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Abstract

Current efforts in computational historical linguistics are predominantly concerned
with phylogenetic inference. Methods for ancestral state reconstruction have only
been applied sporadically. In contrast to phylogenetic algorithms, automatic recon-
struction methods presuppose phylogenetic information in order to explain what has
evolved when and where. Here we report a pilot study exploring how well automatic
methods for ancestral state reconstruction perform in the task of onomasiological
reconstruction in multilingual word lists, where algorithms are used to infer how the
words evolved along a given phylogeny, and reconstruct which cognate classes were
used to express a given meaning in the ancestral languages. Comparing three differ-
ent methods, Maximum Parsimony, Minimal Lateral Networks, and Maximum Likeli-
hood on three different test sets (Indo-European, Austronesian, Chinese) using binary
and multi-state coding of the data as well as single and sampled phylogenies, we find
that Maximum Likelihood largely outperforms the other methods. At the same time,
however, the general performancewas disappointingly low, ranging between0.66 (Chi-
nese) and 0.79 (Austronesian) for the F-Scores. A closer linguistic evaluation of the
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reconstructions proposed by the bestmethod and the reconstructions given in the gold
standards revealed that the majority of the cases where the algorithms failed can be
attributed to problems of independent semantic shift (homoplasy), to morphological
processes in lexical change, and towrong reconstructions in the independently created
test sets that we employed.
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1 Introduction

Phylogenetic reconstruction methods are crucial for recent quantitative ap-
proaches in historical linguistics.Whilemany scholars remain skeptical regard-
ing the potential of methods for automatic sequence comparison, phylogenetic
reconstruction, be it of networks using the popular SplitsTree software (Huson,
1998), or family trees, using distance- (Sokal andMichener, 1958; Saitou andNei,
1987) or character-based approaches (Edwards and Cavalli-Sforza, 1964; Fitch,
1971; Ronquist et al., 2012; Bouckaert et al., 2014), has entered themainstreamof
historical linguistics. This is reflected in a multitude of publications and appli-
cations ondifferent language families, fromAinu (Lee andHasegawa, 2013) and
Australian (Bowern and Atkinson, 2012) to Semitic (Kitchen et al., 2009) and
Chinese (Ben Hamed and Wang, 2006). There is also a growing interest in the
implications of phylogenetic analyses for historical linguistics, as can be seen
from the heated debate about the dating of Indo-European (Gray and Atkin-
son, 2003; Atkinson and Gray, 2006; Bouckaert et al., 2014; Chang et al., 2015),
and the recent attempts to search for deep genetic signals in the languages of
the world (Pagel et al., 2013; Jäger, 2015).

Given the boom of quantitative approaches in the search for language trees
and networks, it is surprising that methods which infer the ancestral states of
linguistic characters have been rarely applied and tested so far. While meth-
ods for phylogenetic reconstruction infer how related languages evolved into
their current shape,methods forancestral state reconstruction (ASR) use a given
phylogeny to infer the previous appearance of the languages. This is illustrated
in Fig. 1 for the reconstruction of lexical conceptualization patterns (more on
this specific kind of ancestral state reconstruction below).What is modeled as
ancestral state in this context is open to the researcher’s interest, ranging from
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the original pronunciation of words (Bouchard-Côté et al., 2013), the direction
of sound change processes (Hruschka et al., 2015), the original expression of
concepts (List, 2016), or even linguistic and cultural aspects beyond the lexicon,
such as ancestral color systems (Haynie and Bowern, 2016), numeral systems
(Zhou and Bowern, 2015) or cultural patterns, e.g., matrilocality (Jordan et al.,
2009). While methods for ancestral state reconstruction are commonly used
in evolutionary biology, their application is still in its infancy in historical lin-
guistics. This is in strong contrast to classical historical linguistics, where the
quest for proto-forms andproto-meanings is often givenmore importance than
the search for family trees and sub-groupings. In the following, we will report
results of a pilot study on ancestral state reconstruction applied to lexicosta-
tistical word list data. Our goal is to infer which words were used to express a
given concept in the ancestral languages.

This task is not to be confused with semantic reconstruction, where linguists
try to infer the original meaning of a given word. Our approach, in contrast,
reflects the onomasiological perspective on the linguistic sign, aswe try to infer
the originalword that expressed a givenmeaning. Sinceno commonly accepted
name exists for this approach, we chose the term “onomasiological reconstruc-
tion.”1 Classical semantic reconstruction in historical linguistics starts from a
set of cognate words and tries to identify the original meaning of the ances-
tral word form (Wilkins, 1996). For this purpose, scholars try to take known
directional tendencies into account. These tendencies are usually based on
the author’s intuition, despite recent attempts to formalize and quantify the
evidence (Urban, 2011). Following the classical distinction between semasiol-
ogy and onomasiology in semantics, the former dealing with ‘the meaning of
individual linguistic expressions’ (Bussmann, 1996: 1050), and the latter dealing
with the question of how certain concepts are expressed (ibid.: 834), semantic
reconstruction is a semasiological approach to lexical change, as scholars start
from the meaning of several lexemes in order to identify the meaning of the
proto-form and its later development.

Instead of investigating lexical change from the semasiological perspective,
one could also ask which of several possible word forms was used to denote a
certain meaning in a given proto-language. This task is to some degree simi-
lar to proper semantic reconstruction, as it deals with the question of which
meaning was attached to a given linguistic form. The approach, however, is

1 We chose this term for lack of alternatives, not because we particularly like it, and we are
aware that it may sound confusing for readers less familiar with discussions on semantic
change and lexical replacement, but we try to explain this in more detail below.
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onomasiological, as we start from the concept and search for the “name” that
was attached to it.Onomasiological semantic reconstruction, the reconstruction
of former expressions, has been largely ignored in classical semantic recon-
struction.2This is unfortunate, since the onomasiological perspectivemayoffer
interesting insights into lexical change. Given that we are dealing with two
perspectives on the same phenomenon, the onomasiological viewpoint may
increase the evidence for semantic reconstruction.

This is partially reflected in the “topological principle in semantic [i.e. ono-
masiological, GJ and JML] reconstruction” proposed by Kassian et al. (2015).
This principle uses phylogenies to support claims about the reconstruction of
ancestral expressions in historical linguistics, trying to choose the ‘most eco-
nomic scenario’ (ibid.: 305) involving the least amount of semantic shifts. By
adhering to the onomasiological perspective and modifying our basic data,
we can model the problem of onomasiological reconstruction as an ancestral
state reconstruction task, thereby providing a more formal treatment of the
topological principle. In this task, we (1) start from a multilingual word lists in
which a set of concepts has been translated into a set of languages (a classi-
cal “Swadesh list” or lexicostatistic word list; Swadesh, 1955), (2) determine a
plausible phylogeny for the languages under investigation, and (3) use ances-
tral state reconstruction methods to determine which word forms were most
likely used to express the concepts in the ancestral languages in the tree. This
approach yields an analysis as the one shown in Fig. 1.

