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Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists use
them to prove language relationship, to reconstruct proto-forms, and for classical phylogenetic
reconstruction based on shared innovations. Cognate words that fail to conform with expected
patterns can further point to various kinds of exceptions in sound change, such as analogy or
assimilation of frequent words. Here I present an automatic method for the inference of sound
correspondence patterns across multiple languages based on a network approach. The core idea
is to represent all columns in aligned cognate sets as nodes in a network with edges representing
the degree of compatibility between the nodes. The task of inferring all compatible correspondence
sets can then be handled as the well-known minimum clique cover problem in graph theory,
which essentially seeks to split the graph into the smallest number of cliques in which each
node is represented by exactly one clique. The resulting partitions represent all correspondence
patterns that can be inferred for a given data set. By excluding those patterns that occur in only
a few cognate sets, the core of regularly recurring sound correspondences can be inferred. Based
on this idea, the article presents a method for automatic correspondence pattern recognition,
which is implemented as part of a Python library which supplements the article. To illustrate the
usefulness of the method, I present how the inferred patterns can be used to predict words that
have not been observed before.

1. Introduction

By comparing the languages of the world, we gain invaluable insights into human
prehistory, predating the appearance of written records by thousands of years. The clas-
sical methods for historical language comparison, a collection of different techniques
summarized under the term comparative method (Meillet 1954; Weiss 2015), date back
to the early 19th century and have since then been constantly refined and improved (see
Ross and Durie 1996 for details on the practical workflow). Thanks to the comparative
method, linguists have made groundbreaking insights into language change in general
and into the history of many specific language families (Campbell and Poser 2008)
and external evidence has often confirmed the validity of the findings (McMahon and
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McMahon 2005, pages 10–14). With increasing amounts of data, however, the methods,
which are largely manually applied, reach their practical limits. As a result, scholars
are now increasingly trying to automate different aspects of the classical comparative
methods (Kondrak 2000; Prokić, Wieling, and Nerbonne 2009; List 2014).

One of the fundamental insights of early historical linguistic research was that—
as a result of systemic changes in the sound system of languages—genetically related
languages exhibit structural similarities in those parts of their lexicon that were com-
monly inherited from their ancestral languages. These similarities surface in the form of
correspondence relations between sounds from different languages in cognate words.
English th [θ], for example, is usually reflected as d in German, as we can see from
cognate pairs like English think versus German denken, or English thorn and German
Dorn. English t, on the other hand, is usually reflected as z [ts] in German, as we can see
from pairs like English toe versus German Zeh, or English ten versus German zehn. The
identification of these regular sound correspondences plays a crucial role in historical
language comparison, serving not only as the basis for the proof of genetic relationship
(Dybo and Starostin 2008; Campbell and Poser 2008) or the reconstruction of proto-
forms (Hoenigswald 1960, pages 72–85; Anttila 1972, pages 229–263), but (indirectly)
also for classical subgrouping based on shared innovations (which would not be possi-
ble without identified correspondence patterns).

With the beginning of this millennium, historical linguistics has witnessed an
increased number of attempts to quantify specific tasks of the traditional compar-
ative method. Since then, scholars have repeatedly attempted to either directly in-
fer regular sound correspondences across genetically related languages (Kay 1964;
Brown, Holman, and Wichmann 2013; Kondrak 2003, 2009) or integrated the infer-
ence into workflows for automatic cognate detection (Guy 1994; List 2012, 2014; List,
Greenhill, and Gray 2017). What is interesting in this context, however, is that almost all
approaches dealing with regular sound correspondences, be it early formal—but clas-
sically grounded—accounts (Grimes and Agard 1959; Hoenigswald 1960) or computer-
based methods (Kondrak 2002, 2003; List 2014) only consider sound correspondences
between pairs of languages.

A rare exception can be found in the work of Antilla (1972, pages 229–263) who
presents the search for regular sound correspondences across multiple languages as
the basic technique underlying the comparative method for historical language com-
parison. Anttila’s description starts from a set of cognate word forms (or morphemes)
across the languages under investigation. These words are then arranged in such a way
that corresponding sounds in all words are placed into the same column of a matrix.
The extraction of regularly recurring sound correspondences in the languages under
investigation is then based on the identification of similar patterns recurring across
different columns within the cognate sets. The procedure is illustrated in Figure 1, where
four cognate sets in Sanskrit, Ancient Greek, Latin, and Gothic are shown, two taken
from Anttila (1972, page 246) and two added by me.

Two points are remarkable about Anttila’s approach. First, it builds heavily on the
phonetic alignment of sound sequences,1 by which the sound sequences of words are
arranged in a matrix in such a way that all corresponding sounds are placed in the
same cell (List 2014). Second, it reflects a concrete technique by which regular sound

1 This concept was only recently adapted in linguistics (Covington 1996; Kondrak 2000; List 2014), building
heavily on approaches in bioinformatics and computer science (Needleman and Wunsch 1970; Wagner
and Fischer 1974), although it was implicitly always an integral part of the methodology of historical
language comparison (compare Dixon and Kroeber 1919, Fox 1995, 67f).
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A B C D E F

Sanskrit y u g a m dh u h i (tar) s n u ṣ (ā) - r u dh (iras)

Greek z u g o n th u g a (ter-) - n u - (os) e r u th (rós)

Latin i u g u m Ø Ø Ø Ø (Ø) - n u r (us) - r u b (er)

Gothic j u k - - d au h - (tar) Ø Ø Ø Ø (Ø) Ø Ø Ø Ø (Ø)

Gloss 'yoke' 'daughter' 'daughter-in-law' 'red'

Figure 1
Regular sound correspondences across four Indo-European languages, illustrated with help of
alignments along the lines of Anttila (1972, page 246). In contrast to the original illustration, lost
sounds are displayed with help of the dash “-” as a gap symbol, while missing words (where no
reflex in Gothic or Latin could be found) are represented by the “∅” symbol.

