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Abstract.
We review recent developments in the construction of curvature squared invariants in off-

shell N = (1, 0) supergravity in six dimensions.

1. Introduction and Motivations
It is well known that the low-energy effective action of string theory is described by supergravity
modified by an infinite series of higher-derivative quantum corrections, which can schematically
be represented by the Lagrangian

Llow
string = LSG +

∑
DpRq + forms contributions + susy completion . (1.1)

Besides the purely gravitational higher-derivative terms, there are contributions involving the
extra fields of the low-energy spectrum of string theory, including the tensor hierarchy of forms,
and the fermions needed for local supersymmetry invariance of the action. The supersymmetric
higher-derivative terms are in general poorly understood but are of crucial importance in various
contexts. For instance, the contributions depending on the p-forms play an important role in the
dynamics of the moduli in compactified string theory and the low-energy description of string
dualities; see, e. g., [1, 2, 3]. Moreover, higher-derivative terms control the stringy corrections to
the entropy of black-holes (see for example [4, 5, 6, 7]) and they are needed for precision tests
within the context of the AdS/CFT correspondence. Locally supersymmetric higher-derivative
terms also describe counterterms for UV divergencies in supergravity and their classification
is intimately connected to the understanding of surprising quantum properties of extended
supergravities such as in the case of 4D N = 8 supergravity (see [8] for a short review and
a list of references).

Even the supersymmetric extension of curvature squared invariants, which would be the
next to leading order in the expansion (1.1), is in general not fully understood. However,
non-supersymmetric curvature squared gravity has attracted much attention for over 50 years,
irrespective of string theory motivations, for various reasons. For instance, the renormalization of
quantum field theories in curved spacetime requires counterterms containing curvature squared
terms [9]. In four dimensions, these govern the structure of conformal anomalies that are relevant

1 Based on the talk presented by GT-M at ISQS25 (Prague, Czech Republic, 6 – 10 June, 2017).
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in studying renormalization group flows, see for example the a-theorem of Komargodski and
Schwimmer [10]. Forty years ago it was also realized that Lagrangians defined by a linear
combination of the Riemann tensor squared, the Ricci tensor squared and the scalar curvature
squared, α(Rabcd)

2 + β(Rab)
2 + γR2, lead to renormalizable but not unitary theories of gravity

[11]. Recently, it was also realized that the Starobinsky model of inflation [12], based on the
addition of aR2 term to the Einstein-Hilbert gravity, was proposed to be a promising inflationary
candidate consistent with the Cosmic-Microwave-Background (CMB) data.

An interesting curvature squared invariant is described by the Gauss-Bonnet (GB)
combination

LGB = RabcdRabcd − 4RabRab +R2 = 6R[ab
abRcd]

cd . (1.2)

In 4D it is a topological term, the Euler characteristic, associated with the type A conformal
anomaly [13]. In D-dimensions the GB combination, which is ghost free, is actually expected
to govern the first order α′ corrections in string theory [14, 15]. In general its structure for
any spacetime dimensions and number of supersymmetry charges is not known. In particular,
the dependence upon the extra supergravity fields, i.e. the dilaton and the various p-forms, is
still not in general understood. In 4D and 5D the Gauss-Bonnet was constructed off-shell and
completely classified, see [16, 17, 18, 19, 20, 21, 22, 23] and [24, 25, 26], respectively. In the
6D case only partial results were obtained 30 years ago [27, 28, 29, 30] and a classification of
curvature squared invariants has been absent until new insights this year. In particular, the GB
invariant in six dimensions has been constructed in our recent paper [31]. One of the main aims
of this note is to review this result.

An obvious question that one may ask is: how should one efficiently construct the higher-
derivative supergravity invariants? A useful approach would be a formalism that guarantees
manifest supersymmetry in a model independent way. Off-shell approaches to supergravity,
when available, can indeed be used to construct general supergravity-matter couplings possessing
model independent supersymmetry. Two possibilities have been largely developed in the
literature: (i) a component field approach (superconformal tensor calculus), see for example
the recent “Supergravity” book by Freedman and Van Proeyen [32] for an exhaustive review
and references; and (ii) superspace approaches, see the classic books [33, 34, 35, 36].