Althoughwe think that such an analysis hasmany advantages over theman-
ual application of the topological principle in onomasiological reconstruction
employed by Kassian et al. (2015), we should make very clear at this point that
our reformulation of the problem as an ancestral state reconstruction task also
bears certain shortcomings. First, since ancestral state reconstruction models
character by character independently from each other, our approach relies on
identical meanings only and cannot handle semantic fields with fine-grained
meaningdistinctions.This is a clear disadvantage compared toqualitative anal-
yses, but given that models always simplify reality, and that neither algorithms
nor datasets for testing and training are available for the extended task, we
think it is justified to test how close the available ancestral state reconstruc-
tion methods come to human judgments. Second, our phylogenetic approach
to onomasiological reconstruction does not answer any questions regarding
semantic change, as we can only state which words are likely to have been

2 Notable exceptions includeworkby S. Starostin and colleagues, compare, for example, Staros-
tin (2016).
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figure 1 Ancestral state reconstruction: The graphic illustrates the key idea of ancestral state
reconstruction. Given six words in genetically related languages, we inquire how
these words evolved into their current shape. Having inferred a phylogeny of the
languages as shown on the left of the figure, ancestral state reconstruction methods
use this phylogeny to find the best way to explain how the six words have evolved
along the tree, thereby proposing ancestral states of all words under investigation.
The advantage of this procedure is that we can immediately identify not only the
original nature of the characters we investigate, but also the changes they were
subject to. Ancestral state reconstruction may thus yield important insights into
historical processes, including sound change and lexical replacement.

used to express certain concepts in ancestral languages. This results clearly
from the data and our phylogenetic approach, asmentioned before, and it is an
obvious shortcoming of our approach. However, since the phylogenetic ono-
masiological reconstruction provides us with concrete hypotheses regarding
themeaning of a givenword on a given node in the tree, we can take these find-
ings as a starting point to further investigate howwords changed theirmeaning
afterwards. By providing a formal and data-driven way to apply the topolog-
ical principle, we can certainly contribute to the broader tasks of semantic
and onomasiological reconstruction in historical linguistics. As a third point,
we should not forget that our method suffers from the typical shortcomings of
all data-driven disciplines, namely the shortcomings resulting from erroneous
data assembly, especially erroneous cognate judgments, such as undetected
borrowings (Holm, 2007) and inaccurate translations of the basic concepts
(Geisler and List, 2010) which are investigated in all approaches based on lex-
icostatistical data. The risk that errors in the data have an influence on the
inferences made by the methods is obvious and clear. In order to make sure
that we evaluate the full potential of phylogenetic methods for ancestral state
reconstruction, we therefore provide an exhaustive error analysis not only for
the inferences made in our tests, but also for the data we used for testing.
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In the following, we illustrate how ancestral state reconstruction methods
can be used to approximate onomasiological reconstruction in multilingual
word lists. We test the methods on three publicly available datasets from three
different language families and compare the results against experts’ assess-
ments.

2 Materials andmethods

2.1 Materials
2.1.1 Gold standard
In order to test availablemethods for ancestral state reconstruction, we assem-
bled lexical cognacy data from three publicly available sources, offering data
on three different language families of varying size:

1. Indo-European languages, as reflected in the Indo-European lexical cog-
nacy database (IELex; Dunn, 2012, accessed on September 5, 2016),

2. Austronesian languages, as reflected in the AustronesianBasicVocabulary
Database (ABVD; Greenhill et al., 2008, accessed on December 2, 2015),
and

3. Chinese dialect varieties, as reflected in the Basic Words of Chinese Dia-
lects (BCD;Wang, 2004, provided in List, 2016).

All datasets are originally classical word lists as used in standard approaches
to phylogenetic reconstruction: They contain a certain number of concepts
which are translated into the target languages and then annotated for cognacy.
In order to be applicable as a test set for our analysis, the datasets further need
to list proto-forms of the supposed ancestral language of all languages in the
sample. All data we used for our studies is available from the supplementary
material.

The BCDdatabasewas usedbyBenHamedandWang (2006) and is no longer
accessible via its original URL, but it has been included in List (2015) and later
revised in List (2016). It comprises data on 200 basic concepts (amodified form
of the concept list by Swadesh, 1952) translated into 23 Chinese dialect vari-
eties. Additionally, Wang (2004) lists 230 translations in Old Chinese for 197 of
the 200 concepts. Since Old Chinese is the supposed ancestor of all Chinese
dialects, this data qualifies as a gold standard for our experiment on ancestral
state reconstruction. We should, however, bear in mind that the relationship
between Old Chinese, as a variety spoken some time between 800 and 200BC,
and themost recent common ancestor of all Chinese dialects, spoken between
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200 and 400CE, is a remote one. We will discuss this problem in more detail
in our linguistic evaluation of the results in section 4. Given that many lan-
guages contain multiple synonyms for the same concept, the data, including
Old Chinese, comprises 5,437 words, which can be clustered into 1,576 classes
of cognate words; 980 of these are “singletons,” that is, they comprise classes
containing only one single element. Due to the large time span between Old
Chinese and the most recent common ancestor of all Chinese dialects, not
all Old Chinese forms are technically reconstructible from the data, as they
reflect words that have been lost in all dialects. As a result, we were left with
144 reconstructible concepts for which at least one dialect retains an ancestral
form attested in Old Chinese.

For the IELex data,3 we used all languages and dialects except those marked
as “Legacy” and two creole languages (Sranan and French Creole Dominica, as
lexical change arguably underlies different patterns under creolization than it
does in normal language change). This left us with 134 languages and dialects,
including 31 ancient languages (Ancient Greek, Avestan, Classical Armenian,
Gaulish, Gothic, Hittite, Latin, Luvian, Lycian, Middle Breton, Middle Cornish,
Mycenaean Greek, Old Persian, Old Prussian, Old Church Slavonic, Old Gutnish,
Old Norse, Old Swedish, Old High German, Old English, Old Irish, Old Welsh,
Old Cornish, Old Breton, Oscan, Palaic, Pali, Tocharian A, Tocharian B, Umbrian,
Vedic Sanskrit). The data contain translations of 208 concepts into those lan-
guages and dialects (often including several synonymous expressions for the
same concept from the same language). Most entries are assigned a cognate
class label.We only used entries containing an unambiguous class label, which
left us with 26,524 entries from 4,352 cognate classes. IELex also contains 167
reconstructed entries (for 135 concepts) for Proto-Indo-European. These recon-
structions were used as gold standard to evaluate the automatically inferred
reconstructions.

