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Abstract. Diffuse interface methods have recently been introduced for the task of semisuper-
vised learning. The underlying model is well known in materials science but was extended to graphs
using a Ginzburg–Landau functional and the graph Laplacian. We here generalize the previously
proposed model by a nonsmooth potential function. Additionally, we show that the diffuse interface
method can be used for the segmentation of data coming from hypergraphs. For this we show that the
graph Laplacian in almost all cases is derived from hypergraph information. Additionally, we show
that the formerly introduced hypergraph Laplacian coming from a relaxed optimization problem is
well suited to be used within the diffuse interface method. We present computational experiments
for graph and hypergraph Laplacians.
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1. Introduction. The classification of high-dimensional data on graphs is a
challenging problem in many application areas [56, 48] and several techniques have
been developed to efficiently tackle this problem. Recently, Bertozzi and Flenner
[6] have established a method for the interface of graph-based methods and partial
differential equations (PDEs). Their method, which has already been extended to
other cases (see [31, 43]), utilizes the information of the underlying graph via its
graph Laplacian and then uses diffuse interface techniques for the separation of the
given data into two classes. Diffuse interface techniques are a classical tool within
the materials science community [50, 1]. The new technique of Bertozzi and Flenner
uses an approach taken from image inpainting based on phase-field methods [5] for a
semisupervised learning problem. The use of phase-field models in image processing
has seen many contributions (cf. [24, 16]).

To further use the inpainting analogy in the semisupervised learning problem,
the known or sampled data, which are used to train the method, can be considered
the intact part of the image and we aim to restore the damaged or unknown part of
the image. This works for both segmentation into two classes for binary images or
into multiple classes for gray-valued or color images. PDE-based inpainting has been
very successful [15] and the technique introduced in [6] showed very promising results
when compared to other methods such as the 1-Laplacian inverse power method of
Hein and Bühler [33].
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GENERALIZING DIFFUSE INTERFACE METHODS ON GRAPHS 1351

Our goal in this paper is the extension of the diffuse interface technique from using
smooth potentials to the case of nonsmooth potentials as well as the introduction
of the diffuse interface approach when applied to hypergraph-based segmentation.
Nonsmooth potentials are now widely used in many materials science applications
[23, 8] and our previous work [10, 11] in image processing illustrated their importance
also for image inpainting. The incorporation of these potentials into the graph-based
approach requires the use of an additional nonlinear solver for which we propose a
semismooth Newton method [37]. Furthermore, we show that the segmentation is
not limited to two classes but extend this to the multiclass segmentation problem as
considered in [31]. Additionally, we aim at showing that the approach from [6] is so
general that the underlying structural information does not necessarily have to come
from the graph Laplacian but that the often very natural hypergraph formulation is
well suited for the combination with phase-field approaches both with smooth and
nonsmooth potentials.

We start our discussion by introducing the graph Laplacian and the computation
of some of its smallest eigenvalues. We then introduce the diffuse interface technique
introduced in [6] and extend it to the case when a nonsmooth potential is used. This is
done both for the two-classes segmentation problem as well as the multiclass segmen-
tation. We further extend the existing approaches by illustrating the applicability
of diffuse interface methods on hypergraphs. Numerical results illustrate that the
proposed methods work well on many test problems.

2. The graph Laplacian and fundamentals. We consider here an undirected
graph G = (V,E) consisting of a vertex set V = {xi}ni=1 and the edge set E [18]. Each
edge e ∈ E is a pair of nodes (xi, xj) with xi 6= xj and xi, xj ∈ V . For a weighted graph
we also have a weight function w : V × V → R with w(xi, xj) = w(xj , xi) for all i, j.
We assume further that the function is positive for existing edges and zero otherwise.
The degree of the vertex xi ∈ V is defined as

d(xi) =
∑
xj∈V

w(xi, xj).

The diagonal degree matrix D ∈ Rn,n is defined as Di,i = d(xi). Now the crucial tool
for further investigations is the graph Laplacian L which is defined via

L(xi, xj) =

{
d(xi) if xi = xj ,

−w(xi, xj) otherwise.

It is clear that we can write L = D −W with the entries of the weight matrix Wij

given by w(xi, xj). The Laplacian in this form is rarely used as typically its normalized
form [52] is employed for segmentation purposes. The normalized Laplacian is defined
by

Ls = D−1/2LD−1/2 = I −D−1/2WD−1/2,

which is a symmetric matrix. In contrast another normalized Laplacian of nonsym-
metric form is given by

Lw = D−1L = I −D−1W.

We will use the eigenvalues of the symmetric and normalized graph Laplacian for
numerical purposes later. We now discuss possibilities to compute the eigenvalues
and eigenvectors of the matrix Ls.
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1352 JESSICA BOSCH, STEFFEN KLAMT, AND MARTIN STOLL

2.1. Computing eigenvalues of the Laplacian. In practice the computation
of several small eigenvalues of a matrix is a very challenging task. For small to mod-
erate sizes the QR algorithm [32] is the method of choice for the computation of all
eigenvalues of a matrix. For the computation of a subset of the eigenvalues the Lanczos
algorithm for symmetric matrices and the Arnoldi algorithm for nonsymmetric ma-
trices are typically chosen if the matrix is large and sparse [39]. For large and sparse
graphs the Laplacian will also be large and sparse and the authors in [6, 31] suggest
a Rayleigh–Chebyshev procedure [2]. Since the matrix is semidefinite a straightfor-
ward inverse iteration cannot be employed. One could consider projection techniques
[9] and employing suitable preconditioners is possible [29]. Our goal (cf. [44]) is to
compute the k smallest eigenvalues of Ls = D−1/2LD−1/2 = I −D−1/2WD−1/2. For
this it is clear that one could also focus on the largest eigenvalues λj of the matrix
D−1/2WD−1/2 as the eigenvalues of Ls are given via 1−λj . One could use the Lanczos
method for the computation of the largest eigenvalues as this method only requires
the multiplication by the matrices D−1/2 and W . Here the dominating cost is given
by the application of W, which potentially could be a dense matrix depending on the
structure of the graph. To avoid such an expensive step a more advanced method
was proposed by Bertozzi and Flenner in [6]. They use the well-known Nyström ex-
tension [27, 28], which can work with submatrices of Ls that are of much smaller
dimension. The method operates by approximating the eigenpairs of D−1/2WD−1/2

using a quadrature rule with randomly chosen interpolation points. For simplicity, we
will rely on the Lanczos process for D−1/2WD−1/2 via the MATLAB eigs function
but recommend the use of randomized methods, such as the Nyström extension, for
large-scale graph segmentation.

2.2. Weight function. The choice of weight functions w(xi, xj) is a crucial
ingredient in the construction of the graph Laplacian. This choice will influence
the performance of the segmentation process and the speed of the algorithm. This
means that different choices of w result in different segmentation results. The graph
Laplacian will be crucially influenced by the weight matrix W . For example a sparse
matrix W will allow a much easier computation of the eigenvalues of Ls. This means
for complete graphs that the weight matrix needs to neglect certain relations between
nodes whereas sparse graphs automatically result in sparse weight matrices.

Typical choices for w(xi, xj) are the Gaussian function

(1) w(xi, xj) = exp

(
−dist(xi, xj)

2

σ

)
for some scaling parameter σ and different choices for the metric dist(xi, xj) result
in different methods. Another popular choice was introduced by Zelnik-Manor and
Perona [54] as

(2) w(xi, xj) = exp

(
− dist(xi, xj)

2√
τ(xi)τ(xj)

)
,

where τ(xi) = dist(xi, xk) and τ(xj) = dist(xj , xk) are local scalings of the weight
to the Rth nearest neighbor.1 It is clear that for the application in image processing
the distance dist(x, y) is the difference between intensities of the pixels y and x. For

1For the MATLAB codes computing the graph Laplacian we refer to http://www.vision.caltech.
edu/lihi/Demos/SelfTuningClustering.html.
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GENERALIZING DIFFUSE INTERFACE METHODS ON GRAPHS 1353

color images this will be the sum of distances within the different channels. For other
applications, e.g., machine learning, dist(xi, xj) could measure the Euclidean distance
between the corresponding feature vectors (cf. [6]) of xi and xj . We now have the
ingredients to compute the graph Laplacian as well as approximating k of its smallest
eigenvalues and introduce the diffuse interface techniques next.