It turns out that the two approaches can be linked and powerfully used together through the
so called “conformal superspace.” In this formalism the entire superconformal algebra is gauged
in superspace combining the main advantages of both approaches. Conformal superspace was
first introduced by D. Butter for 4D N = 1 [37] and N = 2 [38] supergravity (see also the
seminal work by Kugo and Uehara [39]) and it was developed and extended to 3D N−extended
supergravity [40], 5D N = 1 supergravity [26], and recently to 6D N = (1, 0) supergravity [41],
see also [42].

In this paper, we review the description of curvature squared invariants for 6D N = (1, 0)
off-shell supergravity and show how using conformal superspace it is possible to efficiently:
describe off-shell supermultiplets through simple differential constraints; provide manifestly
supersymmetric off-shell action principles by using powerful cohomological “superform”
techniques; and reduce the results to component fields and the superconformal tensor calculus.
With these techniques at hand, one has a systematic approach to construct higher-derivative
off-shell invariants.

This paper is organized as follows. In section 2 we review how Poincaré gravity can be
obtained by gauge fixing conformal gravity. By using the same logic, we review basic aspects
of 6D conformal superspace and show how to construct 6D N = (1, 0) Poincaré supergravity
from superspace in section 3. Section 4 is devoted to the construction of curvature squared
invariants, while in section 5 we analyze Einstein-Gauss-Bonnet supergravity, which is related
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to the low-energy description of 6D compactified string theory. Conclusions are presented in
section 6.

2. 6D conformal and Poincaré gravity
Before turning to supergravity, it is useful to remind the reader about conformal gravity and
how Poincaré gravity can be viewed as a gauge fixed limit of it. As we will see in the next
section, the same principle generalizes to the supersymmetric case.

Conformal gravity in six dimensions may be constructed by gauging the entire conformal
group SO(6,2), which possesses the generatorsXã = {Pa,Mab,D,Ka}. To each generator we then
associate a connection. The vielbein em

a and its inverse ea
m are associated with the momentum

Pa generating local-translations/diffeomorphism. Together with the other connections for the
Lorentz (ωm

bc), dilatation (bm) and special conformal (fm
b) generators, one can introduce the

covariant derivatives

∇a = ea
m
(
∂m − 1

2
ωm

bcMbc − bmD− fmbKb

)
. (2.1)

The covariant derivative algebra is constrained to be

[∇a,∇b] = −1

2
Cab

cdMcd − 1

6
∇dCabcdK

c . (2.2)

The algebra is expressed entirely in terms of a single primary dimension two tensor Cab
cd,

KfCab
cd = 0 , DCab

cd = 2Cab
cd , (2.3)

satisfying the following algebraic constraints

Cabcd = C[ab][cd] , ηacCabcd = 0 , C[abc]d = 0 . (2.4)

The solution of the previous constraints determine ωm
bc = ωm

bc(e) and fm
b = fm

b(e) as
composite functions of the vielbein em

a while bm proves to be a pure gauge degree of freedom.
The tensor Cab

cd coincides with the 6D Weyl tensor: Cab
cd = Rab

cd − δ[a
[cRb]

d] + 1
10δ[a

[cδb]
d]R

with Rab
cd = Rab

cd(e) being the standard Riemann tensor, Ra
b := Rad

bd the Ricci tensor and
R := Ra

a the scalar curvature.
So far we have considered the gauging of the full conformal algebra. Standard Poincaré

gravity can be described by coupling conformal gravity to a primary dimension two scalar field
φ. If one chooses a gauge for dilatation and special conformal transformations in which bm = 0
and φ = 1 then what it is left is standard gravity, gauging only diffeomorphisms and Lorentz
transformations. Along this line, the Einstein-Hilbert action of general relativity is described
by the action of the dilaton field φ in a conformal gravity background

SEH = −5

2

∫
d6x e φ∇a∇aφ . (2.5)

In a gauge where bm = 0 and φ = 1 the previous action reduces to the standard Einstein-Hilbert
term

SEH = −1

2

∫
d6x eR . (2.6)