ABVD contains data from a total of 697 Austronesian languages and dialects.
We selected a subset of 349 languages (all taken from the 400-language sam-
ple used in Gray et al., 2009), each having a different ISO code which is also
covered in the Glottolog database (Hammarström et al., 2015). ABVD covers 210
concepts, with a total of 44,983 entries from 7,727 cognate classes for our 349-
language sample. It also contains 170 reconstructions for Proto-Austronesian
(each denoting a different concept) including cognate-class assignments. An
overview of the data used is given in Table 1.

3 IELex is currently being thoroughly revised as part of theCognates in theBasic Lexicon (COBL)
project, but since this data has not yet been publicly released, wewere forced to use the IELex
data which we retrieved from ielex.mpi.nl.

http://ielex.mpi.nl
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table 1 Datasets used for ancestral state reconstruction. “Reconstructible” states in the
column showing the number of concepts refer to the amount of concepts in which the
proto-form is reflected in at least one of the descendant languages. “Singletons” refer
to cognate sets with only one reflex, which are not informative for the purpose of
certain methods of ancestral state reconstruction, like the MLN approach, and
therefore excluded from the analysis.

Dataset Languages Concepts Cognate classes Singletons Words

IELex 134 207 (135 reconstructible) 4,352 1,434 singletons 26,524
ABVD 349 210 (170 reconstructible) 7,727 2,671 singletons 44,983
BCD 24 200 (144 reconstructible) 1,576 980 singletons 5,437

2.2 Methods
2.2.1 Reference phylogenies
All ASRmethods in our test (except the baseline) rely on phylogenetic informa-
tionwhen inferring ancestral states, albeit to a different degree. Somemethods
operate on a single tree topology only, while other methods also use branch
lengths information or require a sample of trees to take phylogenetic uncer-
tainty into account. To infer those trees, we arranged the cognacy information
for each data set into a presence-absence matrix. Such a data structure is a
table with languages as rows and cognate classes occurring within the data
set as columns. A cell for language l and cognate class cc for concept c has
entry

– 1 if cc occurs among the expressions for c in l,
– 0 if the data contain expressions for c in l, but none of them belongs to cc,

and
– undefined if l does not contain any expressions for c.

Bayesian phylogenetic inference was performed on these matrices. For each
data set, tree search was constrained by prior information derived from the
findings of traditional historical linguistics. More specifically, we used the fol-
lowing prior information:

– IELex.We used 14 topological constraints (see Fig. 2), age constraints for the
31 ancient languages, and age constraints for 11 of the 14 topological con-
straints. The age constraints for Middle Breton, Middle Cornish, Mycenaean
Greek, Old Breton, Old Cornish, Old Welsh, and Palaic are based on informa-
tion fromMultitree (The LINGUIST List, 2014, accessed onOctober 14, 2016).
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figure 2 Maximum Clade Credibility tree for IELex (schematic). Topological constraints are
indicated by red circles. Numbers at intermediate nodes indicate posterior
probabilities (only shown if < 1).

The age constraint for Pali is based on information from Encyclopaedia Bri-
tannica (2010, accessed onOctober 14, 2016). The constraints forOldGutnish
are taken from Wessen (1968) and those for Old Swedish and Old High Ger-
man from Campbell and King (2013). All other age constraints are derived
from the Supplementary Information of Bouckaert et al. (2012).

– ABVD. We only considered trees consistent with the Glottolog expert clas-
sification (Hammarström et al., 2015). This amounts to 213 topological con-
straints.

– BDC.We only considered trees consistentwith the expert classification from
Sagart (2011). This amounts to 20 topological constraints.

Analyses were carried out using the MrBayes software (Ronquist et al., 2012).
Likelihoods were computed using ascertainment bias correction for all-absent
characters and assumingGamma-distributed rates (with 4Gamma categories).
Regarding the tree prior, we assumed a relaxed molecular clock model (more
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specifically, the Independent GammaRatesmodel (cf. Lepage et al., 2007), with
an exponential distribution with rate 200 as prior distribution for the variance
of rate variation). Furthermore we assumed a birth-death model (Yang and
Rannala, 1997) and random sampling of taxa with a sampling probability of
0. 2. For all other parameters of the prior distribution, the defaults offered by
the software were used.4

For each dataset, amaximumclade credibility treewas identified as the refer-
ence tree (using the software TreeAnnotator, retrieved on September 13, 2016;
part of the software suiteBeast, cf. Bouckaert et al., 2014). Additionally, 100 trees
were sampled from the posterior distribution for each dataset and used as tree
sample for ASR.

2.2.2 Ancestral state reconstruction
For our study,we tested three different established algorithms, namely (1)Max-
imum Parsimony (MP) reconstruction using the Sankoff algorithm (Sankoff,
1975), (2) the minimal lateral network (MLN) approach (Dagan et al., 2008)
as a variant of Maximum Parsimony in which parsimony weights are selected
with the help of the vocabulary size criterion (List et al., 2014b, 2014c), and
(3) Maximum Likelihood (ML) reconstruction as implemented in the software
BayesTraits (Pagel and Meade, 2014). These algorithms are described in detail
below.

We tested two different ways to arrange cognacy information as character
matrices:

– Multistate characters. Each concept is treated as a character. The value of
a character for a given language is the cognate class label of that language’s
expression for the corresponding concept. If the data contain several non-
cognate synonymous expressions, the language is treated as polymorphic for
that character. If the data do not contain an expression for a given concept
and a given language, the corresponding character value is undefined.

– Binary characters. Each cognate class label that occurs among the docu-
mented languages of a dataset is a character. Possible values are 1 (a language
contains an expression from that cognate class), 0 (a language does not con-
tain an exponent of that cognate class, but other expressions for the corre-

4 These defaults are: uniform distribution over equilibrium state frequencies; standard expo-
nential distribution as prior for the shape parameter α of the Gamma distribution model-
ing rate variation; standard exponential distribution as prior over the tree age, measured in
expected number of mutations per character.



32 jäger and list

Language Dynamics and Change 8 (2018) 22–54

sponding concept are documented) or undefined (the data do not contain
an expression for the concept from the language in question).

All three algorithms rely on a reference phylogeny to infer ancestral states. To
test the impact of phylogenetic uncertainty, we performed ASR both on the
reference tree and on the tree sample for all three algorithms. The procedures
are now presented for each algorithm in turn.