correspondences for multiple languages can be detected and employed as a starting
point for linguistic reconstruction. If we look at the framed columns in the four exam-
ples in Figure 1, which are further labeled alphabetically, we can easily see that the
patterns A, E, and F are remarkably similar. The only difference is that we miss data for
Gothic in the patterns E and F, and, as a result, we don’t have reflex sounds (sounds in
a given alignment column as reflected in a cognate word) for the full sound correspon-
dence patterns in the respective columns. The same holds, however, for columns C, E,
and F. Since A and C differ regarding the reflex sound of Gothic (u vs. au), they cannot
be assigned to the same correspondence set at this stage, and if we want to solve the
problem of finding the regular sound correspondences for the words in the figure, we
need to decide which columns in the alignments we assign to the same correspondence
set, thereby “imputing” missing sounds where we miss a reflex. Assuming that the
“regular” pattern in our case is reflected by the group of C, E, and F, we can make
predictions about the sounds missing in Gothic in E and F, concluding that, if ever we
find the missing reflex in so far unrecognized sources of Gothic in the future, we would
expect a -au- in the words for “daughter-in-law” and “red”.2

We can easily see how patterns of sound correspondences across multiple languages
can serve as the basis for multiple tasks in historical linguistics. First, we could use
them to guess how a word that is missing in a given alignment would sound in that
language, if it could be found. Since the task of identifying cognate words across multi-
ple languages is very complex, and words may have drastically shifted their meanings,
we could use the predictions to search for missing cognate forms in those areas of the
lexicon that we have not considered before.3 Second, if two alignment columns are
identical, they must reflect the same proto-sound, if alternative processes like borrowing
can be excluded. Thus, similarly to the prediction of missing words in our cognate
sets, we could use correspondence patterns to infer proto-forms, provided that parts
of the data are already annotated.4 Third, we could use them to check linguistic claims

2 As pointed out by the anonymous reviewer, Gothic ráups is a reflex of ‘red’ (Wright 1910, page 340), but
as mentioned by Eugen Hill (personal communication), the Gothic form reflects a derivationally different
formation and was therefore correctly not listed in Anttila’s examples.

3 Consider cases of shifted meanings like English hound vs. German Hund ‘dog,’ or English -thorp as a
prefix in place names compared to German Dorf ‘village.’

4 But even if correspondence patterns are not identical, they could be assigned to the same proto-sound,
provided that one can show that the differences are conditioned by phonetic context. This is the case for
Gothic au [o] in pattern C, which has been shown to go back to u when preceding h (Meier-Brügger 2002,
page 210f). As a result, scholars usually reconstruct Proto-Indo-European *u for A, C, E, and F.
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about cognate words themselves: If it turns out that the aligned cognate sets proposed
by linguists do not pattern into recurring correspondences across the languages under
consideration, we can directly criticize both individual claims regarding word relations
and general claims about the genetic relation of languages.

While it seems trivial to identify sound correspondences across multiple languages
from the few examples provided in Figure 1, the problem can become quite complicated
if we add more cognate sets and languages to the comparative sample. Especially the
handling of missing reflexes for a given cognate set becomes a problem here, as missing
data makes it difficult for linguists to decide which alignment columns to group with
each other. This can already be seen from the examples given in Figure 1, where we have
two possibilities to group the patterns A, C, E, and F, if we base our judgments only on
these four patterns: E and F could be grouped with either A or C, and it may even
be possible that one should be grouped with A and one with C. The “true” solution
here depends on the history of the languages, but if the data that would allow us to
reconstruct this history is lost, we can never infer the historically correct grouping with
full confidence.

The goal of this article is to illustrate how a manual analysis in the spirit of Anttila
can be automated and fruitfully applied—not only in purely computational approaches
to historical linguistics, but also in computer-assisted frameworks that help linguists to
explore their data before they start carrying out painstaking qualitative comparisons
(List 2016). In order to illustrate how this problem can be solved computationally, the
article will first discuss some important general aspects of sound correspondences and
sound correspondence patterns in Section 2, introducing specific terminology that will
be needed in the remainder. In Section 3, we will see that the problem of finding sound
correspondences across multiple languages can be modeled as the well-known clique-
cover problem in an undirected network (Bhasker and Samad 1991). While this problem
is hard to solve in an exact way computationally,5 fast approximate solutions exist
(Welsh and Powell 1967) and can be easily applied. Based on these findings, the article
will introduce a fully automated method for the recognition of sound correspondence
patterns across multiple languages (Section 4). This method is implemented in the form
of a Python library and can be readily applied to multilingual wordlist data as it is
also required by software packages such as LingPy (List, Greenhill, and Forkel 2017)
or software tools such as EDICTOR (List 2017). Section 5 will then illustrate how the
method can be applied by testing how it performs in the task of predicting missing
cognate words and missing proto-forms.

2. Preliminaries on Sound Correspondence Patterns

In the introduction, it was emphasized that the traditional comparative method is
itself less concerned with regular sound correspondences attested for language pairs,
but for all languages under consideration. In the following, this claim will be further
substantiated, while at the same time introducing some major methodological consid-
erations and ideas that are important for the development of the new method for sound
correspondence pattern recognition.

5 Both the clique-cover problem and its inverse problem, the graph coloring problem, have been shown to
be np-complete (Bhasker and Samad 1991).
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Table 1
Comparing correspondence patterns for Proto-Germanic reflexes of *d-, *þ-, and *t- in German,
English, and Dutch (Germanic proto-forms follow Kroonen [2013]).

2.1 From Sound Correspondences to Sound Correspondence Patterns

Sound correspondences are most easily defined for pairs of languages. Thus, it is
straightforward to state that German [d] regularly corresponds to English [θ] (or [ð]),
that German [ts] regularly corresponds to English [t], and that German [t] corresponds
to English [d]. We can likewise expand this view to multiple languages by adding
another Germanic language, such as, for example, Dutch to our comparison, which has
[d] in the case of German [d] and English [θ], [t] in the case of German [ts] and English
[t], and [d] in the case of German [t] and English [d].