Although the previous approach might seem cumbersome in the case of gravity, its
supersymmetric analogue proves to be a natural way to describe in a uniform framework
different multiplets of off-shell Poincaré supergravity, and general supergravity-matter couplings.
The strategy is to first describe off-shell conformal supergravity and then break unnecessary
local symmetries, as dilatations and local superconformal transformations, by coupling to
compensating multiplets. Let us show how this works in the case of 6D N = (1, 0) supergravity.
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3. 6D N = (1, 0) conformal and Poincaré supergravity
The standard Weyl multiplet of N = (1, 0) conformal supergravity is associated with the local
off-shell gauging of OSp(6, 2|1), the N = (1, 0) superconformal group in 6D [43]. The multiplet
contains 40 + 40 physical components described by the following independent gauge fields:
the vielbein em

a and a dilatation connection bm (as in conformal gravity); the gravitino ψm
α
i ,

associated to the gauging of Q-supersymmetry; and SU(2)R gauge fields Vmij . The other gauge
fields associated with the remaining generators of OSp(6, 2|1) are composite fields. In addition
to the independent gauge connections, the standard Weyl multiplet comprises a set of covariant
matter fields given by an anti-self-dual tensor T−abc, a real scalar field D and a chiral fermion χi.
These extra independent degrees of freedom are necessary to close the local OSp(6, 2|1) algebra
of transformations without imposing any equation of motions.

So far we have described the Weyl multiplet in components. Let us review the basic aspects
of its description in the 6D N = (1, 0) conformal superspace developed in [41]. In this paper,
we adopt the notation and conventions of [41, 42]. Take a N = (1, 0) curved superspace M6|8
parametrised by local coordinates

zM = (xm, θμi ) , m = 0, 1, 2, 3, 4, 5 , μ = 1, 2, 3, 4 , i = 1, 2 . (3.1)

The structure group of conformal superspace, denoted by X, contains the generators for
SO(5, 1) Lorentz, SU(2)R R-symmetry, dilatation, S-supersymmetry and conformal boosts
transformations. The superspace covariant derivatives are

∇A = EA
M∂M − 1

2
ΩA

abMab − ΦA
ijJij −BAD− FABK

B , (3.2)

where EA
M (z) is the supervielbein associated with translations in superspace, PA = (Pa, Q

i
α),

and ∂M = ∂/∂zM ; ΩA
cd(z) is the Lorentz connection; ΦA

ij(z) is the SU(2)R connection;
BA is the dilatation connection; and FAB is the special superconformal connection, with
KA = (Ka, Sα

i ). The supergravity gauge group, which is associated with the gauging of the
OSp(6, 2|1) transformations, is generated by the following transformations

δK∇A = [K,∇A] , K := ξA∇A +
1

2
ΛbcMbc + ΛijJij + τD+ ΛAK

A . (3.3)

Similarly to conformal gravity, to describe the 6D (1, 0) Weyl multiplet, one constrains the
algebra of covariant derivatives

[∇A,∇B} = −TAB
C∇C − 1

2
R(M)AB

cdMcd −R(J)AB
klJkl

−R(D)ABD−R(S)AB
k
γS

γ
k −R(K)ABcK

c (3.4)

to be completely determined in terms of the super-Weyl tensor Wαβ = (γ̃abc)αβWabc (see,
e. g. [44, 41] for its definition) describing in superspace the 6D N = (1, 0) Weyl multiplet
of conformal supergravity. The details of the algebra are more intricate than in the non-
supersymmetric case and we refer the reader to [41] for details. It is only relevant to mention
that Wαβ is a dimension-1 primary superfield

KAW βγ = 0 , DWαβ =Wαβ , (3.5)

and satisfies the Bianchi identities

∇(i
α∇j)

β W
γδ = −δ(γ[α∇

(i
β]∇j)

ρ W
δ)ρ , ∇k

α∇γkW
βγ − 1

4
δβα∇k

γ∇δkW
γδ = 8i∇αγW

γβ . (3.6)
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It can be shown that the component fields of the standard Weyl multiplet can be identified as
θ = 0 projections of the superspace one-forms and descendants of Wαβ , see [42].

So far we have considered only the standard Weyl multiplet possessing the covariant
component fields: T−abc, χ

αi and D. However, there exists a variant multiplet for conformal
supergravity called the dilaton-Weyl multiplet [43], which plays an important role in the
formulation of 6D Poincaré supergravity. The dilaton-Weyl multiplet is obtained by coupling
the standard Weyl multiplet to a (on-shell) tensor multiplet. In superspace, the tensor multiplet
can be described by a scalar superfield Φ embedded in a gauge super two-form B2. Its field
strength H3 = dB2 is constrained to have the following component superfields

H i
α
j
β
k
γ = 0 , Ha

i
α
j
β = 2iεij(γa)αβΦ , Hab

i
α = (γab)α

β∇i
βΦ , (3.7a)

Habc = − i
8(γ̃abc)

γδ∇k
γ∇δkΦ− 4WabcΦ . (3.7b)

Here Φ is a primary superfield of dimension 2 satisfying the differential constraint ∇(i
α∇j)

β Φ = 0.