MaximumParsimony (MP). A complete scenario for a character is a phylogenetic
tree where all nodes are labeled with some character value. For illustration,
three scenarios are shown in Fig. 3. The parsimony score of a scenario is the
number of mutations, i.e., of branches where the mother node and the daugh-
ter node carry different labels. Now suppose only the labels at the leaves of the
tree are given. The parsimony score of such a partial scenario is the minimal
parsimony score of any complete scenario consistent with the given leaf labels.
In the example in Fig. 3, this value would be 2. The ASR for the root of the tree
would be the root label of the complete scenario giving rise to this minimal
parsimony score. If several complete scenarios with different root labels give
rise to the sameminimal score, all their root labels are possible ASRs. This logic
can be generalized to weighted parsimony. In this framework, each mutation
from a state at themother node to the state at the daughter node of a tree has a
certain penalty, and these penalties may differ for different types of mutations.
The overall parsimony score of a complete scenario is the sum of all penalties
for all mutations in this scenario.5

5 There is a variant of MP called Dollo parsimony (Le Quesne, 1974; Farris, 1977) which is prima
faciewell-suited for modeling cognate class evolution. Dollo parsimony rests on the assump-
tion that complex characters evolve only once, while they may be lost multiple times. If “1”
represents presence and “0” absence of such a complex character, the weight of a mutation
1 → 0 should be infinitesimally small in comparison to the weight of 0 → 1. Performing
ASR under this assumption amounts to projecting each character back to the latest common
ancestor of all its documented occurrences. While this seems initially plausible since each
cognate class can, by definition, emerge only once, recent empirical studies have uncovered
that multiple mutations 0 → 1 can easily occur with cognate-class characters. A typical sce-
nario is parallel semantic shifts. Chang et al. (2015), among others, point out that descendent
words of Proto-Indo-European *pod- ‘foot’ independently shifted their meaning to ‘leg’ both
in Modern Greek and in Modern Indic and Iranian languages. So the Modern Greek πόδι and
the Marathi pāy, both meaning ‘leg,’ are cognate according to IELex, but the latest common
ancestor language of Greek and Marathi (Nuclear Proto-Indo-European or a close descen-
dant of it) probably used a non-cognate word to express ‘leg.’ Other scenarios leading to the
parallel emergence of cognate classes are loans and incomplete lineage sorting; see the discus-
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figure 3 Complete character scenarios. Mutations are indicated by yellow stars.

The Sankoff algorithm is an efficient method to compute the parsimony score
and the root ASR for a partial scenario. It works as follows. Let states be the
ordered set of possible states of the character in question, and let n be the car-
dinality of this set. For eachpair of states i, j,w(i, j) is the penalty for amutation
from statesi to statesj.

– Initialization. Each leaf l of the tree is initialized with a vector wp(l) of
length n, with wp(l)i = 0 if l’s label is statesi, and ∞ else. (If l is polymor-
phic, all labels occuring at l have the score 0.)

– Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e., visit
all daughter nodes before you visit the mother node. Each non-terminal
node mother with the set daughters as daughter nodes is annotated with a
vectorwp(mother) according to the rule

wp(mother)i = ∑
d∈daughters

min
1≤j≤n

(w(i, j) + wp(d)j) (1)

– Termination. The parsimony score ismin1≤i≤n wp(root)i and the root ASR is
argmin1≤i≤n wp(root)i.

If MP-ASR is performed on a sample of trees, the Sankoff algorithm is applied
to each tree in the sample, and the vectors at the roots are summed up. The
root ASR is then the state with the minimal total score. For our experiments,
we used the followingweight matrices:

– For multistate characters, we used uniform weights, i.e., w(i, i) = 0 and
w(i, j) = 1 iff i ≠ j.

sion in Section 4. Bouckaert et al. (2012) test a probabilistic version of the Dollo approach and
conclude that a time-reversible model provides a better fit of cognate-class character data.
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– For binary presence-absence characters, we assumed that the penalty of a
gain is twice as high as the penalty for a loss: w(i, i) = 0, w(1, 0) = 1, and
w(0, 1) = 2.6

For a given tree and a given character, the Sankoff algorithm produces a par-
simony score for each character state. If the cognacy data are organized as
multi-state characters, each state is a cognate class. The reconstructed states are
those achieving the minimal value among these scores. If a tree sample, rather
than a single tree, is considered, the parsimony scores are averaged over the
results for all trees in the sample. The reconstructed states are those achiev-
ing the minimal average score. If the cognacy data are organized as presence-
absence characters, we consider the parsimony scores of state “1” for all cognate
classes expressing a certain concept. The reconstructed cognate classes are
those achieving the minimal score for state “1.” If a tree sample is considered,
scores are averaged over trees.

Minimal Lateral Networks (MLN). The MLN approach was originally developed
for the detection of lateral gene transfer events in evolutionary biology (Dagan
et al., 2008). In this form, it was also applied to linguistic data (Nelson-Sathi
et al., 2011), and later substantially modified (List et al., 2014b, 2014c). While
the original approachwas based on very simple gain-loss-mapping techniques,
the improved version uses weighted parsimony on presence-absence data of
cognate set distributions. In each analysis, several parameters (ratio of weights
for gains and losses) are tested, and the best method is then selected, using
the criterion of vocabulary size distributions, which essentially states that the
amount of synonyms per concept in the descendant languages should not dif-
fer much from the amount of synonyms reconstructed for ancestral languages.
Thus, of several competing scenarios for the development of characters along
the reference phylogeny, the scenario that comes closest to the distribution of
words in the descendant languages is selected. This is illustrated in Fig. 4. Note
that this criterion may make sense intuitively, if one considers that a language
with excessive synonymywouldmake it more difficult for the speakers to com-
municate. Empirically, however, no accounts on average synonym frequencies

6 The ratio between gains and losses follows from the experience with the MLN approach,
which is presented inmore detail below andwhich essentially tests different gain-loss scenar-
ios for their suitability to explain a given dataset. In all published studies in which the MLN
approach was tested (List et al., 2014b, 2014c; List, 2015), the best gain-loss ratio reported was
2:1.
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figure 4 Vocabulary size distributions as a criterion for parameter selection in the MLN
approach. A shows an analysis which proposes far too many words in the ancestral
languages, B proposes far to few words, and C reflects an optimal scenario.

across languages are available, and as a result, this assumption remains to be
proven in future studies.

While the improved versions were primarily used to infer borrowing events
in linguistic datasets, List (2015) showed that the MLN approach can also be
used for the purpose of ancestral state reconstruction, given that it is based on
a variant of weighted parsimony. Describing the method in all its detail would
go beyond the scope of this paper. For this reason, we refer the reader to the
original publications introducing and explaining the algorithm, as well as the
actual source code published along with the LingPy software package (List and
Forkel, 2016). To contrast MLN with the variant of Sankoff parsimony we used,
it is, however, important to note that the MLN method does not handle single-
tons in the data, that is, words which are not cognate with any other words.7
It should also be kept in mind that the MLN method in its currently available
implementation only allows for the use of binary characters states: multi-state
characters are not supported and can therefore not be included in our test.