The more languages and examples we add to the sample, however, the more com-
plex the picture becomes, and while we can state three (basic) patterns for the case of
English, German, and Dutch, given in our example, we may get easily more patterns,
due to secondary sound changes in the different languages, although we would still
reconstruct only three sounds in the proto-language ([θ, t, d]). This is illustrated in
Table 1, where Proto-Germanic forms containing *p[þθ], *t, and *d in different pho-
netic environments are contrasted with their descendant forms in German, English,
and Dutch. The example shows that there is a one-to-n relationship between what
we interpret as a proto-sound of the proto-language, and the regular correspondence
patterns that we may find in our data. While we will reserve the term sound correspon-
dence for pairwise language comparison, we will use the term sound correspondence
pattern (or simply correspondence pattern) for the abstract notion of regular sound
correspondences across a set of languages that we can find in the data.

2.2 Correspondence Patterns in the Classical Literature

Scholars like Meillet (1908, page 23) have stated that the core of historical linguistics
is not linguistic reconstruction, but the inference of correspondence patterns, empha-
sizing that “reconstructions are nothing else but the signs by which one points to the
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Table 2
Sound correspondence patterns for Indo-European stops, following Clackson (2007, page 37) .

PIE Hittite Sanskrit Greek Latin Gothic ...
*p p p p p f b ...
*b b p b b b p ...
*bh b p ph/ph f b b ...
*t t t t t θ/þ d ...
*d d t d d d t ...
*dh d t dh/dh h th/th f d b d ...
... ... ... ... ... ... ...
*kw kw/ku k c k p t kw/qu hw/hw g ...
*gw kw/u g j g b d gw/gu u q ...
*gwh kw/ku gw/gu ph/ph th/th kh/kh f gw/gu u g b ...

correspondences in short form”.6 However, given the one-to-n relation between proto-
sounds and correspondence patterns, it is clear that this is not quite correct. Having
inferred regular correspondence patterns in our data, our reconstructions will add a
different level of analysis by further clustering these patterns into groups that we believe
to reflect one single sound in the ancestral language.

That there are usually more than just one correspondence pattern for a recon-
structed proto-sound is nothing new to most practitioners of linguistic reconstruction.
Unfortunately, however, linguists rarely list all possible correspondence patterns ex-
haustively when presenting their reconstructions, but instead select the most frequent
ones, leaving the explanation of weird or unexpected patterns to comments written in
prose. A first and important step of making a linguistic reconstruction system trans-
parent, however, should start from an exhaustive listing of all correspondence patterns,
including irregular patterns that occur very infrequently but would still be accepted by
the scholars as reflecting true cognate words.

What scholars do instead is provide tables that summarize the correspondence
patterns in a rough form, for example, by showing the reflexes of a given proto-
sound in the descendant languages in a table, where multiple reflexes for one and the
same language are put in the same cell. An example, taken with modifications7 from
Clackson (2007, page 37), is given in Table 2. In this table, the major reflexes of Proto-
Indo-European stops in 11 languages representing the oldest attestations and major
branches of Indo-European are listed. This table is a very typical example for the way
in which scholars discuss, propose, and present correspondence patterns in linguistic
reconstruction (Beekes 1995; Brown et al. 2011; Holton et al. 2012; Jacques 2017). The
shortcomings of this representation become immediately transparent. Neither are we
told about the frequency by which a given reflex is attested to occur in the descendant
languages, nor are we told about the specific phonetic conditions that have been
proposed to trigger the change where we have two reflexes for the same proto-sound.

6 My translation, original text: ‘Les «restitutions» ne sont rien autre chose que les signes par lesquels on
exprime en abrégé les correspondances.’

7 We added phonetic transcriptions, preceding the original sound given by the author, separated by a slash.
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Proto-Germanic

German

English

Dutch

Proto-Germanic

German

English

Dutch

'dead' 'thick' 'tongue'

'deed' 'thorn' 'tooth'

d au d ( a z )

t oː t ( - - )

d ɛ d ( - - )

d oː t ( - - )

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

t u ŋ ( g oː )

ts ʊ ŋ ( - ə )

t ʌ ŋ ( - - )

t ɔ ŋ ( - - )

d eː d ( i z )

t aː t ( - - )

d iː d ( - - )

d a: t ( - - )

θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

t a n θ ( s )

ts aː n - ( - )

t uː - θ ( - )

t ɑ n t ( - )

Figure 2
Alignment analyses of the six cognate sets from Table 1. Brackets around subsequences indicate
that the alignments cannot be fully resolved due to secondary morphological changes.

While scholars of Indo-European tend to know these conditions by heart, it is perfectly
understandable why they would not list them. However, when presenting the results
to outsiders to their field in this form, it makes it quite difficult for them to correctly
evaluate the findings. A sound correspondence table may look impressive, but it is of
no use to people who have not studied the data themselves.

A further problem in the field of linguistic reconstruction is that scholars barely
discuss workflows or procedures by which sound correspondence patterns can be
inferred. For well-investigated language families like Indo-European or Austronesian,
which have been thoroughly studied for more than one hundred years (Blust 1990),
it is clear that there is no direct need to propose a heuristic procedure, given that the
major patterns have been identified long ago and the research has reached a stage where
scholarly discussions circle around individual etymologies or higher levels of linguistic
reconstruction, like semantics, morphology, and syntax.8 For languages whose history
is less well known and where historical language reconstruction has not even reached
a stage of reconstruction where a majority of scholars agree, however, a procedure that
helps to identify the major correspondence patterns underlying a given data set would
surely be incredibly valuable.

2.3 Correspondence Patterns and Alignments

In order to infer correspondence patterns, the data must be available in aligned form
(see Section 1), that is, we must know which of the sound segments that we compare
across cognate sets are assumed to go back to the same ancestral segment. This is
illustrated in Figure 2 where the cognate sets from Table 1 are presented in aligned
form, with zero-matches (gaps) being represented as a dash ("-"), and with brackets
indicating unalignable parts in the sequences, that is, parts that cannot be aligned,
since the differences are not due to regular sound change.9 Although alignments are
never explicitly mentioned in Clackson (2007), they are implied by the provided

8 For examples, compare the very detailed etymological discussions by Meier-Brügger (2002,
pages 173–187).

9 Scholars at times object to this claim, but it should be evident, also from reading the account by Anttila
(1972) mentioned above, that without alignment analyses, albeit implicit ones that are never provided in
concrete, no correspondence patterns could be proposed.
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θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

'thorn'alignment 
site

sound
correspondence

pattern

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

'thick'
Proto-Germanic

German

English

Dutch

θ

d

θ

d

θ u r p ( a )

Ø Ø Ø Ø Ø Ø Ø

d ɔ r f ( - )

d ɔ r p ( - )

'thorp'

Figure 3
Alignment sites and correspondence patterns: While alignment sites are concrete representations
of the presumed relations among cognate words, correspondence patterns are a further stage of
abstraction.

correspondence patterns, which are presumably derived from the alignment of reflexes
in each of the daughter languages. These assumed alignments are given in Table 2.