3. Diffuse interface methods on graphs with nonsmooth potentials.

3.1. Diffuse interface methods. Diffuse interface methods are a classical and
versatile tool in the simulation of materials science problems such as solidification
processes [1, 14]. They are an indispensable tool for the simulation of phase separation
processes but have over time spread to various other application areas ranging from
biomembrane simulation [53] to image inpainting [5, 10].

As these methods describe the separation of a mixed medium into two or more
phases this methodology was recently extended by Bertozzi and Flenner [6]. In par-
ticular, the techniques typically formulated in an infinite-dimensional setting with dif-
ferential operators, are now used within a graph-based formulation utilizing the graph
Laplacian. The derivation of classical models such as the Allen–Cahn [1] or Cahn–
Hilliard equations [14] is typically obtained from a gradient flow of the Ginzburg–
Landau energy

(3) E(u) =

∫
ε

2
|∇u|2 dx+

∫
1

ε
ψ(u)dx,

where u is the phase field and ε the interface parameter, which is typically assumed to
be small. The function ψ(u) is a potential that forces the phase field u to take values
at either u ≈ −1 or u ≈ 1 (the pure phases). We come back to the discussion of the
choice of potential as this is one of the contributions of this paper. The minimization
of the energy E(u) follows a gradient flow, i.e.,

∂tu = −grad(E(u)).

Different choices for the gradient lead to different evolution equations for the phase
u. We here point to the well-known Allen–Cahn equation written as

∂tu = ε∆u− ε−1ψ′(u)(4)

with given initial condition u0 and zero Neumann boundary conditions. Here, ψ′(u)
is the derivative of a smooth potential

(5) ψ(u) =
1

4

(
u2 − 1

)2
.

As can be seen, the potential function has two distinct minima, one for each of the two
pure phases. Hence, its minimization penalizes values away from the pure phases. In
the case of a nonsmooth potential we obtain a variational inequality; see section 3.3.
The Allen–Cahn equation has also been used very successfully in image inpainting
[22, 40]. For this purpose (4) is modified,

∂tu = ε∆u− ε−1ψ′(u) + ω(x)(f − u),(6)

where ω(x) is a parameter that is zero in the damaged image domain D and typically
a large constant ω0 in the intact parts Ω\D. Here f is the given image that we do
not want to change in the undamaged part.
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1354 JESSICA BOSCH, STEFFEN KLAMT, AND MARTIN STOLL

3.2. Diffuse interface methods on graphs. In a very similar way, Bertozzi
and Flenner formulated the semisupervised learning problem. Here f represents the
learned data that have to be maintained throughout the evolution process, and their
model separates the domain Ω into two parts, i.e., two phases. The formulation for
the separation of a graph is inherently different from the continuous case given before
as we want to separate a set of points connected via a graph into two categories.
For this infinite-dimensional problem (4) is now defined using the description of the
underlying graph Laplacian Ls to give

(7) Es(u) =
ε

2
uTLsu+

∑
x∈V

1

ε
ψ(u(x)) + F (f, u)

with the energy contribution F (f, u) describing the fidelity term that would lead to
ω(x)(f−u) in the continuous Allen–Cahn equation. The graph Laplacian is a classical
tool used in image segmentation, typically based on the eigenvector of its first nonzero
eigenvalue [52]. The algorithm proposed here performs a segmentation of the graph
under the assumption that a small set of the nodes is already properly classified, i.e.,
a semisupervised learning method. Here, uTLsu is defined via

ε

2
uTLsu =

ε

2

∑
xi,xj

w(xi, xj)

(
u(xi)√
d(xi)

− u(xj)√
d(xj)

)2

.

Note that for the normalized graph cut described by a vector u the generalized

Rayleigh quotient uTLu
uTDu

is equivalent to the normalized cut [21, 30]. The Rayleigh
quotient is equivalent to minimizing

ũTD−1/2LD−1/2ũ

ũT ũ
=
ũTLsũ

ũT ũ
.

For the minimization of uTLu it can be seen that if u = 1 in the set A and u = −1 in
Ā one obtains

ε

2
uTLu =

ε

2

∑
xi∈A,xj∈Ā

or xi∈Ā,xj∈A

w(xi, xj)(u(xi)− u(xj))
2 =

4ε

2

∑
xi∈A,xj∈Ā

or xi∈Ā,xj∈A

w(xi, xj).

This clearly indicates that uTLu is minimal if the weights across the interface, i.e.,
in-between values from A and Ā, are minimized. For a more detailed discussion of
the comparison of diffuse interface methods to other segmentation methods such as
graph cuts and nonlocal means we refer to [6].

We are now ready to write down the corresponding modified Allen–Cahn equation
for the graph Laplacian as

(8) ut = −εLsu− ε−1ψ′(u) + ω(x)(f − u)

(see [51, 42] for details). Instead of the infinite-dimensional Laplacian this equation
is driven by the graph Laplacian, a matrix, and the potential is still assumed to be
smooth. Before discussing the details of the discretization we introduce a convexity
splitting scheme that has been used very effectively for Cahn–Hilliard and Allen–Cahn
equations with fidelity terms (see [5, 47, 25, 10]). For this the energy is split as

E(u) = E1(u)− E2(u)
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GENERALIZING DIFFUSE INTERFACE METHODS ON GRAPHS 1355

with

E1(u) =

∫
ε

2
|∇u|2 dx+

∫
c

2
|u|2 dx

and

E2(u) = −
∫

1

ε
ψ(u)dx+

∫
c

2
|u|2 dx−

∫
ω(x)

2
(f − u)2dx.

In order to guarantee the convexity of the energy terms, we require c ≥ ω0 + 1
ε ; see,

e.g., the Cahn–Hilliard case in [5, p. 287] or [13, p. 1156]. Using an implicit Euler
scheme for E1 and explicit treatment for E2 for the temporal evolution results in

u(x)− ū(x)

τ
− ε∆u(x) + cu(x) = −1

ε
ψ′(ū(x)) + cū(x) + ω(x)(f − ū(x)).

Note we did not introduce an index for the temporal discretization but rather as-
sume that all values u(x) are evaluated at the new time point whereas ū indicates the
previous time point. These equations are a model based on the infinite-dimensional
formulation but our goal is to use the graph-Laplacian-based formulation as intro-
duced in [6]. We obtain the same equations when our formulation is based on the
graph Ginzburg–Landau energy, i.e.,

u(x)− ū(x)

τ
+ εLsu(x) + cu(x) = −1

ε
ψ′(ū(x)) + cū(x) + ω(x)(f − ū(x)),

where the dimensionality of u is adjusted to the size of the graph Laplacian. Assuming
that (λj , φj) are the eigenpairs of Ls we can write u(x) =

∑m
k=1 ukφk and from this

we get

uk − ūk
τ

+ ελkuk + cuk = −1

ε
b̄k + cūk + d̄k,(9)

where b̄ = ψ′ (
∑m
k=1 ūkφk) and d̄ = ω (f −

∑m
k=1 ūkφk) . We further rewrite this to

obtain

(1 + ετλk + cτ) uk =
τ

ε
b̄k + (1 + cτ)ūk + τ d̄k.(10)

With the choice of ψ(u) = 1
4 (u2 − 1)2 we obtain the scheme introduced in [6].