MaximumLikelihood (ML).While theMaximumParsimonyprinciple is concep-
tually simple and appealing, it has several shortcomings. As it only uses topo-
logical information and disregards branch lengths, it equally penalizes muta-
tions on short and on long branches. However, mutations on long branches are
intuitively more likely than those on short branches if we assume that branch
length corresponds to historical time. Also, MP entirely disregards the possibil-
ity of multiple mutations on a single branch. It would go beyond the scope of
this article to fully spell out the ML method in detail; the interested reader is

7 The technical question of parsimony implementations is here whether one should penalize
the origin of a character in the root or not. The parsimony employed byMLN penalizes all ori-
gins. As a result, words that are not cognate with any other word can never be reconstructed
to a node higher in the tree. For a discussion of the advantages and disadvantages of this
treatment, see Mirkin et al. (2003).
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referred to the standard literature on phylogenetic inference (such as Ewans
and Grant, 2005, Section 15.7) for details. In the following we will confine our-
selves to presenting the basic ideas.

The fundamental assumption underlying ML is that character evolution is
a Markov process. This means that mutations are non-deterministic, stochastic
events, and their probability of occurrence only depends on the current state of
the language. For simplicity’s sake, let us consider only the casewhere there are
two possible character states, 1 (for presence of a trait) and 0 (absence). Then
there is a probability p01 that a language gains the trait within one unit of time,
and p10 that it loses it.

The probability that a language switches from state i to state jwithin a time
interval t is then given by the transition probability P(t)ij:8

α = p01
p01 + p10

(2)

β = p10
p01 + p10

(3)

λ = − log(1 − p01 − p10) (4)

P(t) = ( β + α ⋅ (−λt) α − α ⋅ (−λt)
β − β ⋅ (−λt) α + β ⋅ (−λt) ) (5)

α and β are the equilibrium probabilities of states 1 and 0 respectively, and λ is
the mutation rate. If t is large in comparison to the minimal time step (such as
the time span of a single generation), we can consider t to be a continuous vari-
able and the entire process a continuous timeMarkov process. This is illustrated
in Fig. 5 for α = 0. 2, β = 0. 8, and λ = 1.

If a language is in state 0 at time 0, its probability to be in state 1 after time t
is indicated by the solid line. This probability continuously increases and con-
verges to α. This is the gross probability to start in state 0 and end in state
1; it includes the possibility of multiple mutations, as long as the number of
mutations is odd. The dotted line shows the probability of ending up in state
1 after time t when a language starts in state 1. This quantity is initally close to
100%, but it also converges towards α over time. In other words, the absence of
mutations (or a sequence of mutations that re-established the initial state) is
predicted to be unlikely over long periods of time. In a complete scenario, i.e., a
phylogenetic tree with labeled non-terminal nodes, the likelihood of a branch

8 We assume that the rows and columns of P(t) are indexed with 0, 1.
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figure 5 Gain and loss probabilities under a continuous-timeMarkov process

is the probability of ending in the state of the daughter node if one starts in the
state of the mother node after a time interval given by the branch length.

The overall likelihood of a complete scenario is the product of all branch
likelihoods, multiplied with the equilibrium probability of its root state. The
likelihood of a partial scenario, where only the states of the leaves are known,
is the sum of the likelihoods of all complete scenarios consistent with it. It can
efficiently be computed in a way akin to the Sankoff algorithm. (ℒ(x) is the
likelihood vector of node x, and πi is the equilibrium probability of state i.)

– Initialization. Each leaf l of the tree is initialized with a vector ℒ(l) of
length n, with ℒ(l)i = 1 if l’s label is statesi, and 0 else. (If l is polymorphic,
all labels occuring at t have the same likelihood, and these likelihoods sum
up to 1.)

– Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e., visit
all daughter nodes before you visit the mother node. Each non-terminal
node mother with the set daughters as daughter nodes is annotated with a
vector ℒ(mother) according to the rule

ℒ(mother)i = ∏
d∈daughters

∑
1≤j≤n

(P(t)i,jℒ(d)j), (6)

where t is the length of the branch connecting d to its mother node.
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– Termination. The likelihood of the scenario is ∑1≤i≤n ℒ(root)i. The ASR
likelihood of state i is proportional to πiℒ(root)i.9

The likelihood of the scenario calculated this way is the sum of the likelihoods
of all scenarios compatible with the information at the leaves. The overall like-
lihood of a tree for a character matrix is the product of the likelihoods for the
individual characters. (This captures the simplifying assumption that charac-
ters are mutually stochastically independent.)

As the model parameters (λ and the equilibrium probabilities) are not
known a priori, they are estimated from the data. This is done by choosing
values that maximize the overall likelihood of the tree for the given character
matrix, within certain constraints. In our experiments we used the following
constraints:

– For multistate characters, we assumed a uniform equilibrium distribution
for all characters, and identical rates for all character transitions.

– For binary characters, we assumed equilibrium probabilities to be identical
for all characters. Those equilibrium probabilities were estimated from the
data as the empirical frequencies.We assumed gamma-distributed rates, i.e.,
rates were allowed to vary to a certain degree between characters.

Once themodel parameters are fixed, the algorithmproduces a probability dis-
tribution over possible states for each character. The reconstructed states are
identified in a similarway as for Sankoff parsimony. First these probabilities are
averaged over all trees if more than one tree is considered. For multistate char-
acters, the state(s) achieving the highest probability are selected. For binary
presence-absence characters, those cognate classes for a given concept are
selected that achieve the highest average probability for state 1.

2.3 Evaluation
For all three datasets considered, the gold standard contains cognate class
assignments for a common ancestor language. For the Chinese data, these
are documented data for Old Chinese. For the other two datasets, these are
reconstructed forms of the supposed latest common ancestor (LCA), Proto-
Indo-European and Proto-Austronesian respectively. The Old Chinese variety

9 Note that this approach can only be used to compute the marginal likelihood of states at the
root of the tree. To perform ASR at interior nodes or joint ASR at several nodes simultaneously,
a more complex approach is needed. These issues go beyond the scope of this article.



onomasiological reconstruction in multilingual wordlists 39

Language Dynamics and Change 8 (2018) 22–54

is not identical with the latest common ancestor of all Chinese dialects, but
predates it by several hundred years. Due to the rather stable character of
the written languages as opposed to the vernaculars throughout the history of
Chinese, it is difficult to assess with certainty which exact words were used
to denote certain basic concepts, and Old Chinese as reflected in classical
sources is a compromise solution as it allows us to consider written evidence
rather than reconstructed forms (see Section 4 for a more detailed discus-
sion).