Following evolutionary biology, a given column of an alignment is called an align-
ment site (or simply a site). An alignment site may reflect the same values as we
find in a correspondence pattern, and correspondence patterns are usually derived
from alignment sites, but in contrast to a correspondence pattern, an alignment site
may reflect a correspondence pattern only incompletely, due to missing data in one
or more of the languages under investigation. For example, when comparing German
Dorf “village” with Dutch dorp , it is immediately clear that the initial
sounds of both words represent the same correspondence pattern as we find for the
cognate sets for “thick” and “thorn” given in Figure 2, although no reflex of their Proto-
Germanic ancestor form þurpa- (originally meaning “crowd,” see Kroonen [2013, 553])
has survived in Modern English.10 Thanks to the correspondence patterns in Table 1,
however, we know that—if we project the word back to Proto-Germanic—we must
reconstruct the initial with *þ- ‘[θ], since the match of German d- and Dutch d- occurs—if
we ignore recent borrowings—only in correspondence patterns in which English
has th-.

These “gaps” due to missing reflexes of a given cognate set are not the same as the
gaps inside an alignment, since the latter are due to the (regular) loss or gain of a sound
segment in a given alignment site, while gaps due to missing reflexes may either reflect
processes of lexical replacement (List 2014, page 37f), or a preliminary stage of research
resulting from insufficient data collections or insufficient search for potential reflexes.
While we use the dash as a symbol for gaps in alignment sites, we will use the character
Ø (denoting the empty set) to represent missing data in correspondence patterns and
alignment sites. The relation between correspondence patterns in the sense developed
here and alignment sites is illustrated in Figure 3, where the initial alignment sites of
three alignments corresponding to Proto-Germanic *þ [θ] are assembled to form one
correspondence pattern.

10 Old English still has the word þorp, but in Modern English, we only find thorp in names.
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A E A F E F A C C E C F

Sanskrit u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u

Greek u <=> u u <=> u u <=> u u <=> u u <=> u u <=> u

Latin u <=> u u <=> u u <=> u u ? Ø Ø ? u Ø ? u

Gothic u ? Ø u ? Ø Ø ? Ø u >=< au au ? Ø au ? Ø

Matches 3 3 3 2 2 2

Figure 4
Assessing the compatibility of the four alignment sites from Figure 1.

3. Preliminary Thoughts on Correspondence Pattern Recognition

If we recall the problem we had in grouping the alignment sites E and F from Figure 1
with either A or C, we can see that the general problem of grouping alignment sites
to correspondence patterns is their compatibility. If we had reflexes for all languages
under investigation in all cognate sets, the compatibility would not be a problem,
since we could simply group all identical sites with each other, and the task could be
considered as solved. However, since it is rather the exception than the norm to have
all reflexes for all cognate sets in all languages, we will always find possible alternative
groupings for the alignment sites.

In the following, we will assume that two alignment sites are compatible, if they
(a) share at least one sound that is not a gap symbol, and (b) do not have any
conflicting sounds. This is illustrated in Figure 4 for our four alignment sites A, C, E,
and F from Figure 1. As we can see from the figure, only two sites are incompatible,
namely A and C, as they show different sounds for the reflexes in Gothic. Given that the
reflex for Latin is missing in site C, we can further see that C shares only two sounds
with E and F.

Having established the notion of alignment site compatibility, it is straightforward
to go a step further and model alignment sites in the form of a network. Here, all sites in
the data represent nodes (or vertices), and edges are only drawn between those nodes
that are compatible, following the criterion of compatibility outlined in the previous
section.11

Having shown how the data can be modeled in the form of a network, we can
rephrase the task of identifying correspondence patterns as a network partitioning task
with the goal of splitting the network into non-overlapping sets of nodes. Given that our
main criterion for a valid correspondence pattern is full compatibility among all align-
ment sites of a given partition, we can further specify the task as a clique partitioning
task. A clique in a network is “a maximal subset of the vertices [nodes] in an undirected
network such that every member of the set is connected by an edge to every other”
(Newman 2010, page 193). Demanding that sound correspondence patterns should
form a clique of compatible nodes in the network of alignment sites directly reflects
the basic practice of historical language comparison as outlined in Anttila (1972). Any
further grouping would require us to identify complementary phonetic environments
for the incompatible alignment sites.

11 We can further weight the edges in the alignment site network, for example, by using the number of
matching sounds (where no missing data is encountered) to represent the strength of the connection (but
we will disregard weighting in the approach presented here).
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(A) site network

1 2

(B) clique coverage

1

2

(C) fuzzy sites
Figure 5
General workflow of the method for automatic correspondence pattern recognition.