Equation (3.7b) shows that one can redefine the super-Weyl tensor as a composite of the tensor
multiplet

Wabc = −1

4
Habc − i

32
(γ̃abc)

γδ∇k
γ∇δkΦ , (3.8)

which ends up being the dynamical multiplet for conformal supergravity in the dilaton-Weyl
formulation. At the component level, the previous result is equivalent to showing that the
covariant fields of the standard Weyl multiplet, T−abc, χ

αi and D, are exchanged with the
component fields of the tensor multiplet, σ, ψi

α and bmn in the following way2

T−abc =
1

2σ
H−abc , D =

15

4σ

(
∇a∇aσ +

1

3
T−abcHabc

)
+ fermions . (3.9)

So far we have discussed kinematical properties of 6D supergravity. Let us turn to
constructing dynamical systems. To do so, we will use the superform approach to engineer
invariant actions [45, 46, 47, 48]. This approach has been rediscovered a number of times in
the literature and it has been developed and used in, e. g., the study of the properties of UV
counterterms in supersymmetric Yang-Mills and supergravity theories, see [49, 50, 51, 52, 53].
Since 2009 it has been employed and developed also by the two of us together with our
collaborators to construct off-shell higher-derivative invariants in various dimensions, see e. g.
[54, 55, 56, 57].

In six dimensions, the construction of a supersymmetric invariant from a superform goes as
follows. Consider a closed super 6-form J = 1

6!dz
M6 ∧ · · · ∧ dzM1JM1···M6 ,

dJ =
1

6!
dzM6 ∧ · · · ∧ dzM0∂M0JM1···M6 = 0 . (3.10)

By using J one can define the following action principle

S =

∫
d6x ∗J |θ=0 ,

∗J =
1

6!
εmnpqrsJmnpqrs . (3.11)

Under superdiffeomorphisms, with ξ = ξAEA = ξM∂M , a closed 6-form satisfies

δξJ = LξJ ≡ iξdJ + diξJ = diξJ , (3.12)

2 Here we focus on just the bosonic fields.
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which implies that (up to boundary terms) the action (3.11) is invariant under local
supersymmetry transformations. Expressing the action in terms of the tangent frame gives

S =

∫
d6x

1

6!
εm1···m6Em6

A6 · · ·Em1
A1JA1···A6 |θ=0 ,

∝
∫

d6x e εa1···a6
[
Ja1···a6 + 3ψa1

α
i J

i
αa2···a6 +

15

4
ψa2

β
j ψa1

α
i J

i
α
j
βa3···a6

+
5

2
ψa3

γ
kψa2

β
j ψa1

α
i J

i
α
j
β
k
γa4a5a6 +O(ψ4)

]
|θ=0 , (3.13)

which makes evident how to obtain from (3.11) the component expression of supergravity
actions as a power series expansion in the gravitini. To impose invariance under the entire
local supergravity gauge group, it is necessary to also require the action to be invariant under
the structure group X and any possible additional gauge transformations. This means that J
should transform by (at most) an exact 6-form under these transformations

δXJ = dΞ , for some 5− form Ξ . (3.14)

The classification of X-exact closed super 6-forms J is equivalent to the classification of
supersymmetric invariants.

