
ar
X

iv
:1

70
3.

05
04

2v
1

 [
cs

.P
L

]
 1

5
M

ar
 2

01
7
1

A Relational Logic for Higher-Order Programs

ALEJANDRO AGUIRRE, IMDEA So�ware Institute

GILLES BARTHE, IMDEA So�ware Institute

MARCO GABOARDI, University at Buffalo, SUNY

DEEPAK GARG, MPI-SWS

PIERRE-YVES STRUB, Ēcole Polytechnique

Relational program verification is a variant of program verification where one can reason about two programs and as a

special case about two executions of a single program on different inputs. Relational program verification can be used for

reasoning about a broad range of properties, including equivalence and refinement, and specialized notions such as continuity,

information flow security or relative cost. In a higher-order se�ing, relational program verification can be achieved using

relational refinement type systems, a form of refinement types where assertions have a relational interpretation. Relational

refinement type systems excel at relating structurally equivalent terms but provide limited support for relating terms with

very different structures.

We present a logic, called Relational Higher Order Logic (RHOL), for proving relational properties of a simply typed

λ-calculus with inductive types and recursive definitions. RHOL retains the type-directed flavour of relational refinement

type systems but achieves greater expressivity through rules which simultaneously reason about the two terms as well as

rules which only contemplate one of the two terms. We show that RHOL has strong foundations, by proving an equivalence

with higher-order logic (HOL), and leverage this equivalence to derive key meta-theoretical properties: subject reduction,

admissibility of a transitivity rule and set-theoretical soundness. Moreover, we define sound embeddings for several existing

relational type systems such as relational refinement types and type systems for dependency analysis and relative cost, and

we verify examples that were out of reach of prior work.

ACM Reference format:

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational Logic for Higher-

Order Programs. 1, 1, Article 1 (February 2017), 57 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Many important aspects of program behavior go beyond the traditional characterization of program proper-
ties as sets of traces (Alpern and Schneider 1985). Hyperproperties (Clarkson and Schneider 2008) generalize
properties and capture a larger class of program behaviors, by focusing on sets of sets of traces. As an interme-
diate point in this space, relational properties are sets of pairs of traces. Relational properties encompass many
properties of interest, including program equivalence and refinement, as well as more specific notions such as
non-interference and continuity.

Relational verification is an instance of program verification that targets relational properties. Expectedly,
standard verification methods such as type systems, program logics, and program analyses can be li�ed to a
relational se�ing. However, it remains a challenge to devise sufficiently powerful methods that can be used
to verify a broad range of examples. In effect, most existing relational verification methods are limited in the
examples that they can naturally verify, due to the fundamental tension between the syntax-directed nature of
program verification, and the need to relate structurally different programs. Moreover, approaches to resolve this
tension highly depend on the programming paradigm, on the class of program properties considered, and on the

2017. XXXX-XXXX/2017/2-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

http://arxiv.org/abs/1703.05042v1

1:2 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

verification method. In the (arguably simplest) case of deductive verification of general properties of imperative
programs, one approach to reduce this tension is to use self-composition (Barthe et al. 2004), which reduces
relational verification to standard verification. However, reasoning about self-composed programs might be
cumbersome. Alternatively, there exist expressive relational program logics that rely on an intricate set of rules
to reason about a pair of programs. �ese logics combine two-sided rules, in which the two programs have the
same top-level structure, and one-sided rules, which operate on a single program. Rules for loops are further
divided into synchronous, in which both programs perform the same number of iterations, and asynchronous
rules, that do not have this restriction but introduce more complexity (Barthe et al. 2017; Benton 2004).

In contrast, deductive verification of general properties of (pure) higher-order programs is less developed.
One potential approach to solve the tension between the syntax-directedness, and the need to relate structurally
different programs, is to reduce relational verification of pure higher-order programs to proofs in higher-order
logic. �ere are strong similarities between this approach and self-composition: it reduces relational verification
to standard verification, but this approach is very difficult to use in practice. A be�er alternative is to use
relational refinement types such as rF∗ (Barthe et al. 2014), HOARe2 (Barthe et al. 2015), DFuzz (Gaboardi et al.
2013) or RelCost (Çiçek et al. 2017). Informally, relational refinement type systems use assertions to capture
relationships between inputs and outputs of two higher-order programs. �ey are appealing for two reasons:

• �ey capture many important properties of programs in a direct and intuitive manner. For instance, the
type {x :: N | x1 ≤ x2} → {y :: N | y1 ≤ y2} captures the set of pairs of functions that preserve the
natural order on natural numbers, i.e. pairs of functions f1, f2 : N → N such that for every x1, x2 ∈ N,
x1 ≤ x2 implies f1(x1) ≤ f2(x2). (�e subscripts 1 and 2 on a variable refer to its values in the two runs.)

• �ey can potentially benefit from a long and successful line of foundational (Dunfield and Pfenning 2004;
Freeman and Pfenning 1991;Melliès and Zeilberger 2015; Xi and Pfenning 1999) and practical (Swamy et al.
2016; Vazou et al. 2014) research on refinement types.

Unfortunately, existing relational refinement type systems fail to support the verification of several examples.
Broadly speaking, the two programs in a relational judgment may be required to have the same type and the
same control flow; moreover, this requirement must be satisfied by their subprograms: if the two programs are
applications, then the two sub-programs in argument position (resp. in function position) must have the same
type and the same control flow; if the two programs are case expressions, they must enter the same branch,
and their branches must themselves have the same control flow; if the two programs are recursive definitions,
then their bodies must perform the same sequence of recursive calls; etc. �is restriction, which can be found
in more or less strict forms in the different relational type systems, limits the ability to carry fine-grained rea-
soning about terms that are structurally different. �is raises the question whether the type-directed form of
reasoning purported by refinement types can be reconciled with an expressive relational verification of higher-
order programs. We provide a positive answer for pure higher-order programs; extending our results to effectful
programs is an important goal, but we leave it for future work.

Our starting point is the observation that relational refinement type systems are inherently restricted to rea-
soning about two structurally similar programs, because relational assertions are embedded into types. In order
to provide broad support for one-sided rules (i.e., rules that contemplate only one of the two expressions), it is
therefore necessary to consider relational assertions at the top-level, since one-sided rules have a natural formu-
lation in this se�ing. Considering relational assertions at the top-level can be done in two different ways: either
by supporting a rich theory of subtyping for relational refinement types, in such a way that each type admits
a normal form where refinements only arise at the top-level, or simply by adapting the definitions and rules of
refinement type systems so that only the top-level refinements are considered. Although both approaches are
feasible, we believe that the second approach is more streamlined and leads to friendlier verification environ-
ments.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:3

Contributions. We present a new logic, called Relational Higher Order Logic (RHOL, § 5), for reasoning about
relational properties of higher-order programs wri�en in a variant of Plotkin’s PCF (§ 2). �e logic manipulates
judgments of the form:

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

where Γ is a simply typed context, σ1 and σ2 are (possibly different) simple types, t1 and t2 are terms, Ψ is a set
of assertions, and ϕ is an assertion. Our logic retains the type-directed nature of (relational) refinement type
systems, and features typing rules for reasoning about structurally similar terms. However, disentangling types
from assertions also makes it possible to define type-directed rules operating on a single term (le� or right) of
the judgment. �is confers great expressivity to the logic, without significantly affecting its type-directed nature,
and opens the possibility to alternate freely between two-sided and one-sided reasoning, as done in first-order
imperative languages.

�e validity of judgments is expressed relative to a set-theoretical semantics—our variant of PCF is restricted to
terms which admit a set-theoretical semantics, including strongly normalizing terms. More precisely, a judgment
Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ is valid if for every valuation ρ (mapping variables in the context Γ to elements in
the interpretation of their types), the interpretation of ϕ is true whenever the interpretation of (all the assertions
in) Ψ is true. Soundness of the logic can be proved through a standard model-theoretic argument; however, we
provide an alternative proof based on a sound and complete embedding into Higher-Order Logic (HOL, § 3). We
leverage this equivalence to establish several meta-theoretical properties of the logic, notably subject reduction.

Moreover, we demonstrate that RHOL can be used as a general framework, by defining sound embedding for
several relational type systems: relational refinement types (§ 6.2), the Dependency Core Calculus (DCC) for
many dependency analyses, including those for information flow security (§ 6.3), and the RelCost (§ 6.4) type
system for relative cost. �e embedding of RelCost is particularly interesting, since it exercises the ability of our
logic to alternate between synchronous and asynchronous reasoning. Finally, we verify several examples that
go beyond the capabilities of previous systems (§ 7).

Related work. While dependent type theory is the prevailing approach to reason about (pure) higher-order
programs, several authors have explored another approach, which is crisply summarized by Jacobs (1999): “A
logic is always a logic over a type theory”. Formalisms following this approach are defined in two stages; the
first stage introduces a (dependent) type theory for writing programs, and the second stage introduces a pred-
icate logic to reason about programs. �is approach has been pursued independently in a series of works on
logic-enriched type theories (Aczel and Gambino 2000, 2006; Adams and Luo 2010; Belo 2007; Dybjer 1985), and
on refinement types Pfenning (2008); Zeilberger (2016). In the la�er line of work, programs are wri�en in an
intrinsically typed λ-calculus à la Church; then, a system of sorts (a.k.a. refinements) is used to establish prop-
erties of programs typable in the first system. Our approach is similar; however, these works are developed in a
unary se�ing, and do not consider the problem of relational verification.

Moreover, there is a large body of work on relational verification; we focus on type-based methods and de-
ductive methods. Relational Hoare Logic (Benton 2004) and Relational Separation Logic (Yang 2007) are two pro-
gram logics, respectively based on Hoare Logic and Separation Logic, for reasoning about relational properties
of (first-order) imperative programs. �ese logics have been used for a broad range of examples and applications,
ranging from program equivalence to compiler verification and information flow analysis. Moreover, they have
been extended in several directions. For example, Probabilistic Relational Hoare Logic (Barthe et al. 2009) and
approximate probabilistic Relational Hoare Logic (Barthe et al. 2012) are generalizations of Relational Hoare
logic for reasoning about relational properties of (first-order) probabilistic programs. �ese logics have been
used for a broad range of applications, including probabilistic information flow, side-channel security, proofs of
cryptographic strength (reductionist security) and differential privacy. Cartesian Hoare Logic (Sousa and Dillig
2016) is also a recent generalization of Relational Hoare Logic for reasoning about bounded safety (i.e. k-safety

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:4 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

for arbitrary but fixed k) properties of (first-order) imperative programs. �is logic has been used for analyz-
ing standard libraries. Experiments have demonstrated that such logics can be very effective in practice. Our
formalism can be seen as a proposal to adapt their flexibility to pure higher-order programs.

Product programs (Barthe et al. 2011, 2004; Terauchi and Aiken 2005; Zaks and Pnueli 2008) are a general class
of constructions that emulate the behavior of two programs and can be used for reducing relational verification to
standard verification. While product programs naturally achieve (relative) completeness, they are o�en difficult
to use since they require global reasoning on the obtained program—however recent works (Bla�er et al. 2017)
show how this approach can be automated in specific se�ings. Building product programs for (pure) higher-order
languages is an intriguing possibility, and it might be possible to instrument RHOL using ideas from Barthe et al.
(2017) to this effect; however, the product programs constructed in (Barthe et al. 2017) are a consequence, rather
than a means, of relational verification.

Several type systems have been designed to support formal reasoning about relational properties for func-
tional programs. Some of the earlier works in this direction have focused on the semantics foundations of
parametricity, like the work by Abadi et al. (1993) on System R, a relational version of System F.�e recent work
by Ghani et al. (2016a) has further extended this approach to give be�er foundations to a combination of rela-
tional parametricity and impredicative polymorphism. Interestingly, similarly to RHOL, System R also supports
relations between expressions at different types, although, since System R does not support refinement types,
the only relations that System R can support are the parametric ones on polymorphic terms. In RHOL, we do
not support parametric polymorphism à la System F currently but the relations that we support are more gen-
eral. Adding parametric polymorphism will require foregoing the set-theoretical semantics, but it should still be
possible to prove equivalence with a polymorphic variant of higher-order logic.

Several type systems have been proposed to reason about information flow security, a prime example of a
relational property. Some examples include SLAM (Heintze and Riecke 1998), the type system underlying Flow
Caml (Po�ier and Simonet 2002) and DCC (Abadi et al. 1999). Most of these type systems consider only one
expression but they allow the use of information flow labels to specify relations between two different executions
of the expression. As we show in this paper, this approach can also be implemented in RHOL. We show how to
translate DCC since it is one of the most general type systems; however, similar translations can also be provided
for the other type systems.

Relational Hoare Type�eory (RHTT) (Nanevski et al. 2013; Stewart et al. 2013) is a formalism for relational
reasoning about stateful higher-order programs. RHTT was designed to verify security properties like autho-
rization and information flow policies but was used for the verification of hetergenous pointer data structures
as well. RHTT uses a monad to separate stateful computations and relational refinements on the monadic type
express relational pre- and post-conditions. RHTT supports reasoning about two different programs but the
programs must have the same types at the top-level. RHTT’s rules support both two- and one-sided reasoning
similar to RHOL, but the focus of RHTT is on verifying properties of the program state. In particular, examples
such as those in §7 or embeddings such as those in §6 were not considered in RHTT. RHTT is proved sound
over a domain-theoretic model and continuity must be proven explicitily during the verification of recursive
functions (rules are provided to prove continuity in many cases). In contrast, RHOL’s set-theoretic model is
simpler, but admits only those recursive functions that have a unique interpretation in set-theory.

Logical relations (Plotkin 1973; Statman 1985; Tait 1967) provide a fundamental tool for reasoning about
programs. �ey have been used for a broad range of purposes, including proving unary properties (for in-
stance strong normalization or complexity) and relational properties (for instance equivalence or information
flow security). Our work can be understood as an a�empt to internalize the versatility of relational logical
relations in a syntactic framework. �ere is a large body of works on logic for logical relations, from the
early works by Plotkin and Abadi (1993) to more recent works on logics for reasoning about states and con-
currency by Ahmed, Birkedal, Dreyer, and collaborators among others (Dreyer et al. 2011, 2010; Jung et al. 2015;

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:5

Krogh-Jespersen et al. 2017). In particular, the IRIS logic (Jung et al. 2015) can be seen as a powerful reasoning
framework for logical relations, as shown recently by Krogh-Jespersen et al. (2017) . Even if we also aim at inter-
nalize the logical relations, the goal of RHOL differ from the one of IRIS in the fact that we aim for syntax-driven
relational verification.

We have already mentioned the works on relational refinement type systems for verifying cryptographic con-
structions (Barthe et al. 2014), for differential privacy (Barthe et al. 2015; Gaboardi et al. 2013) and for relational
cost analysis (Çiçek et al. 2017). �is line of works is probably the most related to our work, however RHOL
improves over all of them, as also shown by some of the embedding we give in Section 6. Another work related
to this direction is the one by Asada et al. (2016). �is work proposes a technique to reduce relational refinement
to standard first order refinements. �eir technique is incomplete but it works well on some concrete examples.
As we discussed before, we believe that some technique of this kind can be applied also to RHOL however this
is orthogonal to our goal and we leave it for future investigations.

2 (A VARIANT OF) PCF

We consider a variant of PCF (Plotkin 1977) with booleans, natural numbers, lists and recursion, and recursive
definitions. For the la�er, we require that all recursive calls are performed on stricly smaller elements—as a
consequence, the fixpoint equation derived from the definition has a unique set-theoretical solution. �e precise
method to enforce this requirement is orthogonal to our purposes, and could for instance be based on a syntactic
guard predicate, or on sized types.

Types are defined by the grammar:

τ ,σ ::= B | N | listτ | τ × τ | τ → τ

We let I range over inductive types.
Terms of the language are defined by the grammar:

t ::= x | 〈t , t〉 | π1 t | π2 t | t t | λx : τ .t | c | S t | t :: t | case t of 0 7→ t ; S 7→ t | case t of � 7→ t ;ff 7→ t

| case t of [] 7→ t ; :: 7→ t | letrec f x = t

where x ranges over a set V of variables, c ranges over the set {�,ff, 0, []} of constants, and λ-abstractions are
à la Church. �e operational behavior of terms is captured by βιµ-reduction →βιµ=→β ∪ →ι ∪ →µ , where
β-reduction, ι-reduction and µ-reduction are defined as the contextual closure of:

(λx .t) u →β t[u/x] case ff of � 7→ u;ff 7→ v →ι v

πi 〈t1, t2〉 →β ti case [] of [] 7→ u; :: 7→ v →ι u

case 0 of 0 7→ u; S 7→ v →ι u case h :: t of [] 7→ u; :: 7→ v →ι (v h t)

case St of 0 7→ u; S 7→ v →ι (v t) (letrec f x = t) (C ®t) →µ t[C ®t/x][letrec f x = t/f]
case � of � 7→ u;ff 7→ v →ι u

where t[u/x] denotes the usual (capture-free) notion of substitution on terms (replace x by u in t). As usual,
we let =βιµ denote the reflexive-symmetric-transitive closure of→βιµ . In particular, we only allow reduction of
letrec when the argument has a constructorC ∈ {�,ff, 0, S, [], ::} in head position.

Judgments are of the form Γ ⊢ t : τ , where Γ is a set of typing declarations of the form x : σ , such that variables
are declared at most once. �e typing rules are standard, except for recursive functions. In this case, the typing
rule requires that the domain of the recursive function is an inductive type (booleans, naturals, or lists here) and
that the body of the recursive definition letrec f x = e satisfies a predicate Def (f , x , e) which ensures that all
recursive calls are performed on smaller arguments. �e typing rule for recursive definitions is thus:

Γ, f : I → σ , x : I ⊢ e : σ Def (f , x , e) I ∈ {N, listτ }

Γ ⊢ letrec f x = e : I → σ

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:6 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

�e other rules are standard. We give set-theoretical semantics to this system. For each type τ , its interpretation
Jτ K is the set of its values:

JBK , B JNK , N Jlistτ K , listJτ K Jσ → τ K , JσK → Jτ K

where JσK → Jτ K is the set of total functions with domain JσK and codomain Jτ K.
A valuation ρ for a context Γ (wri�en ρ |= Γ) is a partial map such that ρ(x) ∈ Jτ K whenever (x : τ) ∈ Γ. Given

a valuation ρ for Γ, every term t such that Γ ⊢ t : τ has an interpretation LtMρ :

LxMρ , ρ(x) L〈t ,u〉Mρ , 〈LtMρ , LuMρ 〉 Lπi tMρ , πi (LtMρ) Lλx : τ .tM
,
λv : Jτ K.LxMρ [LvMρ /v]

LcMρ , c LS tMρ , S LtMρ Lt :: uMρ , LtMρ :: LuMρ

Lcase t of [] 7→ u; :: 7→ vMρ , case LtMρ of [] 7→ LuMρ ; :: 7→ LvMρ Lletrec f x = tMρ , F

In the case of letrec f x = e , we require that F is the unique solution of the fixpoint equation extracted from the
recursive definition—existence and unicity of the solution follows from the validity of theDef (f , x , e) predicate.

�e interpretation of well-typed terms is sound. Moreover, the interpretation equates convertible terms. (�is
extends to η-conversion.)

Theorem 2.1 (Soundness of set-theoretic semantics).

• If Γ ⊢ t : τ and ρ |= Γ, then LtMρ ∈ Jτ K.
• If Γ ⊢ t : τ and Γ ⊢ u : τ and t =βιµ u and ρ |= Γ, then LtMρ = LuMρ .

3 HIGHER-ORDER LOGIC

Higher-Order Logic is defined as a calculus in natural deduction for a predicate logic over simply-typed terms.
More specifically, its assertions are formulae over typed terms, and are defined by the following grammar:

ϕ ::= P(t1, . . . , tn) | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⇒ ϕ | ∀x : τ .ϕ | ∃x : τ .ϕ

where P ranges over basic predicates (as usual, we will o�en omit the types of bound variables, when clear from
the context). We assume that predicates come equipped with an axiomatization. For instance, the predicate
All(l , λx .ϕ) is defined to capture lists whose elements satisfies ϕ. �is can be defined axiomatically:

All([], λx .ϕ) ∀ht .All(t , λx .ϕ) ⇒ ϕ(h) ⇒ All(h :: t , λx .ϕ)

We use the notation λx .ϕ for simplicity, although we have not introduced formally a type for propositions—
adding such a type is straightforward and orthogonal to our work: another alternative would be to use axiom
scheme.

We define well-typed assertions using a judgment of the form Γ ⊢ ϕ. �e typing rules are standard. A HOL
judgment is then of the form Γ | Ψ ⊢ ϕ, where Γ is a simply typed context, Ψ is a set of assertions, and ϕ is an
assertion, and such that Γ ⊢ ψ for everyψ ∈ Ψ, and Γ ⊢ ϕ. �e rules of the logic are given in Figure 1, where the
notation ϕ[t/x] denotes the (capture-free) substitution of x by t in ϕ. In addition to the usual rules for equality,
implication and universal quantification, there are rules for inductive types (only the rules for lists are displayed;
similar rules exist for booleans and natural numbers): the rule [LIST] models the induction principle for lists;
the rules [NC] and [CONS] formalise injectivity and non overlap of constructors. A rule for strong induction
[SLIST] can be considered as well, and is in fact derivable from simple induction.

Higher-Order Logic inherits a set-theoretical interpretation from its underlying simply-typed λ-calculus. We
assume given for each predicate P an interpretation JPK which is compatible with the type of P and its axioms.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:7

ϕ ∈ Ψ

Γ | Ψ ⊢ ϕ
AX

Γ ⊢ t : τ Γ ⊢ t ′ : τ t =βιµ t
′

Γ | Ψ ⊢ t = t ′
CONV

Γ | Ψ ⊢ ϕ[t/x] Γ | Ψ ⊢ t = u

Γ | Ψ ⊢ ϕ[u/x]
SUBST

Γ | Ψ,ψ ⊢ ϕ

Γ | Ψ ⊢ ψ ⇒ ϕ
⇒I

Γ | Ψ ⊢ ψ ⇒ ϕ Γ | Ψ ⊢ ψ

Γ | Ψ ⊢ ϕ
⇒E

Γ, x : σ | Ψ ⊢ ϕ

Γ | Ψ ⊢ ∀x : σ .ϕ
∀I

Γ | Ψ ⊢ ∀x : σ .ϕ Γ ⊢ t : σ

Γ | Ψ ⊢ ϕ[t/x]
∀E

Γ | Ψ ⊢ ⊤
⊤I

Γ | Ψ ⊢ ⊥ Γ ⊢ ϕ

Γ | Ψ ⊢ ϕ
⊥E

Γ | Ψ ⊢ ϕ[[]/l] Γ,h : τ , t : listτ | Ψ,ϕ ⊢ ϕ[h :: t/t]

Γ | Ψ ⊢ ∀t : listσ .ϕ
LIST

Γ ⊢ h :: t : listτ
Γ | ∅ ⊢ [],h :: t

NC

Γ | Ψ ⊢ t1 :: t2=t
′
1 :: t

′
2

Γ | Ψ ⊢ ti = t
′
i

CONSi
Γ, t : listτ | Ψ,∀u : listτ .|u | < |t | ⇒ ϕ[u/t] ⊢ ϕ

Γ | Ψ ⊢ ∀t : listτ .ϕ
SLIST

Fig. 1. Selected rules for HOL

�e interpretation of assertions is then defined in the usual way. Specifically, the interpretation LϕMρ of an
assertion ϕ w.r.t. a valuation ρ includes the clauses:

LP(t1, . . . , tn)Mρ , (Jt1Kρ , . . . , JtnKρ) ∈ JPK L⊤Mρ , ⊤̃ L⊥Mρ , ⊥̃ Lϕ1 ∧ ϕ2Mρ , Lϕ1Mρ ∧̃ Lϕ2Mρ

Lϕ1 ⇒ ϕ2Mρ , Lϕ1Mρ ⇒̃ Lϕ2Mρ L∀x : τ .ϕMρ , ∀̃v .v ∈ Jτ K ⇒̃ LϕMρ [v/x]

Higher-order logic is sound with respect to this semantics.