Parsimony dictates that—when partitioning our alignment site graph—we should
try to minimize the number of cliques to which the different nodes are assigned. This is
the minimum clique cover problem (Bhasker and Samad 1991, page 2). The minimum
clique cover problem is a well-known problem in graph theory and computer science,
although it is usually more prominently discussed in the form of its inverse problem,12

the graph coloring problem. In the graph coloring problem, one tries to assign all those
nodes in a graph to different clusters (i.e., to “color” them in different colors) which are
directly connected (Hetland 2010, page 276). While the problem is generally known to
be NP-hard (Hetland 2010, page 276), fast approximate solutions like the Welsh-Powell
algorithm (Welsh and Powell 1967) are available. Using approximate solutions seems to
be appropriate for the task of correspondence pattern recognition, given that we do not
(yet) have formal linguistic criteria to favor one clique cover over another.13

4. An Automatic Method for Correspondence Pattern Recognition

The method for automatic correspondence pattern recognition requires that the data be
coded for cognacy, and that all cognate sets be phonetically aligned. Thanks to recently
proposed algorithms, these tasks can be carried out automatically,14 but to guarantee
reliable results, it is useful to provide manually annotated data, or to manually correct
data that was automatically analyzed in a first step.15

The general workflow of the method consists of three basic steps (see Figure 5). In
a first step, the alignments in the data are used to construct an alignment site network
in which edges are drawn between compatible sites (A). The alignment sites are then
partitioned into distinct non-overlapping subsets using an approximate algorithm for
the minimum clique cover problem (B). In the final step (C), alternate correspondence
sets are considered for each individual alignment site. Any existing partitions with
which the site is compatible are added as potential correspondents. In the following
sections, I will provide more detailed explanations on the different stages.

12 The inverse problem of a given problem in graph theory provides a solution to the original problem for a
graph in which the original edges are deleted and nodes formerly unconnected are connected.

13 We should furthermore bear in mind that an optimal resolution of sound correspondence patterns for
linguistic purposes would additionally allow for uncertainty when it comes to assigning a given
alignment site to a given sound correspondence pattern. If we decided, for example, that the pattern C in
Figure 1 could by no means cluster with E and F, this may well be premature before we have figured out
whether the two patterns (u-u-u-u vs. u-u-u-au) are complementary and what phonetic environments
explain their complementarity.

14 For automatic cognate detection, compare for example List (2014), List, Greenhill, and Gray (2017),
Arnaud, Beck, and Kondrak (2017), and Jäger, List, and Sofroniev (2017), and for automatic phonetic
alignment, compare Prokić, Wieling, and Nerbonne (2009) and List (2014).

15 For manual annotation of cognates and alignments, compare List (2017).
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Table 3
Input format with the basic values needed to apply the method for automatic correspondence
pattern recognition.

ID DOCULECT CONCEPT FORM TOKENS STRUCTURE COGID ALIGNMENT

1 German tongue Zunge ts ʊ ŋ ə c v c 1 ts ʊ ŋ ( ə )

2 English tongue tongue t ʌ ŋ c v c 1 t ʌ ŋ ( - )

3 Dutch tongue tong t ɔ ŋ c v c 1 t ɔ ŋ ( - )

4 German tooth Zahn ts aː n c v c 2 ts aː n -

5 English tooth tooth t uː θ c v c 2 t uː - θ

6 Dutch tooth tand t ɑ n t c v c 2 t ɑ n t

7 German thick dick d ɪ k c v c 3 d ɪ k

... ... ... ... ... ... ... ...

c v c v

c v c c

4.1 Implementation, Input Format, and Output Format

The method has been implemented as a Python package that can be used as a plug-
in for the LingPy library for quantitative tasks in historical linguistics (List, Greenhill,
and Forkel 2017). The supplementary material offers precise instructions on how the
software package can be installed and how the experiments can be replicated.

The input format for the method described here generally follows the input format
employed by LingPy. In general, this format is a tab-separated text file with the first
row being reserved for the header, and the first column reserved for a unique numer-
ical identifier. The header specifies the entry types in the data. Table 3 provides an
example of the minimal data that needs to be provided to our method for automatic
correspondence pattern recognition. In addition to the generally needed information on
the identifier of each word (ID), on the language (DOCULECT), the concept or elicita-
tion gloss (CONCEPT), the (not necessarily required) orthographic form (FORM), and
the phonetic transcription provided in space-segmented form (TOKENS), the method
requires information on the type of sound (consonant or vowel, STRUCTURE),16 the
cognate set (COGID), and the alignment (ALIGNMENT).

The method offers different output formats, ranging from the LingPy wordlist
format in which additional columns added to the original wordlist provide information
on the inferred patterns, or in the form of tab-separated text files, in which the patterns
are explicitly listed. The wordlist output can also be directly inspected in the EDICTOR
tool, allowing for a convenient manual inspection of the inferred patterns.

16 The values passed to the STRUCTURE column can be arbitrarily filled. When running the analysis, they
are used to identify those positions in the alignments that should be analyzed separately, that is, they will
be considered as a useful pre-partitioning of the alignment sites.
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4.2 Detailed Description of the Algorithm

As mentioned above, the method for correspondence pattern recognition consists of
three stages. It starts with the reconstruction of an alignment site network in which
each node represents a unique alignment site, and links between alignment sites are
drawn if the sites are compatible, following the criterion for site compatibility outlined
in Section 3 (A). It then uses a greedy algorithm to compute an approximate minimal
clique cover of the network (B). All partitions proposed in stage (B) qualify as potentially
valid correspondence patterns of our data. But the individual alignment sites in a given
data set may as well be compatible with more than one correspondence pattern.17 For
this reason, the method iterates again over all alignment sites in the data, checking
whether each is compatible with any other existing partition. This procedure assigns
each alignment site to at least one but potentially more different sound correspondence
patterns (C).18

The clique cover algorithm (A) is an inverse version of the Welsh-Powell algorithm
for graph coloring (Welsh and Powell 1967). It starts with k cliques of size 1, which are
sorted in increasing order by the amount of missing data they contain. The algorithm
then picks the first pattern and compares it with the set of all other patterns. If this first
pattern is compatible with one of the other patterns, the two patterns will be merged into
a new pattern that is then further compared with the remaining ones. After the iteration,
the first pattern is added to the set of results, and the same procedure is repeated with
the remaining patterns that have not yet been merged and remain in the queue until no
patterns are left.

Since alignment sites may suffer from missing data, their assignment to particular
correspondence patterns is not always unambiguous. The example alignment from Fig-
ure 1, for example, would yield two general correspondence patterns, namely u-u-u-au
versus u-u-u-u. While the assignment of alignment sites A and C in the figure would be
unambiguous, sites E and F could be assigned to either partition, since they are missing
the disambiguating data. In order to reflect the fuzziness of the partition assignment,
the method therefore requires an additional step. In addition to the partition from stage
(B), alternative partitions are found for E and F during stage (C). The patterns, to which
a given alignment site is assigned, can further be ranked by counting the total amount
of alignment sites with which they are compatible, thus allowing us to prefer only those
site-to-pattern assignments that have a reasonable number of examples.