For the evaluation, we only consider those concepts for which (a) the LCA
data identify a cognate class and (b) this cognate class is also present in one
or more of the descendant languages considered in the experiment. The gold
standard defines a set of cognate classes that were present in the LCA language.
Let us call this set LCA. Each ASR algorithm considered defines a set of cognate
classes that are reconstructed for the LCA.We denote this set as ASR. In the fol-
lowing we will deploy evaluation metrics established in machine learning to
assess how well these two sets coincide:

precision ≐ |LCA ∩ ASR|
|ASR| (7)

recall ≐ |LCA ∩ ASR|
|LCA| (8)

F-score ≐ 2 × precision × recall
precision + recall (9)

The precision expresses the proportion of correct reconstructions among all
reconstructions. The recall gives the proportion of ancestral cognate classes
that are correctly reconstructed. The F-score is the harmonic mean between
precision and recall.

Results for the various ASR algorithms are compared against a frequency
baseline. According to the baseline, a cognate class cc for a given concept c
is reconstructed if and only if cc occurs at least as frequently among the lan-
guages considered (excluding the LCA language) as any other cognate class for
c. This baseline comes very close to the current practice in classical histori-
cal linguistics, as presented in Starostin (2016), although it is clear that trained
linguists practicing onomasiological reconstruction may take many additional
factors into account. For IELex, we also considered a second baseline, dubbed
the sub-family baseline. A cognate class cc is deemed reconstructed if and only
if it occurs in at least two different sub-families, where sub-families are Alba-
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nian, Anatolian, Armenian, Balto-Slavic, Celtic, Germanic, Greek, Indo-Iranian,
Italic, and Tocharian.

3 Results

The individual results for all datasets and algorithm variants are given in Ta-
bles 2, 3 and 4. Note that MLN does not offer a multi-state variant, so for MLN,
only results for binary states are reported. The effects of the various design
choices—coding characters as multi-state or binary; using a single reference
tree or a sample of trees—aswell as the differences between the three ASR algo-
rithms considered here are summarized in Fig. 6. The bars represent the aver-
age difference in F-score to the frequency baseline, averaged over all instances
of the corresponding category across datasets.

It is evident that there aremajor differences in the performance of the three
algorithms considered. While the F-score for MLN-ASR remains, on average,
below the baseline, Sankoff-ASR and ML-ASR clearly outperform the baseline.
Furthermore, ML-ASR clearly outperforms Sankoff-ASR. Given that both MLN-
ASR and Sankoff-ASR deal with Maximum Parsimony, the rather poor perfor-
mance of theMLN approach shows that the basic vocabulary size criterionmay
not be the best criterion for penalty selection in parsimony approaches. It may
also be related to further individual choices introduced in the MLN algorithm
or our version of Sankoff parsimony. Given that the MLN approachwas not pri-
marily created for the purpose of ancestral state reconstruction, our findings
do not necessarily invalidate the approach per se, yet they show that it might
be worthwhile to further improve on its application to ancestral state recon-
struction.

The impact of the other choices is less pronounced. Binary character cod-
ing provides slightly better results on average thanmultistate character coding,
but the effect is minor. Likewise, capturing information about phylogenetic
uncertainty by using a sample of trees leads, on average, to a slight increase
in F-scores, but this effect is rather small as well.

To understand why ML is superior to the two parsimony-based algorithms
tested here, it is important to consider the conceptual differences between
parsimony-based and likelihood-based ASR. Parsimony-based approaches op-
erate on the tree topology only, disregarding branch lengths. Furthermore,
the numerical parameters being used, i.e. the mutation penalties, are fixed by
the researcher based on intuition and heuristics. ML, in contrast, uses branch
length information, and it is based on an explicit probabilistic model of char-
acter evolution.
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table 2 Evaluation results for Chinese

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.599 0.590 0.594
MLN bin single 0.568 0.729 0.638
MLN bin sample 0.568 0.729 0.638
Sankoff multi single 0.484 0.743 0.586
Sankoff multi sample 0.510 0.722 0.598
Sankoff bin single 0.596 0.688 0.639
Sankoff bin sample 0.651 0.660 0.655
ML multi single 0.669 0.660 0.664
ML multi sample 0.669 0.660 0.664
ML bin single 0.634 0.625 0.629
ML bin sample 0.641 0.632 0.636

table 3 Evaluation results for IELex

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.607 0.497 0.547
sub-family baseline bin – 0.402 0.885 0.553
MLN bin single 0.781 0.303 0.437
MLN bin sample 0.781 0.303 0.437
Sankoff multi single 0.367 0.739 0.491
Sankoff multi sample 0.566 0.594 0.580
Sankoff bin single 0.542 0.630 0.583
Sankoff bin sample 0.597 0.503 0.546
ML multi single 0.741 0.606 0.667
ML multi sample 0.763 0.624 0.687
ML bin single 0.778 0.636 0.700
ML bin sample 0.785 0.642 0.707

This point is illustrated in Fig. 7, which schematically displays ASR for the
concept eat for the Chinese dialect data. The left panel visualizes Sankoff ASR
and the right panel shows Maximum-Likelihood ASR. The guide tree identi-
fies two sub-clades, shown as the upper and lower daughter of the root node.
The dialects in the upper part of the tree represent the large group of North-
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table 4 Evaluation results for ABVD

Algorithm Characters Tree Precision Recall F-score

frequency baseline multi – 0.618 0.618 0.618
MLN bin single 0.843 0.412 0.553
MLN bin sample 0.882 0.394 0.545
Sankoff multi single 0.688 0.849 0.760
Sankoff multi sample 0.726 0.816 0.768
Sankoff bin single 0.723 0.771 0.746
Sankoff bin sample 0.757 0.749 0.753
ML multi single 0.788 0.788 0.788
ML multi sample 0.788 0.788 0.788
ML bin single 0.776 0.776 0.776
ML bin sample 0.771 0.771 0.771