Theorem 3.1 (Soundness of set-theoretical semantics). If Γ | Ψ ⊢ ϕ, then for every valuation ρ |= Γ,∧
ψ ∈ΨLψ Mρ implies LϕMρ .

In particular, higher-order logic is consistent, i.e. there is no derivation of Γ | ∅ ⊢ ⊥ for any Γ.

4 UNARY HIGHER-ORDER LOGIC

As a stepping stone towards Relational Higher-Order Logic, we define Unary Higher-Order Logic (UHOL). UHOL
retains the flavor of refinement types, but dissociates typing from assertions; judgments of UHOL are of the form:

Γ | Ψ ⊢ t : τ | ϕ

where a distinguished variable r, which doesn’t appear in Γ, may appear (free) in ϕ as a synonym of t . A
judgment is well-formed if t has type τ , Ψ is a valid set of assertions in the context Γ, and ϕ is a valid assertion
in the context Γ, r : τ . Figure 2 presents selected typing rules. �e [ABS] rule allows proving formulas that
refer to λ-abstractions, expressing that if the argument satisfies a precondition ϕ ′, then the result satisfies a
postcondition ϕ. �e [APP] rule, dually, proves a condition ϕ on an application t u provided that the argument
u satisfies the precondition ϕ ′ of the function t . �e [VAR] rule introduces a variable from the context with a
formula proven in HOL. Rules for constants (e.g. [NIL]) work in the same way. Rule [CONS] proves a formula
ϕ for a non-empty list, provided that ϕ is a consequence of some conditions ϕ ′,ϕ ′′ on its head and its tail. Rule
[PAIR] allows the construction of judgments about pairs in a similar manner. �e rules [PROJi] prove judgments
about the projections of a pair. �e rule [SUB] (subsumption) allows strengthening the assumed assertions Ψ
and weakening the concluding assertion ϕ. It generates a HOL proof obligation. �e rule [CASE] can be used

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:8 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ ⊢ x : σ Γ | Ψ ⊢ ϕ[x/r]

Γ | Ψ ⊢ x : σ | ϕ
VAR

Γ, x : τ | Ψ,ϕ′ ⊢ t : σ | ϕ

Γ | Ψ ⊢ λx : τ .t : τ → σ | ∀x .ϕ′ ⇒ ϕ[r x/r]
ABS

Γ | Ψ ⊢ t : τ → σ | ∀x .ϕ′[x/r] ⇒ ϕ[r x/r] Γ | Ψ ⊢ u : τ | ϕ′

Γ | Ψ ⊢ t u : σ | ϕ[u/x]
APP

Γ | Ψ ⊢HOL ϕ[[]/r]

Γ | Ψ ⊢ [] : listσ | ϕ
NIL

Γ | Ψ ⊢ h : σ | ϕ′ Γ | Ψ ⊢ t : listσ | ϕ′′

Γ | Ψ ⊢HOL ∀xy.ϕ′[x/r] ⇒ ϕ′′[y/r] ⇒ ϕ[x :: y/r]

Γ | Ψ ⊢ h :: t : listσ | ϕ
CONS

Γ | Ψ ⊢ t : σ × τ | ϕ[πi (r)/r]

Γ | Ψ ⊢ πi (t) : σ | ϕ
PROJi

Γ | Ψ ⊢ t : σ | ϕ′ Γ | Ψ ⊢ u : τ | ϕ′′

Γ | Ψ ⊢HOL ∀xy.ϕ′[x/r] ⇒ ϕ′′[y/r] ⇒ ϕ[〈x,y〉/r]

Γ | Ψ ⊢ 〈t ,u〉 : σ × τ | ϕ
PAIR

Γ | Ψ ⊢ t : σ | ϕ′ Γ | Ψ ⊢HOL ϕ
′[t/r] ⇒ ϕ[t/r]

Γ | Ψ ⊢ t : σ | ϕ
SUB

Γ ⊢ l : listτ
Γ | Ψ, l = [] ⊢ u : σ | ϕ

Γ | Ψ ⊢ v : τ → listτ → σ | ∀ht .l = h :: t ⇒ ϕ[r h t/r]

Γ | Ψ ⊢ case l of [] 7→ u; :: 7→ v : σ | ϕ
LISTCASE

Def (f ,x, e)

Γ, x : I , f : I → σ | Ψ,ϕ′,∀m.|m | < |x | ⇒ ϕ′[m/x] ⇒ ϕ[m/x][f m/r] ⊢ e : σ | ϕ

Γ | Ψ ⊢ letrec f x = e : I → σ | ∀x .ϕ′ ⇒ ϕ[r x/r]
LETREC

where I ∈ {N, listτ }

Fig. 2. Unary Higher-Order Logic rules

for a case analysis over the constructor of a term. Finally, the rule [LETREC] supports inductive reasoning
about recursive definitions. Recall that the domain of a recursive definition is an inductive type, for which a
natural notion of size exists. If, assuming that a proposition holds for all elements smaller than the argument,
we can prove that the proposition holds for the body, then the proposition must hold as well for the function.
Furthermore, we require that the function we are verifying satisfies the predicate Def (f , x , i), as was the case
in HOL. �e induction is performed over the < order, which varies depending on the type of the argument.

We now discuss the main meta-theoretic results of UHOL. �e following result establishes that every HOL
judgment can be proven in UHOL and viceversa.

�eorem1 (Equivalence with HOL). For every context Γ, simple type σ , term t , set of assertions Ψ and assertion
ϕ, the following are equivalent:

• Γ | Ψ ⊢ t : σ | ϕ

• Γ | Ψ ⊢ ϕ[t/r]

�e forward implication follows by induction on the derivation of Γ | Ψ ⊢ t : σ | ϕ. �e reverse implication is
immediate from the rule [SUB] and the observation that Γ | Ψ ⊢ t : σ | ⊤ whenever t is a term of type σ .

We li� the HOL semantics to UHOL. Terms, types and formulas are interpreted as before. Additionally, for
every valuation ρ let ρ[v/x] denote its unique extension ρ ′ such that ρ ′(y) = v if x = y and ρ ′(y) = ρ(y)

otherwise. �e following corollary states the soundness of UHOL.

Corollary 2 (Set-theoretical soundness and consistency). If Γ | Ψ ⊢ t : σ | ϕ, then for every valuation ρ |= Γ,∧
ψ ∈ΨLψ Mρ implies LϕMρ [LtMρ /r]. In particular, there is no proof of Γ | ∅ ⊢ t : σ | ⊥ in UHOL.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:9

Next, we prove subject conversion for UHOL. �e result follows immediately from �eorem 1 and subject
conversion of HOL, which is itself a direct consequence of the [CONV] and [SUBST] rules.

Corollary 3 (Subject conversion). Assume that t =βιµ t
′ and Γ | Ψ ⊢ t : σ | ϕ. If Γ ⊢ t ′ : σ then Γ | Ψ ⊢ t ′ : σ | ϕ.

5 RELATIONAL HIGHER-ORDER LOGIC

Relational Higher-Order Logic (RHOL) extends UHOL’s separation of assertions from types to a relational se�ing.
Formally, RHOL is a relational type system which manipulates judgments of the form

Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ

which combine a typing judgment for a pair of PCF terms and permit reasoning about the relation between them.
We therefore require that t1 and t2 respectively have types τ1 and τ2 in Γ. Well-formedness of the judgment
requires Ψ to be a valid set of assertions in Γ and ϕ to be a valid assertion in Γ, r1 : τ1, r2 : τ2, where the special
variables r1 and r2 are used as synomyms for t1 and t2 inϕ. �e informal meaning of the judgment is the expected
one: If the variables in Γ are related by the assertions in Ψ, then the terms t1 and t2 are related by the assertion
ϕ.

5.1 Proof rules

�e type system combines two-sided rules (Figure 3), which apply when the two terms have the same top-
level constructors and one-sided rules (Figure 5), which analyze either one of the two terms. For instance, the
[APP] rule applies when the two terms are applications, and requires that the functions t1 and t2 relate and the
arguments u1 and u2 relate. Specifically, t1 and t2 must map values related by ϕ ′ to values related by ϕ, and u1
and u2 must be related by ϕ ′. �e [ABS] rule is dual. �e [PAIR] rule requires that the le� and right components
of a pair relate independently (a stronger rule is discussed at the end of the section). �e [PROJi] rules require
in their premise an assertion that only refers to the the first or the second component of the pair. �e rules for
lists require that the two lists are either both empty, or both non-empty. �e rule [CONS] requires that the two
heads and the two tails relate independently. �e [CASE] rule derives judgements about two case constructs
when the terms over which the matching happens reduce to the same branch (i.e. have the same constructor)
on both sides.

In contrast, one-sided typing rules only analyze one term; therefore, they come in two flavours: le� rules
(shown in Figure 5) and right rules (ommi�ed but similar). Rule [ABS-L] considers the case where the le� term
is a λ-abstraction, and requires the body of the abstraction to be related to the right term u2 whenever the
argument (on the le� side) satisfies a non-relational assertion ϕ ′. Dually, rule [APP-L] considers the case where
the le� term is of the form t1 u1, and t1 is related to the right term u2; specifically, t1 should map every value
satisfying ϕ ′ to a value satisfying ϕ. Moreover, u1 should satisfy ϕ ′. Since ϕ ′ is a non-relational assertion, we
demand that it can be established using UHOL, not RHOL. One-sided rules for pairs and lists follow a similar
pa�ern.

In addition, RHOL has structural rules (Figure 4). �e rule [SUB] can be used for strengthening the assumed
assertions and forweakening the concluding assertion; the ensuing side-conditions are discharged in HOL. Other
structural rules assimilate rules of HOL. For instance, if we can prove two different assertions for the same terms
we can prove the conjunction of the assertions ([∧I]). Other logical connectives have similar rules. Finally, the
rule [UHOL-L] (and a dual rule [UHOL-R]) allow falling back to UHOL in a RHOL proof.

Rules [LETREC] and [LETREC-L] introduce recursive function definitions (Figure 6). �ese rules allow for a
style of reasoning very similar to strong induction. If, assuming that the function’s specification holds for all
smaller arguments, we can prove that the functions specification holds, then the specification must hold for all
arguments. We require that the two functions we are relating satisfy the predicates Def (fi , xi , ei), as was the

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:10 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ, x1 : τ1,x2 : τ2 | Ψ,ϕ′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1 : τ1 .t1 : τ1 → σ1 ∼ λx2 : τ2.t2 : τ2 → σ2 | ∀x1, x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

ABS

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1,x2 .ϕ
′[x1/r1][x2/r2] ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]
APP

Γ ⊢ x1 : σ1 Γ ⊢ x2 : σ2 Γ | Ψ ⊢ ϕ[x1/r1][x2/r2]

Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ
VAR

Γ | Ψ ⊢HOL ϕ[�/r1][�/r2]

Γ | Ψ ⊢ � : B ∼ � : B | ϕ
TRUE

Γ | Ψ ⊢HOL ϕ[[]/r1][[]/r2]

Γ | Ψ ⊢ [] : listσ1 ∼ [] : listσ2 | ϕ
NIL

Γ | Ψ ⊢ h1 : σ1 ∼ h2 : σ2 | ϕ′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : listσ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][y2/r2] ⇒ ϕ[x1 :: y1/r1][x2 :: y2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | ϕ
CONS

Γ | Ψ ⊢ l1 : listτ1 ∼ l2 : listτ2 | r1 = [] ⇔ r2 = []

Γ | Ψ, l1 = [], l2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2t1t2 .l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ ϕ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ | Ψ ⊢ case l1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case l2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
LISTCASE

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][y2/r2] ⇒ ϕ[〈x1,y1〉/r1][〈x2,y2〉/r2]

Γ | Ψ ⊢ 〈t1,u1〉 : σ1 × τ1 ∼ 〈t2,u2〉 : σ2 × τ2 | ϕ
PAIR

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 × τ2 | ϕ[πi (r1)/r1][πi (r2)/r2]

Γ | Ψ ⊢ πi (t1) : σ1 ∼ πi (t2) : σ2 | ϕ
PROJi

Fig. 3. Two-sided rules

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢HOL ϕ
′[t1/r1][t2/r2] ⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
SUB

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ′

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ ∧ ϕ′
∧I

Γ | Ψ,ϕ′[t1/r1][t2/r2] ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ′ ⇒ ϕ
⇒I

Γ | Ψ ⊢ t1 : σ1 | ϕ[r/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ1 | ϕ
UHOL − L

Fig. 4. Structural rules

case in HOL and UHOL. �e induction is performed over the order (a,b) < (c,d), which holds whenever both
a ≤ b and c ≤ d , and at least one of the inequalities is strict.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:11

Γ,x1 : τ1 | Ψ,ϕ′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1 : τ1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1 .ϕ
′ ⇒ ϕ[r1 x1/r1]

ABS−L

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1 .ϕ
′[x1/r1] ⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ u1 : σ1 | ϕ′[u1/x1]

Γ | Ψ ⊢ t1u1 : σ1 ∼ u2 : σ2 | ϕ
APP−L

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ) Γ ⊢ t2 : σ2

Γ | Ψ ⊢ x1 : σ1 ∼ t2 : σ2 | ϕ
VAR−L

Γ | Ψ ⊢ ϕ[[]/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ [] : listσ1 ∼ t2 : σ2 | ϕ
NIL−L

Γ | Ψ ⊢ h1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : σ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][x2/r2] ⇒ ϕ[x1 :: y1/r1][x2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ t2 : σ2 | ϕ
CONS−L

Γ ⊢ t1 : listτ
Γ | Ψ, t1 = [] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
LISTCASE − L

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ u1 : τ1 ∼ t2 : σ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][x2/r2] ⇒ ϕ[〈x1,y1〉/r1][x2/r2]

Γ | Ψ ⊢ 〈t1,u1〉 : σ1 × τ1 ∼ t2 : σ2 | ϕ
PAIR−L

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 | ϕ[π1(r1)/r1]

Γ | Ψ ⊢ π1(t1) : σ1 ∼ t2 : σ2 | ϕ
PROJ1−L

Fig. 5. One-sided rules

Def (f1, x1, e1) Def (f2, x2, e2)

Γ,x1 : I1, x2 : I2, f1 : I1 → σ , f2 : I2 → σ2 |

Ψ,ϕ′,∀m1m2.(|m1 |, |m2 |) < (|x1 |, |x2 |) ⇒ ϕ′[m1/x1][m2/x2] ⇒ ϕ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] ⊢

e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 | ∀x1x2 .ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

LETREC

Def (f1,x1, e1)

Γ, x1 : I1, f1 : I1 → σ | Ψ,ϕ′,∀m1.|m1 | < |x1 | ⇒ ϕ′[m1/x1] ⇒ ϕ[m1/x1][f1 m1/r1][t2/r2] ⊢

e1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ t2 : σ2 | ∀x1 .ϕ
′ ⇒ ϕ[r1 x1/r1]

LETREC − L

where I1, I2 ∈ {N, listτ }

Fig. 6. Recursion rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:12 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ϕ[r1 u1/r1][r2 u2/r2]

Γ | Ψ ⊢ t1 u1 : σ1 ∼ t2 u2 : σ2 | ϕ
APP − FUN

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ[t1 r1/r1][t2 r2/r2]

Γ | Ψ ⊢ t1 u1 : σ1 ∼ t2 u2 : σ2 | ϕ
APP − ARG

Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ[〈r1,u1〉/r1][〈r2,u2〉/r2]

Γ | Ψ ⊢ 〈t1,u1〉 : τ1 × σ1 ∼ 〈t2,u2〉 : τ2 × σ2 | ϕ
PAIR − FST

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ⊤

Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t2 = [] ⊢ v1 : τ1 → listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]

Γ | Ψ, t1 = [] ⊢ u1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]

Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
LLCASE − A

Fig. 7. Some derived rules

5.2 Discussion

Our choice of the rules is guided by the practical considerations of being able to verify examples easily, without
specifically aiming for minimality or exhaustiveness. In fact, many of our rules can be derived from others, or
reduced to a more elementary form. For instance:

• �e structural rules to reason about logical connectives, such as [∧I], can be derived by induction on
the length of derivations with the help of [SUB].

• �e [VAR-L] (similarly, [NIL-L]) rule can be weakened, without affecting the strength of the system,

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ)

Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ
VAR−L

• �e premise of the [VAR] rule (and similarly, [NIL]) can be changed to ϕ[x/r] ∈ Ψ. We can recover the
original rule by one application of [SUB].

• �e rules [APP-FUN] and [APP-ARG] in Figure 7 (adapted fromGhani et al. (2016b)) can be derived from
the rule [APP]. To derive [APP-FUN], instantiate ϕ ′ to r1 = u1 ∧ r2 = u2 in [APP]. To derive [APP-ARG],
we have to prove a trivial condition ∀x1x2.ϕ[t1 x1/r1][t2 x2/r2] ⇒ ϕ[t1 x1/r1][t2 x2/r2] on t1, t2.

• �e [PAIR-FST] and [PAIR-SND] rules in Figure 7 can be derived in a similar way. �ese rules overcome
a limitation of the original [PAIR] rule, namely, that the relations for the two components of the pair
must be independent. [PAIR-FST] and [PAIR-SND] allow relating, for instance, pairs of integers 〈m1,n1〉

and 〈m2,n2〉 such thatm1 + n1 =m2 + n2.
• �e [LLCASE-A] rule can be used to reason about case constructs when the terms over which we dis-
criminate do not necessarily reduce to the same branch. It is equivalent to applying [CASE-L] followed
by [CASE-R].

5.3 Meta-theory

RHOL retains the expressiveness of HOL, as formalized in the following theorem.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:13

�eorem4 (Equivalence with HOL). For every context Γ, simple typesσ1 andσ2, terms t1 and t2, set of assertions
Ψ and assertion ϕ, if Γ ⊢ t1 : σ1 and Γ ⊢ t2 : σ2, then the following are equivalent:

• Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
• Γ | Ψ ⊢ ϕ[t1/r1][t2/r2]

�e proof of the forward implication proceeds by induction on the structure of derivations. �e proof of the
reverse implication is immediate from the rule [SUB] and the observation that Γ | ∅ ⊢ t1 : σ1 ∼ t2 : σ2 | ⊤
whenever t1 and t2 are typable terms of types σ1 and σ2 respectively.

�is immediately entails soundness of RHOL, which is expressed in the following result:

Corollary 5 (Set-theoretical soundness and consistency). If Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ, then for every valuation
ρ |= Γ,

∧
ψ ∈ΨLψ Mρ implies LϕMρ [Lt1Mρ /r1], [Lt2Mρ/r2]. In particular, there is no proof of Γ | ∅ ⊢ t1 : σ1 ∼ t2 : σ2 | ⊥ for

any Γ.

�e equivalence also entails subject conversion (and as special cases subject reduction and subject expansion).
�is follows immediately from subject conversion of HOL (which, as stated earlier, is itself a direct consequence
of the [CONV] and [SUBST] rules).

Corollary 6 (Subject conversion). Assume that t1 =βιµ t
′
1 and t2 =βιµ t

′
2 and Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ. If

Γ ⊢ t ′1 : σ1 and Γ ⊢ t ′2 : σ2 then Γ | Ψ ⊢ t ′1 : σ1 ∼ t ′2 : σ2 | ϕ.

Another useful consequence of the equivalence is the admissibility of the transitivity rule.

Corollary 7 (Admissibility of transitivity rule). Assume that:

• Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
• Γ | Ψ ⊢ t2 : σ2 ∼ t3 : σ3 | ϕ

′

�en, Γ | Ψ ⊢ t1 : σ1 ∼ t3 : σ3 | ϕ[t2/r2] ∧ ϕ
′[t2/r1].

Finally, we prove an embedding lemma for UHOL. �e proof can be carried by induction on the structure of
derivations, or using the equivalence between UHOL and HOL (�eorem 1).

Lemma 8 (Embedding lemma). Assume that:

• Γ | Ψ ⊢ t1 : σ1 | ϕ
• Γ | Ψ ⊢ t2 : σ2 | ϕ

′

�en Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ[r1/r] ∧ ϕ
′[r2/r].

�e embedding is reminiscent of the approach of Beringer and Hofmann (2007) to encode information flow
properties in Hoare logic.

6 EMBEDDINGS

In this section, we establish the expressiveness of RHOL and UHOL by embedding several existing refinement
type systems (3 relational and 1 non-relational) from a variety of domains. All embeddings share the common
idea of separating the simple typing information from the more fine-grained refinement information in the
translation. We use uniform notation to represent similar ideas across the different embeddings. In particular,
we use vertical bars | · | to denote the erasure of a type into a simple type, and floor bars ⌊·⌋ to denote the
embedding of the refinement of a type in a HOL formula.

For the clarity of exposition, we o�en present fragments or variants of systems that appear in the literature,
notably excluding recursive functions that do not satisfy our well-definedness predicate. Moreover, the embed-
dings are given for a version of RHOL à la Curry, in which λ-abstractions do not carry the type of their bound
variable.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:14 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ ⊢ τ

Γ ⊢ τ � τ

Γ ⊢ τ1 � τ2 Γ ⊢ τ2 � τ3

Γ ⊢ τ1 � τ3

Γ ⊢ τ1 � τ2

Γ ⊢ listτ1 � listτ2

Γ ⊢ {x : τ | ϕ}

Γ ⊢ {x : τ | ϕ} � τ

Γ ⊢ τ � σ Γ, r : τ ⊢ ϕ

Γ ⊢ τ � {x : σ | ϕ}

Γ ⊢ σ2 � σ1 Γ, x : σ2 ⊢ τ1 � τ2

Γ ⊢ Π(x : σ1).τ1 � Π(x : σ2).τ2

Γ, x : τ ⊢ x : τ

Γ, x : τ ⊢ t : σ

Γ ⊢ λx .t : Π(x : τ).σ

Γ ⊢ t1 : Π(x : τ).σ Γ ⊢ t2 : τ

Γ ⊢ t1 t2 : σ [t2/x]

Γ ⊢ t : listτ Γ ⊢ t1 : σ Γ ⊢ t2 : Π(h : τ).Π(l : listτ).σ

Γ ⊢ case t of [] 7→ t1; :: 7→ t2 : σ

Γ ⊢ τ � σ Γ ⊢ t : τ

Γ ⊢ t : σ

Γ, x : τ , f : Π({y : τ | y < x}).σ [y/x] ⊢ t : σ Def (f , x , t)

Γ ⊢ letrec f x = t : Π(x : τ).σ

Fig. 8. Refinement types rules (subtyping and typing)

6.1 Refinement types

Refinement types (Freeman and Pfenning 1991; Swamy et al. 2016; Vazou et al. 2014) are a variant of simple types
where for every basic type τ , there is a type {x : τ | ϕ} which is inhabited by the elements t of τ that satisfy the
logical assertion ϕ[t/x]. �is includes dependent refinements Π(x : τ).σ , in which the variable x is also bound in
the refinement formulas appearing in σ . Here we present a simplified variant of these systems. (Refined) types
are defined by the grammar

τ := B | N | listτ | {x : τ | ϕ} | Π(x : τ).τ

As usual, we shorten Π(x : τ).σ to τ → σ if x < FV (σ). We also shorten bindings of the form x : {x : τ | ϕ}

to {x : τ | ϕ}. Typing rules are presented in Figure 8; note that the [LETREC] rule requires that recursive
definitions satisfy the well-definedness predicate. Judgments of the form Γ ⊢ τ are well-formedness judgments.
Judgments of the form Γ ⊢ ϕ are logical judgments; we omit a formal description of the rules, but assume that
the logic of assertions is consistent with HOL, i.e. Γ ⊢ ϕ implies |Γ | | ⌊Γ⌋ ⊢ ϕ, where the erasure functions are
defined below.