Figure 6 gives an artificial example that illustrates how the basic method infers
the clique cover. Starting from the data in (A), the method assembles patterns A and
B in (B) and computes their pattern, thereby retaining the non-missing data for each
language in the pattern as the representative value. Having added C and D in this
fashion in steps (C) and (D), the remaining three alignment sites, E–G, are merged to
form a new partition, accordingly, in steps (E) and (F). Step (G) reflects the reassignment
of individual alignment sites to the previously inferred patterns. In this example, all
sites are only assigned to one pattern, but it is possible, depending on the amount of
missing data, that one site can be assigned to more than one pattern.

17 Compare, for example, site E in Figure 1, which is both compatible with the pattern u-u-u-u reflected by
the site A, and the pattern u-u-u-au, reflected by site B.

18 By further weighting and sorting the fuzzy patterns to which a given site has been assigned, the number
of fuzzy alignment sites can be further reduced.
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Figure 6
Example for the basic method to compute the clique cover of the data. (A) shows all alignment
sites in the data. (B–D) show how the algorithm selects potential edges step by step in order to
arrive at a first larger clique cover. (E–F) show how the second cover is inferred. In each step
during which one new alignment site is added to a given pattern, the pattern is updated, filling
empty spots. While there are two missing data points in (E), where only alignment sites E and F
are merged, these are filled after adding G. (G) shows how patterns are reassigned to individual
alignment sites.

It is important to note that the originally selected pattern may change during
the merge procedure, since missing spots can be filled by merging the pattern with
a new alignment site (as also shown in Figure 6). For this reason, it is possible that
this procedure, when only carried out one time, may not result in a true clique cover
(in which all compatible alignment sites are merged). For this reason, at the end of
the iteration, the algorithm checks if patterns exist that could be further combined,
and repeats the procedure with the existing patterns until the resulting partitioning
represents a true clique cover.

Pseudocode is in Algorithm 1 for the core function of the method for correspon-
dence pattern detection. In a worst-case scenario in which all alignment sites will be
assigned to distinct correspondence patterns, the algorithm requires

∑n
k=1 = n(n+1)

2 it-
erations in the while-loop, where k represents the number of alignment sites in the data,
so the general complexity of the algorithm is O(n2). In applications to real-world-data,
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Algorithm 1 Main part of the correspondence pattern detection method in pseudocode.
1: function CORRPATTERNS(almSites)
2: sort(almSites, sortKey:=countMissing); . sort the sites
3: patterns := []; . stores the patterns
4: while length(almSites) 6=0 do
5: first, rest := almSites[0], almSites[1:]; . compare first site against rest
6: almSites := []; . fill with unmerged sites during for-loop
7: for i := 0; i < length(rest); i ++ do
8: if compatible(rest[i], first) then
9: first :=merge(first, rest[i]);

10: else
11: append(almSites, rest[i]);
12: end if
13: end for
14: append(patterns, first);
15: end while

return patterns;
16: end function

however, this worst-case scenario is never reached, and the method converges
rather fast.19

5. Testing the Method for Correspondence Pattern Recognition

The quantitative treatment of sound correspondence patterns presented in this study
is novel. As a result, no expert-annotated data listing all observable correspondence
patterns for a certain language family exhaustively is available.20 and it is not possible
to compare the suitability of this novel approach with expert-annotated gold standards,
as it is usually done in similar studies in computational historical linguistics.

The lack of suitable gold-standard data, however, does not mean that we cannot test
the method for its suitability. Since the core service the method provides is to impute
missing values in alignment sites resulting from cognate sets that are not reflected in all
languages in a given data set, we can easily design tests in which we test the power of
the method to predict those missing values in controlled settings.

5.1 Data for Testing

Three different data sets were selected to test the method proposed in this study.
The data sets were chosen with great care, since only a few of the many data sets
offering manually coded cognate sets also provide the cognate sets in aligned form.
Apart from the data by Hill and List (2017) on Burmish languages (original data based
on Huáng 1992), Walworth (2018) on East Polynesian languages (original data based

19 This can easily be seen when assuming clique cover that includes all nodes in a given network: Here, the
algorithm would need only one iteration, as it would consecutively merge each next node visited in the
first iteration into the same partition.

20 As we have seen in Figure 2, scholars list major sound correspondences across multiple languages, but
they do not show individual patterns for aligned cognate sets.
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Table 4
Three test sets used in this study.

Data set Source Languages Concepts Words Cognates
Burmish Hill and List (2017) 8 240 1,819 798
Chinese Hóu (2004) 14 623 8,371 623
Polynesian Walworth (2018) 10 210 2,427 1,187
Japanese Hattori (1973) 10 200 1,986 454

on Greenhill, Blust, and Gray 2008), and Hattori (1973) on Japanese dialect (data in
electronic form supplemented in List 2014), an additional data set of 14 Chinese varieties
originally published by Hóu (2004) was specifically modified and manually aligned
for this study. While the two former data sets are classical wordlists that are further
coded for cognacy and alignments,21 the Chinese data is based on a collection of
623 morphemes (reflected by a Chinese character each) whose pronunciation across the
14 dialects used in our sample was elicited by field workers. As a result, the amount of
cognate sets with missing reflexes in this data set is extremely low.

An overview of the data sets, along with additional information regarding the data
sources, the number of cognate sets, language varieties, and words in the data, is given
in Table 4. Needless to say that all data sets are provided in the supplementary material
accompanying this article.

5.2 General Characteristics

As a first illustrative test, the method was applied to the four data sets, and some basic
statistics were calculated. These include the original number of alignment sites in the
data, the number of patterns into which these sites were partitioned by the method,
and the number of singleton patterns, that is, patterns that are reflected by only one
alignment site in the data. By dividing the number of alignment sites assigned to non-
unique patterns by the number of all sites, we can further determine the proportion of
“regular” correspondence patterns in a given data set, assuming that a pattern is regular
if it recurs in at least two different alignment sites.