Now that we have identified a powerful way to construct supersymmetric invariants, it is
natural to ask: how can we describe the N = (1, 0) extension of the Einstein-Hilbert term
of [43] in superspace? To describe this invariant one has to make use of the dilaton-Weyl
multiplet coupled to a linear-multiplet conformal compensator. This is based on a scalar

isotriplet superfield Gij(z), constrained by ∇(i
αGjk) = 0. Remarkably, this multiplet can be

engineered as a closed super 5-form such that H5 = dB4 for some gauge super 4-form and whose
lowest dimension nonvanishing component is

Habc
i
α
j
β = −2i(γabc)αβGij . (3.15)

By using the linear multiplet 5-form, one can construct an invariant action in the following
way. First, in a conformal supergravity background, consider a (1, 0) vector multiplet described

by a spinor superfield Wαi obeying the Bianchi identities ∇k
γW

γ
k = 0, ∇(i

αW βj) = 1
4δ

β
α∇(i

γW γj)

and appropriately embedded in a closed super two-form F2. Next, consider the following closed
6-form JB4∧F2

JB4∧F2 = B4 ∧ F2 − ΣB4∧F2 , dΣB4∧F2 = −F2 ∧H5 , (3.16)

with ΣB4∧F2 a covariant 6-form constructed entirely in terms of the superfields Wαi and Gij in
F2 and H5.

3 By using the closed 6-form JB4∧F2 , together with the superform action principle
(3.11), one obtains the following B4 ∧ F2 action principle4

SB4∧F2 =
1

2

∫
d6x e

( 1

4!
εabcdeffabbcdef +XijGij + fermions

)
, (3.17)

with fab the component field strength and Xij the scalar component of the vector multiplet,
while babcd is the component gauge 4-form of the linear multiplet. Note that fab and babcd are
directly related to the θ = 0 component of the field strength Fmn(z) and the gauge superfield
Bmnpq(z) respectively. The previous action reproduces the one first constructed in [43].

3 Its existence is guaranteed by the fact that F2 ∧H5 is Weil trivial.
4 The procedure here very much follows the one adopted in [58] in 4D.
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We are now ready to introduce the (1, 0) Poincaré supergravity EH invariant. Consider the
following composite vector multiplet built by using the linear multiplet

W
αi =

1

G
∇αβχi

β +
4

G

(
Wαβχi

β + 10iXα
j G

ji
)− 1

2G3
Gjk(∇αβGij)χk

β

+
1

2G3
GijEαβχβj +

i

16G5
εαβγδχβjχγkχδlG

ijGkl , (3.18)

where

∇(i
αG

jk) = 0 , χi
α :=

2

3
∇αjG

ij , Eαβ :=
i

8
εαβγδ∇k

[γχδ]k . (3.19)

By plugging back this composite vector multiplet in the B4 ∧ F2 action, and gauge fixing
dilatation, conformal-boosts and SU(2)R symmetry, one ends up with the (1, 0) Poincaré
supergravity action

e−1LEH = −1

2
e−2ϕ[R− 4∂mϕ∂

mϕ+ 1
12HabcH

abc] + fermions , (3.20)

where ϕ is the only component of Gij surviving the SU(2)R → U(1)R gauge fixing condition.
The results for the EH terms obtained from superspace coincide with the original results of [43]
but the path we have followed will prove more useful for higher-derivative actions.

4. Curvature squared invariants
Let us show how it is possible to construct supersymmetric extensions of all curvature squared
Lagrangians in superspace. We are searching for extensions of a Lagrangian that is schematically
the following linear combination of Weyl squared, Riemann squared and the scalar curvature
squared

Lcurvature−squared ∝ aCabcdCabcd + bRabcdRabcd + cR2 + · · · . (4.1)

In constructing the supersymmetric extension of the EH term a crucial role was played by
the B4 ∧ F2 action principle. It turns out that we can construct the two known invariants plus
one new invariant by using a new action principle corresponding to the supersymmetrization of
a B2∧H4 terms where B2 is the gauge 2-form of a tensor multiplet with field strength H3 = dB2

and H4 is a closed 4-form, dH4 = 0, possessing the following components

H i
α
j
β
k
γ
l
δ = Ha

j
β
k
γ
l
δ = 0 , Hab

k
γ
l
δ = i(γabc)γδB

ckl , (4.2a)

Habc
l
δ = − 1

12εabcdef (γ
de)δ

ρ∇ρpB
f lp , Habcd = i

48εabcdef (γ̃
e)αβ∇αk∇βlB

f kl . (4.2b)

The superfield Bαβij = (γ̃a)αβBij
a , is a dimension three primary superfield satisfying the

following differential constraints induced by the constraint dH4 = 0

∇(i
αB

βγjk) = −2

3
δ[βα ∇(i

δ B
γ]jk) , [∇(i

α ,∇βk]B
αβj)k = −8i∇αβB

αβij . (4.3)