�is system can be embedded into UHOL in a straightforward manner. �e embedding highlights the rela-
tion between these two systems, i.e. between logical assertions embedded in the types (as in refinement types)
and logical assertions at the top-level, separate from simple types (as in UHOL). �e intuitive idea behind the
embedding is therefore to separate refinement assertions from types. Specifically, from every refinement type
we can obtain a simple type by repeteadly extracting the type τ from {x : τ | ϕ}. We will denote this extraction
by the translation function |τ |:

|B| , B |N| , N |listτ | , list |τ | |{x : τ | ϕ}| , |τ | |Π(x : τ).σ | , |τ | → |σ |

Since |τ | loses refinement information, we define a second translation that extracts the refinement as a logical
predicate over a variable x that names the typed expression. �is second translation is wri�en ⌊τ ⌋(x).

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:15

⌊B⌋(x), ⌊N⌋(x) , ⊤ ⌊listτ ⌋(x) , All(x , λy.⌊τ ⌋(y)) ⌊{y : τ | ϕ}⌋(x) , ⌊τ ⌋(x) ∧ ϕ[x/y]

⌊Π(x : τ).σ ⌋(x) , ∀y.⌊τ ⌋(y) ⇒ ⌊σ ⌋(xy)

�e refinement of simple types is trivial. If t is an expression of type {x : τ | ϕ}, then t must satisfy both the
refinement formula ϕ and the refinement of τ . If t is an expression of type Π(x : τ).σ , then it must be the case
that for every x satisfying the refinement of τ , (t x) satisfies the refinement of σ . �e refinement of a list uses
the predicate All, which as defined in §3, means that all elements of a list satisfy a given formula.

�e syntax of assertions and expressions is exactly the same as in HOL, and therefore there is no need for a
translation. Embedding of types can be li�ed to contexts in the natural way.

|x : τ , Γ | , x : |τ |, |Γ | ⌊x : τ , Γ⌋ , ⌊τ ⌋(x), ⌊Γ⌋

To encode judgments, all that remains is to put the previous definitions together. �e main result about
embedding typing judgments is the following:

�eorem 9. If Γ ⊢ t : τ is derivable in the refinement type system, then |Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋(r) is derivable in
UHOL.

�e proof is performed by induction on the structure of derivations, using as helper result the embedding of
subtyping judgments into HOL. Since it can be proven by induction that, whenever τ � σ , the type extractions
|τ | and |σ | coincide, all that needs to be checked is that ⌊σ ⌋ is a consequence of ⌊τ ⌋. �is is captured by the
following statement.

�eorem 10. If Γ ⊢ τ � σ is derivable in a refinement type system, then |Γ |, x : |τ | | ⌊Γ⌋, ⌊τ ⌋(x) ⊢ ⌊σ ⌋(x) is
derivable in HOL.

Soundness of refinement types w.r.t. the set-theoretic semantics follows immediately from�eorem 9 and the
set-theoretic soundness of UHOL (Corollary 2).

6.2 Relational refinement types

Relational refinement types (Barthe et al. 2014, 2015) are a variant of refinement types that can be used to express
relational properties via a syntax of the form {r :: τ | ϕ} where ϕ is a relational assertion—i.e. it may contain a
le� and right copy of r, which are denoted as r1 and r2 respectively, as well as a le� and a right copy of every
variable in the context. In this section, we introduce a simple relational refinement type system and establish a
type-preserving translation to RHOL—we compare with existing type systems at the end of the paragraph.

�e syntax of relational refinement types is given by the grammar:

τ ::= B | N | τ → τ

T ,U ::= τ | listT | Π(x :: T).U | {x :: T | ϕ}

Relational refinement types are naturally ordered by a subtyping relation Γ ⊢ T � U , where Γ is a sequence
of variables declarations of the form x :: U .

Typing judgments are of the form Γ ⊢ t1 ∼ t2 :: T . We present selected typing rules in Figure 9. Note that
the form of judgments requires that t1 and t2 must have the same simple type, and the typing rules require
that t1 and t2 have the same structure1. In the [CASELIST] rule, we require that both terms reduce to the same
branch; the case rule for natural numbers is similar. �e [LETREC] rule uses (a straightforward adaptation of) the

1�e typing rules displayed in the figure will in fact force t1 and t2 to be the same term modulo renaming. �is is not the case in existing

relational refinement type systems; however, rules that introduce different terms on the right and on the le� are very limited; essentially,

there is a rule similar to [LLCASE-A], and a rule for reducing in the terms of a judgment.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:16 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

VAR-RT
(x : T) ∈ Γ

Γ ⊢ x1 ∼ x2 :: T
ABS-RT

Γ, x :: T ⊢ u1 ∼ u2 :: U

Γ ⊢ λx1.u1 ∼ λx2.u2 :: Π(x :: T).U

APP-RT
Γ ⊢ t1 ∼ t2 :: Π(x :: T).U Γ ⊢ u1 ∼ u2 :: T

Γ ⊢ t1 u1 ∼ t2 u2 :: U [u1/x1][u2/x2]
NIL

Γ ⊢ T

Γ ⊢ [] ∼ [] :: listT

CONS
Γ ⊢ h1 ∼ h2 :: T Γ ⊢ t1 ∼ t2 :: listT

Γ ⊢ h1 :: t1 ∼ h2 :: t2 :: listT
Sub

Γ ⊢ t1 ∼ t2 :: T Γ ⊢ T � U

Γ ⊢ t1 ∼ t2 :: U

LETREC-RT

Γ, x :: T , f :: Π({y :: T | (y1,y2) < (x1, x2)}).U [y/x] ⊢ t1 ∼ t2 :: U
Γ ⊢ Π(x :: T).U Def (f , x , t)

Γ ⊢ letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U

CASELIST

Γ ⊢ t1 ∼ t2 :: listτ
Γ ⊢ t1 = [] ⇔ t2 = [] Γ ⊢ u1 ∼ u2 :: T Γ ⊢ v1 ∼ v2 :: Π(h :: τ).Π(t :: listτ).T

Γ ⊢ case t1 of [] 7→ u1; :: 7→ v1 ∼ case t2 of [] 7→ u2; :: 7→ v2 :: T

Fig. 9. Relational Typing (Selected Rules)

Def (f , x , t) predicate from our simply-typed language, and requires that the two recursive definitions perform
exactly the same recursive calls.

Subtyping rules are the same as in the unary case, and therefore we refer to Figure 8 for them (allowing their
instantiation for relational types T ,U as well as unary types σ , τ).

�e embedding of refinement types into UHOL can be adapted to the relational se�ing. From each relational
refinement typeT we can extract a simple type |T |. On the other hand, we can erase every relational refinement
type T into a relational formula TTU, which is parametrized by two expressions and defined as follows:

Tlistτ U(x1, x2) ,
∧

i ∈{1,2}

All(xi , λy.⌊τ ⌋(y)) TlistT U(x1, x2) , All2(x1, x2, λy1.λy2.TTU(y1,y2))

T{y : τ | ϕ}U(x1, x2) ,
∧

i ∈{1,2}

⌊τ ⌋(xi) ∧ ϕ[xi/y] T{y :: T | ϕ}U(x1, x2) , TTU(x1, x2) ∧ ϕ[x1/y1][x2/y2]

TΠ(y : τ).σU(x) ,
∧

i ∈{1,2}

∀y.⌊τ ⌋(y) ⇒ ⌊σ ⌋(xy)

TΠ(y :: T).UU(x1, x2) , ∀y1y2.TTU(y1,y2) ⇒ TσU(x1y1, x2y2)

�e predicate All2 relates two lists elementwise and is defined axiomatically:

All2([], [], λx1.λx2.ϕ) ∀h1h2t1t2.All(t1, t2, λx1.λx2.ϕ) ⇒ ϕ(h1,h2) ⇒ All(h1 :: t1,h2 :: t2, λx1.λx2.ϕ)

To extend the embedding to contexts, we need to duplicate every variable in them:

|x :: T , Γ | , x1, x2 : |T |, |Γ | Tx :: T , ΓU , TTU(x1, x2), TΓU

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:17

Now we state the main result:

�eorem 11 (Soundness of embedding). If Γ ⊢ t1 ∼ t2 :: T , then |Γ | | TΓU ⊢ t1 : |T | ∼ t2 : |T | | TTU(r1, r2) Also,
if Γ ⊢ T � U then |Γ |, x1, x2 : |T | | TΓU, TTU(x1, x2) ⊢ TUU(x1.x2).

Proof. �e proof proceeds by induction on the structure of derivations. �

Soundness of relational refinement types w.r.t. set-theoretical semantics follows immediately from �eo-
rem 11 and the set-theoretical soundness of RHOL (Corollary 5).

Corollary 12 (Soundness of relational refinement types). If Γ ⊢ t1 ∼ t2 :: T , then for every valuation θ |= Γ we
have (Lt1Mθ , Lt2Mθ) ∈ LT Mθ .

6.3 Dependency core calculus

�eDependency Core Calculus (DCC) (Abadi et al. 1999) is a higher-order calculuswith a type system that tracks
data dependencies. DCC was designed as a unifying framework for dependency analysis and it was shown that
many other calculi for information flow analysis (Heintze and Riecke 1998; Volpano et al. 1996), binding-time
analysis (Hatcliff and Danvy 1997), and program slicing, all of which track dependencies, can be embedded in
DCC. Here, we show how a fragment of DCC can be embedded into RHOL. Transitively, the corresponding
fragments of all the aforementioned calculi can also be embedded in RHOL. (�e fragment of DCC we consider
excludes recursive functions. DCC admits general recursive functions, while our definition of RHOL only admits
a subset of these. Extending the embedding to recursive functions admi�ed by RHOL is not difficult.)

DCC is an extension of the simply typed lambda-calculus with a monadic type family Tℓ(τ), indexed by labels
ℓ, which are elements of a la�ice. Unlike other uses of monads, DCC’s monad does not encapsulate any effects.
Instead, its only goal is to track dependence. �e type system forces that the result of an expression of type
Tℓ(τ) can depend on an expression of type Tℓ′(τ

′) only if ℓ′ ⊑ ℓ in the la�ice. Dually, if ℓ′ @ ℓ, then even if
an expression e of type Tℓ(τ) mentions a variable x of type Tℓ′(τ

′), then e’s result must be independent of the
substitution provided for x during evaluation.

For simplicity and without any loss of generality, we consider here only a two point la�ice {L,H } with L ⊏ H .
�e syntax of DCC’s types and expressions is shown below. We use e to denote DCC expressions, to avoid
confusion with HOL’s expressions.

τ ::= B | τ → τ | τ × τ | Tℓ(τ)

e ::= x | λx .e | e1 e2 | � | ff | case e of � 7→ et ;ff 7→ ef | 〈e1, e2〉 | π1(e) | π2(e) | ηℓ(e) | bind(e1, x .e2)

Here, ηℓ(e) and bind(e1, x .e2) are respectively the return and bind constructs for the monad Tℓ(τ). Typing rules
for these two constructs are shown below. Typing rules for the remaining constructs are the standard ones.

Γ ⊢ e : τ

Γ ⊢ ηℓ(e) : Tℓ(τ)

Γ ⊢ e1 : Tℓ(τ1) Γ, x : τ1 ⊢ e2 : τ2 τ2 ց ℓ

Γ ⊢ bind(e1, x .e2) : τ2

�e crux of the dependency tracking is the relation τ2 ց ℓ in the premise of the rule for bind. �e relation, read
“τ2 protected at level ℓ” and defined below, informally means that all primitive (boolean) values extractable from
e2 are protected by a monadic construct of the form Tℓ′(τ), with ℓ ⊑ ℓ

′. Hence, the rule forces that the result
obtained by eliminating the type Tℓ(τ1) flow only into types protected at ℓ in this sense.

ℓ ⊑ ℓ′

Tℓ′(τ) ց ℓ

τ ց ℓ

Tℓ′(τ) ց ℓ

τ1 ց ℓ τ2 ց ℓ

τ1 × τ2 ց ℓ

τ2 ց ℓ

τ1 → τ2 ց ℓ

�is fragment of DCC has a relational set-theoretic interpretation. For every type τ , we define a carrier set |τ |:

|B| , B |τ1 → τ2 | , |τ1 | → |τ2 | |τ1 × τ2 | , |τ1 | × |τ2 | |Tℓ(τ)| , |τ |

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:18 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Next, every type τ is interpreted as a la�ice-indexed family of relations ⌊τ ⌋a ⊆ |τ | × |τ |. �e role of the la�ice
element a is that it defines what can be observed in the system. Specifically, an expression of type Tℓ(τ) can be
observed only if ℓ ⊑ a. When ℓ @ a, expressions of type Tℓ(τ) look like “black-boxes”. Technically, we force
⌊Tℓ(τ)⌋a = |τ | × |τ | when ℓ @ a. DCC’s typing rules are sound with respect to this model. �e soundness implies
that if ℓ @ ℓ′ and x : Tℓ(B) ⊢ e : Tℓ′(B), then for e1, e2 : Tℓ(B), e[e1/x] and e[e2/x] are equal booleans in the
set-theoretic model. �is result, called noninterference, formalizes that DCC’s dependency tracking is correct.

To translate DCC to RHOL, we actually embed this set-theoretic model in RHOL. We start by defining an
erasing translation, |τ |, from DCC’s types into RHOL’s simple types. �is translation is exactly the same as the
definition of carrier sets shown above, except that we treat × and→ as RHOL’s syntactic type constructs instead
of set-theoretic constructs. Next, we define an erasure of terms:

|�| , � |ff | , ff |case e of � 7→ et ;ff 7→ ef | , case |e | of � 7→ |et |;ff 7→ |ef | |x | , x

|λx .e | , λx .|e | |e1 e2 | , |e1 | |e2 | |〈e1, e2〉| , 〈|e1 |, |e2 |〉 |π1(e)| , π1(|e |) |π2(e)| , π2(|e |)

|ηℓ(e)| , |e | |bind(e1, x .e2)| , (λx .|e2 |) |e1 |

It is fairly easy to see that if ⊢ e : τ in DCC, then ⊢ |e | : |τ |. Next, we define the la�ice-indexed family of relations
⌊τ ⌋a in HOL. For technical convenience, we write the relations as logical assertions, indexed by variables x ,y
representing the two terms to be related.

⌊B⌋a (x ,y) , (x = � ∧ y = �) ∨ (x = ff ∧ y = ff) ⌊τ1 → τ2⌋a(x ,y) , ∀v,w . ⌊τ1⌋a(v,w) ⇒ ⌊τ2⌋a(x v,y w)

⌊τ1 × τ2⌋a(x ,y) , ⌊τ1⌋a(π1(x), π1(y)) ∧ ⌊τ2⌋a(π2(x), π2(y)) ⌊Tℓ(τ)⌋a(x ,y) ,

{
⌊τ ⌋a(x ,y) ℓ ⊑ a

⊤ ℓ @ a

�emost important clause is the last one: When ℓ @ a, any two x ,y are in the relation ⌊Tℓ(τ)⌋a . �is generalizes
to all protected types in the following sense.

Lemma 13. If ℓ @ a and τ ց ℓ, then ⊢ ∀x ,y.(⌊τ ⌋a(x ,y) ≡ ⊤) in HOL.

�e translations extend to contexts as follows:

|x1 : τ1, . . . , x
n : τn | , x11 : |τ1 |, x

1
2 : |τ1 |, . . . , x

n
1 : |τn |, x

n
2 : |τn |

⌊x1 : τ1, . . . , x
n : τn⌋a , ⌊τ1⌋a(x

1
1 , x

1
2), . . . , ⌊τn⌋a(x

n
1 , x

n
2)

�e following theorem states that the whole translation is sound: It preserves well-typedness. In the statement
of the theorem, |e |1 and |e |2 replace each variable x in |e | with x1 and x2, respectively.

�eorem 14 (Soundness of embedding). If Γ ⊢ e : τ in DCC, then for all a ∈ {L,H }: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 :
|τ | | ⌊τ ⌋a(r1, r2).

DCC’s noninterference theorem is a corollary of this theorem and the soundness of RHOL in set theory.

6.4 Relational cost

RelCost (Çiçek et al. 2017) is a relational refinement type-and-effect system designed to reason about relative
cost—the difference in the execution costs of two similar programs or of two runs of the same program on two
different inputs. RelCost combines reasoning about the maximum and minimum costs of a single program with
relational reasoning about the relative cost of two programs. RelCost is based on the observation that relational
reasoning about structurally related expressions can improve precision in reasoning about the relative cost, but
if this approach fails one can always fall back to establishing an upper bound on the relative cost the difference
of the maximum cost of one program and the minimum cost of the other. Here, we show how a fragment of

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:19

RelCost can be embedded into RHOL. Similar to what we did for DCC, to just convey the main intuition, we
consider a fragment of RelCost excluding recursive functions. �e syntax of RelCost is based on two sorts of
types:

A ::= N | listA[n] | A
exec(k,l)
−−−−−−→ A | ∀i

exec(k,l)
:: S .A (unary types)

τ ::= Nr | listτ [n]
α | τ

diff(k)
−−−−→ τ | ∀i

diff(k)
:: S . τ | UA | � τ (relational types)

Unary types are used to type one program and they are mostly standard except for the effect annotation exec(k, l)
on arrow types and universally quantified types representing the min and max cost k and l of the body of the
closure, respectively. Relational types ascribe two programs, so they are interpreted as pairs of expressions. In
relational types, arrow types and universally quantified types have an effect annotation diff(k) representing the
relative cost k of the two closures. Besides, the superscript α refines list types with the number of elements that
can differ in two lists. �e typeUA is the weakest relation over elements of the unary type A, i.e. it can be used
to type two arbitrary terms, while the type � τ is the diagonal subrelation of τ , i.e. it can be used to type only
two terms that are equal. �ere are two kinds of typing judgments, unary and relational:

∆;Φ;Ω ⊢lk t : A ∆;Φ; Γ ⊢ t1 ⊖ t2 . l : τ

�e unary judgment states that the execution cost of t is lower bounded by k and upper bounded by l , and the
expression t has the unary type A. �e relational judgment states that the relative cost of t1 with respect to t2
is upper bounded by l and the two expressions have the relational type τ . Here Ω is a unary type environment,
Γ is a relational type environment, ∆ is an environment for index variables and Φ for assumed constraints over
the index terms. Figure 10 shows selected rules.

To embed RelCost in RHOL, we define a monadic-style cost-instrumented translation of RelCost types. �e
translation is given in two-steps: First, we define an erasure of cost and size information into simple types
and then we define a cost-passing style translation of simple types with a value-translation and an expression-
translation. �e erasure function is defined as follows:

|N| , |Nr | , N |listA[n]| , |listA[n]
α | , list |A | |UA| , |�A| , |A|

|∀i
exec(k,l)

:: S .A| , |∀i
diff(k)
:: S .A| , N→ |A| |A

diff(k)
−−−−→ B | , |A

exec(k,l)
−−−−−−→ B | , |A| → |B |

�e cost-passing style translation of simple types is

LNMv , N LlistAMv , listLAMv LA→ BMv , LAMv → LBMe LAMe , LAMv × N

Guided by the translation of types above we can provide a cost-instrumented translation of simply-typed λ-
expressions (Figure 11). �is translation maps an expression of the simple type τ to an expression of type τ ×N,
where the second component is the number of reduction steps under an eager, call-by-value reduction strategy
(which is the semantics of RelCost). It is fairly easy to see that this translation preserves typability and that it
counts steps accurately.

However, this translation forgets the cost and size information in types. To recover these, we define a HOL
formula for every unary type. But, first, we define axiomatically a predicate listU(n, l , P) that captures size
information about lists:

∀l , P .listU(0, l , P) ≡ l = [] ∀n, l , P .listU(n + 1, l , P) ≡ ∃w1,w2.l = w1 :: w2 ∧ P(w1) ∧ listU(n,w2, P)

We can now define a HOL formula inductively on unary types.

⌊N⌋v (x) , ⊤ ⌊listA[n]⌋v(x) , listU(n, x , ⌊A⌋v) ⌊A
exec(k,l)
−−−−−−→ B⌋v (x) , ∀y.⌊A⌋v (y) ⇒ ⌊B⌋k,le (xy)

⌊∀i
exec(k,l)

:: S .A⌋v (x) , ∀y.⊤ ⇒ ∀i .⌊A⌋k,le (xy) ⌊A⌋k,le (x) , ⌊A⌋v (π1x) ∧ k ≤ π2x ≤ l

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:20 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

var
Ω(x) = A

∆;Φa ;Ω ⊢00 x : A
const

∆;Φa ;Ω ⊢00 n : int

lam
∆;Φa ; x : A1,Ω ⊢lk t : A2

∆;Φa ;Ω ⊢00 λx .t : A1
exec(k,l)
−−−−−−→ A2

app
∆;Φa ;Ω ⊢l1

k1
t1 : A1

exec(k,l)
−−−−−−→ A2 ∆;Φa ;Ω ⊢l2

k2
t2 : A1

∆;Φa ;Ω ⊢
l1+l2+l+capp

k1+k2+k+capp
t1 t2 : A2

r-var
Γ(x) = τ

∆;Φa ; Γ ⊢ x ⊖ x . 0 : τ
r-const

∆;Φa ; Γ ⊢ n ⊖ n . 0 : intr

r-cons1
∆;Φa ; Γ ⊢ t1 ⊖ t ′1 . l1 : τ ∆;Φa ; Γ ⊢ t2 ⊖ t ′2 . l2 : list[n]

α τ

∆;Φa ; Γ ⊢ cons(t1, t2) ⊖ cons(t ′1, t
′
2) . l1 + l2 : list[n + 1]

α+1 τ

r-cons2
∆;Φa ; Γ ⊢ t1 ⊖ t ′1 . l1 : � τ ∆;Φa ; Γ ⊢ t2 ⊖ t ′2 . l2 : list[n]

α τ

∆;Φa ; Γ ⊢ cons(t1, t2) ⊖ cons(t ′1, t
′
2) . l1 + l2 : list[n + 1]

α τ

r-caseL

∆;Φa ; Γ ⊢ t ⊖ t ′ . l : list[n]α τ ∆;Φa ∧ n = 0; Γ ⊢ t1 ⊖ t ′1 . l ′ : τ ′

i,∆;Φa ∧ n = i + 1;h : � τ , tl : list[i]α τ , Γ ⊢ t2 ⊖ t ′2 . l ′ : τ ′

i, β,∆;Φa ∧ n = i + 1 ∧ α = β + 1;h : τ , tl : list[i]β τ , Γ ⊢ t2 ⊖ t ′2 . l ′ : τ ′

∆;Φa ; Γ ⊢ case t of nil → t1 | h :: tl → t2 ⊖ case t ′ of nil → t ′1 | h :: tl → t ′2 . l + l ′ : τ ′

r-lam
∆;Φa ; x : τ1, Γ ⊢ t1 ⊖ t2 . l : τ2

∆;Φa ; Γ ⊢ λx .t1 ⊖ λx .t2 . 0 : τ1
diff(l)
−−−−→ τ2

r-app

∆;Φa ; Γ ⊢ t1 ⊖ t ′1 . l1 : τ1
diff(l)
−−−−→ τ2

∆;Φa ; Γ ⊢ t2 ⊖ t ′2 . l2 : τ1

∆;Φa ; Γ ⊢ t1 t2 ⊖ t ′1 t
′
2 . l1 + l2 + l : τ2

r-iLam

i :: S,∆;Φa; Γ ⊢ t ⊖ t ′ . l : τ
i < FIV(Φa ; Γ)

∆;Φa ; Γ ⊢ Λt ⊖ Λt ′ . 0 : ∀i
diff(l)
:: S . τ

r-iApp

∆;Φa ; Γ ⊢ t ⊖ t ′ . l : ∀i
diff(l ′)
:: S . τ

∆ ⊢ J : S

∆;Φa ; Γ ⊢ t[] ⊖ t ′[] . l + l ′[J/i] : τ {J/i}

nochange

∆;Φa ; Γ ⊢ t ⊖ t . l : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) ⊑ � Γ(x)

∆;Φa ; Γ, Γ
′;Ω ⊢ t ⊖ t . 0 : � τ

switch
∆;Φa ; Γ ⊢l1

k1
t1 : A ∆;Φa ; Γ ⊢l2

k2
t2 : A

∆;Φa ; Γ ⊢ t1 ⊖ t2 . l1 − k2 : U A

Fig. 10. RelCost Unary and Relational Typing (Selected Rules)

�e type translation can also be extended to type environments: L|x1 : A1, . . . , xn : An |M = x1 : L|A1 |Mv , . . . , xn :
L|An |Mv Similarly, we can associate to a type environment an HOL context that we can use to recover the cost and
size information: ⌊x1 : A1, . . . , xn : An⌋ = ⌊A1⌋v (x1), . . . , ⌊An⌋v (xn). Now we can provide a cost-instrumented
translation of unary judgments.