3.3. Nonsmooth potentials. In classical phase-field simulations the choice of
potential function typically plays a crucial role. This goes back to the phase separation
process. Such a separation occurs if a high-temperature mixture, existing in a state
of isothermal equilibrium, is rapidly quenched to a uniform temperature θ below a
critical temperature θc. Depending on the temperature reduction, various types of the
potential function have been introduced. Originally, Cahn and Hilliard [14] suggested
a logarithmic potential (which is out of the scope of the current paper). When the
quench θ < θc is additionally shallow, i.e., θ ≈ θc, the logarithmic potential function
is usually approximated by a quartic polynomial like (5). Note that the polynomial
potential allows violations of the condition u ∈ [−1, 1]. For the deep quench limit
θ → 0, i.e., a very rapid cooling of the mixture resulting in temperatures θ � θc,
Oono and Puri [45] introduced the nonsmooth double-obstacle potential

(11) ψns(u) :=

{
1
2 (1− u2), −1 ≤ u ≤ 1,

∞, otherwise .
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As for the smooth polynomial potential, the minima of ψns are attained at ±1. How-
ever, the nonsmooth potential admits a sharper, steeper interface and does not allow
violations of the condition u ∈ [−1, 1]. Such a steep interface will reduce the width
of the region where entries are farther away from 1 and −1. This explains why the
performance is expected to be improved when using the obstacle potential as fewer
entries will lie between −1 and 1. In the nonsmooth setting, we obtain the following
modified Allen–Cahn equation

∂tu = ε∆u− 1

ε
(ψ′0(u) + µ) + ω(x)(f − u),(12)

µ ∈ ∂β[−1,1](u),(13)

−1 ≤ u ≤ 1,(14)

∂u

∂n
=
∂∆u

∂n
= 0 on ∂Ω.(15)

Here we have written ψns in (11) via the indicator function2 as

ψns(u) = ψ0(u) + I[−1,1](u)

and ψ0(u) := 1
2 (1−u2). Our problem is a variational inequality, which can be obtained

from (12)–(15) by applying the weak formulation. Variational inequalities may be
reformulated by introducing Lagrange multipliers associated with the constraints in
(14) as done, e.g., in [7]. However, they do not allow a pointwise interpretation which
complicates the numerical treatment. Motivated by Hintermüller, M. Hinze, and
Tber [36], we apply the Moreau–Yosida regularization technique which can circumvent
the treatment of the variational inequality as well as the box constraints in (14). More
precisely, we regularize the energy (3) with the Moreau–Yosida penalty term [11, 36]
and obtain

E(uν) =

∫
Ω

ε

2
|∇uν |2 +

1

ε
ψ0(uν) +

1

2ν
|max(0, uν − 1)|2 +

1

2ν
|min(0, uν + 1)|2dx

with 0 < ν � 1 being the regularization or penalty parameter. The regularization
terms 1

2ν |max(0, uν−1)|2 and 1
2ν |min(0, uν +1)|2 are introduced to be able to handle

the nonsmooth potential. The smaller ν is, the larger is the penalization for the
violation of the condition |uν | ≤ 1. Hence, the limit ν → 0 represents the original
nonsmooth problem.

Again, we consider the convexity splitting for the energy functional above and
obtain

E1(uν) =

∫
ε

2
|∇uν |2 dx+

∫
c

2
|uν |2 dx+

∫
1

2ν
|max(0, uν−1)|2+

1

2ν
|min(0, uν)|2dx

and

E2(uν) = −
∫

1

ε
ψ0(uν)dx+

∫
c

2
|uν |2 dx−

∫
ω(x)

2
(f − uν)2dx.

In order to guarantee the convexity of the energy terms, we require c ≥ ω0; see, e.g.,
the Cahn–Hilliard case in [10, p. 73]. This leads to the following evolution equation

(16)
uν − ū
τ

− ε∆uν + cuν + θν(uν) = −1

ε
ψ′0(ū) + cū+ ω(f − ū),

2Here the indicator function is zero in the indicated interval and otherwise infinity.
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GENERALIZING DIFFUSE INTERFACE METHODS ON GRAPHS 1357

where

θν(uν) :=
1

ν
max(0, uν − 1) +

1

ν
min(0, uν + 1).

As in the previous section, we did not introduce an index for the temporal discretiza-
tion but rather assume that all values uν are evaluated at the new time point whereas
ū indicates the solution at the previous time point (and does not explicitly depend on
ν). In the previous setup the nonlinearity coming from the potential term was shifted
towards the right-hand side as it was treated explicitly. In the nonsmooth setting we
obtain a nonlinear relation due to the nonsmooth relation given by θν(uν), which we
treat with the well-known semismooth Newton method [37]. For (16) written as

F (uν) =

(
c+

1

τ

)
uν − ε∆uν + θν(uν) +

1

ε
ψ′0(ū)−

(
c+

1

τ

)
ū− ω(f − ū) = 0,

the Newton system is given via

u(l+1)
ν = u(l)

ν −G(u(l)
ν )−1F (u(l)

ν ) ,

where l denotes the Newton step.
To understand the connection between the three ingredients time, regularization,

and the semismooth Newton method, let us quickly explain their functioning in the
solution method. We have three loops: First, we have the loop over time. Therein is
the second loop, which runs over the regularization parameter ν. Note that the regu-
larization technique results in an iterative way for solving the time-discrete modified
Allen–Cahn equation: For a sequence {νp}p∈N with νp → 0, we need to solve (16).
As explained above, in order to solve (16), we apply a semismooth Newton method.
Hence, inside the second loop is the third loop which is the semismooth Newton it-
eration, which runs over the Newton step l. Note that each semismooth Newton
iteration is initialized by the approximate solution of the previous one. Hence we
always work with a good initial guess and expect fast convergence of the semismooth
Newton method. We define the sets

A(uν) := {x ∈ Ω : uν > 1 or uν < −1} ,
A+(uν) := {x ∈ Ω : uν > 1} ,
A−(uν) := {x ∈ Ω : uν < −1} ,

and write down the Newton system as

G(u(l)
ν )u(l+1)

ν = G(u(l)
ν )u(l)

ν − F (u(l)
ν )(17)

= −ν−1
(
χA−(u

(l)
ν )
− χA+(u

(l)
ν )

)
1 +

(
1

ε
+ c+

1

τ

)
ū+ ω(f − ū),(18)

where G(u
(l)
ν ) := (c + 1

τ )I − ε∆ + 1
νχA(u

(l)
ν )

with I the identity operator. Again, we

have first introduced the classical problem which was previously studied in [10]. The
novelty is its extension to the graph domain. The equivalent formulation using the
graph Laplacian is given via

(19)
uν − ū
τ

+ εLsuν + cuν + θν(uν) = −1

ε
ψ′0(ū) + cū+ ω(f − ū),
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and we obtain the Newton system

G(u(l)
ν )u(l+1)

ν = −ν−1
(
χA−(u

(l)
ν )
− χA+(u

(l)
ν )

)
1 +

(
1

ε
+ c+

1

τ

)
ū + ω(f − ū),

where G(u
(l)
ν ) := (c+ 1

τ )I+εLs+ 1
νχA(u

(l)
ν )

with I the identity matrix. In the following

we drop the index ν. This Newton system is the equivalent to the infinite-dimensional
Newton system and in a Galerkin fashion we assume u(l) =

∑m
k=1 uk,lφk = Φu(l) with

a small number k of terms chosen as the projection basis. This results in the projected
system

(20) ΦTG(u(l))Φu(l+1) = −1

ν
ΦT
(
χA−(u(l)) − χA+(u(l))

)
1

+

(
1

ε
+ c+

1

τ

)
ΦTΦū + ΦTω(f − Φū).

Here the crucial operator becomes

ΦTG(u(l))Φ =

(
c+

1

τ

)
I + εΛ +

1

ν
ΦTχA(u(l))Φ,

where Λ is the diagonal matrix containing the k eigenvalues used in the approximation.
It is clear that (20) requires the solution of a small k × k linear system for which we
use the CG method [35] or use a direct solver based on a factorization of the matrix.

4. Diffuse interface methods on graphs—the vector-valued case.

4.1. Vector-valued smooth diffuse interface methods. Section 3 was de-
voted to scalar diffuse interface models on graphs. In this section, we present their
generalization to the vector-valued case. This can then be used for the multiclass
segmentation problem.