ern and Central dialects, including the dialect of Beijing, which comes close to
standard Mandarin Chinese. The dialects in the lower part of the tree repre-
sent the diverse Southern group, including the archaic Mǐn闽 dialects spoken
at the South-Eastern coast as well as Hakka and Yuè 粤 (also referred to as
Cantonese), the prevalent variety spoken in Hong Kong. All Southern dialects
use the same cognate class (eat.Shi.1327, Mandarin Chinese shí 食, nowadays
only reflected in compounds) and all Northern and Central dialects use a dif-
ferent cognate class (eat.Chi.243, Mandarin Chinese chī 吃, regular word for
‘eat’ in most Northern varieties). Not surprisingly, both algorithms reconstruct
eat.Shi.1327 for the ancestor of the Southern dialects and eat.Chi.243 for the
ancestor of the Northern and Central dialects. Sankoff ASR only uses the tree
topology to reconstruct the root state. Since the situation is entirely symmetric
regarding the two daughters of the root, the two cognate classes are tied with
exactly the sameparsimony score at the root.Maximum-LikelihoodASR, on the
other hand, takes branch lengths into account. Since the latest common ances-
tor of the Southern dialects is closer to the root than the latest common ances-
tor of the Northern and Central dialects, the likelihood of amutation along the
lower branch descending from the root is smaller than along the upper branch.
Therefore the lower branch has more weight when assigning probabilities to
the root state. Consequently, eat.Shi.1327 comes out as the most likely state at
the root—which is in accordancewith the gold standard. Our findings indicate
that the more fine-grained, parameter-rich Maximum-Likelihood approach is
generally superior to the simpler parsimony-based approaches.
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figure 6 Average differences in F-score to frequency baseline

The parameters of the Maximum-Likelihood model, as well as the branch
lengths, are estimated from the data. Our findings underscore the advantages
of an empirical, stochastic and data-driven approach to quantitative historical
linguistics as compared to more heuristic methods with few parameters.

4 Linguistic evaluation of the results

The evaluation of the results against a gold standard can help us to understand
the general performance of a given algorithm. Only a careful linguistic evalu-
ation, however, helps us to understand the specific difficulties and obstacles
that the algorithms have to face when being used to analyze linguistic data.We
therefore carried out detailed linguistic evaluations of the results proposed for
IELex and BCD: we compared the results of the best methods for each of the
datasets (Binary ML Sample for IELex, and Multi ML for BCD) with the respec-
tive gold standards, searching for potential reasons for the differences between
automatic method and gold standard. The results are provided in Appendix B.
In each of the two evaluations, we compared those forms which were recon-
structed back to the root in the gold standard but missed by the algorithm, and
those forms proposed by the algorithm but not by the gold standard. By con-
sulting additional literature and databases, we could first determine whether
the error was due to the algorithm or due to a problem in the gold standard.
In a next step, we tried to identify the most common sources of errors, which
we assigned to different error classes. Due to the differences in the histories
and the time depths, the error classes we identified differ slightly, and while a
rather common error in IELex consisted in erroneous cognate judgments in the
gold standard,10 we find many problematic meanings that are rarely expressed

10 See Appendix B1 for details.
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figure 8 Detailed error analysis of the algorithmic performance on IELex and BCD. If a
certain error class is followed by an asterisk, this means that we attribute the error to
the gold standard rather than to the algorithm. For a detailed discussion of the
different error classes mentioned in this context, please see the detailed analysis in
the supplementary material.

overtly in Chinese dialects in BCD.11 Apart from errors which were hard to clas-
sify and thus not assigned to any error class, problems resulting from themisin-
terpretation of branch-specific cognate sets as well as problems resulting from
parallel semantic shift (homoplasy) were among the most frequent problems
in both datasets.

Figure 8 gives detailed charts of the error analyses for missed and erro-
neously proposed items in the two datasets. The data is listed in such a way
that mismatches between gold standard and algorithms can be distinguished.
When inspecting the findings for IELex,we can thus see that themajority of the
59 cognates missed by the algorithm can be attributed to cognate sets that are
only reflected in one branch in the Indo-European languages and therefore do

11 Examples includemeanings for ‘if,’ ‘because,’ etc., whichmay be expressed butmay aswell
be omitted in normal speech, see Appendix B2 for details.
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not qualify as good candidates to be reconstructed back to the proto-language.
As an example, consider the form *pneu̯- (cognate class breathe:P), which
is listed as onomasiological reconstruction for the concept ‘to breathe’ in the
gold standard. As it only occurs in Ancient Greek and has no reflexes in any
other language family, this root is highly problematic, as is also confirmed by
the Lexicon of Indo-European Verbs, where the root is flagged as questionable
(Rix et al., 2001: 489). Second, the error statistics for Indo-European contain
cognate sets whose onomasiological reconstruction is not confirmed by plausi-
ble semantic reconstructions in the gold standard. As an example for this error
class, consider the form *dhōg̑h-e/os- (cognate class day:B) proposed for the
meaning slot ‘day.’ While Kroonen (2013: 86f.) confirms the reconstruction of
the root, as it occurs in Proto-Germanic and Indo-Iranian, the meaning ‘day’ is
by nomeans clear, as the PIE root *die̯u̯- ‘heavenly deity, day’ is a more broadly
reflected candidate for the ‘day’ in PIE (Meier-Brügger, 2002: 187f.).

Of the 29 cognatesmissed, themajority cannot be readily classified, as these
comprise cases where a reconstruction back to the proto-language in the given
meaning slot seems to be highly plausible. Thus, the form *kr̥-m-i- (cognate
class worm:A) is not listed in the gold standard, but proposed by the Binary
ML approach. The root is reflected in both Indo-Iranian and in Slavic (Derk-
sen, 2008: 93f.) and generally considered a valid Indo-European root with the
meaning ‘worm, insect’ (Mallory and Adams, 2006: 149). Given that ‘worm’ and
‘insect’ are frequently expressed by one polysemous concept in the languages
of the world (see the CLICS database of cross-linguistic polysemies, List et al.,
2014a), we see no reasonwhy the form is not listed in the gold standard. Second
in frequency of the items proposed by the algorithm are cases of clear homo-
plasy that were interpreted as inheritance by the ML approach. As an example,
consider the form *serp- (cognate class snake:E), which the algorithm pro-
poses as a candidate for the meaning ‘snake.’ While the cognate set contains
the Latin word serpens, as well as reflexes in Indo-Iranian and Albanian, it may
seem like a good candidate. According to Vaan (2008: 558), however, the verbal
root originally meant ‘to crawl,’ which would motivate the parallel denotation
in Latin and Albanian. Instead of assuming that the noun already denoted
‘snake’ in PIE times, it is therefore much more likely that we are dealing with
independent semantic shift.