We can now engineer the new action principle by using the superform approach. We start with
the following closed 6-form JB2∧H4

JB2∧H4 = B2 ∧H4 − ΣB2∧H4 , dΣB2∧H4 = H3 ∧H4 (4.4)
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with ΣB2∧H4 a covariant super 6-form constructed only in terms of the covariant superfields

Φ and Bij
a , respectively associated with the field strengths H3 and H4. Once one explicitly

constructs JB2∧H4 and plugs the result into (3.11) we obtain the new B2 ∧H4 action principle

SB2∧H4 =

∫
d6x e

{1

4

(
bab − ηabσ

)
Cab + fermions

}
, (4.5)

which proves to be locally superconformal invariant. Here σ := Φ|θ=0 and bab is related to the
θ = 0 component of the gauge superfield Bmn(z), while Cab is

Cab :=
i

12
(γ̃a)

αβ∇αk∇βlB
kl
b |θ=0 . (4.6)

Given a Bij
a superfield satisfying (4.3), which plays the role of a Lagrangian for the B2 ∧ H4

action principle, we will automatically have a (1, 0) locally superconformal invariant. Let us
describe relevant examples.

A locally supersymmetric extension of the Riemann squared term was first constructed in
1987 in [30]. We can reproduce it by using the B2 ∧ H4 action principle and the composite
superfield

Bαβij = − i

2
Λα(i

γ
δΛβj)

δ
γ (4.7)

with Λαi
γ
δ given by the following dimension-3/2 primary superfield

Λαi
β
γ = Xi

β
αγ − 1

3
δαβX

γi +
1

12
δγβX

αi +
i

4
Φ−1ψi

βW
αγ +

i

12
Φ−1δαβW

γδψi
δ

− i

12
Φ−1δγβW

αδψi
δ +

i

12
εαγδρΦ−1∇δ(ρψ

i
β) −

i

8
εαγδρΦ−2(∇δ(ρΦ)ψ

i
β)

+
i

32
εαγδρΦ−2Hρβψ

i
δ −

1

16
εαγδρΦ−3ψi

δψ
k
(ρψβ)k , (4.8)

where

ψi
α = ∇i

αΦ , ∇i
αψ

j
β = − i

2
εij(γabc)αβH

+
abc − iεij(γa)αβ∇aΦ . (4.9)

In the gauge Φ = 1 and BA = 0, the composite (4.7) together with the action principle (4.5)
reproduces the Riemann squared invariant of [30] whose leading term is

e−1LRiem2 = RabcdRabcd + · · · . (4.10)

A scalar curvature squared invariant, with leading term R2, was constructed in components
in [59] by using results of the superconformal tensor calculus of [43]. We can reproduce it from
superspace by using the B2 ∧H4 action principle where

Bαβij = − i

2
W

α(i
W

βj) , (4.11)

and W
αi is the composite vector multiplet (3.18) used to construct the EH term.

Remarkably, by using the B2∧H4 action principle we can construct a new curvature squared
invariant. A composite built entirely out of the super-Weyl tensor can be constructed [41]

Bαβ ij = −4W γ[αYγ
β]ij − 32iXγ

αδ(iXδ
βγj) + 10iXα(iXβj) , (4.12)
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where Xαi, Xα
βγi and Yα

βij are descendant superfields constructed in terms of spinor derivatives
of the super-Weyl tensor Wαβ . The previous composite superfield was originally constructed
to describe one of the two (1, 0) conformal supergravity actions [41, 42]. On the other hand,

by plugging Bij
a of (4.12) in the B2 ∧H4 action we obtain the following new curvature squared

invariant

e−1Lnew =
1

32

{
σCab

cdCcd
ab − 3σRab

ijRab
ij +

4

15
σD2 − 8σT−dab∇d∇cT−abc

+ 4σ(∇cT
−abc)∇dT−abd + 4σT−abcT−ab

dT−ef cT−efd −
8

45
HabcT

−abcD

− 2HabcC
ab

deT
−cde + 4HabcT

−
d

ab∇eT
−cde − 4

3
HabcT

−deaT−bcfT−def

− 1

4
εabcdefbab

(
Ccd

ghCefgh −Rcd
ijRef ij

)}
+ fermions , (4.13)

where Rab
ij is the SU(2)R field strength. In the gauge σ = 1 and ba = 0, equation (4.13) reduces

to

e−1Lnew =
1

32
Rab

cdRcd
ab − 1

32
Rb

dRd
b +

1

128
R2 + · · · . (4.14)

5. Applications: Einstein-Gauss-Bonnet supergravity
It turns out that the supersymmetric GB invariant can be constructed by taking a linear
combination of the new curvature squared invariant (4.13) and the Riemann squared invariant.
By comparing (1.2) with (4.10) and (4.14) it is simple to see that the following combination