In practice, often more than two components occur (see, e.g., the biomembrane
simulation [53], image inpainting of gray value images [11]) and, thus, diffuse interface
models have been extended to deal with multicomponent systems. The Ginzburg–
Landau energy for two components in (3) generalizes to

(21) E(u) =

∫
ε

2

K∑
i=1

|∇ui|2dx+

∫
1

ε
ψ(u)dx

for K > 2 components. Here, u = (u1, . . . , uK)T is now the vector-valued phase
field, and the potential function ψ(u) has K distinct minima instead of two. This
section deals with smooth potentials, and the smooth potential in the scalar case
generalizes to the vector-valued case as ψ(u) = 1

4

∑K
i=1 u

2
i (1− ui)2. We come back to

the discussion of nonsmooth potentials in section 4.2.
Recently, Garcia-Cardona et al. [31] as well as Merkurjev et al. [43] have extended

these continuous models to the graph domain. In the following, we summarize their
approach. As before, n is the number of data points. We introduce the matrix
U = (u1, . . . ,un)T ∈ Rn,K . Here, the kth component of ui ∈ RK is the strength for
data point i to belong to class k. For each node i, the vector ui has to be an element
of the Gibbs simplex ΣK ,

ΣK :=

{
(x1, . . . , xK)T ∈ [0, 1]K

∣∣∣∣∣
K∑
k=1

xk = 1

}
.
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The Ginzburg–Landau energy functional on graphs in (7) generalizes to the mul-
ticlass case as

(22) E(U) =
ε

2
〈U,LsU〉+

1

ε
ψ(U) + F (Û , U).

Here,

〈U,LsU〉 = trace
(
UTLsU

)
measures variations in the vector field, the potential term

(23) ψ(U) =
1

2

∑
i∈V

(
K∏
k=1

1

4
‖ui − ek‖2L1

)

drives the system closer to the pure phases, and the fidelity term

F (Û , U) =
∑
i∈V

ωi
2
‖ûi − ui‖2L2

enables the encoding of a priori information with Û = (û1, . . . , ûn)T representing the
learned data. In the potential term, ek ∈ RK is the vector whose kth component
equals one and all other components vanish. The vectors e1, . . . , eK correspond to
the pure phases. Note that the authors [31, 43] use an L1-norm for the potential
term as it prevents an undesirable local minimum from occurring at the center of the
simplex, as would be the case with an L2-norm for large K. As in the scalar case, ωi
is a parameter that takes the value of a positive constant ω0 if i is a fidelity node and
zero otherwise.

As in section 3, the authors use a convexity splitting scheme to minimize the
Ginzburg–Landau functional in the phase-field approach. For this, the energy (22) is
split as

E(U) = E1(U)− E2(U)

with

E1(U) =
ε

2
〈U,LsU〉+

c

2
〈U,U〉

and

E2(U) = −1

ε
ψ(U)− F (Û , U) +

c

2
〈U,U〉.

In order to guarantee the convexity of the energy terms, we require c ≥ ω0 + 1
ε ; see

[31, p. 6]. The convexity splitting scheme results in

(24)
U − Ū
τ

+ εLsU + cU = − 1

2ε
T (Ū) + cŪ + Π(Û − Ū),

where the elements Tik of the matrix T (Ū) are given as

Tik =

K∑
l=1

1

2
(1− 2δkl) ‖ūi − el‖L1

K∏
m=1,m 6=l

1

4
‖ūi − em‖2L1

and Π is a diagonal matrix with elements ωi. Again, we assume that all values U
are evaluated at the new time point whereas Ū indicates the previous time point.
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Multiplying (24) by ΦT from the left and using the eigendecomposition Ls = ΦΛΦT ,
we obtain

(25) U = B−1
[
(1 + cτ)Ū − τ

2ε
ΦTT (Ū) + τΦTΠ(Û − Ū)

]
,

where all calligraphic fonts have the meaning U = ΦTU . Since B = (1 + cτ)I + ετΛ
is a diagonal matrix with positive entries, its inverse is easy to apply.

After the update, we have to project the solution back to the Gibbs simplex
ΣK . In order to do this, we make use of the projection procedure in [17]. For the
initialization of the segmentation problem, we first assign random values from the
standard uniform distribution on (0, 1) to the nodes. Then, we project the result to
the Gibbs simplex ΣK and set the values in the fidelity points to the pure phases.
Here, we finish the presentation of the model proposed in [31, 43]. Next, we extend
this approach to the use of nonsmooth potentials.

4.2. Vector-valued nonsmooth diffuse interface methods. In this section,
we extend the approach above to the use of nonsmooth potentials. We start with the
continuous setting. The potential function in (21) is now given as

(26) ψ(u) =

{
ψ0(u) u ∈ ΣK ,
∞, otherwise,

where the smooth part is given as ψ0(u) = − 1
2u · Tnsu. Here, Tns ∈ RK,K is a sym-

metric matrix, which contains constant interaction parameters Tnsij . From physical
considerations, Tns must have at least one positive eigenvalue, namely, ψ(u) should
have more than one local minimum. The assumption was made in the existing lit-
erature; see, e.g., [4, 3, 12], and goes back to the analysis in [20]. A typical choice
is Tns = I − 11T with 1 = (1, . . . , 1)T ∈ RK and the identity matrix I ∈ RK,K ,
which means that the interaction between all different components is equal and no
self-interaction occurs. In the numerical examples, we work with this choice of Tns.

As before in the scalar case, we propose to regularize the energy with a Moreau–
Yosida penalty term and obtain

(27) E(uν) =

∫
ε

2

K∑
i=1

|∇uν,i|2 +
1

ε
ψ0(uν) +

1

2ν

K∑
i=1

|min(0, uν,i)|2dx.

Here, ν is again the penalty parameter. Applying the convexity splitting scheme
to (27) in the same way as in the nonsmooth scalar case, we obtain the following
time-discrete scheme

uν,i − ūi
τ

− ε∆uν,i + cuν,i + θν(uν,i) =
1

ε
(Tnsū)i + cūi + ω(x)(ûi − ūi)(28)

for i = 1, . . . ,K, where

θν(uν,i) :=
1

ν
min(0, uν,i).

In order to guarantee the convexity of the energy terms, we require c ≥ ω0, similarly
to the previous cases.

Next, if we write (28) in the form Fi(uν,i) = 0 for i = 1, . . . ,K, the semismooth
Newton system

u
(l+1)
ν,i = u

(l)
ν,i −Gi(u

(l)
ν,i)
−1Fi(u

(l)
ν,i)
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is given as

Gi(u
(l)
ν,i)u

(l+1)
ν,i =

(
c+

1

τ

)
ūi +

1

ε
(Tnsū)i + ω(ûi − ūi),

where Gi(u
(l)
ν,i) := (c+ 1

τ )I − ε∆ + 1
νχA(u

(l)
ν,i)

with

A(u
(l)
ν,i) := {x ∈ Ω: u

(l)
ν,i(x) < 0}.

This is the classical problem formulation. In the graph domain, (28) reads

(29)
uν,i − ūi

τ
+ εLsuν,i + cuν,i + θν(uν,i) =

1

ε

(
TnsŪT

)
i

+ cūi + Π(ûi − ūi)

for i = 1, . . . ,K, where Ū = (ū1, . . . , ūK) ∈ Rn,K similarly to the previous section,

(
TnsŪT

)
i

= −
K∑

j=1,j 6=i

ūj ,

and Π is a diagonal matrix with elements ωi. The resulting Newton system is given
as

(30) Gi(u
(l)
ν,i)u

(l+1)
ν,i =

(
c+

1

τ

)
ūi +

1

ε

(
TnsŪT

)
i
+ Π(ûi − ūi),

where Gi(u
(l)
ν,i) := (c + 1

τ )I + εLs + 1
νχA(u

(l)
ν,i)

. Multiplying (30) by ΦT from the left

and using the eigendecomposition Ls = ΦΛΦT , we obtain

Gi(u
(l)
ν,i)U

(l+1)
ν,i =

(
c+

1

τ

)
Ūi +

1

ε
ΦT (TnsŪT )i + ΦTΠ(ûi − ūi),

where Gi(u
(l)
ν,i) := (c + 1

τ )I + εΛ + 1
νΦTχA(u

(l)
ν,i)

Φ and all calligraphic fonts have the

meaning U = ΦTu. Since this requires the solution of a small k× k linear system, we
make use of the MATLAB backslash command.

