al. IEEE Trans. Plasma Sci. 38, 2144 (2010) - [11] P.Hennequin et al. Proc. 26th EPS Conf. (Maastricht), ECA vol. 23J, 977 (1999)