�eorem 15. If ∆;Φ;Ω ⊢l
k
t : A, then: L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ LtM : L|A|Me | ⌊A⌋k,le (r)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:21

LxM , (x , 0) Lλx .tM , (λx .LtM, 0) LΛ.tM , (λ .LtM, 0)

LtuM , letx = LtM in lety = LuM in letz = π1(x) π1(y) in (π1(z), π2(x) + π2(y) + π2(z) + capp)

Lt[]M , letx = LtM in lety = π1(x) 0 in (π1(y), π2(x) + π2(y) + ciapp) LnilM , (nil, 0)

Lcons(t1, t2)M , letx = Lt1M in lety = Lt2M in (π1(x) :: π1(y), π2(x) + π2(y))

L case t ′ of nil → t ′1 | h :: tl → t ′2M ,




letx = Lt ′M in case π1(x) of
nil → lety = Lt ′1M in (π1(y), π2(x) + π2(y) + ccase)
| h :: tl → lety = Lt ′2M in (π1(y), π2(x) + π2(y) + ccase)

Fig. 11. Cost-instrumented translation of expressions.

For the embedding of cost and size information in the relational casewe first define a predicate listR(n, l1, l2,a, P)
in HOL axiomatically:

∀l1, l2,a, P .listR(0, l1, l2,a, P) ≡ l1 = l2 = []

∀n, l1, l2,a, P .listR(n + 1, l1, l2,a, P) ≡
∃w1, z1,w2, z2.l1 = w1 :: w2 ∧ l2 = z1 :: z2 ∧ P(w1, z1)∧

(((w1 = z1) ∧ listR(n,w2, z2,a, P))∨

(a > 0 ∧ ∃b . a = b + 1 ∧ listR(n,w2, z2,b, P)))

Let τ denote RelCost’s erasure of the binary type τ to a unary type.2 �is erasure maps listτ [n]
α to listτ [n],

τ
diff(l)
−−−−→ σ to τ

exec(0,∞)
−−−−−−−→ σ , etc. Next, we define HOL formulas for the binary types.

TNUv (x ,y) , x = y TUAUv (x ,y) , ⌊A⌋v (x) ∧ ⌊A⌋v (y) T� τUv (x ,y) , (x = y) ∧ (TτUv (x ,y))

Tτ
diff(l)
−−−−→ σUv (x ,y) , ⌊τ

exec(0,∞)
−−−−−−−→ σ ⌋v (x) ∧ ⌊τ

exec(0,∞)
−−−−−−−→ σ ⌋v (y) ∧ (∀z1, z2.TτUv (z1, z2) ⇒ TσUle (xz1,yz2))

T∀i
diff(l)
:: S . τUv (x ,y) , ⌊∀i

exec(0,∞)
:: S . τ ⌋v (x) ∧ ⌊∀i

exec(0,∞)
:: S . τ ⌋v (y) ∧ (∀z1z2.⊤ ⇒ ∀i .TτUle (xz1,yz2))

Tlistτ [n]
αUv (x ,y) , listR(n, x ,y,α , TτUv) TτUle (x ,y) , TτUv (π1x , π1y) ∧ (π2x − π2y ≤ l)

�e type translation can also be extended to relational type environments pointwise: ‖x1 : τ1, . . . , x
n : τn ‖ , x11 :

L|τ1 |Mv , x
1
2 : L|τ1 |Mv , . . . , x

n
1 : L|τn |Mv , x

n
2 : L|τn |Mv We also need to derive from a type relational environment an

HOL context that remembers the cost and size information: Tx1 : τ1, . . . , x
n : τnU,Tτ1Uv (x

1
1, x

1
2), . . . , TτnUv (x

n
1 , x

n
2).

Now we can provide the translation of relational judgments.

�eorem 16. If ∆;Φ; Γ ⊢ t1 ⊖ t2 . l : τ , then: ‖Γ‖,∆ | Φ, TΓU ⊢ Lt1M1 : L|τ |Me ∼ Lt2M2 : L|τ |Me | TτUle (r1, r2),
where Lti Mj is a copy of ti where each variable x is replaced by a variable x j for j ∈ {1, 2}.

RelCost’s type-soundness theorem can be derived from�eorem 16 and the soundness of RHOL in set theory.

2In RelCost, this erasure is wri�en |τ |. We use a different notation to avoid confusion with our own erasure function from RelCost’s types

to simple types.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:22 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

7 EXAMPLES

We present some illustrative examples to show how RHOL’s rules work in practice. Our first example shows
the functional equivalence of two recursive functions that are synchronous—they perform the same number
of recursive calls. �e second example shows the equivalence of two asynchronous recursive functions. Our
third example illustrates reasoning about the relative cost of two programs, using an encoding similar to that of
RelCost, but the example cannot be verified in RelCost itself.

7.1 First example: factorial

We show that the two following standard implementations of factorial, with and without an accumulator, are
functionally equivalent:

fact1 , letrec f1 n1 = case n1 of 0 7→ 1; S 7→ λx1.(S x1) ∗ (f1 x1)

fact2 , letrec f2 n2 = λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 ((S x2) ∗ acc)

Our goal is to prove that:

∅ | ∅ ⊢ fact1 : N→ N ∼ fact2 : N→ N→ N | ∀n1n2.n1 = n2 ⇒ ∀acc .(r1 n1) ∗ acc = r2 n2 acc

�e proof starts by applying [LETREC] rule, which has its main premise:

Ψ ⊢ case n1 of 0 7→ 1; S 7→ λx1.(S x1) ∗ (f1 x1) ∼ λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 ((S x2) ∗ acc) |

∀acc .r1 ∗ acc = r2 acc

where Ψ , n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀a.(f1 y1) ∗ a = f2 y2 a.
To prove this, we start by applying the one-sided [ABS-R] rule, with a trivial condition on acc . �en we can

apply a two-sided [CASE] rule, which has 3 premises:

• Ψ ⊢ n1 = 0 ⇔ n2 = 0
• Ψ,n1 = 0,n2 = 0 ⊢ 1 ∼ acc | r1 ∗ acc = r2

• Ψ ⊢ λx1.(S x1) ∗ (f1 x1) ∼ λx2. f2 x2 ((S x2) ∗ acc) | ∀x1x2.n1 = S x1 ⇒ n2 = S x2 ⇒ (r1 x1) ∗ acc = r2 x2

Premise 1 is a direct consequence of the assertion n1 = n2 in Ψ. Premise 2 is a trivial arithmetic identity
which can be proven in HOL (using rule SUB or by invoking �eorem 4). To prove premise 3, we first apply the
(two-sided) [ABS] rule, which leaves the following proof obligation:

Ψ,n1 = S x1,n2 = S x2 ⊢ (S x1) ∗ (f1 x1) ∼ f2 x2 ((S x2) ∗ acc) | r1 ∗ acc = r2

�is is proven in HOL by instantiating the inductive hypothesis in Ψ with y1 7→ x1,y2 7→ x2,a 7→ (S x1) ∗ acc .

7.2 Second example: take and map

�is example establishes the equivalence of two programs that compute the same result, but using different
number of recursive calls. Consider the following function take that takes a list l and a natural number n and
returns the first n elements of the list (or the whole list if its length is less than n).

take , letrec f1 l1 = λn1. case l1 of [] 7→ []

; :: 7→ λh1t1. case n1 of 0 7→ []
; S 7→ λy1.h1 :: (f1 t1 y1)

Next, consider the standard functionmap that applies a function д to every element of a list l pointwise.

map , letrec f2 l2 = λд2. case l2 of [] 7→ []

; :: 7→ λh2t2.(д2 h2) :: (f2 t2 д2)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:23

Intuitively, it should be clear that for all д,n, l ,map (take l n) д = take (map l д) n (mapping д over the first n
elements of the list is the same as mapping over the whole list and then taking the first n elements). However, the
computations on the two sides of the equality are very different: For a list l of lengthmore thann,map (take l n)д
only examines the first n elements, whereas take (map l д) n traverses the whole list. In the following we
formalize this property in RHOL (�eorem 17) and outline the high-level idea of the proof. �e full proof is in
the appendix.

�eorem 17. l1, l2 : listN,n1,n2 : N,д1,д2 : N→ N | l1 = l2,n1 = n2,д1 = д2 ⊢

map (take l1 n1) д1 : listN ∼ take (map l2 д2) n2 : listN | r1 = r2

Proof idea. Since the two sidesmake an unequal number of recursive calls, we need to reason asynchronously
on the two sides (specifically, we use the rule [LLCASE-A]). However, equality cannot be established inductively
with asynchronous reasoning: If two function applications are to be shown equal, and a recursion step is taken in
only one of them, then the induction hypothesis cannot be applied. So, we strengthen the induction hypothesis,
replacing the assertion r1 = r2 in the theorem statement with r1 ⊑ r2 ∧ |r1 | = min(n1, |l1 |) ∧ |r2 | = min(n2, |l2 |)

where ⊑ denotes the prefix ordering on lists and | · | is the list length function. �is assertion implies r1 = r2 and
can be established inductively. �e full proof is in the appendix, but at a high-level, the proof requires proving
two judgments, one for the inner map-take pair and another for the outer one:

• Ψ ⊢ take l1 n1 ∼map l2 д2 | r1 ⊑д2 r2
• Ψ ⊢map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑ (r2 m2 x2))

wherem1 ⊑д m2 is an axiomatically defined predicate equivalent to (mapm1 д) ⊑ m2 and Ψ are the assumptions
in the statement of the theorem (in particular, l1 = l2). �e proof of the first premise proceeds by an analysis
ofmap using synchronous rules. For the second premise, a�er applying [LETREC] we apply the asynchronous
[LLCASE-A] rule, and then prove the following premises:

(1) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = [],m2 = [] ⊢ [] ∼ [] | r1 ⊑ r2

(2) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = [] ⊢ [] ∼ λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 |
∀h2t2.m2 = h2 :: t2 ⇒ r1 ⊑ (r2 h2 t2)

(3) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m2 = [] ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼ [] | ∀h1t1.m1 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ r2

(4) Ψ,Φ, x2 ≥ |m1 |,д1 = д2 ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼ λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 |
∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ (r2 h2 t2)

where Φ is the inductive hypothesis obtained from the [LETREC] application. �e first two premises follow
directly from the definition of ⊑, while the third one follows from the contradictory assumptions m1 ⊑д m2,
m1 = h1 :: t1 andm2 = []. �e last premise is proved by first applying the [NATCASE-R] rule and then applying
the induction hypothesis. �

7.3 Third example: insertion sort

Insertion sort is a standard sorting algorithm that sorts a list h :: t by sorting the tail t recursively and then
inserting h at the appropriate position in the sorted tail. Consider the following implementations of the insertion
function, insert, and the insertion sort function, isort, each returning a pair, whose first element is the usual
output list (inserted list for insert and sorted list for isort) andwhose second element is the number of comparisons

made during the execution (assuming an eager, call-by-value evaluation strategy).

insert , λx . letrec insert l = case l of [] 7→ ([x], 0);
:: 7→ λh t . case x ≤ h of

� 7→ (x :: l , 1);
ff 7→ let s = insert t in (h :: (π1 s), 1 + (π2 s))

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:24 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

isort , letrec isort l = case l of [] 7→ ([], 0);
:: 7→ λh t . let s = isort t

let s ′ = insert h (π1 s) in
(π1 s

′, (π2 s) + (π2 s
′))

Using this implementation, we prove the following interesting fact about insertion sort: Among all lists of the
same length, insertion sort computes the fastest (with fewest comparisons) on lists that are already sorted. �is
is a property about the relational cost of insertion sort (on two different inputs), which cannot be established in
RelCost. To state the property in RHOL, we define a list predicate sorted(l) in HOL axiomatically:

sorted([]) ≡ ⊤ ∀h t . sorted(h :: t) ≡ (sorted(t) ∧ h ≤ lmin(t))

where the function lmin(l) returns the minimum element of l :

lmin , letrec f l = case l of [] 7→ ∞; :: 7→ λh t .min(h, f t)

As in the previous example, let | · | be the standard list length function. �e property of insertion sort mentioned
above is formalized in the following theorem. In words, the theorem says that if isort is executed on lists x1 and
x2 of the same length and x1 is sorted, then the number of comparisons made during the sorting of x1 is no more
than the number of comparisons made during the sorting of x2.

�eorem 18. Let τ , listN → listN. �en, • | • ⊢ isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1) ∧ |x1 | = |x2 |) ⇒

π2(r1 x1) ≤ π2(r2 x2).

A full proof is shown in the appendix. �e proof proceeds mostly synchronously in the two sides. Following
the structure of isort, we apply the rules [LETREC], [LISTCASE] and [APP] + [ABS] (for the let binding, which,
as usual, is defined as a function application), followed by an application of the inductive hypothesis for the
recursive call to isort . Eventually, we expose the call to insert on both sides. At this point, the observation is
that since x1 is already sorted, its head element must be no greater than all elements in its tail, so insert must
return immediately with at most 1 comparison on the x1 side. Formally, this last proof step can be completed by
switching to either UHOL or HOL and using subject conversion; we switch to HOL in the appendix.

8 CONCLUSION

We have developed Relational Higher-Order Logic, a new formalism to reason about relational properties of
(pure) higher-order programswri�en in a simply typed λ-calculus with inductive types and recursive definitions.
�e system is expressive, has solid foundations via an equivalence with Higher-Order Logic, and yet retains
the (nice) “feel” of relational refinement type systems. An important direction for future work is to extend
Relational Higher-Order Logic to effectful programs. Natural directions include integrating the state monad, and
the Giry monad for probability sub-distributions. One particularly exciting perspective is to broaden the scope
of relational cost analysis to probabilistic programs, and to prove relational costs for different data structures.
�ere are also many potential applications to security, differential privacy, machine learning, and probabilistic
programming.

For practical purposes, it will also be interesting to build prototype implementations of Relational Higher-
Order Logic. We believe that much of the technology developed for (relational) refinement types, and in par-
ticular the automated generation of verification conditions (maybe with user hints to switch between unary
and binary modes of reasoning) and the connection to SMT-solvers can be li�ed without significant hurdle to
Relational Higher-Order Logic.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:25

REFERENCES
Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In POPL ’99, Proceedings of the

26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999. 147–160.

DOI:h�p://dx.doi.org/10.1145/292540.292555

Martı́n Abadi, Luca Cardelli, and Pierre-Louis Curien. 1993. Formal Parametric Polymorphism. In Conference Record of the Twentieth Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South Carolina, USA, January 1993. 157–170.

DOI:h�p://dx.doi.org/10.1145/158511.158622

Peter Aczel and Nicola Gambino. 2000. Collection Principles in Dependent Type �eory. In Types for Proofs and Programs, International

Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected Papers (Lecture Notes in Computer Science), Paul Callaghan, Zhaohui

Luo, James McKinna, and Robert Pollack (Eds.), Vol. 2277. Springer, 1–23. DOI:h�p://dx.doi.org/10.1007/3-540-45842-5 1

Peter Aczel and Nicola Gambino. 2006. �e generalised type-theoretic interpretation of constructive set theory. J. Symb. Log. 71, 1 (2006),

67–103. DOI:h�p://dx.doi.org/10.2178/jsl/1140641163

Robin Adams and Zhaohui Luo. 2010. Classical predicative logic-enriched type theories. Ann. Pure Appl. Logic 161, 11 (2010), 1315–1345.

DOI:h�p://dx.doi.org/10.1016/j.apal.2010.04.005

Bowen Alpern and Fred B. Schneider. 1985. Defining Liveness. Inf. Process. Le�. 21, 4 (1985), 181–185. DOI:

h�p://dx.doi.org/10.1016/0020-0190(85)90056-0

Kazuyuki Asada, Ryosuke Sato, and Naoki Kobayashi. 2016. Verifying relational properties of functional programs by first-order refinement.

Science of Computer Programming (2016).

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification Using Product Programs. In FM 2011: For-

mal Methods - 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings. 200–214. DOI:

h�p://dx.doi.org/10.1007/978-3-642-21437-0 17

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information Flow by Self-Composition. In 17th IEEE Computer Security

Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. 100–114. DOI:h�p://dx.doi.org/10.1109/CSFW.2004.17

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella Béguelin. 2014. Probabilistic rela-

tional verification for cryptographic implementations. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL’14, Suresh Jagannathan and Peter Sewell (Eds.). 193–206.

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-order approximate

relational refinement types for mechanism design and differential privacy. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David

Walker (Eds.). 55–68.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic proofs. In Proceed-

ings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January

21-23, 2009. 90–101. DOI:h�p://dx.doi.org/10.1145/1480881.1480894

Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product programs. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. 161–174.

h�p://dl.acm.org/citation.cfm?id=3009896

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic relational reasoning for differential privacy. In

Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,

USA, January 22-28, 2012. 97–110. DOI:h�p://dx.doi.org/10.1145/2103656.2103670

João Filipe Belo. 2007. Dependently Sorted Logic. In Types for Proofs and Programs, International Conference, TYPES 2007, Cividale del Friuli,

Italy, May 2-5, 2007, Revised Selected Papers (Lecture Notes in Computer Science), Marino Miculan, Ivan Scagne�o, and Furio Honsell (Eds.),

Vol. 4941. Springer, 33–50. DOI:h�p://dx.doi.org/10.1007/978-3-540-68103-8 3

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations.. In Proceedings of the 31th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’04, Neil D. Jones and Xavier Leroy (Eds.). 14–25.

Lennart Beringer and Martin Hofmann. 2007. Secure information flow and program logics. In 20th IEEE Computer Security Foundations

Symposium, CSF 2007, 6-8 July 2007, Venice, Italy. IEEE Computer Society, 233–248. DOI:h�p://dx.doi.org/10.1109/CSF.2007.30

Lionel Bla�er, Nikolai Kosmatov, Pascale Le Gall, and Virgile Prevosto. 2017. Deductive Verification with Relational Properties. In In Proc.

of the 23th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2017), Uppsala, Sweden.

To Appear.

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational cost analysis. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and

Andrew D. Gordon (Eds.). ACM, 316–329. h�p://dl.acm.org/citation.cfm?id=3009858

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Proceedings of CSF’08. 51–65.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

http://dx.doi.org/10.1145/292540.292555
http://dx.doi.org/10.1145/158511.158622
http://dx.doi.org/10.1007/3-540-45842-5_1
http://dx.doi.org/10.2178/jsl/1140641163
http://dx.doi.org/10.1016/j.apal.2010.04.005
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1145/1480881.1480894
http://dl.acm.org/citation.cfm?id=3009896
http://dx.doi.org/10.1145/2103656.2103670
http://dx.doi.org/10.1007/978-3-540-68103-8_3
http://dx.doi.org/10.1109/CSF.2007.30
http://dl.acm.org/citation.cfm?id=3009858

1:26 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Logical Methods in Computer Science 7, 2 (2011).

DOI:h�p://dx.doi.org/10.2168/LMCS-7(2:16)2011

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational modal logic for higher-order stateful ADTs. In Proceedings

of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010.

185–198. DOI:h�p://dx.doi.org/10.1145/1706299.1706323

Joshua Dunfield and Frank Pfenning. 2004. Tridirectional typechecking. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 281–292.

DOI:h�p://dx.doi.org/10.1145/964001.964025

Peter Dybjer. 1985. Program Verification in a Logical �eory of Constructions. In Functional Programming Languages and Computer Archi-

tecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings (Lecture Notes in Computer Science), Jean-Pierre Jouannaud (Ed.),

Vol. 201. Springer, 334–349. DOI:h�p://dx.doi.org/10.1007/3-540-15975-4 46

Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN’91 Conference on Program-

ming Language Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, David S. Wise (Ed.). ACM, 268–277. DOI:

h�p://dx.doi.org/10.1145/113445.113468

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear dependent types for differential

privacy. In�e 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January

23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 357–370. DOI:h�p://dx.doi.org/10.1145/2429069.2429113

Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson. 2016a. Comprehensive Parametric Polymorphism: Categorical Models and Type

�eory. In Foundations of So�ware Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of the

European Joint Conferences on �eory and Practice of So�ware, ETAPS 2016, Eindhoven, �e Netherlands, April 2-8, 2016, Proceedings. 3–19.

DOI:h�p://dx.doi.org/10.1007/978-3-662-49630-5 1

Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson. 2016b. Comprehensive Parametric Polymorphism: Categorical Models and

Type �eory. In Foundations of So�ware Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held

as Part of the European Joint Conferences on �eory and Practice of So�ware, ETAPS 2016, Eindhoven, �e Netherlands, April 2-

8, 2016, Proceedings (Lecture Notes in Computer Science), Bart Jacobs and Christof Löding (Eds.), Vol. 9634. Springer, 3–19. DOI:

h�p://dx.doi.org/10.1007/978-3-662-49630-5 1

John Hatcliff and Olivier Danvy. 1997. A computational formalization for partial evaluation. Mathematical Structures in Computer Science 7

(1997), 507–541.

Nevin Heintze and Jon G. Riecke. 1998. �e SLam Calculus: Programming with Secrecy and Integrity. In POPL ’98, Proceedings of the 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA, USA, January 19-21, 1998. 365–377. DOI:

h�p://dx.doi.org/10.1145/268946.268976

B. Jacobs. 1999. Categorical Logic and Type �eory. Number 141 in Studies in Logic and the Foundations of Mathematics. North Holland,

Amsterdam.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 637–650. DOI:h�p://dx.doi.org/10.1145/2676726.2676980

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational model of types-and-effects in higher-order concurrent

separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017. 218–231. h�p://dl.acm.org/citation.cfm?id=3009877

Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and

David Walker (Eds.). ACM, 3–16. DOI:h�p://dx.doi.org/10.1145/2676726.2676970

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type �eory for Verification of Information Flow and Access

Control Policies. ACM Trans. Program. Lang. Syst. 35, 2 (2013), 6:1–6:41. DOI:h�p://dx.doi.org/10.1145/2491522.2491523

Frank Pfenning. 2008. Church and Curry: Combining Intrinsic and Extrinsic Typing. In Reasoning in Simple Type �eory: Festschri� in Honor

of Peter B. Andrews on His 70th Birthday, C.Benzmüller, C.Brown, J.Siekmann, and R.Statman (Eds.). College Publications, 303–338.

Gordon Plotkin. 1973. Lambda-definability and logical relations. (1973).