Finally, after each time step, we project the solution back to the Gibbs simplex
ΣK using the procedure in [17].

As highlighted for the scalar case in section 3.3, the performance is expected to be
improved when using the obstacle potential. In the vector-valued graph domain case,
however, the different effects between smooth and nonsmooth potentials are blurred
due to two modifications: First, note that we replace the L2-norm in the classical
smooth potential by the L1-norm (see (23)) as suggested in [31, 43]. Second, in both
models, smooth and nonsmooth, we project the solutions back to the Gibbs simplex,
which further blurs the different effects of both potential functions. Note that there
is a projection in the scalar case as well: If u denotes the approximate solution in the
scalar case, the final segmentation is given by sign(u). So we do one projection at the
very end. However, we believe this projection is less significant than the ones in the
vector-valued case, since here we need to do a projection in each time step.

Here, we finish the discussion about diffuse interface methods on graphs. Next,
we introduce the diffuse interface approach when applied to hypergraph-based seg-
mentation.
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5. Hypergraphs and Laplacians. In this section, we want to show how to
generalize the beforementioned methodology to the case of hypergraphs.

A hypergraph is considered as G = (V,E) with V = ∪{xi} a family of objects
and E a family of subsets e of V such that ∪e∈E e = V. We call V the vertices and
E the hyperedge set of G. If a weight w(e) is associated with each hyperedge then
the hypergraph is called weighted. We can also define the degree d(xj) as d(xj) =∑
{e∈E:xj∈e} w(e). Also the edge in a hypergraph has a degree which is simply δ(e) =

|e| . The matrix H ∈ R|V |,|E| is the incidence matrix of the hypergraph where the rows
correspond to the vertices and the columns to the hyperedges. In most applications,
the entry Hi,j is equal to one if the vertex xi is contained in the set that defines the
hyperedge j, otherwise the entries are set to zero. In all our applications, the set of
hyperedges is generated based on the different attributes that describe the problem.
For the zoo dataset we create several hyperedges where all animals with the same
number of legs are in the same hyperedge. The matrices DV and DE are diagonal
matrices containing the degrees of the vertices and hyperedges, respectively. And the
diagonal matrix WH is the weight matrix containing the weights of the hyperedges.
One can then define the adjacency matrix HWHH

T −DV , where we later use WH as
the identity matrix.

One might now wonder why the introduction of a hypergraph is a useful concept
in the segmentation of data. Previous work explicitly using hypergraphs is given
in [55, 34]. We here want to point out that in fact most real-world examples are
initially represented via hypergraphs be it the image segmentation mentioned earlier
where each vertex, i.e., pixel, has an associated vector of RGB values or the congress
voting records used in [6] where for each congressman the voting record is stored in a
feature vector. Since the incidence matrix of the hypergraph is typically not square,
in order to use the graph Laplacian the structure has to be transformed into a graph
to represent pairwise relationships. One can obtain a classical graph Laplacian if one
creates edges between all vertices that are contained in a hyperedge; in this way the
square weight matrix W from (1) can be obtained.

This means that in principle the methodology introduced earlier already takes
hypergraph information that is then projected onto a simple graph where the infor-
mation from the hyperedges is projected into the weight matrix W .

We here use the representation not as pairwise relationships but through the
hypergraph Laplacian introduced in [55]. This approach is based on a relaxed problem
that one considers instead of the NP-hard cut problem. In more detail, one typically
considers a relaxed optimization problem (cf. [55])

argminu∈R|V |
1

2

∑
e∈E

∑
{xi,xj}⊆e

w(e)

δ(e)

(
u(xi)√
d(xi)

− u(xj)√
d(xj)

)2

(31)

subject to ∑
xj∈V

f(xj)
2 = 1,

∑
xj∈V

u(xj)
√
d(xj) = 0.(32)

Defining the matrices Θ = D
−1/2
V HWHD

−1
E HTD

−1/2
V and Ls = I −Θ, it was shown

in [55] that

∑
e∈E

∑
{xi,xj}⊆e

w(e)

δ(e)

(
u(xi)√
d(xi)

− u(xj)√
d(xj)

)2

= uTLsu.(33)
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It is clear, due to W and DE being diagonal matrices, that the matrix Ls is symmetric,
and the definiteness follows from (33). If u = 1 in the set A and u = −1 in Ā, one
obtains for {xi, xj} ⊆ e

uTLsu =
∑
e∈E


∑

xi∈A,xj∈Ā
or

xi∈Ā,xj∈A

w(e)

δ(e)

(
1√
d(xi)

+
1√
d(xj)

)2

(34)

+
∑
xi∈A,
xj∈A

w(e)

δ(e)

(
1√
d(xi)

− 1√
d(xj)

)2

(35)

+
∑
xi∈Ā,
xj∈Ā

w(e)

δ(e)

(
−1√
d(xi)

+
1√
d(xj)

)2

 .(36)

The last equation motivates the use of the diffuse interface approach, as assuming
that the degrees of the vertices are similar implies that (34) is the dominating term.
This means using the hypergraph Laplacian for uTLsu. Minimizing this quantity
is achieved if the weights across the interface, i.e., w(e) in the first summand, are
minimal. We hence use the hypergraph Laplacian in the same way as the graph
Laplacian for the segmentation of the vertices and run all diffuse interface models
with the eigenvectors and eigenvalues of the hypergraph Laplacian instead of the
graph Laplacian that could also be derived from hypergraph information.

6. Numerical experiments. The aim is to show that the methods introduced
in this paper are effective and we chose to compare the smooth and nonsmooth po-
tential version of the diffuse interface method for graph-based and hypergraph-based
problems. Our goal is to illustrate the performance of the method for several exam-
ples, namely, mushroom, zoo, and student performance, from the UCI database [41]
as well as a structural image. We mostly compare our methodology to the popular
method introduced by Bertozzi and Flenner. The authors in [6] compare the dif-
fuse interface approach to many other techniques such as the p-Laplacian [49] with a
favorable outcome for their approach.

The computation of the eigenvalues is based on eigs from MATLAB, which uses
the Lanczos process for D−1/2WD−1/2 in the graph case and for Θ in the hypergraph
Laplacian. The results presented here are snapshots of a high-dimensional space of
parameters that can be chosen and we want to illustrate the performance with respect
to varying these parameters. Such parameters include the interface parameter ε, the
number k of eigenvalues for the Laplacian, the convexity splitting parameter c, the
(pseudo)-time-step of the Allen–Cahn equation τ, as well as the correct stopping
tolerance. One of the crucial questions is also the performance of the algorithms with
respect to changes in the number of known or learned data.

Regarding the computational costs for solving the smooth versus the nonsmooth
model, it is clear that the first one outperforms the latter. In the smooth case, we need
to apply the inverse of one diagonal k × k matrix per time step. In the nonsmooth
case, we have two additional loops within each time step: These are first a loop over
the regularization parameter ν. More precisely, we solve for a sequence {νp}p∈N with
νp → 0. Inside the regularization loop is the semismooth Newton iteration, which
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(a) Original image. (b) Solution of the smooth
model.

(c) Solution of the nonsmooth
model.

(d) Initial learned image. (e) Final segmentation using
the smooth model.

(f) Final segmentation using
the nonsmooth model.

Fig. 1. Scalar image segmentation.

runs over the Newton step l. Hence, in the nonsmooth case, we need to apply the
inverse of at most qmax · lmax nondiagonal k × k matrices per time step, where qmax

denotes the length of the regularization parameter sequence and lmax the maximum
number of Newton steps. While the computations become more expensive due to the
nonlinearity that is treated with the semismooth Newton scheme, the examples in
many cases below show that the segmentation results are better with the nonsmooth
model.