Turning to our linguistic evaluation of the results on the Chinese data, we
also find branch-specific words as one of the major reasons for the 49 forms
which were proposed in the gold standard but not recognized by the best algo-
rithm (Multi ML). However, here we cannot attribute these to questionable
decisions in the gold standard, but rather to the fact that many Old Chinese
words are often reflected only in some of the varieties in the sample. As an
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example for a challenging case, consider the form口 kǒu ‘mouth’ (cognate class
mouth-Kou-222, #31). The regular word for ‘mouth’ in most dialects today
is嘴 zuǐ, but the Mǐn dialects, the most archaic group and the first to branch
off the Sinitic family, have 喙 huì as an innovation, which originally meant
‘beak, snout.’ While kǒu survives in many dialects and also in Mandarin Chi-
nese in restricted usage (compare住口 zhùkǒu ‘close’ + ‘mouth’ = ‘shut up’) or
as part of compounds (口水 kǒushuǐ ‘mouth’ + ‘water’ = ‘saliva’), it is only in
the Yuè dialect Guǎngzhōu that it appears with the original meaning in the
BCD. Whether kǒu, however, is a true retention in Guǎngzhōu is quite difficult
to say, and comparing the data in the BCD with the more recent dataset by Liú
et al. (2007), we can see that zuǐ, in the latter, is given for Guǎngzhōu instead
of kǒu. The differences in the data are difficult to explain, and we see two pos-
sible ways to account for them: (1) If kǒu was the regular term for ‘mouth’ in
Guǎngzhōu in the data by Wang (2004), and if this term is not attested in any
other dialect, we are dealing with a retention in the Yuè dialects, and with a
later diffusion of the term zuǐ across many other dialect areas apart from the
Mǐn dialects, which all shifted the meaning of huì. (2) If kǒu is just a variant in
Guǎngzhōu as it is inMandarin Chinese, we are dealing with amethodological
problem of basic word translation and should assume that kǒu is completely
lost in its original meaning. In both cases, however, the history of ‘mouth’ is a
typical case of inherited variation in language history.Multiple termswith simi-
lar reference potential were already present in the last common ancestor of the
Chinese dialects. They were later individually resolved, yielding patterns that
remind of incomplete lineage sorting in evolutionary biology (see List et al., 2016
for a closer discussion of this analogy).

The problem of inherited variation becomes even more evident when we
consider the largest class of errors in both the items missed and the items
proposed by the algorithm: the class of errors due to compounding. Compound-
ing is a very productive morphological process in the Chinese dialects, heavily
favored by the shift from a predominantly monosyllabic to a bisyllabic word
structure in the history of Chinese (see Sampson, 2015 and replies to the arti-
cle in the same volume for a more thorough discussion on potential reasons
for this development). This development led to a drastic increase of bisyllabic
words, which is reflected in almost all dialects, affecting all parts of the lex-
icon. Thus, while the regular words for ‘sun’ and ‘moon’ in Ancient Chinese
texts were日 rì and月 yuè, the majority of dialects nowadays uses日頭 rìtóu
(lit. ‘sun-head’) and月光 yuèguāng (lit. ‘moon-shine’). Thesewords have devel-
oped further in some dialect areas and yield a complex picture of patterns of
lexical expression that are extremely difficult to resolve historically. Given that
we find the words even in the most archaic dialects, but not in ancient texts
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of the late Hàn time and later (around 200 and 300CE), the time when the
supposed LCA of themajority of the Chinese dialects was spoken, it is quite dif-
ficult to explain the data in a straightforwardway.We could either propose that
the LCA of Chinese dialects already had created or was in the stage of creating
these ancient compound words, and that written evidence was too conserva-
tive to reflect it; or we could propose that thewordswere created later and then
diffused across the Chinese dialects. Both explanations seem plausible, as we
know that spoken and written language often differed quite drastically in the
history of Chinese. Comparing modern Chinese dialect data, as provided by
Liú et al. (2007), with dialect surveys of the late 1950s, as given in Běijīng Dàxué
(1964), we can observe how quicklyMandarin Chinese words have been diffus-
ing recently: while we find only rìtóu12 as a form for ‘sun’ in Guǎngzhōu, Liú et
al. only list the Mandarin form太陽 tàiyáng, and Hóu (2004), presenting data
collected in the 1990s, lists both variants.We can see from these examples that
the complex interaction between morphological processes like compounding
and intimate language contact confronts us with challenging problems and
may explain why the automatic methods perform worst on Chinese, despite
the shallow time depths of the language family.

5 Conclusion

What can we learn from these experiments? One important point is surely the
striking superiority of Maximum Likelihood, outperforming both parsimony
approaches. Maximum Likelihood is not only more flexible, as parameters are
estimated from the data, but in some sense, it is also more realistic, as we have
seen in the reconstruction of the scenario for ‘eat’ (see Fig. 7) in the Chinese
dataset, where the branch lengths, which contribute to the results of ML anal-
yses, allow the algorithm to find the right answer. Another important point
is the weakness of all automatic approaches and what we can learn from the
detailed linguistic evaluation. Here, we can see that further research is needed
to address those aspects of lexical change which are poorly handled by the
algorithms. These issues include first and foremost the problem of indepen-
dent semantic shift, but also the effects of morphological change, especially in
the Chinese data. List (2016) uses weighted parsimony with polarized (direc-
tional) transition penalties for multi-state characters for ancestral state recon-

12 In the Yuè dialects, this form has been reinterpreted as ‘hot-head’熱頭 rètóu instead of
‘sun-head.’
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struction of Chinese nouns and reports an increased performance compared
to unweighted parsimony. However, since morphological change and lexical
replacement are clearly two distinct processes, we think it is more promising
to work on the development of stochastic models, which are capable of han-
dling two or more distinct processes and may estimate transition tendencies
from the data. Another major problem that needs to be addressed in future
approaches is the impact of language contact on lexical change processes, as
well as the possibility of language-internal variation, which may obscur tree-
like divergence even if the data evolved in a perfectly tree-like manner. These
instances of incomplete lineage sorting (List et al., 2016) became quite evident
in our qualitative analysis of the Chinese and Indo-European data. Given their
pervasiveness, it is likely that they also have a major impact on classical phy-
logenetic studies, which only try to infer phylogenies from the data. As a last
point, we should mention the need for increasing the quality of our test data
in historical linguistics. Given the multiple questionable reconstructions we
found in the test sets during our qualitative evaluation, we think it might be
fruitful, both in classical and computational historical linguistics, to intensify
the efforts towards semantic and onomasiological reconstruction.

Supplementary materials

All data used for this study, alongwith the code that we used and the results we
produced, are available at https://dx.doi.org/10.5281/zenodo.1173120.

The appendices contain a list of all age constraints for Indo-European that
were used in our phylogenetic reconstruction study (Appendix A) as well as a
detailed, qualitative analysis of all differences between the automatic and the
gold standard assessments in IElex (Appendix B1) andBCD (Appendix B2).They
are available as supplementary materials and can be accessed through the fol-
lowing link: http://doi.org/10.6084/m9.figshare.6580382.v1.
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