The results of this analysis are summarized in Table 5. As we can see from this table,
the number of correspondence patterns inferred by the algorithm is much lower than
the number of alignment sites. This is, of course, not surprising, if we assume that the
hypothesis that sound change is an overwhelmingly regular process holds. However,
across the data sets, we can find rather large differences with respect to the amount of
singleton patterns, that is, patterns reflecting only one alignment site. That an alignment
site is not compatible with any other site in the data can have different reasons. First,
there can be idiosyncratic sound changes, resulting, for example, from taboo, or from the
assimilation of frequently used words. Second, there can be errors in the data, resulting
from incorrectly assigned cognates, alignments, or undetected borrowings. It is also
possible that the data sample is too small, and that additional samples could be found,
but have not been included in the data.

21 All data sets are coded for partial cognates and across semantic categories.
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Table 5
Basic statistics after applying the correspondence pattern recognition method to the four data
sets.

Data set Align. Sites Corr. Patterns Singletons Reg. Patterns
Burmish 1,833 432 173 0.91
Chinese 2,891 1,341 966 0.67
Polynesian 1,863 243 64 0.97
Japanese 1,590 556 311 0.80

Table 6
Examples for idiosyncratic correspondence patterns in the Chinese dialects reflecting the major
groups (Běijı̄ng, Sūzhōu, Chángshā, Nánchāng, Méixiàn, Táoyuán, Guǎngzhōu, Fúzhōu, and
Táiběi [Mı̌n dialect spoken in Táiběi]).

When comparing the proportion of “regular” patterns that are reflected by at least
two alignment sites in the data across the data sets, the Chinese data shows the lowest
proportion, with only 67% of all alignment sites being assigned to patterns that recur in
the data. Given the intertwined history of the Chinese dialects, in which language con-
tact among the dialect varieties played an important role, it is not necessarily surprising
that the data looks less regular in general: If languages borrow from each other, and
borrowing is sporadic, rather than systematic, this will lead to an increase in irregular
correspondence patterns and therefore impact on the regularity we can observe. As a
manual inspection of the inferences reveals, the majority of the singleton alignment
sites in the Chinese data could be assigned to one of the regular patterns if one of the
reflexes would be ignored. Examples for these patterns are given in Table 6. On the other
hand, we find some patterns that are largely irregular for specific reasons like taboo.
An example is given in the same table with Chinese niǎo “bird” (pattern 679), which is
reflected by nasal and dental initials across the Chinese dialects. As we know from older
readings, the original reading had the initial [t], but it was later replaced by a nasal in
some Chinese varieties to avoid homophony with the word for “penis,” which was
most likely metaphorically shifted from “bird.”

What we can see from the individual analyses of the different data sets is that the
overall regularity of correspondence patterns does not necessarily reflect the time depth
of the languages in a given data set. Instead, correspondence patterns reflect different
aspects of the data, which have so far not been thoroughly investigated by researchers.
The overwhelming regularity of the patterns in the Polynesian data set, for example, is
probably also due to the fact that the languages contain very small phoneme inventories,

152



List Correspondence Pattern Inference

with no more than 17 different sounds on average (compared to Chinese dialects with
about 35 sounds), while many idiosyncratic patterns in the Japanese data result from
morphological differences, which are difficult to handle in phonetic alignments.

5.3 Tests on Word Prediction

As mentioned briefly already in Section 1, correspondence patterns—once readily
inferred—can provide hints regarding the potential pronunciation of missing cognates
in an alignment. Since the method for correspondence pattern recognition imputes
missing data in its core, it can also be used to predict how a given word should look in a
given language if the reflex of the corresponding cognate set is missing. An example for
the prediction of forms has been given above for the cognate set Dutch dorp and German
Dorf. Since we know from Table 1 that the correspondence pattern of d in Dutch and
German usually points to Proto-Germanic *þ, we can propose that the English reflex
(which is missing in Modern English, apart from place names) would start with th, if it
was still preserved.22 Since the method for correspondence pattern recognition assigns
one or more correspondence patterns to each alignment site, even if the site has missing
data for a certain number of languages, all that needs to be done in order to predict a
missing entry is to look up the alignment pattern and check the value that is proposed
for the given language variety.

The test on word prediction was designed as follows: from each of the data sets,
a certain number of cognate sets was randomly deleted, and the resulting data was
then analyzed with the help of the correspondence pattern recognition algorithm. In
a second step, these inferred patterns were used to predict the cognate words which
were deleted before. For the prediction, only the largest correspondence pattern was
considered for the imputation, in order to avoid that multiple proposals for one sound
could be made by the algorithm. For each data set, three different proportions of words
to be deleted were tested (25%, 50%, and 75%).23 For each proportion and data set, 1,000
trials were tested and the results were averaged. To assess the accuracy of a predicted
word, the proportion of correctly predicted sounds in the given word was estimated
and divided by the total length of the word. The individual accuracies of predicted
words were then averaged by dividing the number of individual prediction scores by
the number of predicted words for each trial.

The results of this experiment are given in Table 7. In general, we can note that
the prediction experiment works very well across all data sets for wordlists reduced by
25% and 50% of their words appearing in cognate sets, while the accuracy of prediction
drastically drops in all data sets when removing up to 75% of the data. The only
exception is the Polynesian data set, where the difference in accuracy across the three
experiments is only small, with a rather large standard deviation.

What may come as a surprise is that the reduction of the data by 25% and 50% does
not seem to influence the accuracy of prediction in all data sets. On the contrary, in the
Chinese and the Polynesian data sets, we find even slightly higher accuracy scores for
the larger data reduction. At least in the Chinese data, the reason for this can be found
in the large number of singleton patterns that deviate only in one reflex from regularly

22 We ignore deliberately in this context that the alternative of the correspondence in Dutch and German is a
borrowing from Dutch, Frisian, or English to German.