6.1. Graph Laplacian. Graph-based segmentation has been used for both UCI
datasets [41] and image-based segmentation. We start with the scalar case for both a
point set and an imaging problem. We later extend this to the multiclass segmenta-
tion.

Scalar segmentation. The first test we perform is based on the 65× 65 image
given in Figure 1(a). This image consists of two colors—here given by dark blue and
yellow. The learned information of the image used as the initial state for the smooth
and nonsmooth models is shown in Figure 1(d). The known image information is given
by one pixel in the dark blue part and three pixels in the yellow part. Hence, the
known image information constitutes only 0.0947 % of the whole image. The solution
u of the smooth model is presented in Figure 1(b), while Figure 1(e) illustrates the
final segmentation sign(u). The two corresponding results using the nonsmooth model
are given in Figures 1(c) and 1(f). The chosen parameters are given as ω0 = 1, ε = 0.5,
τ = 0.01, ν = 10−7, c = 2ε−1 + ω0, R = 21, and k = 5. Here, R is the local scale
for the graph Laplacian computation as used in (2), k the number of eigenvalues.
The computation of the eigenvalues is based on svds from MATLAB. As stopping
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criterion for the smooth and nonsmooth models, we use

(37)
‖u− ū‖
‖ū‖

≤ εtol,

where we set εtol = 10−6, and we fix the maximum number of time steps to tmax =
500. Note that for the nonsmooth model, we fix a sequence of penalty parameters
{νq}q∈N with νq → 0, and in each time step, we solve the problem F (uνq ) = 0 for
q = 1, . . . , qmax via a semismooth Newton method. In all examples, we use ν1 =
10−1 ≥ ν2 = 10−2 ≥ · · · ≥ νqmax = 10−7. Each semismooth Newton method is
initialized by the approximate solution of the previous one. As stopping criterion for
the semismooth Newton method, we use

(38) ‖F (u(l+1))‖ ≤ εrel‖F (u(0))‖+ εabs, l = 1, . . . , lmax,

where we set lmax = 20, εrel = 10−12, and εabs = 10−6. Finally, we solve the k×k sys-
tems of linear equations arising in each semismooth Newton step with the MATLAB
backslash command.

The smooth model stops after tmax = 500 time steps with ‖u−ū‖
‖ū‖ = 7.9 · 10−4.

The CPU time is 0.6 s and the minimum and maximum value of the solution are
−1.223427 and 1.335510. The nonsmooth model stops after tmax = 500 time steps

with ‖u−ū‖‖ū‖ = 8.4 · 10−3. The CPU time is 16.3 s and the minimum and maximum

value of the solution are −1.000347 and 1.000110. We observe that the concentrations
stay closer within the interval [−1, 1] when the nonsmooth potential is used. Moreover,
we clearly see from Figures 1(b)–1(f) that the segmentation using the smooth model
is either unsuccessful or has not finished after 500 time steps. We will investigate
this issue shortly after introducing our measure of quality. In order to evaluate the
quality of segmentation, we use misclassification. The number of misclassified pixels
is 996 using the smooth model (Figure 1(e)) and zero using the nonsmooth model
(Figure 1(f)). Now, we discuss the above-mentioned issue that the smooth model
is either unsuccessful or has not finished after 500 time steps. We repeat the same
simulation for the smooth model with tmax = 5000 and εtol = 10−14: The simulation
stops after 1817 time steps and a CPU time of 2.9 s with ‖u−ū‖‖ū‖ = 9.8 ·10−15 and 1024

misclassified pixels. Hence, the segmentation using the smooth model is unsuccessful
with the used parameter set.

Next, we show the effect of varying different parameters for the image example
given above. Each plot in Figure 2 shows the mean of the number of misclassified pix-
els which were calculated for 10 runs with randomly chosen samples. In Figures 2(a)
and 2(b), we vary the number of given sample points3 nsample and the number of
eigenvalues k for the smooth and nonsmooth model. For both models, the segmenta-
tion performance increases with an increasing number of classified samples nsample.
We observe in the smooth case that if we reduce nsample, then k should be reduced
as well. This effect occurs in the nonsmooth case only for the lower range of nsample.
The difference of both results is illustrated in Figures 3(a). Negative values indicate
that the nonsmooth potential performed better. Except for the case of small values
of k and large values of nsample, the nonsmooth model outperforms the smooth one.
In Figures 2(c) and 2(d), we vary the number of eigenvalues k and the distance R
which was a local scale for the graph Laplacian computation, for the smooth and

3As we know the classification beforehand we randomly sample points with known classification.
The sample points here represent the learned or known data.
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the smooth model.

0
50

100

0
50

100

0

1,000

2,000

nsamplek

(b) Mean of the misclassification us-
ing the nonsmooth model.

0

50

100 0
20

40

0

1,000

2,000

k R

(c) Mean of the misclassification
using the smooth model.

0

50

100 0
20

40

0

1,000

2,000

k R

(d) Mean of the misclassifi-
cation using the nonsmooth
model.

10−4
10−1

102
101

103
105

0

500

εω0

(e) Mean of the misclassification
using the smooth model.

10−4
10−1

102
101

103
105

0

500

εω0

(f) Mean of the misclassification
using the nonsmooth model.

100
101

102
10−5

100

105

0

200

400

600

nsampleε

(g) Mean of the misclassification
using the smooth model.

100
101

102
10−5

100

105

0

200

400

600

nsampleε
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using the nonsmooth model.

Fig. 2. Comparison of the smooth and nonsmooth models: The mean of the number of mis-
classified pixels for the smooth (left column) and nonsmooth (right column) models for varying
parameters. For each (x, y) pair, we have taken 10 runs with randomly chosen samples.
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(a) Difference of the results in Figures
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Fig. 3. The differences between the mean for the smooth and nonsmooth models with respect
to the results in Figure 2. Negative values indicate that the nonsmooth potential performed better.

nonsmooth models. For both models, the segmentation performance increases as R
increases. Small values of k give better results with the nonsmooth model. The differ-
ence of both results is illustrated in Figures 3(b). In almost every case, the nonsmooth
model outperforms the smooth one. In Figures 2(e) and 2(f), we vary the interface
parameter ε and the fidelity parameter ω0 for the smooth and nonsmooth models. For
both models, the segmentation performance increases as ε decreases. The difference
of both results is illustrated in Figure 3(c). In most cases, the nonsmooth model out-
performs the smooth one. In Figures 2(g) and 2(h), we vary the interface parameter ε
and the number of given sample points nsample for the smooth and nonsmooth model.
For both models, the segmentation performance increases as nsample increases. For a
small number of nsample, the smooth model performs not so well, but seems to get
better for a decreasing ε. In contrast, the nonsmooth model performs well for a small
number of nsample when ε is small. The difference of both results is illustrated in
Figure 3(d). In most cases, the nonsmooth model outperforms the smooth one.