Gordon Plotkin. 1977. LCF considered as a programming language. �eoretical Computer Science 5, 3 (1977), 223 – 255. DOI:

h�p://dx.doi.org/10.1016/0304-3975(77)90044-5

Gordon D. Plotkin and Martı́n Abadi. 1993. A Logic for Parametric Polymorphism. In Typed Lambda Calculi and Applications, International

Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, �e Netherlands, March 16-18, 1993, Proceedings. 361–375. DOI:

h�p://dx.doi.org/10.1007/BFb0037118

François Po�ier and Vincent Simonet. 2002. Information flow inference for ML. In Conference Record of POPL 2002: �e 29th

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002. 319–330. DOI:

h�p://dx.doi.org/10.1145/503272.503302

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/964001.964025
http://dx.doi.org/10.1007/3-540-15975-4_46
http://dx.doi.org/10.1145/113445.113468
http://dx.doi.org/10.1145/2429069.2429113
http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1145/268946.268976
http://dx.doi.org/10.1145/2676726.2676980
http://dl.acm.org/citation.cfm?id=3009877
http://dx.doi.org/10.1145/2676726.2676970
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1016/0304-3975(77)90044-5
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/503272.503302

A Relational Logic for Higher-Order Programs • 1:27

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016. 57–69. DOI:

h�p://dx.doi.org/10.1145/2908080.2908092

R. Statman. 1985. Logical relations and the typed λ-calculus. Information and Control 65, 2-3 (May 1985), 85–97.

h�p://dx.doi.org/10.1016/s0019-9958(85)80001-2

Gordon Stewart, Anindya Banerjee, and Aleksandar Nanevski. 2013. Dependent types for enforcement of information flow and erasure

policies in heterogeneous data structures. In 15th International Symposium on Principles and Practice of Declarative Programming, PPDP

’13, Madrid, Spain, September 16-18, 2013. 145–156. DOI:h�p://dx.doi.org/10.1145/2505879.2505895

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric

Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. 2016. Dependent types and

multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodı́k and Rupak Majumdar (Eds.). ACM, 256–270. DOI:

h�p://dx.doi.org/10.1145/2837614.2837655

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212. DOI:

h�p://dx.doi.org/10.2307/2271658

Tachio Terauchi and Alex Aiken. 2005. Secure Information Flow as a Safety Problem. In Static Analysis Symposium, Chris Hankin and Igor

Siveroni (Eds.), Vol. 3672. 352–367.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types for Haskell. In Proceedings

of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, Johan Jeuring

and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. DOI:h�p://dx.doi.org/10.1145/2628136.2628161

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. 1996. A sound type system for secure flow analysis. Journal of Computer Security 4, 3

(1996), 1–21.

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999, Andrew W. Appel and Alex

Aiken (Eds.). ACM, 214–227. DOI:h�p://dx.doi.org/10.1145/292540.292560

Hongseok Yang. 2007. Relational separation logic. 375, 1-3 (2007), 308–334.

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In Formal Methods (Lecture Notes

in Computer Science), Jorge Cuéllar, T. S. E. Maibaum, and Kaisa Sere (Eds.), Vol. 5014. 35–51.

Noam Zeilberger. 2016. Principles of Type Refinement. (2016). h�p://noamz.org/oplss16/refinements-notes.pdf Notes for OPLSS 2016 school.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

http://dx.doi.org/10.1145/2908080.2908092
http://dx.doi.org/10.1016/s0019-9958(85)80001-2
http://dx.doi.org/10.1145/2505879.2505895
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.1145/2628136.2628161
http://dx.doi.org/10.1145/292540.292560
http://noamz.org/oplss16/refinements-notes.pdf

1:28 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

A SEMANTICS

Semantics of HOL

Types. �e interpretation for the types corresponds directly to the usual representation of pairs, lists and
functions in set theory.

JBK , {ff,�}

JNK , N

Jlistτ K , listJτ K

Jτ1 × τ2K , Jτ1K × Jτ2K

Jτ1 → τ2K , Jτ1K → Jτ2K

Terms. �e terms are given an interpretation with respect to a valuation ρ which is a partial function mapping
variables to elements in the interpretation of their type. Given ρ, we use the notation ρ[v/x] to denote the unique
extension of ρ such that if y = x then ρ[v/x](y) = v and, otherwise, ρ[v/x](y) = ρ(y).

LxMρ , ρ(x) L〈t ,u〉Mρ := 〈LtMρ , LuMρ 〉 Lπi tMρ , πi (LtMρ) Lλx : τ .tM
,
λv : Jτ K.LxMρ [LvMρ /v]

LcMρ , c LS tMρ , S LtMρ Lt :: uMρ , LtMρ :: LuMρ

Lcase t of [] 7→ u; :: 7→ vMρ , case LtMρ of [] 7→ LuMρ ; :: 7→ LvMρ

Lletrec f x = tMρ , fix f (Lλx .tMρ) where fix f v := v[(fix f v)/f]

Formulas. We assume that for predicate P of arity τ1×· · ·×τn , we have an interpretation JPK ∈ Jτ1K×· · ·×JτnK
that satisfies the axioms for P. �e interpretation of a formula is defined as follows:

LP(t1, . . . , tn)Mρ , (Jt1Kρ , . . . , JtnKρ) ∈ JPK

L⊤Mρ , ⊤̃

L⊥Mρ , ⊥̃

Lϕ1 ∧ ϕ2Mρ , Lϕ1Mρ ∧̃ Lϕ2Mρ,M

Lϕ1 ⇒ ϕ2Mρ , Lϕ1Mρ ⇒̃ Lϕ2Mρ

L∀x : τ .ϕMρ , ∀̃v .v ∈ Jτ K ⇒̃ LϕMρ [v/x]

where we use the tilde (∼) to distinguish between the (R)HOL connectives and the meta-level connectives.

Soundness. We have the following result:

Theorem A.1 (Soundness of set-theoretical semantics). If Γ | Ψ ⊢ ϕ, then for every valuation ρ |= Γ,∧
ψ ∈ΨLψ Mρ implies LϕMρ .

Proof. By induction on the lenght of the derivation of Γ | Ψ ⊢ ϕ. �

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:29

Semantics of UHOL

�e intended meaning of a UHOL judgment Γ | Ψ ⊢ t : τ | ϕ is:

for all M, ρ. s.t. ρ |= Γ and M |= Ψ,ϕ

L
∧

ΨMρ,M implies LϕMρ [LtMρ /r],M

We have the following result:
�eorem 19 (Set-theoretical soundness and consistency of UHOL). If Γ | Ψ ⊢ t : σ | ϕ, then for every valuation
ρ |= Γ,

∧
ψ ∈ΨLψ Mρ implies LϕMρ [LtMρ /r]. In particular, there is no proof of Γ | ∅ ⊢ t : σ | ⊥ in UHOL.

Proof. It is a direct consequence of the embedding from UHOL into HOL and the soundness of HOL. �

Semantics of RHOL

�e intended meaning of a RHOL judgment Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ is:

for allM, ρ. s.t. ρ |= Γ and M |= Ψ,ϕ

L
∧

ΨMρ,M implies LϕMρ [Lt1Mρ /r1][Lt2Mρ/r2],M

We have the following result:
�eorem 20 (Set-theoretical soundness and consistency of RHOL). If Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ, then for
every valuation ρ |= Γ,

∧
ψ ∈ΨLψ Mρ implies LϕMρ [Lt1Mρ /r1], [Lt2Mρ /r2]. In particular, there is no proof of Γ | ∅ ⊢ t1 :

σ1 ∼ t2 : σ2 | ⊥ for any Γ.

Proof. It is a direct consequence of the embedding of RHOL into HOL and the soundness of HOL. �

B ADDITIONAL RULES

For reasons of space, we have omited some derivable and admissible rules in HOL, UHOL and RHOL. �ese are
useful to prove some theorems and examples. We now discuss the most interesting among them:

HOL

�e following rules are derivable in HOL:

• A cut rule can be derived from [⇒I] and [⇒E]:

Γ | Ψ,ϕ ′ ⊢ ϕ Γ | Ψ ⊢ ϕ ′

Γ | Ψ ⊢ ϕ
CUT

• A rule for case analysis can be derived from [LIST]:

Γ ⊢ l : listτ Γ | Ψ, l = [] ⊢ ϕ Γ,h : τ , t : listτ | Ψ, l = h :: t ⊢ ϕ

Γ | Ψ ⊢ ϕ
DESTR − LIST

• A rule for strong induction can be derived from [LIST]:

Γ | Ψ ⊢ ϕ[[]/t] Γ,h : τ , t : listτ | Ψ,∀u : listτ .|u | ≤ |t | ⇒ ϕ[u/t] ⊢ ϕ[h :: t/t]

Γ | Ψ ⊢ ∀t : listτ .ϕ
S − LIST

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:30 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

• A rule for (weak) double induction can be derived by applying [LIST] twice:

Γ | Ψ ⊢ ϕ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 | Ψ,ϕ[t1/l1][[]/l2] ⊢ ϕ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 | Ψ,ϕ[[]/l1][t2/l2] ⊢ ϕ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t2 : listτ2 ,h2 : τ2, t2 : listτ2 | Ψ,ϕ[t1/l1][t2/l2] ⊢ ϕ[h1 :: t1/l1][h2 :: t2/l2]

Γ | Ψ ⊢ ∀l1l2.ϕ
D − LIST

• A rule for strong double induction can be derived from [D-LIST]:

Γ | Ψ ⊢ ϕ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 | Ψ,∀m1.|m1 | ≤ |t1 | ⇒ ϕ[m1/l1][[]/l2] ⊢ ϕ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 | Ψ,∀m2.|m2 | ≤ |t2 | ⇒ ϕ[[]/l1][m2/l2] ⊢ ϕ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t1 : listτ1 ,h2 : τ2, t2 : listτ2 |
Ψ,∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |h2 :: t2 |) ⇒ ϕ[m1/l1][m2/l2] ⊢ ϕ[h1 :: t1/l1][h2 :: t2/l2]

Γ | Ψ ⊢ ∀l1l2.ϕ
S − D − LIST

RHOL

�e following version of the case rule is admissible:

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ϕ
′ ∧ (r1 = 0 ⇔ r2 = 0)

Γ | Ψ,ϕ ′[0/r1][0/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.ϕ

′[Sx1/r1][Sx2/r2] ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE∗

and the one sided version:

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : σ2 | ϕ
′

Γ | Ψ,ϕ ′[0/r1][t2/r2] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.ϕ

′[Sx1/r1] ⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
NATCASE ∗ −L

Notice that we can always recover the initial version of the rule by instantiating ϕ ′ as t1 = r1 ∧ t2 = r2.

C PROOFS

Proof of Theorem 10

We will use without proof the following results:

Lemma 21. If Γ ⊢ τ � σ in refinement types, then |τ | ≡ |σ |.

Proof. By induction on the derivation. �

Lemma 22. For every type τ and expression e and variable x < FV (τ , e), ⌊τ ⌋(e) = ⌊τ ⌋(x)[e/x]

Proof. By structural induction. �

Now we proceed with the proof of the theorem. We do it by induction on the derivation:

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:31

Case.
Γ ⊢ τ

Γ ⊢ τ � τ

To show: |Γ |, x : |τ | | ⌊τ ⌋(x) ⊢ ⌊τ ⌋(x). Directly by [AX].

Case.
Γ ⊢ τ1 � τ2 Γ ⊢ τ2 � τ3

Γ ⊢ τ1 � τ3
To show: |Γ |, x : |τ1 | | ⌊Γ⌋, ⌊τ1⌋(x) ⊢ ⌊τ3⌋(x).
By induction hypothesis on the premises,
|Γ |, x : |τ1 | | ⌊Γ⌋, ⌊τ1⌋(x) ⊢ ⌊τ2⌋(x)
and
|Γ |, x : |τ2 | | ⌊Γ⌋, ⌊τ2⌋(x) ⊢ ⌊τ3⌋(x).
We complete the proof by [CUT]. Notice that |τ1 | ≡ |τ2 | ≡ |τ3 |.

Case.
Γ ⊢ τ1 � τ2

Γ ⊢ listτ1 � listτ2
To show: |Γ |, x : |listτ1 | | ⌊Γ⌋, ⌊listτ1⌋(x) ⊢ ⌊listτ2⌋(r)

Expanding the definitions: |Γ |, x : list |τ1 | | ⌊Γ⌋,⊤ ⊢ ⊤,
which is trivial.

Case.
Γ ⊢ {r : τ | ϕ}

Γ ⊢ {r : τ | ϕ} � τ

To show: |Γ |, x : |{r : τ | ϕ}| | ⌊{r : τ | ϕ}⌋(x) ⊢ ⌊τ ⌋(x).
Expanding the definitions: |Γ |, x : |{r : τ | ϕ}| | ⌊τ ⌋(x) ∧ ϕ[x/r] ⊢ ⌊τ ⌋(x)

and now the proof is completed trivially by [∧E] and [AX].

Case.
Γ ⊢ τ � σ Γ, r : τ ⊢ ϕ

Γ ⊢ τ � {r : σ | ϕ}
To show: |Γ |, r : |τ | ⊢ ⌊Γ⌋, ⌊τ ⌋(r) ⊢ ⌊{r : σ | ϕ}⌋(r)
Expanding the definition: |Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋(r) ⊢ ⌊σ ⌋(r) ∧ ϕ

By induction hypothesis on the premises we have:
|Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋(r) ⊢ ⌊σ ⌋(r)

and:
|Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋(r) ⊢ ϕ
We complete the proof by applying the [∧I] rule.

Case.
Γ ⊢ σ2 � σ1 Γ, x : σ2 ⊢ τ1 � τ2

Γ ⊢ Π(x : σ1).τ1 � Π(x : σ2).τ2
To show: |Γ |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊Π(x : σ1).τ1⌋(f) ⊢ ⌊Π(x : σ2).τ2⌋(f)
Expanding the definitions:
|Γ |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋,∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ∀x .⌊σ2⌋(x) ⇒ ⌊τ2⌋(f x)

By the rules [∀I] and [⇒I] it suffices to prove:
|Γ |, f : |Π(x : σ1).τ1 |, x : |σ2 | | ⌊Γ⌋,∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x), ⌊σ2⌋(x) ⊢ ⌊τ2⌋(f x) (1)
On the other hand, by induction hypothesis on the premises:
|Γ |, x : |σ2 | | ⌊Γ⌋, ⌊σ2⌋(x) ⊢ ⌊σ1⌋(x) (2)
and

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:32 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

|Γ |, x : |σ2 |,y : |τ1 | | ⌊Γ⌋, ⌊σ2⌋(x), ⌊τ1⌋(y) ⊢ ⌊τ2⌋(y) (3)
which we can weaken respectively to:
|Γ |, x : |σ2 |, f : |Π(x : σ1).τ1 | | |Γ |, ⌊σ2⌋(x),∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ⌊σ1⌋(x) (4)
and
|Γ |, x : |σ2 |,y : |τ1 |, f : |Π(x : σ1).τ1 | | |Γ |, ⌊σ2⌋(x), ⌊τ1⌋(y),∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ⌊τ2⌋(y) (5)
From (4), by doing a cut with its own premise ∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x), we derive:
|Γ |, x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋(x),∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ⌊τ1⌋(f x) (6)
From (5), by [⇒I] and [∀I] we can derive:
|Γ |, x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋(x), ,∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ∀y.⌊τ1⌋(y) ⇒ ⌊τ2⌋(y)

And by [∀E]
|Γ |, x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋(x), ,∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ⌊τ1⌋(f x) ⇒ ⌊τ2⌋(f x) (7)
Finally, from (6) and (7) by [⇒E] we get:
|Γ |, x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋(x),∀x .⌊σ1⌋(x) ⇒ ⌊τ1⌋(f x) ⊢ ⌊τ2⌋(f x)

and by one last application of [⇒I] we get what we wanted to prove.

Proof of Theorem 9

By induction on the derivation:

Case. x : τ , Γ ⊢ x : τ
To prove : x : |τ |, |Γ | ⊢ ⌊τ ⌋(x), ⌊Γ⌋ ⊢ x : |τ | | ⌊τ ⌋(r). Directly by [VAR].

Case.
Γ, x : τ ⊢ t : σ

Γ ⊢ λx .t : Π(x : τ).σ
To prove: |Γ | | ⌊Γ⌋ ⊢ λx .t : |Π(x : τ).σ | | ⌊Π(x : τ).σ ⌋(r).
Expanding the definitions:
|Γ | | ⌊Γ⌋ ⊢ λx .t : |τ | → |σ | | ∀x .⌊τ ⌋(x) ⇒ ⌊σ ⌋(rx)
By induction hypothesis on the premise:
|Γ |, x : |τ | | ⌊Γ⌋, ⌊τ ⌋(x) ⊢ t : |σ | | ⌊σ ⌋(r)
Directly by [ABS].

Case.
Γ ⊢ t : Π(x : τ).σ Γ ⊢ u : τ

Γ ⊢ t u : σ [u/x]
To prove: |Γ | | ⌊Γ⌋ ⊢ t u : |σ [u/x]| | ⌊σ [u/x]⌋(r).
Expanding the definitions:
|Γ | | ⌊Γ⌋ ⊢ t e2 : |σ | | ⌊σ ⌋(r)[u/x]
By induction hypothesis on the premise:
|Γ | | ⌊Γ⌋ ⊢ t : |τ | → |σ | | ∀x .⌊τ ⌋(x) ⇒ ⌊σ ⌋(rx)

and
|Γ | | ⌊Γ⌋ ⊢ u : |τ | | ⌊τ ⌋(r)
We get the result directly by [APP].

Case.
Γ ⊢ t : listτ Γ ⊢ u : σ Γ ⊢ v : τ → listτ → σ

Γ ⊢ case t of [] 7→ u; :: 7→ v : σ
To prove: |Γ | | ⌊Γ⌋ ⊢ case t of [] 7→ u; :: 7→ v : |σ | | ⌊σ ⌋(r)
By induction hypothesis on the premises:

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:33

|Γ | | ⌊Γ⌋ ⊢ t : |listτ | | ⌊listτ ⌋(r), (1)
|Γ | | ⌊Γ⌋ ⊢ u : |σ | | ⌊σ ⌋(r), (2)
and
|Γ | | ⌊Γ⌋ ⊢ v : |τ → listτ → σ | | ⌊τ → listτ → σ ⌋(r) (3)
Expanding the definitions on (3) we get:
|Γ | | ⌊Γ⌋ ⊢ v : |τ | → |listτ | → |σ | | ∀x .⌊τ ⌋(x) ⇒ ∀y.⌊listτ ⌋(y) ⇒ ⌊σ ⌋(r x y) (4)
And from (1), (2) and (4) we apply [LISTCASE*] and we get the result. Notice that (2) and (4) are stronger than
the premises of the rule, so we will first need to apply [SUB] to weaken them

Case.
Γ ⊢ τ

Γ ⊢ [] : listτ
To prove: |Γ | | ⌊Γ⌋ ⊢ [] : |listτ | | ⌊listτ ⌋(r)
Expanding the definitions: |Γ | | ⌊Γ⌋ ⊢ [] : list |τ | | All(r, x , ⌊τ ⌋(x))
And by the definition of All for the empty case, trivially All([], x , ⌊τ ⌋(x)), so we apply the [NIL] rule and we get
the result.

Case.
Γ ⊢ h : τ Γ ⊢ t : listτ

Γ ⊢ h :: t : listτ
To prove: |Γ | | ⌊Γ⌋ ⊢ h :: t : |listτ | | ⌊listτ ⌋(r).
Expanding the definitions: |Γ | | ⌊Γ⌋ ⊢ h :: t : list |τ | | All(r, λx .⌊τ ⌋(x)).
By induction hypothesis on the premises, we have:
|Γ | | ⌊Γ⌋ ⊢ h : |τ | | ⌊τ ⌋(r)
and
|Γ | | ⌊Γ⌋ ⊢ t : list |τ | | All(r, λx .⌊τ ⌋(x)).
We complete the proof by the [CONS] rule and the definition of All in the inductive case.

Case.
Γ ⊢ τ � σ Γ ⊢ t : τ

Γ ⊢ t : σ
To prove: |Γ | | ⌊Γ⌋ ⊢ t : |σ | | ⌊σ ⌋(r)
and, since |σ | ≡ |τ |, it is the same as writing
|Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋(r)
By induction hypothesis on the premises:
|Γ |, x : |τ | | ⌊Γ⌋, ⌊τ ⌋(x) ⊢ ⌊σ ⌋(x)
and
|Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋(r)
�e proof is completed by applying [⇒I] to the first premise, and then [SUB].

Case.
Γ, x : τ , f : Π(y : {r : τ | y < x}).σ [y/x] ⊢ t : σ Def (f , x , t)

Γ ⊢ letrec f x = t : Π(x : τ).σ
To prove: |Γ | | ⌊Γ⌋ ⊢ letrec f x = t : |Π(x : τ).σ | | ⌊Π(x : τ).σ ⌋(r)
By induction hypothesis on the premise:
|Γ |, x : |τ |, f : |τ | → |σ | | ⌊Γ⌋, ⌊τ ⌋(x),∀y.⌊τ ⌋(y) ∧y < x ⇒ ⌊σ [y/x]⌋(f y) ⊢ t : |σ | | ⌊σ ⌋(r)
Directly by [LETREC].

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:34 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Proof of Theorem 11

We can recover the lemma from the unary case:

Lemma23. For every typeτ , expressions t1, t2 and variables x1, x2 < FV (τ , t1, t2), TτU(t1, t2) = TτU(x1, x2)[t1/x1][t2/x2]

Most cases are very similar to the unary case, so we will only show the most interesting ones:

Case.
Γ ⊢ T

Γ ⊢ [] ∼ [] :: listT
To show: |Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | | TlistT U(r1, r2).
�ere are two options. IfT is a unary type, we have to prove:
|Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | |

∧
i ∈{1,2} All(ri , λx .⌊τ ⌋(x))

And by the definition of All we can directly prove:
∅ | ∅ ⊢ All([], λx .⌊τ ⌋(x)) ∧ All([], λx .⌊τ ⌋(x))
If T is a relational type, we have to prove:
|Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | | All2(r1, r2, λx1.λx2.TTU(x1, x2))
And by the definition of All2 we can directly prove:
∅ | ∅ ⊢ All2([], [], λx1.λx2.TTU(x1, x2))

Case.
Γ ⊢ h1 ∼ h2 :: T Γ ⊢ t1 ∼ t2 :: listT

Γ ⊢ h1 :: t1 ∼ h2 :: t2 :: listT
To show: |Γ | | TΓU ⊢ h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
�ere are two options. IfT is a unary type, we have to prove:
|Γ | | TΓU ⊢ h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |

∧
i ∈{1,2} All(ri , λx .⌊T ⌋(x))

By induction hypothesis we have:
|Γ | | TΓU ⊢ h1 : |T | ∼ h2 :: t2 : |T | |

∧
i ∈{1,2} ⌊T ⌋(ri)

and
|Γ | | TΓU ⊢ t1 : |listT | ∼ t2 : |listT | |

∧
i ∈{1,2} All(ri , λx .⌊T ⌋(x))

And by the definition of All we can directly prove:∧
i ∈{1,2} ⌊T ⌋(hi) ⇒

∧
i ∈{1,2} All(ti , λx .⌊T ⌋(x)) ⇒

∧
i ∈{1,2} All(hi :: ti , λx .⌊T ⌋(x))

So by the [CONS] rule, we prove the result. If T is a relational type, we have to prove:
|Γ | | TΓU ⊢ h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | | All2(r1, r2, λx1.λx2.TTU(x1, x2))
By induction hypothesis we have:
|Γ | | TΓU ⊢ h1 : |T | ∼ h2 :: t2 : |T | | TTU(r1, r2)
and
|Γ | | TΓU ⊢ t1 : |listT | ∼ t2 : |listT | | All2(r1, r2, λx1.λx2.TTU(x1, x2))
And by the definition of All2 we can directly prove:
TTU(h1,h2) ⇒ All2(t1, t2, λx1.λx2.TTU(x1, x2)) ⇒ All(h1 :: t1,h1 :: h2, λx1.λx2.TTU(x1, x2))
So by the [CONS] rule, we prove the result.