SGB = −3SRiem2 + 128Snew (5.1)

describes a 6D (1, 0) off-shell supersymmetric extension of the Gauss-Bonnet term. In the gauge
σ = 1 and ba = 0, the resulting Lagrangian becomes

e−1LGB = RabcdRabcd − 4RabRab +R2

−1
2RabcdH

abeHcd
e +RabH2

ab − 1
6RH2 + 1

144(H
2)2 − 1

8(H
2
ab)

2 + 5
24H

4

+εabcdefbab

(
− 1

4Rcd
gh(ω̃)Ref gh(ω̃) +Rcd

ijRef ij

)
+ fermions ,

where we have introduced the torsionfull connection ω̃ and various contractions as

ω̃m
cd := ωm

cd − 1
2em

aHa
cd , (5.2a)

H2 := HabcH
abc , H2

ab := Ha
cdHbcd , H4 := HabeHcd

eHacfHbd
f . (5.2b)

There are various advantages in having an off-shell version of the (1, 0) Gauss-Bonnet invariant.
First of all, it is possible to couple it to general supergravity-matter couplings without having to
modify the supersymmetry transformations. Secondly, we have a complete off-shell descriptions
of the dependance on the NSNS 2-form gauge potential. Let us show how these advantages can
be used in a relevant case.

Consider the combination

L = LEH +
1

16
α′LGB . (5.3)

This turns out to be an off-shell extension of the α′ corrected low-energy effective action of
string theory compactified to six dimensions. More precisely, once one properly integrated out
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the SU(2)R gauge connection and an auxiliary field of the linear multiplet compensator, it can
be shown that the previous Lagrangian reduces to

2κ2e−1L = e−2ϕ[−R+ 4∂mϕ∂
mϕ− 1

12HabcH
abc]

+ 1
16α

′
[
6R[ab

abRcd]
cd − 1

6RH2 +RabH2
ab +

5
24H

4 + 1
144(H

2)2 − 1
8(H

2
ab)

2

− 1
2RabcdH

abeHcd
e +

1
4ε

abcdefbabRcd
g
h(ω̃)Ref

h
g(ω̃)

]
+ fermions (5.4)

which precisely matches the on-shell Einstein-Gauss-Bonnet supergravity action that was first
described in [3]. In [3], Liu and Minasian constructed the Lagrangian (5.4) by fixing the one-loop
four-derivative corrections in six dimensions by means of a K3 reduction of the R4 corrected
type IIA strings and requiring that the dyonic string remains a solution, as well as the duality
of this model to heterotic strings compactified on T4. Our result relies only on supersymmetry
and can be considered as an important consistency check of the results and assumptions of [3].

6. Conclusion
The examples reviewed in this paper demonstrate that there exist powerful “top-down”
approaches based on superspace to construct off-shell higher-derivative supergravity invariants.
By using these techniques we can potentially improve the classification of higher-derivative
invariants in various dimensions. For instance, the new 6D curvature squared invariant completes
a piece that has been missing for three decades. The supersymmetric extension of the Gauss-
Bonnet invariant is of importance in the study of the low-energy limit of string theory and for
α′-corrected AdS/CFT tests, and might find various interesting applications. For instance, the
Einstein-Gauss-Bonnet action (5.1) possesses a supersymmetric AdS3 × S3 solution analogue of
the famous AdS5 × S5 solution in IIB string theory. Since we know the full off-shell description
of (5.1), in [31] we were able to compute the α′-corrected Kaluza-Klein spectrum of fluctuations
around AdS3 × S3 and show that it organizes in short and long multiplets of its super-isometry
group, SU(1, 1|2) × SL(2,R) × SU(2). Our results could be used to better understand the
dynamics of strings in AdS3 × S3 ×K3(T4) backgrounds and for applications to AdS/CFT.
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