Next, we consider a problem with a point set. If not mentioned otherwise, we
use the same parameters and stopping criterion as in the previous example. The test
is based on the point set given in Figure 4(a), which consists of 3000 data points in
total. We have two kinds of points, the red ones and the blue ones, whereby each
class contains 1500 points. The damaged data set used as the initial state for the
smooth and nonsmooth models is shown in Figure 4(b). The known information is
given by 10 data points for each class. Hence, the known data information constitutes
only 0.6667 % of the whole data set. The final segmentation using the smooth and
nonsmooth models is presented in Figures 4(c) and 4(d), respectively. The chosen
parameters are given as ω0 = 1, ε = 0.5, τ = 0.01, ν = 10−7, c = 3ε−1 + ω0, R = 9,
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Fig. 4: Segmentation of a point set into two classes.

in k. For the mean we have taken 10 runs with randomly chosen samples. Figure 7 also645
shows the difference in the means between the non-smooth and the smooth potential.646
It can be seen that for sufficient information with larger sample and eigenvalues size647
the difference is negligible but for smaller values of nsample the non-smooth potential648
performs better for increasing values of k than the smooth potential. The chosen649
values are ω0 = 10000, ν = 10−7, ε = 101, τ = 0.1, and c = (2/ε) + ω0.650

6.2. Hypergraph Laplacian. We now want to present results for our approach651
regarding hypergraphs where both, the case of a smooth and non-smooth potential,652
are tested. The case for hypergraph-based classification was made by [55] and [34].653

Scalar segmentation. We here focus our attention on two datasets. The first654
dataset is the so-called mushroom dataset5 as introduced by Schlimmer [46, 41]. The655
dataset includes descriptions of hypothetical samples species of mushrooms. The656
goal is to identify each species as edible or non-edible. The latter includes definitely657
poisonous, unknown edibility, and not recommended. There is no simple or at least658
safe rule to determine which class a mushroom belongs to. The dataset we used659
contains 4062 mushroom species with 21 attributes, e.g. one attribute is the cap660
shape with the attribute values bell, conical, flat, knobbed and sunken. Similar to661
[55] we create a hyperedge whenever one or more species share the same value of662
a particular attribute. We simply set the entries in the corresponding column in663
H to 1. Based on this adjacency matrix and a weight vector with constant weight664
one we obtain the hypergraph Laplacian Ls. For the computation of the hypergraph665

5We obtain a MATLAB version of the data from http://people.whitman.edu/~hundledr/courses/
M350F14/M350/mushrooms.mat.

This manuscript is for review purposes only.

(a) Original point set.

20 JESSICA BOSCH, STEFFEN KLAMT, AND MARTIN STOLL

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Original point set.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) Initial damaged point set.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(c) Final segmentation using the smooth
model.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(d) Final segmentation using the non-
smooth model.

Fig. 4: Segmentation of a point set into two classes.
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poisonous, unknown edibility, and not recommended. There is no simple or at least658
safe rule to determine which class a mushroom belongs to. The dataset we used659
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shape with the attribute values bell, conical, flat, knobbed and sunken. Similar to661
[55] we create a hyperedge whenever one or more species share the same value of662
a particular attribute. We simply set the entries in the corresponding column in663
H to 1. Based on this adjacency matrix and a weight vector with constant weight664
one we obtain the hypergraph Laplacian Ls. For the computation of the hypergraph665
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(d) Final segmentation using the nons-
mooth model.

Fig. 4. Segmentation of a point set into two classes.

k = 15, and tmax = 400. The smooth model was not able to correctly classify the
area around (−0.75,−0.6). This is exactly the area of a large gap in the initial data,
as seen in Figure 4(b).

Next, we show the effect of varying different parameters for the 3000 data point
set given above. Each plot in Figure 5 shows the mean of the number of misclas-
sified points which were calculated for 10 runs with randomly chosen samples. In
Figures 5(a) and 5(b), we vary the number of given sample points nsample and the
number of eigenvalues k for the smooth and nonsmooth models. For both models, the
segmentation performance increases as nsample increases. For small values of nsample,
the nonsmooth model performs better, whereas the smooth model gives better results
for larger values of the pair (nsample, k). This can be seen in Figure 6(a), which shows
the difference of both results. Negative values indicate that the nonsmooth potential
performed better. In Figures 5(c) and 5(d), we vary the number of eigenvalues k
and the distance R for the smooth and nonsmooth models. For both models, the
segmentation performance is the best for k = 10. The difference of both results is
illustrated in Figure 6(b). In almost every case, the nonsmooth model outperforms
the smooth one. In Figures 5(e) and 5(f), we vary the interface parameter ε and
the fidelity parameter ω0 for the smooth and nonsmooth models. For both models,
the segmentation performance increases as ε and ω0 increase. The difference of both
results is illustrated in Figure 6(c). Both models behave mostly similarly. For small
values of ε and ω0, the nonsmooth model performs better. In Figures 5(g) and 5(h),
we vary the interface parameter ε and the number of given sample points nsample for
the smooth and nonsmooth models. For both models, the segmentation performance
increases as ε increases. The difference of both results is illustrated in Figure 6(d).
The nonsmooth model tends to have fewer misclassifications compared to the smooth
model for small values of ε.
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Fig. 5. Comparison of the smooth and nonsmooth models: The mean of the misclassification
for the smooth (left column) and nonsmooth (right column) models for varying parameters. For
each (x, y) pair, we have taken 10 runs with randomly chosen samples.
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Fig. 6. The differences between the mean for the smooth and nonsmooth models with respect
to the results in Figure 5. Negative values indicate that the nonsmooth potential performed better.

Multiclass segmentation. We show in Figure 7 the results for a segmentation
problem into four classes into the four corners.4 We here vary the number of used
eigenvalues of the graph Laplacian as well as the number of samples. We uniformly
take the values nsample = 5, 10, . . . , 50 and k = 5, 10, . . . , 50. It can be seen that with
an increase in the number of both nsample and k the misclassification is dramatically
reduced. Here the one axis shows the variation in nsample and the other the variation
in k. For the mean we have taken 10 runs with randomly chosen samples. Figure 7 also
shows the difference in the means between the nonsmooth and the smooth potentials.
It can be seen that for sufficient information with larger sample and eigenvalues size
the difference is negligible but for smaller values of nsample the nonsmooth potential
performs better for increasing values of k than the smooth potential. The chosen
values are ω0 = 10000, ν = 10−7, ε = 101, τ = 0.1, and c = (2/ε) + ω0.

6.2. Hypergraph Laplacian. We now want to present results for our approach
regarding hypergraphs where both, the cases of a smooth and nonsmooth potential,
are tested. The case for hypergraph-based classification was made by [55] and [34].

Scalar segmentation. We here focus our attention on two datasets. The first
dataset is the so-called mushroom dataset5 as introduced by Schlimmer [46, 41]. The

4The data are generated using the MATLAB code http://de.mathworks.com/matlabcentral/
fileexchange/41459-6-functions-for-generating-artificial-datasets.

5We obtain a MATLAB version of the data from http://people.whitman.edu/∼hundledr/courses/
M350F14/M350/mushrooms.mat.
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Fig. 7: Comparison of the smooth (a) and non-smooth (b) potential. In total 2000
points are segmented into 4 clusters with 15 given sample points for each cluster.
With R = 9 and the number of used eigenvalues at 55 we obtained 109 misclassified
points in the non-smooth case and 137 in the smooth case. The difference between the
mean for non-smooth (d) and smooth (c) potential is shown in (e). Negative values
indicate that the non-smooth potential performed better.

In Figure 9, we show the performance of solving (39) for two values of λ as well as the677
solution of the smooth Allen–Cahn equation for two different number of eigenvalues678
used to approximate Ls. We show the misclassification averaged over 10 runs as well as679
the standard deviation. The cost of the scheme given in (39) is the solution of a linear680
system with Ls, which is more expensive than the proximal maps based approaches681
given in [34]. The second example is also taken from the UCI machine learning682
repository [41] and is the so-called student performance data set as introduced in683
[19]. The data is given for 395 students with attributes ranging from family size684
to the job of the parents. All in all 30 attributes are given with three additional685

This manuscript is for review purposes only.

Fig. 7. Comparison of the smooth (a) and nonsmooth (b) potentials. In total, 2000 points are
segmented into 4 clusters with 15 given sample points for each cluster. With R = 9 and the number
of used eigenvalues at 55 we obtained 109 misclassified points in the nonsmooth case and 137 in
the smooth case. The difference between the mean for nonsmooth (d) and smooth (c) potentials is
shown in (e). Negative values indicate that the nonsmooth potential performed better.

dataset includes descriptions of hypothetical sample species of mushrooms. The goal is
to identify each species as edible or nonedible. The latter includes definitely poisonous,
unknown edibility, and not recommended. There is no simple or at least safe rule
to determine which class a mushroom belongs to. The dataset we used contains
4062 mushroom species with 21 attributes, e.g., one attribute is the cap shape with
the attribute values bell, conical, flat, knobbed, and sunken. Similarly to [55] we
create a hyperedge whenever one or more species share the same value of a particular
attribute. We simply set the entries in the corresponding column in H to 1. Based
on this adjacency matrix and a weight vector with constant weight one we obtain
the hypergraph Laplacian Ls. For the computation of the hypergraph Laplacian6 we
use the MATLAB functions based on [34]. The results shown in Figure 8 illustrate

6The MATLAB code is given under http://www.ml.uni-saarland.de/code/hypergraph/
hypergraphcut.zip.
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(a) nsample = 2, . . . , 20 and
ε = 10−1.
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(b) nsample = 40, . . . , 60 and
ε = 100.
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(c) nsample = 80, . . . , 100 and ε = 100.