Case.
Γ ⊢ t1 ∼ t2 :: listT Γ ⊢ t1 = [] ⇔ t2 = [] Γ ⊢ u1 ∼ u2 :: U Γ ⊢ v1 ∼ v2 :: Π(h :: T).Π(t :: listT).U

Γ ⊢ case t1 of [] 7→ u1; :: 7→ v1 ∼ case t2 of [] 7→ u2; :: 7→ v2 :: U
To show:
|Γ | | TΓU ⊢ case t1 of [] 7→ u1; :: 7→ v1 : |U | ∼ case t2 of [] 7→ u2; :: 7→ r2 : |U | | TUU(r1, r2)
By induction hypothesis we have:
|Γ | | TΓU ⊢ t1 = [] ⇔ t2 = [],
|Γ | | TΓU ⊢ u1 : |U | ∼ u2 : |U | | TUU(r1, r2)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:35

and
|Γ | | TΓU ⊢ v1 : T → listT → U ∼ v2 : T → listT → U | ∀h1h2.TTU(h1,h2) ⇒ ∀t1t2.TlistT U(t1, t2) ⇒

TUU(r1h1t1, h2t2r2)
By applying the [LISTCASE*] rule to the three premises we get the result.

Case.

Γ, x :: T , f :: Π(y :: {y :: T | (y1,y2) < (x1, x2)}).U [y/x] ⊢ t1 ∼ t2 :: U
Γ ⊢ Π(x :: T).U Def (f1, x1, t1) Def (f2, x2, t2)

Γ ⊢ letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U
To show:
|Γ | | TΓU ⊢ letrec f1 x1 = t1 : |Π(x :: T).U | ∼ letrec f2 x2 = t2 : |Π(x :: T).U | | TΠ(x :: T).UU(r1, r2)
Expanding the definitions:
|Γ | | TΓU ⊢ letrec f1 x1 = t1 : |T | → |U | ∼ letrec f2 x2 = t2 : |T | → |U | | ∀x1x2.TTU(x1, x2) ⇒ TUU(r1x1, r2x2)
By induction hypothesis on the premise:
|Γ |, x1, x2 : |T |, f1, f2 : |T | → |U | | TΓU, TTU(x1, x2),∀y1,y2.(TTU(y1,y2)∧(y1,y2) < (x1, x2)) ⇒ TUU(f1x1, f2x2) ⊢
t1 : |U | ∼ t2 : |U | | TUU(r1, r2)
And we apply the [LETREC] rule to get the result.

Proof of Theorem 4

�e easier direction is the reverse implication. To prove it, one just notices that we can trivially apply [SUB]
instantiating ϕ ′ as a tautology that matches the structure of the types. For instance, for a base type N we would
use ⊤, for an arrow type N→ N we would use ∀x .⊥ ⇒ ⊤, and so on.

We now prove the direct implication by induction on the derivation of Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ. Suppose
the last rule is:
Case. [VAR] (similarly, [NIL] and [PROJ])
�e premise of the rule is already the judgment we want to prove.

Case. [ABS]
Γ, x1 : τ1, x2 : τ2 | Ψ,ϕ

′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

By applying the induction hypothesis on the premise:
Γ, x1 : τ1, x2 : τ2 | Ψ,ϕ

′ ⊢ ϕ[t1/r1][t2/r2] (1)
By applying [⇒I] on (1):
Γ, x1 : τ1, x2 : τ2 | Ψ ⊢ ϕ ′ ⇒ ϕ[t1/r1][t2/r2]

By applying [∀I] twice on (2):
Γ | Ψ ⊢ ∀x1x2.ϕ

′ ⇒ ϕ[t1/r1][t2/r2] (3)
Finally, by applying CONV on (3):
Γ | Ψ ⊢ ∀x1x2.ϕ

′ ⇒ ϕ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]
Proof for [ABS-L] (and [ABS-R]) is analogous.

Case. [APP]

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.ϕ
′[x1/r1][x2/r2] ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]

By applying the induction hypothesis on the premises we have:
Γ | Ψ ⊢ ∀x1x2.ϕ

′[x1/r1][x2/r2] ⇒ ϕ[t1 x1/r1][t2 x2/r2] (1)
and
Γ | Ψ ⊢ ϕ ′[u1/r1][u2/r2] (2)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:36 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

By applying twice [∀E] to (1) with u1,u2:
Γ | Ψ ⊢ ϕ ′[u1/r1][u2/r2] ⇒ ϕ[t1 u1/r1][t2 u2/r2] (3)
and by applying [⇒E] to (3) and (2):
Γ | Ψ ⊢ ϕ[t1 u1/r1][t2 u2/r2]

Proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding for the premise about the argu-
ment. Proofs for [CONS] and [PAIR] are very similar as well.

Case. [SUB]
Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

′
Γ | Ψ ⊢HOL ϕ

′[t1/r1][t2/r2] ⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Applying the inductive hypothesis on the premises we have:
Γ | Ψ ⊢ ϕ ′[t1/r1][t2/r2]
and
Γ | Ψ ⊢ ϕ ′[t1/r1][t2/r2] ⇒ ϕ[t1/r1][t2/r2]

�e proof is simply applying [⇒E].

Case. [LETREC]

Def (f1, x1, e1) Def (f2, x2, e2)

Γ, x1 : I1, x2 : I2, f1 : I1 → σ , f2 : I2 → σ2 |

Ψ,ϕ ′
,∀m1m2.(|m1 |, |m2 |) < (|x1 |, |x2 |) ⇒ ϕ ′[m1/x1][m2/x2] ⇒ ϕ[m1/x1][m2/x2][f1m1/r1][f2m2/r2] ⊢

e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 | ∀x1x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

As an example, we prove the list and nat case, but for other datatypes the proof is similar. Applying the inductive
hypothesis on the premise we have:

Γ, l1,n2, f1, f2 | Ψ,∀m1m2.(|m1 |, |m2 |) < (|l1 |, |n2 |) ⇒ ϕ[f1m1/r1][f2m2/r2] ⊢ ϕ[e1/r1][e2/r2]

By [∀I] we derive:

Γ | Ψ ⊢ ∀f1, f2, l1,n2.(∀m1m2.(|m1 |, |m2 |) < (|l1 |, |n2 |) ⇒ ϕ[f1m1/r1][f2m2/r2]) ⇒ ϕ[e1/r1][e2/r2]. (Φ)

We want to prove

Γ | Ψ ⊢ ∀l1n2.ϕ[F1 l1/r1][F2 n2/r2]

where we use the abbreviations

F1 := letrec f1 x1 = e1

F2 := letrec f2 x2 = e2

We will use strong double induction over natural numbers and lists. We need to prove four premises. Since
we can prove (Φ) from Γ,Ψ, we can add it to the axioms:

(A) Γ | Ψ,Φ ⊢ ϕ[F1 []/r1][F2 0/r2]
(B) Γ,h1, t1 | Ψ,Φ,∀m1.|m1 | ≤ |t1 | ⇒ ϕ[F1 m1/r1][F2 0/r2] ⊢ ϕ[F1 (h1 :: t1)/r1][F2 0/r2]
(C) Γ, x2 | Ψ,Φ,∀m2.|m2 | ≤ |x2 | ⇒ ϕ[F1 []/r1][F2m2/r2] ⊢ ϕ[F1 []/r1][F2 (Sx2)/r2]
(D) Γ,h1, t1, x2 | Ψ,Φ,∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |Sx2 |) ⇒

ϕ[F1 m1/r1][F2m2/r2] ⊢ ϕ[F1 (h1 :: t1)/r1][F2 (Sx2)/r2]

To prove them, we will instantiate the quantifiers in Φ with the appropriate variables.
To prove (A), we instantiate Φ at F1, F2, [], 0:

(∀m1m2.(|m1 |, |m2 |) < (|[]|, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:37

and, since (|m1 |, |m2 |) < (|[]|, |0|) is trivially false, then

ϕ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and by beta-expansion and [CONV]:

ϕ[F1 []/r1][F2 0/r2]

.

To prove (B), we instantiate Φ at F1, F2,h1 :: t1, 0

(∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[e1/r1][e2/r2][h1 :: t1/l1][0/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 0/r2]

Since (|m1 |, |m2 |) < (|h1 :: t1 |, |0|) is only satisfied if |m1 | ≤ |t1 | ∧m2 = 0, we can write it as:

(∀m1m2.(|m1 | ≤ |t1 | ∧m2 = 0) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 0/r2]

On the other hand, one of the antecedents of (B) is ∀m1.|m1 | ≤ |t1 | ⇒ ϕ[F1 m1/r1][F2 0/r2], so by [⇒E] we
prove ϕ[F1 h1 :: t1/r1][F2 0/r2], which is the consequent of (B).

�e proof of (C) is symmetrical to the proof of (B).
To prove (D), we instantiate Φ at F1, F2,h1 :: t1, Sx2

(∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒
ϕ[e1/r1][e2/r2][h1 :: t1/l1][Sx2/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 (Sx2)/r2]

One of the antecedents of (D) is exactly ∀m1m2.(|m1 |, |m2 |) < (|h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1 m1/r1][F2 m2/r2], so by
[⇒E] we prove ϕ[F1 h1 :: t1/r1][F2 (Sx2)/r2], which is the consequent of (D).

Proof of [LETREC-L] (and [LETREC-R]) is analogous, and uses simple strong induction.

Case. [CASE]

Γ | Ψ ⊢ l1 : listτ1 ∼ l2 : listτ2 | r1 = [] ⇔ r2 = [] Γ | Ψ, l1 = [], l2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2t1t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ ϕ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ | Ψ ⊢ case l1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case l2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
We prove the rule for natural numbers. Applying the induction hypothesis to the premises of the rule, we

have:

(A) Γ | Ψ ⊢ t1 = 0 ⇔ t2 = 0
(B) Γ | Ψ, t1 = 0, t2 = 0 ⊢ ϕ[u1/r1][u2/r2]
(C) Γ | Ψ ⊢ ∀x1, x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[v1 x1/r1][v2 x2/r2]

We want to prove:

Γ | Ψ ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]

By applying [DESTR-NAT] twice, we get four premises:

(1) Γ | Ψ, t1 = 0, t2 = 0 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]

(2) Γ,m2 | Ψ, t1 = 0, t2 = Sm2 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]

(3) Γ,m1 | Ψ, t1 = Sm1, t2 = 0 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]
(4) Γ,m1,m2 | Ψ, t1 = Sm1, t2 = Sm2 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:38 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

We can prove (2) and (3) by deriving a contradiction with [NC] and (A). A�er beta-reducing in (1) and (4) we
can easily derive them from (B) and (C) respectively.

Proof of [CASE-L] (and [CASE-R]) is analogous.

Proof of Lemma 8

By the embedding into HOL, we have:

• Γ | Ψ ⊢ ϕ[t1/r]

• Γ | Ψ ⊢ ϕ ′[t2/r]

and by the [∧I] rule,

Γ | Ψ ⊢ ϕ[t1/r] ∧ ϕ
′[t2/r].

Finally, by undoing the embedding:

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ .

Proof of Lemma 13

By induction on the derivation of τ ց ℓ.

Case.
ℓ ⊑ ℓ′

Tℓ′(τ) ց ℓ
Since ℓ @ a (given) and ℓ ⊑ ℓ′ (premise), it must be the case that ℓ′ @ a. Hence, by definition, ⌊Tℓ′(τ)⌋a(x ,y) =

⊤.

Case.
τ ց ℓ

Tℓ′(τ) ց ℓ
We consider two cases:

If ℓ′ @ a, then ⌊Tℓ′(τ)⌋a(x ,y) = ⊤ by definition.

If ℓ′ ⊑ a, then ⌊Tℓ′(τ)⌋a(x ,y) = ⌊τ ⌋a (x ,y) by definition. By i.h. on the premise, we have ⌊τ ⌋a(x ,y) ≡ ⊤.
Composing, ⌊Tℓ′(τ)⌋a(x ,y) ≡ ⊤.

Case.
τ1 ց ℓ τ2 ց ℓ

τ1 × τ2 ց ℓ

By i.h. on the premises, we have ⌊τi ⌋a(x ,y) ≡ ⊤ for i = 1, 2 and all x ,y. �erefore, ⌊τ1 × τ2⌋a(x ,y) ,
⌊τ1⌋a(π1(x), π1(y)) ∧ ⌊τ2⌋a(π2(x), π2(y)) ≡ ⊤ ∧ ⊤ ≡ ⊤.

Case.
τ2 ց ℓ

τ1 → τ2 ց ℓ

By i.h. on the premise, we have ⌊τ2⌋a(x ,y) ≡ ⊤ for all x ,y. Hence, ⌊τ1 → τ2⌋a(x ,y) , (∀v,w . ⌊τ1⌋a(v,w) ⇒

⌊τ2⌋a(x v,y w)) ≡ (∀v,w . ⌊τ1⌋a(v,w) ⇒ ⊤) ≡ ⊤.

Proof of Theorem 14

By induction on the given derivation of Γ ⊢ e : τ .

Case.
Γ ⊢ � : B

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:39

To show: |Γ | | ⌊Γ⌋a ⊢ � : B ∼ � : B | (r1 = � ∧ r2 = �) ∨ (r1 = ff ∧ r2 = ff).
By rule TRUE, it suffices to show (� = � ∧ � = �) ∨ (� = ff ∧ � = ff) in HOL, which is trivial.

Case.
Γ ⊢ e : B Γ ⊢ et : τ Γ ⊢ ef : τ

Γ ⊢ case e of � 7→ et ;ff 7→ ef : τ
To show: |Γ | | ⌊Γ⌋a ⊢ (case |e |1 of � 7→ |et |1;ff 7→ |ef |1) : |τ | ∼ (case |e |2 of � 7→ |et |2;ff 7→ |ef |2) : |τ | |
⌊τ ⌋a (r1, r2).
By i.h. on the first premise:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : B ∼ |e |2 : B | (r1 = � ∧ r2 = �) ∨ (r1 = ff ∧ r2 = ff)
By i.h. on the second premise:
|Γ | | ⌊Γ⌋a ⊢ |et |1 : |τ | ∼ |et |2 : |τ | | ⌊τ ⌋a(r1, r2)
By i.h. on the third premise:
|Γ | | ⌊Γ⌋a ⊢ |ef |1 : |τ | ∼ |ef |2 : |τ | | ⌊τ ⌋a(r1, r2)
Applying rule BOOLCASE to the past three statements yields the required result.

Case.
Γ, x : τ ⊢ x : τ

To show: |Γ |, x1 : |τ |, x2 : |τ | | ⌊Γ⌋a, ⌊τ ⌋a(x1, x2) ⊢ x1 : |τ | ∼ x2 : |τ | | ⌊τ ⌋a (r1, r2).
�is follows immediately from rule VAR.

Case.
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2
To show: |Γ | | ⌊Γ⌋a ⊢ λx1.|e |1 : |τ1 | → |τ2 | ∼ λx2.|e |2 : |τ1 | → |τ2 | | ∀x1, x2. ⌊τ1⌋a(x1, x2) ⇒ ⌊τ2⌋a(r1 x1, r2 x2).
By i.h. on the premise: |Γ |, x1 : |τ1 |, x2 : |τ2 | | ⌊Γ⌋a, ⌊τ1⌋a(x1, x2) ⊢ |e |1 : |τ2 | ∼ |e |2 : |τ2 | | ⌊τ2⌋a(r1, r2).
Applying rule ABS immediately yields the required result.

Case.
Γ ⊢ e : τ1 → τ2 Γ ⊢ e ′ : τ1

Γ ⊢ e e ′ : τ2
To show: |Γ | | ⌊Γ⌋a ⊢ |e |1 |e

′ |1 : |τ2 | ∼ |e |2 |e
′ |2 : |τ2 | | ⌊τ2⌋a(r1, r2).

By i.h. on the first premise:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ1 | → |τ2 | ∼ |e |2 : |τ1 | → |τ2 | | ∀x1, x2. ⌊τ1⌋a(x1, x2) ⇒ ⌊τ2⌋a(r1 x1, r2 x2)
By i.h. on the second premise:
|Γ | | ⌊Γ⌋a ⊢ |e ′ |1 : |τ1 | ∼ |e ′ |2 : |τ1 | | ⌊τ1⌋a(r1, r2)
Applying rule APP immediately yields the required result.

Case.
Γ ⊢ e : τ Γ ⊢ e ′ : τ ′

Γ ⊢ 〈e, e ′〉 : τ × τ ′

To show: |Γ | | ⌊Γ⌋a ⊢ 〈|e |1, |e
′ |1〉 : |τ | × |τ ′ | ∼ 〈|e |2, |e

′ |2〉 : |τ | × |τ ′ | | ⌊τ ⌋a(π1(r1), π1(r2)) ∧ ⌊τ ′⌋a(π2(r1), π2(r2)).
By i.h. on the first premise:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a(r1, r2)
By i.h. on the second premise:
|Γ | | ⌊Γ⌋a ⊢ |e ′ |1 : |τ

′ | ∼ |e ′ |2 : |τ
′ | | ⌊τ ′⌋a(r1, r2)

�e required result follows from the rule PAIR. We only need to show the third premise of the rule, i.e., the
following in HOL:

∀x1x2y1y2.⌊τ ⌋a(x1, x2) ⇒ ⌊τ ′⌋a(y1,y2) ⇒ (⌊τ ⌋a(π1〈x1,y1〉, π1〈x2,y2〉) ∧ ⌊τ ′⌋a(π2〈x1,y1〉, π2〈x2,y2〉))

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:40 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Since π1〈x1,y1〉 = x1, etc., this implication simplifies to:

∀x1x2y1y2.⌊τ ⌋a (x1, x2) ⇒ ⌊τ ′⌋a(y1,y2) ⇒ (⌊τ ⌋a(x1, x2) ∧ ⌊τ ′⌋a(y1,y2))

which is an obvious tautology.

Case.
Γ ⊢ e : τ × τ ′

Γ ⊢ π1(e) : τ
To show: |Γ | | ⌊Γ⌋a ⊢ π1(|e |1) : |τ | ∼ π1(|e |2) : |τ | | ⌊τ ⌋a(r1, r2).
By i.h. on the premise:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | × |τ ′ | ∼ |e |2 : |τ | × |τ ′ | | ⌊τ ⌋a(π1(r1), π1(r2)) ∧ ⌊τ ′⌋a(π2(r1), π2(r2))

By rule SUB:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | × |τ ′ | ∼ |e |2 : |τ | × |τ ′ | | ⌊τ ⌋a(π1(r1), π1(r2))
By rule PROJ1, we get the required result.

Case.
Γ ⊢ e : τ

Γ ⊢ ηℓ(e) : Tℓ(τ)
To show: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊Tℓ(τ)⌋a(r1, r2).
By i.h. on the premise: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a(r1, r2) (1)

If ℓ ⊑ a, then ⌊Tℓ(τ)⌋a(r1, r2) , ⌊τ ⌋a(r1, r2), so the required result is the same as (1).

If ℓ @ a, then ⌊Tℓ(τ)⌋a(r1, r2) , ⊤ and the required result follows from rule SUB applied to (1).

Case.
Γ ⊢ e : Tℓ(τ) Γ, x : τ ⊢ e ′ : τ ′ τ ′ ց ℓ

Γ ⊢ bind(e, x .e ′) : τ ′

To show: |Γ | | ⌊Γ⌋a ⊢ (λx .|e ′|1) |e |1 : |τ
′ | ∼ (λx .|e ′|2) |e |2 : |τ

′ | | ⌊τ ′⌋a(r1, r2).
By i.h. on the first premise:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊Tℓ(τ)⌋a(r1, r2) (1)
By i.h. on the second premise:
|Γ |, x1 : |τ |, x2 : |τ | | ⌊Γ⌋a, ⌊τ ⌋a(x1, x2) ⊢ |e ′ |1 : |τ

′ | ∼ |e ′ |2 : |τ
′ | | ⌊τ ′⌋a(r1, r2) (2)

We consider two cases:
Subcase. ℓ ⊑ a. Here, ⌊Tℓ(τ)⌋a(r1, r2) , ⌊τ ⌋a (r1, r2), so (1) can be rewri�en to:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a(r1, r2) (3)
Applying rule ABS to (2) yields:
|Γ | | ⌊Γ⌋a ⊢ λx1.|e

′ |1 : |τ | → |τ ′ | ∼ λx2.|e
′ |2 : |τ | → |τ ′ | | ∀x1x2.⌊τ ⌋a(x1, x2) ⇒ ⌊τ ′⌋a(r1 x1, r2 x2) (4)

Applying rule APP to (4) and (3) yields:
|Γ | | ⌊Γ⌋a ⊢ (λx1.|e

′ |1) |e |1 : |τ
′ | ∼ (λx2.|e

′ |2) |e |2 : |τ
′ | | ⌊τ ′⌋a(r1, r2)

which is what we wanted to prove.

Subcase. ℓ @ a. Here, ⌊Tℓ(τ)⌋a(r1, r2) , ⌊τ ⌋a(r1, r2), so (1) can be rewri�en to:
|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⊤ (5)
Applying rule ABS to (2) yields:
|Γ | | ⌊Γ⌋a ⊢ λx1.|e

′ |1 : |τ | → |τ ′ | ∼ λx2.|e
′ |2 : |τ | → |τ ′ | | ∀x1x2.⌊τ ⌋a(x1, x2) ⇒ ⌊τ ′⌋a(r1 x1, r2 x2)

By Lemma 13 applied to the subcase assumption ℓ @ a and the premise τ ′ ց ℓ, we have ⌊τ ′⌋a(r1 x1, r2 x2) ≡ ⊤.
So, by rule SUB:
|Γ | | ⌊Γ⌋a ⊢ λx1.|e

′ |1 : |τ | → |τ ′ | ∼ λx2.|e
′ |2 : |τ | → |τ ′ | | ∀x1x2.⌊τ ⌋a(x1, x2) ⇒ ⊤

Since (∀x1x2.⌊τ ⌋a (x1, x2) ⇒ ⊤) ≡ ⊤ ≡ (∀x1, x2.⊤ ⇒ ⊤), we can use SUB again to get:
|Γ | | ⌊Γ⌋a ⊢ λx1.|e

′ |1 : |τ | → |τ ′ | ∼ λx2.|e
′ |2 : |τ | → |τ ′ | | ∀x1, x2.⊤ ⇒ ⊤ (6)

Applying rule APP to (6) and (5) yields:

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:41

|Γ | | ⌊Γ⌋a ⊢ (λx1.|e
′ |1) |e |1 : |τ

′ | ∼ (λx2.|e
′ |2) |e |2 : |τ

′ | | ⊤

which is the same as our goal since ⌊τ ′⌋a(r1, r2) ≡ ⊤.

Proof of Theorem 15

By induction on the derivation of ∆;Φ;Ω ⊢l
k
t : A. We will show few cases.