Fig. 8. Comparison of the misclassification of the smooth (a) and nonsmooth (b) potentials
for the mushroom hypergraph example. We vary the number of sample points and see that for both
schemes the results behave similarly and the misclassification reduces. Here the y-axis shows the
number of misclassified points while the x-axis shows the number of samples.

that our approach utilizing the hypergraph Laplacian allows for a solution to the
segmentation problem. The performance both for the smooth and the nonsmooth
potentials gets better with an increasing number of samples. The difference between
both is almost negligible even though the nonsmooth potential gives slightly better
results for small sample sizes but at a higher cost due to the nonlinear iteration at its
core. The parameters for both methods are chosen as ω0 = 105, τ = 0.1 c = (3/ε)+ω0,
and ν = 10−3.

Additionally, we employ the semisupervised learning technique used in [34] based
on the hypergraph Laplacian [55] where we minimize the function

(39) argminu
1

2
‖u− f‖22 +

λ

2
uTLsu,

where f is a vector containing the known information just as in the modified Allen–
Cahn case. In [34] the authors introduce methods based on proximal mappings that
we do not discuss here. We compare here only to the basic approach for solving (39)
by solving the system

(I + λLs)u = f.

In Figure 9, we show the performance of solving (39) for two values of λ as well as the
solution of the smooth Allen–Cahn equation for two different numbers of eigenvalues
used to approximate Ls. We show the misclassification averaged over 10 runs as well as
the standard deviation. The cost of the scheme given in (39) is the solution of a linear
system with Ls, which is more expensive than the proximal-maps-based approaches
given in [34]. The second example is also taken from the UCI machine learning
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200

300

400

500

Zhou λ = 10−4

GL k = 5

Zhou λ = 10−6

GL k = 35

Fig. 9. The number of misclassified points for the mushroom dataset. We use two values of
λ for the traditional approach (labeled Zhou)7 and vary the number of eigenvectors for the Allen–
Cahn equation with smooth potential (labeled GL). Dashed lines indicate the standard deviation of
the corresponding experiments. Here the y-axis shows the number of misclassified points while the
x-axis shows the number of eigenvectors used.

repository [41] and is the so-called student performance data set as introduced in
[19]. The data are given for 395 students with attributes ranging from family size
to the job of the parents. All in all 30 attributes are given with three additional
columns noting the grades for the first period, the second period, and the final grade.
We follow the approach given in [19] where these three performance values can be
considered as attributes and hence are embedded into the hypergraph. Again for all
30 attributes one or more pupils share a hyperedge whenever they share an attribute
value. Additionally, we include hyperedges for the pupils with the same grades based
on the first and/or second period. We always run 5 tests for each scenario and show the
mean in Figure 10. The parameters for this example are given via ω0 = 108, ε = 10−2,
τ = 0.1, c = (3/ε) + ω0, and ν = 10−6. We here classify with respect to the third
performance value. The first class is generated for values of the third performance
index being less than 10 and the second class for all values greater or equal to 10.
We also show the difference in the eigenvalues of the hypergraph Laplacian and the
graph Laplacian using a weight matrix W . In order to generate the matrix W we take
the feature vector for each of the 395 pupils and use (1). In Figure 11 we show the
smallest nonzero eigenvalues of the two Laplacians as well as the misclassification for
both the hypergraph and the graph applied to the school example. The parameters
are set to ω0 = 108, ε = 10−2, τ = 0.1, c = (3/ε) + ω0, and ν = 10−6. It can be
seen that the segmentation improves with an increasing number of eigenvectors and
we note that we have chosen the same parameters as for the hypergraph Laplacian. It
is not clear whether this parameter constellation is the best possible as in this setup
the hypergraph Laplacian outperforms the graph Laplacian.

Multiclass segmentation. We again use an example from the UCI machine
learning repository. In particular, we focus on the zoo dataset introduced in [26].
This dataset contains 101 individuals with 18 attributes such as the number of legs
or whether they have hair. The segmentation is made into 7 classes that are already

7The Laplacian introduced by Zhou [55] is used in (39).
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Fig. 10. Comparison of the misclassification of the smooth (blue) and nonsmooth (red) poten-
tials for the student performance hypergraph example. We vary the number of sample points and
see that for both schemes the results behave similarly and the misclassification is reduced. Here the
y-axis shows the number of misclassified points while the x-axis shows the number of eigenvectors.

0 20 40 60 80 100

10−0.04

10−0.02

Hypergraph
Graph

(a) Smallest nonzero eigenvectors

9 18 27 36

120

140

160 smoth
nonsmooth

(b) Graph-based separation

Fig. 11. Comparison of the magnitude of the eigenvalues of the hypergraph Laplacian and the
graph Laplacian applied to the school example. The right picture shows the misclassification (y-axis)
for the graph-Laplacian-based segmentation using an increased number of eigenvalues (x-axis) and
a sample size nsample = 40.

prespecified. We want our algorithm to segment the data into these 7 classes given
only a small number of samples from each class. Figure 12 shows the results for a small
number of samples for each class as well as a varying number of eigenvectors of the
hypergraph Laplacian. We also test two different values of the interface parameter
ε. The results for the nonsmooth potential tend to be slightly better than for the
smooth potential, especially when the number of eigenvectors grows. We have set the
parameters to ω0 = 100, ε = 10−1, τ = 0.01, c = (3/ε) + ω0, and ν = 10−4 in this
example.
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(a) ε = 100
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(b) ε = 10−1

Fig. 12. Comparison of the misclassification of the mean of 10 runs of the smooth versus
nonsmooth potentials. Blue lines represent the nonsmooth and the red ones the smooth potentials.
Dashed lines correspond to one given sample point, solid lines with markers to two given sample
points, and solid linear markers to three given sample points per class. Shown is the total misclas-
sification against the number of eigenvectors used. The left plot is for ε = 100 and the right one for
ε = 10−1.

Conclusions and outlook. We have shown that diffuse interface methods while
already being very powerful can be further generalized. We illustrated that nonsmooth
potentials are a viable option for the separation of data. While the computations
become more expensive due to the nonlinearity that is treated with the semi-smooth
Newton scheme, the results in many cases show a better performance for the non-
smooth than for the smooth potential. Additionally, we showed that the methods are
not limited to the graph Laplacian setup but can successfully be employed for the
hypergraph Laplacian. Future work should incorporate more sophisticated eigenvalue
methods and our goal is to further investigate different techniques for the segmentation
of hypergraphs. Also, the successful MBO scheme [38, 44] has not been tried on
hypergraph examples and we aim to do this in future research.

Acknowledgment. The third author would like to thank Cristina Garcia-
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on graphs.

REFERENCES

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085–1095.

[2] C. R. Anderson, A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and
associated eigenvectors of large sparse Hermitian matrices, J. Comput. Phys., 229 (2010),
pp. 7477–7487.

[3] J. W. Barret and J. F. Blowey, Finite element approximation of a model for phase sepa-
ration of a multi-component alloy with non-smooth free energy, Numer. Math., 77 (1997),
pp. 1–34.

[4] J. W. Barrett and J. F. Blowey, An error bound for the finite element approximation of a
model for phase separation of a multi-component alloy, IMA J. Numer. Anal., 16 (1996),
pp. 257–287.
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