Case.
∆;Φa ;Ω, x : A ⊢00 x : A

We can conclude by the following derivation:

L|Ω |M, x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v (x) ⊢ x : L|A|Mv | ⌊A⌋v (r)
VAR

L|Ω |M, x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v (x) ⊢ 0 : N | 0 ≤ r ≤ 0
Nat

L|Ω |M, x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v(x) ⊢ (x , 0) : L|A|Mv × N | ⌊A⌋v (π1r) ∧ 0 ≤ π2r ≤ 0
PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case.
∆;Φa ;Ω ⊢00 n : int

�en we can conclude by the following derivation:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ n : N | ⊤
Nat

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ 0 : N | 0 ≤ r ≤ 0
Nat

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ (n, 0) : N × N | 0 ≤ π2r ≤ 0
PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case.
∆;Φa ; x : A1,Ω ⊢lk t : A2

∆;Φa ;Ω ⊢00 λx .t : A1
exec(k,l)
−−−−−−→ A2

By induction hypothesis we have L|Ω |M, x : L|A1 |Mv ,∆ | Φ, ⌊Ω⌋, ⌊A1⌋v (x) ⊢ LtM : L|A2 |Me | ⌊A⌋k,le (r) and we can
conclude by the following derivation:

L|Ω |M, x : L|A1 |Mv ,∆ | Φ, ⌊Ω⌋, ⌊A1⌋v (x) ⊢ LtM : L|A2 |Me | ⌊A2⌋
k,l
e (r)

L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ λx .LtM : L|A1 |Mv → L|A2 |Me | ∀x .⌊A1⌋v (x) ⇒ ⌊A2⌋
k,l
e (rx)

ABS
L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ 0 : N | 0 ≤ r ≤ 0

L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ (λx .LtM, 0) : (L|A1 |Mv → L|A2 |Me) × N | ∀x .⌊A1⌋v (x) ⇒ ⌊A2⌋
k,l
e ((π1r)x) ∧ 0 ≤ π2r ≤ 0

PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case
∆;Φa ;Ω ⊢l1

k1
t1 : A1

exec(k,l)
−−−−−−→ A2 ∆;Φa ;Ω ⊢l2

k2
t2 : A1

∆;Φa ;Ω ⊢
l1+l2+l+capp

k1+k2+k+capp
t1 t2 : A2

By induction hypothesis and unfolding some some definitions we have

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt1M : (L|A1 |Mv → (L|A2 |Mv × N)) × N |

∀h.⌊A1⌋v (h) ⇒ (⌊A2⌋v (π1((π1(r))h)) ∧ k ≤ π2((π1(r))h) ≤ l) ∧ k1 ≤ π2(r) ≤ l1

and L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt2M : L|A1 |Mv × N | ⌊A1⌋v (π1(r)) ∧ k2 ≤ π2(r) ≤ l2. So, we can prove:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ letx = Lt1M in lety = Lt2M inπ1(x) π1(y) : L|A2 |Mv × N |

⌊A2⌋v (π1(r)) ∧ k ≤ π2(r) ≤ l ∧ k1 ≤ π2(x) ≤ l1 ∧ k2 ≤ π2(y)r ≤ l2

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:42 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

�is combined with the definition of the cost-passing translation Lt1 t2M , letx = Lt1M in lety = Lt2M in letz =
π1(x) π1(y) in (π1(z), π2(x) + π2(y) + π2(z) + capp) allows us to prove as required the following:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt1 t2M : L|A2 |Mv × N | ⌊A2⌋v (π1(r)) ∧ k + k1 + k2 + capp ≤ π2(r) ≤ l + l1 + l2 + capp .

Proof of Theorem 16

To prove �eorem 16, we need three lemmas.

Lemma C.1. Suppose ∆;Φ ⊢ τ wf.3 �en, the following hold:

(1) ∆ | Φ ⊢ ∀xy. TτUv (x ,y) ⇒ ⌊τ ⌋v (x) ∧ ⌊τ ⌋v (y)

(2) ∆ | Φ ⊢ ∀xy. TτUte (x ,y) ⇒ ⌊τ ⌋0,∞e (x) ∧ ⌊τ ⌋0,∞e (y)

Also, (3) TΓU ⇒ ⌊Γ1⌋ ∧ ⌊Γ2⌋ where Γ1 and Γ2 are obtained by replacing each variable x in Γ with x1 and x2,

respectively.

Proof. (1) and (2) follow by a simultaneous induction on the given judgment. (3) follows immediately from (1).
�

Lemma C.2. If ∆;Φa ; Γ ⊢ e1 ⊖ e2 . t : τ in RelCost, then ∆;Φ; Γ ⊢∞0 ei : τ for i ∈ {1, 2} in RelCost.

Proof. By induction on the given derivation. �

Lemma C.3. If ∆;Φ |= τ1 ⊑ τ2, then ∆;Φ ⊢ ∀xy. Tτ1Uv (x ,y) ⇒ Tτ2Uv (x ,y).

Proof. By induction on the given derivation of ∆;Φ |= τ1 ⊑ τ2. �

Proof of Theorem 16. �e proof is by induction on the given derivation of ∆;Φ; Γ ⊢ t1 ⊖ t2 . k : τ . We show
only a few representative cases here.

Case:

i :: S,∆;Φa ; Γ ⊢ e ⊖ e ′ . t : τ i < FIV(Φa ; Γ)

∆;Φa ; Γ ⊢ Λe ⊖ Λe ′ . 0 : ∀i
diff(t)
:: S . τ

r-iLam

To show: ‖Γ‖,∆ | Φa , TΓU ⊢ (λ .LeM1, 0) : (N → L|τ |Me) × N ∼ (λ .Le ′M2, 0) : (N → L|τ |Me) × N | T∀i
diff(t)
::

S . τU0
e (r1, r2).

Expand T∀i
diff(t)
:: S . τU0

e (r1, r2) to T∀i
diff(t)
:: S . τUv (π1 r1, π1 r2) ∧ π2r1 − π2 r2 ≤ 0, and apply the rule [PAIR] to

reduce to two proof obligations:

(A) ‖Γ‖,∆ | Φa , TΓU ⊢ λ .LeM1 : N→ L|τ |Me ∼ λ .Le ′M2 : N→ L|τ |Me | T∀i
diff(t)
:: S . τUv (r1, r2)

(B) ‖Γ‖,∆ | Φa , TΓU ⊢ 0 : N ∼ 0 : N | r1 − r2 ≤ 0

(B) follows immediately by rule [ZERO]. To prove (A), expand T∀i
diff(t)
:: S . τUv (r1, r2) and apply rule [∧I]. We

get three proof obligations.

(C) ‖Γ‖,∆ | Φa , TΓU ⊢ λ .LeM1 : N→ L|τ |Me ∼ λ .Le ′M2 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r1)

(D) ‖Γ‖,∆ | Φa , TΓU ⊢ λ .LeM1 : N→ L|τ |Me ∼ λ .Le ′M2 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r2)

(E) ‖Γ‖,∆ | Φa , TΓU ⊢ λ .LeM1 : N→ L|τ |Me ∼ λ .Le ′M2 : N→ L|τ |Me | ∀z1z2.⊤ ⇒ ∀i .TτUte (r1 z1, r2 z2)
To prove (C), apply Lemma C.2 to the given derivation (not just the premise), obtaining a RelCost derivation

for ∆;Φa ; Γ ⊢∞0 Λe : (∀i
exec(0,∞)

:: S . τ). Applying �eorem 15 to this yields LΓM,∆ | Φa , ⌊Γ⌋ ⊢ (λ .LeM, 0) : (N →

L|τ |Me) ×N | ⌊∀i
exec(0,∞)

:: S . τ ⌋0,∞e (r) in UHOL, which is the same as LΓM,∆ | Φa , ⌊Γ⌋ ⊢ (λ .LeM, 0) : (N→ L|τ |Me) ×

3�is judgment simply means that τ is well-formed in the context ∆;Φ. It is defined in the original RelCost paper (Çiçek et al. 2017).

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:43

N | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (π1 r) ∧ 0 ≤ π2 r ≤ ∞. Applying rule [PROJ1], we get LΓM,∆ | Φa , ⌊Γ⌋ ⊢ π1(λ .LeM, 0) : N→

L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r). By subject conversion, LΓM,∆ | Φa , ⌊Γ⌋ ⊢ λ .LeM : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r).

Renaming variables, we get LΓM1,∆ | Φa , ⌊Γ1⌋ ⊢ λ .LeM1 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r).

Now note that by definition, ‖Γ‖ ⊇ LΓM1 and by Lemma C.1(3), TΓU ⇒ ⌊Γ1⌋. Hence, we also get ‖Γ‖,∆ |

Φa , TΓU ⊢ λ .LeM1 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r). (C) follows immediately by rule [UHOL-L].
(D) has a similar proof.
To prove (E), apply the rule [ABS], ge�ing the obligation:

‖Γ‖,∆, z1, z2 : N | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ Le ′M2 : L|τ |Me | ∀i .TτUte (r1, r2)
Since z1, z2 do not appear anywhere else, we can strengthen the context to remove them, thus reducing to:
‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ Le ′M2 : L|τ |Me | ∀i .TτUte (r1, r2)
Next, we transpose to HOL using �eorem 4. We get the obligation:
‖Γ‖,∆ | Φa , TΓU ⊢ ∀i .TτUte (LeM1, Le

′M2)
�is is equivalent to:
‖Γ‖,∆, i : S | Φa , TΓU ⊢ TτUte (LeM1, Le

′M2)
�e last statement follows immediately from i.h. on the premise, followed by transposition to HOL using �eo-
rem 4.

Case:

∆;Φa ; Γ ⊢ e ⊖ e . t : τ ∀x ∈ dom(Γ). ∆;Φa |= Γ(x) ⊑ � Γ(x)

∆;Φa ; Γ, Γ
′;Ω ⊢ e ⊖ e . 0 : � τ

nochange

To show: ‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | T� τU0
e (r1, r2).

Expanding the definition of T� τU0
e , this is equivalent to:

‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1, π2 r2) ∧ (π1 r1 = π1 r2) ∧ (π2 r1 − π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:
(A) ‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1, π2 r2)
(B) ‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | (π1 r1 = π1 r2) ∧ (π2 r1 − π2 r2 ≤ 0)

By i.h. on the first premise,
‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1, π2 r2) ∧ (π2 r1 − π2 r2 ≤ t)
By rule [SUB],
‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1, π2 r2)
which is the same as (A).

To prove (B), apply LemmaC.3 to the second premise to get for every x ∈ dom(Γ) that∆ | Φa ⊢ TΓ(x)Uv(x1, x2) ⇒
T� Γ(x)Uv(x1, x2). Since T� Γ(x)Uv(x1, x2) ⇒ x1 = x2 and from TΓU we know that TΓ(x)Uv(x1, x2), it follows
that ‖Γ‖,∆ | Φa , TΓU ⊢ x1 = x2. Since this holds for every x ∈ dom(Γ), it follows immediately that ‖Γ‖,∆ |

Φa , TΓU ⊢ LeM1 = LeM2. By �eorem 4, ‖Γ‖,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | r1 = r2. (B) follows
immediately by rule [SUB].

�

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:44 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

D EXAMPLES

Factorial

�is example shows that the two following implementations of factorial, with and without accumulator, are
equivalent:

fact1 , letrec f1 n1 = case n1 of 0 7→ 1; S 7→ λx1.Sx1 ∗ (f1 x1)

fact2 , letrec f2 n2 = λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc)

Our goal is to prove that:

∅ | ∅ ⊢ fact1 : N→ N ∼ fact2 : N→ N→ N | ∀n1n2.n1 = n2 ⇒ ∀acc .(r1 n1) ∗ acc = r2 n2 acc

Since both programs do the same number of iterations, we can do synchronous reasoning for the recursion at
the head of the programs. However, the bodies of the functions have different types since fact2 receives an extra
argument, the accumulator. �erefore, we will need a one-sided application of [ABS-R], before we can go back
to reasoning synchronously. We will then apply the [CASE] rule, knowing that both terms reduce to the same
branch, since n1 = n2. On the zero branch, we will need to prove the trivial equality 1 ∗ acc = acc . On the
succesor branch, we will need to prove that Sx ∗ (fact x) ∗ acc = fact2 x2 (Sx2 ∗ acc), knowing by induction
hypothesis that such a property holds for everym less that x .

Now we will expand on the details. We start the proof applying the [LETREC] rule, which has 2 premises:

(1) Both functions are well-defined
(2) n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀acc .(f1 y1) ∗ acc = f2 y2 acc ⊢ case n1 of 0 7→ 1; S 7→

λx1.Sx1 ∗ (f1 x1) ∼ λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc) | n1 = n2 ⇒ ∀acc .r1 ∗ acc = r2 acc

We assume that the first premise is provable.
To prove the second premise, we start by applying ABS-R, which leaves the following proof obligation:

n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀acc .(f1 y1) ∗ acc = f2 y2 acc,n1 = n2 ⊢

case n1 of 0 7→ 1; S 7→ λx1.Sx1 ∗ (f1 x1) ∼ case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc) | r1 ∗ acc = r2

Now we can apply [CASE], and we have 3 premises, where Ψ denotes the axioms of the previous judgment:

• Ψ ⊢ n1 ∼ n2 | r1 = 0 ⇔ r2 = 0
• Ψ,n1 = 0,n2 = 0 ⊢ 1 ∼ acc | r1 ∗ acc = r2

• Ψ ⊢ λx1.Sx1 ∗ (f1 x1) ∼ λx2. f2 x2 (Sx2 ∗ acc) | ∀x1x2.n1 = Sx1 ⇒ n2 = Sx2 ⇒ (r1 x1) ∗ acc = r2 x2

Premise 1 is a direct consequence of n1 = n2. Premise 2 is a trivial arithmetic identity. To prove premise 3, we
first apply the ABS rule:

Ψ,n1 = Sx1,n2 = Sx2 ⊢ Sx1 ∗ (f1 x1) ∼ f2 x2 (Sx2 ∗ acc) | r1 ∗ acc = r2

and then by �eorem 4 we can finish the proof in HOL by deriving.

Ψ,n1 = Sx1,n2 = Sx2 ⊢ Sx1 ∗ (f1 x1) ∗ acc = f2 x2 (Sx2 ∗ acc)

From the premises we can first prove that (x1, x2) < (n1,n2) so by the inductive hypothesis from the [LETREC]
rule, and the [⇒E] rule, we get

∀acc .(f1 x1) ∗ acc = f2 x2 acc,

which we then instantiate with Sx1 ∗ acc to get

(f1 x1) ∗ Sx1 ∗ acc = f2 x2 (Sx1 ∗ acc).

On the other hand, from the hypotheses we also have x1 = x2, so by [CONV] we finally prove

(f1 x1) ∗ Sx1 ∗ acc = f2 x2 (Sx2 ∗ acc)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:45

.

List reversal

A related example for lists is the equivalence of reversal with and without accumulator. �e structure of the
proof is the same as in the factorial example, but we will briefly show it to illustrate how the LISTCASE rule is
used. �e functions are wri�en:

rev1 , letrec f1 l1 = case l1 of [] 7→ []; :: 7→ λh1.λt1.(f1 t1) ++[x1]

rev2 , letrec f2 l2 = λacc .case l2 of [] 7→ acc; :: 7→ λh2.λt2. f2 t2 (h2 :: acc)

We want to prove they are related by the following judgment:

∅ | ∅ ⊢ rev1 : listτ → listτ ∼ rev2 : listτ → listτ | ∀l1, l2.l1 = l2 ⇒ ∀acc . (r1 l1) + +acc = r2 l2 acc

By the [LETREC] rule, we have to prove 2 premises:

(1) Both functions are well-defined.
(2) l1 = l2,∀m1m2.(|m1 |, |m2 |) < (|l1 |, |l2 |) ⇒m1 =m2 ⇒ ∀acc .(f1 m1) + +acc = f2 m2 acc ⊢ case l1 of [] 7→

[]; :: 7→ λh1.λt1.(f1 t1) ++[x1] ∼ λacc .case l2 of [] 7→ acc; :: 7→ λh2.λt2. f2 t2 (h2 :: acc) |
∀acc . r1 + +acc = r2 acc

For the second premise, similarly as in factorial, we apply ABS-R. We have the following premise, where Ψ

denotes the axioms in the previous judgment:

Ψ ⊢ case l1 of [] 7→ []; :: 7→ λh1.λt1.(f1 t1) ++[x1] ∼ case t2 of [] 7→ acc; :: 7→ λh2.λt2. f2 t2 (h2 :: acc) |
r1 + +acc = r2

and then LISTCASE, which has three premises:

• Ψ ⊢ l1 ∼ l2 | r1 = [] ⇔ r2 = []
• Ψ, l1 = [], l2 = [] ⊢ [] ∼ acc | r1 + +acc = r2

• Ψ ⊢ λh1.λt1.(f1 t1) ++[x1] ∼ λh2.λt2. f2 t2 (h2 :: acc) |
∀h1t1h2t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ r1 + +acc = r2

We complete the proof in a similar way as in the factorial example.

Proof of Theorem 17

We will use without proof two unary lemmas:

Lemma 24. • | • ⊢ take : listN → N→ listN | ∀ln.|r l n | =min(n, |l |)

Lemma 25. • | • ⊢map : listN → (N→ N) → listN | ∀l f .|r l f | = |l |

We want to prove

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1)д1 ∼ take (map l2 д2)n2 | r1 ⊑ r2∧|r1 | = min(n1, |l1 |)∧|r2 | = min(n2, |l2 |)

where r1 ⊑ r2 is the prefix ordering and is defined as an inductive predicate:

∀l .[] ⊑ l ∀hl1l2.l1 ⊑ l2 ⇒ h :: l1 ⊑ h :: l2

By the helping lemmas and Lemma 8, it suffices to prove just the first conjunct:

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1) д1 ∼ take (map l2 д2) n2 | r1 ⊑ r2

�e derivation begins by applying the APP-R rule. We get the following judgment on n2:

l1 = l2,n1 = n2,д1 = д2 ⊢ n2 | r ≥ |take l1 n1 | (1)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:46 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

and a main premise:

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1) д1 ∼ take (map l2 д2) | ∀x2.x2 ≥ |take l1 n1 | ⇒ r1 ⊑ (r2 x2) (2)

Notice that we have chosen the premise x2 ≥ |take l1 n1 | because we are trying to prove r1 ⊑ (r2 x2), which is
only true if we take a larger prefix on the right than on the le�. �e judgment (1) is easily proven from the fact
that |take l1 n1 | = min(n1, |l1 |) ≤ n1 = n2, which we get from the lemmas. To prove (2) we first apply APP-L
with a trivial condition д1 = д2 on д1. �en we apply APP and we have two premises:

(A) Ψ ⊢ take l1 n1 ∼map l2 д2 | r1 ⊑д2 r2
(B) Ψ ⊢map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑ (r2 m2 x2))

where ⊑д is defined as an inductive predicate parametrized by д:

∀l .[] ⊑д l ∀hl1l2.l1 ⊑д l2 ⇒ h :: l1 ⊑д (дh) :: l2

We first show how to prove (A). We start by applying APP with a trivial condition for the arguments to get:

Ψ ⊢ take l1 ∼map l2 | ∀x1д2.(r1 x1) ⊑д2 (r2 д2)

We then apply APP, which has two premises, one of them equating l1 and l2. �e other one is:

Ψ ⊢ take ∼map | ∀m1m2.m1 =m2 ⇒ ∀x1д2.(r1 m1 x1) ⊑д2 (r2 m2 д2)

To complete this branch of the proof, we apply LETREC. We need to prove the following premise:

Ψ,m1 =m2,∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.(f1 k1 x1) ⊑д2 (f2 k2 д2) ⊢ λn1.e1 ∼ λд2.e2 | ∀x1д2.(r1 x1) ⊑д2 (r2 д2)

Where e1, e2 abbreviate the bodies of the functions:

e1 , casem1 of [] 7→ []
; :: 7→ λh1t1.case x1 of 0 7→ []

; S 7→ λy1.h1 :: f1 t1 y1

e2 , casem2 of [] 7→ []

; :: 7→ λh2t2.(д2 h2) :: (f2 t2 д2)

If we apply ABS we get a premise:

Ψ,m1 =m2,∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.(f1 k1 x1) ⊑д2 (f2 k2 д2) ⊢ e1 ∼ e2 | r1 ⊑f r2

And now we can apply a synchronous CASE rule, since we have a premise m1 = m2. �is yields 3 proof
obligations, where Ψ′ is the set of axioms in the previous judgment:

(A.1) Ψ
′ ⊢m1 ∼m2 | r1 = [] ⇔ r2 = []

(A.2) Ψ
′ ⊢ [] ∼ [] | r1 ⊑f r2

(A.3) Ψ
′ ⊢ λh1t1.case x1 of 0 7→ []; S 7→ λy1.h1 :: f1 t1 y1 ∼

λh2t2.(д2 h2) :: (f2 t2 д2) | ∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h2 :: t2 ⇒ (r1 h1 t1) ⊑д2 (r2 h2 t2)

Premises (A.1) and (A.2) are trivial. To prove (A.3) we first apply ABS twice:

Ψ
′,m1 = h1 :: t1,m2 = h2 :: t2 ⊢ case n1 of 0 7→ []; S 7→ λy1.h1 :: f1 t1 y1 ∼ (д2 h2) :: (f2 t2 д2) | r1 ⊑д2 r2

Next, we apply CASE-L, which has the following two premises:

(A.3.i) Ψ
′,m1 = h1 :: t1,m2 = h2 :: t2,n1 = 0 ⊢ [] ∼ (д2 h2) :: (f2 t2 д2) | r1 ⊑д2 r2

(A.3.ii) Ψ
′,m1 = h1 :: t1,m2 = h2 :: t2 ⊢ λy1.h1 :: f1 t1 y1 ∼ (д2 h2) :: (f2 t2 д2) | ∀y1.n1 = Sy1 ⇒ (r1 y1) ⊑д2 r2

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:47

Premise (A.3.i) can be directly derived in HOL from the definition of ⊑д2 . To prove (A.3.ii) we need to make
use of our inductive hypothesis:

∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.(f1 k1 x1) ⊑д2 (f2 k2 д2)

In particular, from the premises m1 = h1 :: t1 and m2 = h2 :: t2 we can deduce (t1, t2) < (m1,m2). Adi-
tionally, from the premise m1 = m2 we prove t1 = t2. �erefore, from the inductive hypothesis we derive
∀x1д2.(f1 t1 x1) ⊑д2 (f2 t2 д2), and by definition of ⊑д2 , and the fact that h1 = h2, for every y we can prove
h1 :: (f1 t1 y) ⊑д2 (д2 h2) :: f2 t2. By �eorem 4, we can prove (A.3.ii).

We will now show how to prove (B) :

Ψ ⊢map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑ (r2 m2 x2))

On this branch we will also use LETREC. We have to prove a premise:

Ψ,Φ ⊢ λд1.e2 ∼ λx2.e1 | ∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 д1) ⊑ (r2 x2)

where

Φ ,
m1 ⊑д2 m2,

∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 ⊑д2 k2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |k1 | ⇒ (r1 k1 д1) ⊑ (r2 k2 x2))

We start by applying ABS. Our goal is to prove:

Ψ,Φ, x2 ≥ |m1 |,д1 = д2 ⊢
casem1 of [] 7→ []

; :: 7→ λh1t1.(д1 h1) :: (f1 t1 д1)
∼

casem2 of [] 7→ []

; :: 7→ λh2t2.case x2 of 0 7→ []

; S 7→ λy2.h2 :: f2 t2 y2

| r1 ⊑ r2

Notice that we have α-renamed the variables to have the appropriate subscript. Now we want to apply a
CASE rule, but the lists over which we are matching are not necessarily of the same length. �erefore, we use
the asynchronous LISTCASE-A rule. We have to prove four premises:

(B.1) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = [],m2 = [] ⊢ [] ∼ [] | r1 ⊑ r2

(B.2) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = [] ⊢ [] ∼

λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 | ∀h2t2.m2 = h2 :: t2 ⇒ r1 ⊑ (r2 h2 t2)
(B.3) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m2 = [] ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼ [] | ∀h1t1.m1 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ r2

(B.4) Ψ,Φ, x2 ≥ |m1 |,д1 = д2 ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼
λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 |
∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ (r2 h2 t2)

Premises (B.1) and (B.2) are trivially derived from the definition of the ⊑ predicate. To prove premise (B.3) we
see that we have premisesm1 ⊑д2 m2,m2 = [], andm1 = h1 :: t2, from which we can derive a contradiction.

It remains to prove (B.4). To do so, we apply ABS twice and then NATCASE-R, which has two premises:

(B.4.i) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = h1 :: t1,m2 = h1 :: t1, x2 = 0 ⊢ (д1 h1) :: (f1 t1 д1) ∼ [] | r1 ⊑ r2

(B.4.ii) Ψ,Φ, x2 ≥ |m1 |,д1 = д2,m1 = h1 :: t1,m2 = h1 :: t1 ⊢ (д1 h1) :: (f1 t1 д1) ∼ λy2.h2 :: f2 t2 y2 |
∀y2.x2 = Sy2 ⇒ r1 ⊑ (r2 y2)

To prove (B.4.i) we derive a contradiction between the premises. From x2 = 0 and the premise x2 ≥ |m1 | we
derivem1 = [] and, together withm1 = h1 :: t1 we arrive at a contradiction by applying NC.

To prove (B.4.ii) we need to use the induction hypothesis. Fromm1 = h1 :: t1,m2 = h1 :: t1 we can prove that
|t1 | < |m1 | and |t2 | < |m2 |, so we can do a CUT with the i.h. and derive:

t1 ⊑д2 t2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |t1 | ⇒ (f1 t1 д1) ⊑ (f2 t2 x2))

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:48 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

By assumption,m1 ⊑д2 m2, so t1 ⊑д2 t2. Moreover, also by assumption д1 = д2, and Sy2 = x2 ≥ |m1 | = S |t1 |, so
y2 ≥ |t1 |. So if we instantiate the i.h. with д1 and y2, and apply CUT again, we can prove:

(f1 t1 д1) ⊑ (f2 t2 y2)

On the other hand, since h1 :: t1 ⊑д2 h2 :: t2, then (by elimination of ⊑д2) we can derive д1h1 = h2 and by
definition of ⊑, (д1 h1) :: (f1 t1 д1) ⊑ h2 :: (f2 t2 y2). So we can apply �eorem 4 and prove (B.4.ii). �is ends the
proof. �

Proof of Theorem 18

We need two straightforward lemmas in UHOL.�e lemmas state that sorting preserves the length andminimum
element of a list.

Lemma 26. Let τ , listN → listN. �en, (1) • | • ⊢ insert : N → τ | ∀x l . |π1(r x l)| = 1 + |l |, and
(2) • | • ⊢ isort : τ | ∀x . |π1(r x)| = |x |.

Lemma 27. Let τ , listN → listN. �en, (1) • | • ⊢ insert : N→ τ | ∀x l . lmin(π1(r x l)) = min(x , lmin(l)), and
(2) • | • ⊢ isort : τ | ∀x . lmin(π1(r x)) = lmin(x).

Proof of Theorem 18. We prove the theorem using LETREC. We actually show the following stronger the-
orem, which yields a stronger induction hypothesis in the proof.

• | • ⊢ isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1)∧|x1 | = |x2 |) ⇒ (π2(r1 x1) ≤ π2(r2 x2))∧(r1 x1 = isort x1) ∧ (r2 x2 = isort x2)

Let ι denote the inductive hypothesis:

ι , ∀m1m2. (|m1 |, |m2 |) < (|x1 |, |x2 |) ⇒ (sorted(m1) ∧ |m1 | = |m2 |)
⇒ π2(isort1m1) ≤ π2(isort2m2) ∧ (isort1m1 = isortm1) ∧ (isort2m2 = isortm2)

and e denote the body of the function isort:

e , case l of [] 7→ ([], 0);
:: 7→ λh t . let s = isort t

let s ′ = insert h (π1 s) in
(π1 s

′, (π2 s) + (π2 s
′))

By LETREC, it suffices to prove the following (we omit simple types for easier reading; they play no essential
role in the proof).

isort1, isort2, x1, x2 | sorted(x1), |x1 | = |x2 |, ι ⊢ e[isort1/isort][x1/l] ∼ e[isort2/isort][x2/l] |
©­
«
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

ª®
¬

Following the structure of e , we next apply the rule LISTCASE. �is yields the following two main proof
obligations, corresponding to the two case branches (the third proof obligation, x1 = [] ⇔ x2 = [] follows
immediately from the assumption |x1 | = |x2 |).

isort1, isort2, x1, x2 | sorted(x1), |x1 | = |x2 |, ι, x1 = x2 = [] ⊢ ([], 0) ∼ ([], 0) | (π2 r1 ≤ π2 r2)∧(r1 = isortx1)∧(r2 = isortx2)

(1)

isort1, isort2, x1, x2,h1, t1,h2, t2 |
sorted(x1), |x1 | = |x2 |,

ι, x1 = h1 :: t1, x2 = h2 :: t2

⊢

let s = isort1 t1
let s ′ = insert h1 (π1 s) in
(π1 s

′, (π2 s) + (π2 s
′))

∼

let s = isort2 t2
let s ′ = insert h2 (π1 s) in
(π1 s

′, (π2 s) + (π2 s
′))

�����
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(2)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:49

(1) is immediate: By �eorem 4, it suffices to show that (π2([], 0) ≤ π2([], 0)) ∧ (([], 0) = isort x1) ∧ (([], 0) =
isort x2). Since x1 = x2 = [] by assumption here, this is equivalent to (π2([], 0) ≤ π2([], 0)) ∧ (([], 0) = isort []) ∧

(([], 0) = isort []), which is trivial by direct computation.
To prove (2), we expand the outermost occurences of let in both to function applications using the definition

let x = e1 in e2 , (λx .e2) e1. Applying the rules APP and ABS, it suffices to prove the following for any ϕ of our
choice.

isort1, isort2, x1, x2,h1, t1,h2, t2

����� sorted(x1), |x1 | = |x2 |,
ι, x1 = h1 :: t1, x2 = h2 :: t2

⊢ isort1 t1 ∼ isort2 t2

����� ϕ (3)

isort1, isort2, x1, x2,h1, t1,h2, t2, s1, s2 |

sorted(x1), |x1 | = |x2 |,
ι, x1 = h1 :: t1, x2 = h2 :: t2
ϕ[s1/r1][s2/r2]

⊢
let s ′ = insert h1 (π1 s1) in
(π1 s

′, (π2 s1) + (π2 s
′))

∼
let s ′ = insert h2 (π1 s2) in
(π1 s

′, (π2 s2) + (π2 s
′))

�����
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(4)
We choose ϕ as follows:

ϕ , π2 r1 ≤ π2 r2 ∧ r1 = isort(t1) ∧ r2 = isort(t2) ∧ |π1 r1 | = |π1 r2 | ∧ lmin(t1) = lmin(π1 r1)

Proof of (3): By �eorem 4, it suffices to prove the following five statements in HOL under the context of (3).

�ese statements correspond to the five conjuncts of ϕ.

π2(isort1 t1) ≤ π2(isort2 t2) (5)

isort1 t1 = isort t1 (6)

isort1 t2 = isort t2 (7)

|π1(isort1 t1)| = |π1(isort2 t2)| (8)

lmin(t1) = lmin(π1(isort1 t1)) (9)

(5)–(7) follow from the induction hypothesis ι instantiated with m1 := t1,m2 := t2. Note that because x1 =
h1 :: t1 and x2 = h2 :: t2, we can prove (in HOL) that (|t1 |, |t2 |) < (|x1 |, |x2 |). Since, |x1 | = |x2 |, x1 = h1 :: t1
and x2 = h2 :: t2, we can also prove that |t1 | = |t2 |. Finally, from the axiomatic definition of sorted and the
assumption sorted(x1) it follows that sorted(t1). �ese together allow us to instantiate the i.h. ι and immediately
derive (5)–(7).

To prove (8), we use (6) and (7), which reduces (8) to |π1(isort t1)| = |π1(isort t2)|. To prove this, we apply
�eorem 1 to Lemma 26, yielding ∀x . |π1(isort x)| = |x |. Hence, we can further reduce our goal to proving
|t1 | = |t2 |, which we already did above.
To prove (9), we use (6), which reduces (9) to lmin(t1) = lmin(π1(isort t1)). �is follows immediately from

�eorem 1 applied to Lemma 27.
�is proves (3).

Proof of (4): We expand the definition of let and apply the rules APP and ABS to reduce (4) to proving the

following for any ϕ ′.

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:50 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

isort1, isort2, x1, x2,

h1, t1,h2, t2, s1, s2

�����
sorted(x1), |x1 | = |x2 |,
ι, x1 = h1 :: t1, x2 = h2 :: t2,
ϕ[s1/r1][s2/r2]

⊢ insert h1 (π1 s1) ∼ insert h2 (π1 s2)

����� ϕ ′ (10)

isort1, isort2, x1, x2,h1, t1,h2, t2, s1, s2, s
′
1, s

′
2 |

sorted(x1), |x1 | = |x2 |,
ι, x1 = h1 :: t1, x2 = h2 :: t2
ϕ[s1/r1][s2/r2],ϕ

′[s ′1/r1][s
′
2/r2]

⊢ (π1 s
′
1, (π2 s1) + (π2 s

′
1)) ∼ (π1 s

′
2, (π2 s2) + (π2 s

′
2))

�����
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(11)
We pick the following ϕ ′:

ϕ ′ , π2 r1 ≤ π2 r2 ∧ r1 = insert h1 (π1 s1) ∧ r2 = insert h2 (π1 s2)

Proof of (10): We start by applying �eorem 4. �is yields three subgoals in HOL, corresponding to the three

conjuncts in ϕ ′:

π2(insert h1 (π1 s1)) ≤ π2(insert h2 (π1 s2)) (12)

insert h1 (π1 s1) = insert h1 (π1 s1) (13)

insert h2 (π1 s2) = insert h2 (π1 s2) (14)

(13) and (14) are trivial, so we only have to prove (12). Since s1 = isort t1 and s2 = isort t2 are conjuncts in the
assumption ϕ[s1/r1][s2/r2], (12) is equivalent to:

π2(insert h1 (π1(isort t1))) ≤ π2(insert h2 (π1(isort t2))) (15)

To prove this, we split cases on the shapes of π1(isort t1) and π1(isort t2). From the conjuncts in ϕ[s1/r1][s2/r2],
it follows immediately that |π1(isort t1)| = |π1(isort t2)|. Hence, only two cases apply:
Case: π1(isort t1) = π1(isort t2) = []. In this case, by direct computation, π2(inserth1 (π1(isort t1))) = π2(inserth1 []) =
π2([h1], 0) = 0. Similarly, and π2(insert h2 (π1(isort t2))) = 0. So, the result follows trivially.
Case: π1(isort t1) = h

′
1 :: t ′1 and π1(isort t2) = h

′
2 :: t ′2. We first argue that h1 ≤ h′1. Note that from the second

and fi�h conjuncts in ϕ[s1/r1][s2/r2], it follows that lmin(t1) = lmin(π1(isort t1)). Since π1(isort t1) = h
′
1 :: t

′
1, we

further get lmin(t1) = lmin(π1(isort t1)) = lmin(h′1 :: t ′1) = min(h′1, lmin(t ′1)) ≤ h′1. Finally, from the axiomatic
definition of sorted(x1) and x1 = h1 :: t1, we derive h1 ≤ lmin(t1). Combining, we get h1 ≤ lmin(t1) ≤ h′1.

Next, π2(inserth1 (π1(isort t1))) = π2(insert h1 (h
′
1 :: t

′
1)). Expanding the definition of insert and using h1 ≤ h′1,

we immediately get π2(insert h1 (π1(isort t1))) = π2(insert h1 (h′1 :: t ′1)) = π2(h1 :: h′1 :: t ′1, 1) = 1. On the
other hand, it is fairly easy to prove (by case analyzing the result of h2 ≤ h′2) that π2(insert h2 (π1(isort t2))) =
π2(insert h2 (h

′
2 :: t

′
2)) ≥ 1. Hence, π2(insert h1 (π1(isort t1))) = 1 ≤ π2(insert h2 (π1(isort t2))).

�is proves (15) and, hence, (12) and (10).

Proof of (11): By �eorem 4, it suffices to show the following in HOL, under the assumptions of (11):

π2(π1 s
′
1, (π2 s1) + (π2 s

′
1)) ≤ π2(π1 s

′
2, (π2 s2) + (π2 s

′
2)) (16)

(π1 s
′
1, (π2 s1) + (π2 s

′
1)) = isort x1 (17)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:51

(π1 s
′
2, (π2 s2) + (π2 s

′
2)) = isort x2 (18)

By computation, (16) is equivalent to (π2 s1) + (π2 s
′
1) ≤ (π2 s2) + (π2 s

′
2). Using the definition of ϕ, it is easy

to see that π2 s1 ≤ π2 s2 is a conjunct in the assumption ϕ[s1/r1][s2/r2]. Similarly, using the definition of ϕ ′,
π2 s

′
1 ≤ π2 s

′
2 is a conjunct in the assumption ϕ ′[s ′1/r1][s

′
2/r2]. (16) follows immediately from these.

To prove (17), note that since x1 = h1 :: t1, expanding the definition of isort, we get

isort x1 = (π1(insert h1 (π1(isort t1))), π2(isort t1) + π2(insert h1 (π1(isort t1))))

Matching with the le� side of (17), it suffices to show that s ′1 = insert h1 (π1(isort t1)) and s1 = isort t1. �ese are
immediate: s1 = isort t1 is a conjunct in the assumption ϕ[s1/r1][s2/r2], while s

′
1 = insert h1 (π1(isort t1)) follows

trivially from this and the conjunct s ′1 = insert h1 (π1 s1) in ϕ
′[s ′1/r1][s

′
2/r2]. �is proves (17).

�e proof of (18) is similar to that of (17).
�is proves (11) and, hence, (4). �

E FULL RHOL RULES

�e full set of RHOL rules is in the following figures:

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:52 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ, x1 : τ1,x2 : τ2 | Ψ,ϕ′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1,x2 .ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

ABS

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1,x2 .ϕ
′[x1/r1][x2/r2] ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]
APP

Γ | Ψ ⊢HOL ϕ[0/r1][0/r2]

Γ | Ψ ⊢ 0 : N ∼ 0 : N | ϕ
ZERO

Γ | Ψ ⊢ t1 : N ∼ t2 : N | ϕ′

Γ | Ψ ⊢HOL ∀x1x2ϕ
′[x1/r1][x2/r2] ⇒ ϕ[Sx1/r1][Sx2/r2]

Γ | Ψ ⊢ St1 : N ∼ St2 : N | ϕ
SUCC

Γ | Ψ ⊢ ϕ[x1/r1][x2/r2] Γ ⊢ x1 : σ1 Γ ⊢ x1 : σ1

Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ
VAR

Γ | Ψ ⊢HOL ϕ[�/r1][�/r2]

Γ | Ψ ⊢ � : B ∼ � : B | ϕ
TRUE

Γ | Ψ ⊢HOL ϕ[ff/r1][ff/r2]

Γ | Ψ ⊢ ff : B ∼ ff : B | ϕ
FALSE

Γ | Ψ ⊢HOL ϕ[[]/r1][[]/r2]

Γ | Ψ ⊢ [] : listσ1 ∼ [] : listσ2 | ϕ
NIL

Γ | Ψ ⊢ h1 : σ1 ∼ h2 : σ2 | ϕ′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : listσ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][y2/r2] ⇒ ϕ[x1 :: y1/r1][x2 :: y2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | ϕ
CONS

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][y2/r2] ⇒ ϕ[〈x1,y1〉/r1][〈x2,y2〉/r2]

Γ | Ψ ⊢ 〈t1,u1〉 : σ1 × τ1 ∼ 〈t2,u2〉 : σ2 × τ2 | ϕ
PAIR

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 × τ2 | ϕ[πi (r1)/r1][πi (r2)/r2]

Γ | Ψ ⊢ πi (t1) : σ1 ∼ πi (t2) : σ2 | ϕ
PROJi

Fig. 12. Core two-sided rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:53

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′

Γ | Ψ ⊢HOL ϕ
′[t1/r1][t2/r2] ⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
SUB

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ ∧ ϕ ′
∧I

Γ | Ψ′,ϕ ′[t1/r1][t2/r2] ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′ ⇒ ϕ

⇒I

Γ | Ψ ⊢ t1 : σ1 | ϕ[r/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ1 | ϕ
UHOL − L

Fig. 13. Structural rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:54 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ,x1 : τ1 | Ψ,ϕ′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1 .ϕ
′ ⇒ ϕ[r1 x1/r1]

ABS−L

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1 .ϕ
′[x1/r1] ⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ u1 : σ1 | ϕ′[u1/x1]

Γ | Ψ ⊢ t1u1 : σ1 ∼ u2 : σ2 | ϕ
APP−L

Γ ⊢ t2 : σ2
Γ | Ψ ⊢HOL ϕ[0/r1][t2/r2]

Γ | Ψ ⊢ 0 : N ∼ t2 : σ2 | ϕ
ZERO−L

Γ | Ψ ⊢ t1 : N ∼ t2 : σ2 | ϕ′

Γ | Ψ ⊢HOL ∀x1x2ϕ
′[x1/r1][x2/r2] ⇒ ϕ[Sx1/r1][x2/r2]

Γ | Ψ ⊢ St1 : N ∼ t2 : σ2 | ϕ
SUCC−L

Γ | Ψ ⊢HOL ϕ[�/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ � : B ∼ t2 : σ2 | ϕ
TRUE − L

Γ | Ψ ⊢HOL ϕ[ff/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ ff : B ∼ t2 : σ2 | ϕ
FALSE − L

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ) Γ ⊢ t2 : σ2

Γ | Ψ ⊢ x1 : σ1 ∼ t2 : σ2 | ϕ
VAR−L

Γ | Ψ ⊢ ϕ[[]/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ [] : listσ1 ∼ t2 : σ2 | ϕ
NIL−L

Γ | Ψ ⊢ h1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : σ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][x2/r2] ⇒ ϕ[x1 :: y1/r1][x2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ t2 : σ2 | ϕ
CONS−L

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ′ Γ | Ψ ⊢ u1 : τ1 ∼ t2 : σ2 | ϕ′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′[x1/r1][x2/r2] ⇒ ϕ′′[y1/r1][x2/r2] ⇒ ϕ[〈x1,y1〉/r1][x2/r2]

Γ | Ψ ⊢ 〈t1,u1〉 : σ1 × τ1 ∼ t2 : σ2 | ϕ
PAIR−L

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 | ϕ[π1(r1)/r1]

Γ | Ψ ⊢ π1(t1) : σ1 ∼ t2 : σ2 | ϕ
PROJ1−L

Fig. 14. Core one-sided rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:55

Γ | Ψ ⊢ t1 : B ∼ t2 : B | (r1 = � ∧ r2 = �) ∨ (r1 = ff ∧ r2 = ff)
Γ | Ψ, t1 = �, t2 = � ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 = ff, t2 = ff ⊢ v1 : σ1 ∼ v2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of � 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of � 7→ u2;ff 7→ v2 : σ2 | ϕ
BOOLCASE

Γ | Ψ ⊢ t1 : N ∼ t2 : N | r1 = 0 ⇔ r2 = 0
Γ | Ψ, t1 = 0, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | r1 = [] ⇔ r2 = []

Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
LISTCASE

Fig. 15. Synchronous case rules

Γ ⊢ t1 : B
Γ | Ψ, t1 = � ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ
Γ | Ψ, t1 = ff ⊢ v1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of � 7→ u1;ff 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
BOOLCASE − L

Γ ⊢ t1 : N
Γ | Ψ, t1 = 0 ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.t1 = Sx1 ⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
NATCASE − L

Γ ⊢ t1 : listτ
Γ | Ψ, t1 = [] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
LISTCASE − L

Fig. 16. One-sided case rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

1:56 • Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ | Ψ ⊢ t1 : B ∼ t2 : B | ⊤
Γ | Ψ, t1 = �, t2 = � ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 , �, t2 = � ⊢ v1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 = �, t2 , � ⊢ u1 : σ1 ∼ v2 : σ2 | ϕ
Γ | Ψ, t1 , �, t2 , � ⊢ v1 : σ1 ∼ v2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of � 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of � 7→ u2;ff 7→ v2 : σ2 | ϕ
BBCASE − A

Γ | Ψ ⊢ t1 : B ∼ t2 : N | ⊤
Γ | Ψ, t1 = �, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 , �, t2 = 0 ⊢ v1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t1 = � ⊢ u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/r2]

Γ | Ψ, t1 , � ⊢ v1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/2]

Γ | Ψ ⊢ case t1 of � 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
BNCASE − A

Γ | Ψ ⊢ t1 : B ∼ t2 : listτ2 | ⊤
Γ | Ψ, t1 = �, t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t1 , �, t2 = [] ⊢ v1 : σ1 ∼ u2 : τ2 → listτ2 → σ2 | ϕ
Γ | Ψ, t1 = � ⊢ u1 : σ1 ∼ v2 : τ2 → listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]

Γ | Ψ, t1 , � ⊢ v1 : σ1 ∼ v2 : τ2 → listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of � 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
BLCASE − A

Γ | Ψ ⊢ t1 : N ∼ t2 : N | ⊤

Γ | Ψ, t1 = 0, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t2 = 0 ⊢ v1 : N→ σ1 ∼ u2 : σ2 | ∀x1.t1 = Sx1 ⇒ ϕ[r1 x1/r1]
Γ | Ψ, t1 = 0 ⊢ u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/r2]

Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NNCASE − A

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ⊤
Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t2 = [] ⊢ v1 : τ1 → listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]

Γ | Ψ, t1 = [] ⊢ u1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |
∀h2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]

Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |
∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
LLCASE − A

Fig. 17. Asynchronous case rules (selected)

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

A Relational Logic for Higher-Order Programs • 1:57

Γ | Ψ ⊢ t1 : N ∼ t2 : N | ϕ ′ ∧ r1 = 0 ⇔ r2 = 0
Γ | Ψ,ϕ ′[0/r1][0/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.ϕ
′[Sx1/r1][Sx2/r2] ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE∗

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ϕ
′ ∧ r1 = [] ⇔ r2 = []

Γ | Ψ,ϕ ′[[]/r1][[]/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.ϕ
′[h1 :: l1/r1][h2 :: l2/r2] ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; :: 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; :: 7→ v2 : σ2 | ϕ
LISTCASE∗

Fig. 18. Alternative case rules

Def (f1, x1, e1) Def (f2, x2, e2)

Γ, x1 : I1, x2 : I2, f1 : I1 → σ , f2 : I2 → σ2 | Ψ,ϕ
′,

∀m1m2.(|m1 |, |m2 |) < (|x1 |, |x2 |) ⇒ ϕ ′[m1/x1][m2/x2] ⇒ ϕ[m1/x1][m2/x2][f1m1/r1][f2m2/r2] ⊢

e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 | ∀x1x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

LETREC

Def (f1, x1, e1)
Γ, x1 : I1, f1 : I1 → σ | Ψ,ϕ ′,

∀m1.|m1 | < |x1 | ⇒ ϕ ′[m1/x1] ⇒ ϕ[m1/x1][m2/x2][f1m1/r1][t2/r2] ⊢ e1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ t2 : σ2 | ∀x1.ϕ
′ ⇒ ϕ[r1 x1/r1]

LETREC − L

where I1, I2 ∈ {N, listτ }

Fig. 19. Recursion rules

, Vol. 1, No. 1, Article 1. Publication date: February 2017.

	Abstract
	1 Introduction
	2 (A variant of) PCF
	3 Higher-Order Logic
	4 Unary Higher-Order Logic
	5 Relational Higher-Order Logic
	5.1 Proof rules
	5.2 Discussion
	5.3 Meta-theory

	6 Embeddings
	6.1 Refinement types
	6.2 Relational refinement types
	6.3 Dependency core calculus
	6.4 Relational cost

	7 Examples
	7.1 First example: factorial
	7.2 Second example: take and map
	7.3 Third example: insertion sort

	8 Conclusion
	References
	A Semantics
	B Additional rules
	C Proofs
	D Examples
	E Full RHOL rules