23 Depending on the specific distribution of cognates in the individual data, these proportions could vary in
each run.
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Table 7
Results of the test on word prediction, based on 1,000 random samples for each subset of the
data. The column Proportion reflects the different proportions of the data that was deleted
during the experiments. Patterns refers to the average number of correspondence patterns
inferred in each trial, and Reg. Patterns points to the proportion of alignment sites covered by
patterns recurring at least twice.

Data set Proportion Patterns Reg. Patterns Accuracy
Burmish 25% 231.68 ± 6.86 0.94 ± 0.01 0.59 ± 0.02

50% 165.55 ± 6.08 0.94 ± 0.01 0.53 ± 0.02
75% 99.33 ± 5.71 0.89 ± 0.02 0.37 ± 0.03

Chinese 25% 1,040.62 ± 11.88 0.81 ± 0.01 0.69 ± 0.01
50% 672.35 ± 10.53 0.95 ± 0.00 0.70 ± 0.01
75% 373.23 ± 7.67 0.97 ± 0.00 0.64 ± 0.01

Japanese 25% 399.82 ± 10.04 0.89 ± 0.01 0.64 ± 0.01
50% 259.71 ± 9.39 0.93 ± 0.01 0.62 ± 0.01
75% 142.65 ± 7.35 0.92 ± 0.01 0.52 ± 0.02

Polynesian 25% 127.30 ± 5.38 0.97 ± 0.00 0.81 ± 0.01
50% 89.10 ± 5.51 0.97 ± 0.01 0.82 ± 0.01
75% 51.37 ± 4.69 0.95 ± 0.01 0.80 ± 0.03

recurring patterns. If the data is reduced by 50%, the number of idiosyncratic patterns
also drops, as we can see from the proportion of regularly recurring patterns given in
the table. While these cover 95% of all alignment sites in the data set reduced by 50%,
their proportion drops to 81% when being reduced by only 25%, and is (as we have seen
in Table 5) even lower when analyzing the whole data set. If enough words are deleted
from singleton patterns, like the ones shown in the examples in Table 6, the method for
correspondence pattern recognition will assign them to the same clusters. As a result,
the words whose pronunciation deviates will still be wrongly predicted, but the words
that are not affected by individual sound changes will be predicted correctly, and since
there are more regular words in the data, the overall prediction accuracy will increase.

When comparing the differences in the scores across the four data sets, we can also
see that the overall “regularity” of the data, as measured by the number of patterns
that recur more than one time, is not a good predictor of the success of the prediction
quality. The Burmish data, for example, has rather high rates of pattern regularity, but
performs worse in prediction than the other data sets. It is clear that the number of
singleton patterns that only reflect one alignment site in a data set will have a direct
impact on the word prediction quality, since only patterns that recur at least two times
in the data can be used for prediction. But this is not the only factor influencing the
prediction quality. Ambiguous alignment sites that can be assigned to more than one
pattern may, for example, likewise produce erroneous predictions. For the time being,
we cannot offer a full account of all the different factors that might influence prediction
quality. More studies on different data sets will be needed to increase our knowledge in
the future.

The fact that the prediction accuracy does not seem to improve or may even drop
when more data is retained in our experiments is important for further applications of
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the method (for example, when carrying out field work or when searching for missing
cognate sets), as it shows that we can reduce the amount of time spent on manual anno-
tation substantially when annotating data sets for historical linguistics. Linguists could,
for example, annotate half of their data manually and then use our method to impute
potentially missing cognates in their data. If actual words that were not annotated in
the first run turn out to have the same form as words predicted by our algorithm, this
would be a very strong argument that they are really cognate. Another example would
be guided field work for the purpose of historical language comparison. If insufficient
amounts of data have been collected, scholars can use the prediction method to predict
the most likely forms for certain cognate sets and use them to ease the elicitation of the
relevant forms when asking new informants.

5.4 Examples

Table 8 gives some examples illustrating the scoring procedure and typical failures of
the method, again illustrated for the Chinese data set.24 In cognate set 687, we find one
correctly predicted form for Chángshā, and one incorrectly predicted tone for the Jínán
form. As we can see from the frequencies of alignment sites supporting the proposed
pattern given in the column “Frequency” in the table, the inferred pattern clusters only
two alignment sites. As a result, it is not surprising that a wrong tone is proposed. The
wrong form for Měixiān in cognate set 319 is due to a wrong clustering of the cognate
set with the irregular cognate set 654, listed earlier in Table 6. Since the Měixiān word
was deleted in the experiment, the whole pattern is compatible with pattern # 73 in
the table, which predicts that the Měixiān form should start with th. In cognate set 518,
we can see that the method fails to propose a valid sound for the form in Wēnzhōu
for the second and the third site in the alignment, given that these sites are assigned to
singleton patterns (of one alignment site only) in which no sound for Wēnzhōu could
be imputed.

While the success or failure of the prediction experiments can help us to improve
the method in the future, we can also illustrate how the analysis can aid in practical
work on linguistic reconstruction. This example will again be based on the Chinese data,
since it has the advantage of offering quick access to Middle-Chinese reconstructions.
Because Middle Chinese is only partially reconstructed on the basis of historical lan-
guage comparison, and mostly based on written sources, such as ancient rhyme books
and rhyme tables (Baxter 1992), the reconstructions are not entirely dependent on the
modern dialect readings, which is a great advantage for testing the consequences of the
correspondence pattern analysis.

In Table 9, patterns inferred by the method for correspondence pattern recognition
for a reduced number of dialects (one of each major subgroup) have been listed. The
examples can all be reconstructed to a dental stop in Middle Chinese (*t, *th, or *d). If
we inspect only reflexes of Middle Chinese *d in the data, we can see that the initial
consonant is reflected in seven different patterns in our data. Four of these patterns,
however, occur only one time (# 719, # 1096, # 484, and # 654), as reflected in the column
Cogn. (pointing to supporting cognate sets), and if we exclude the reflexes for Méixiàn

24 This data set and the detailed predictions are available from the supplementary material as files
<chinese25.tsv> (wordlist) and predictions-chinese25.txt.
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Table 8
Examples for the word prediction experiment for the Chinese data. The column Frequency lists
the size of the inferred patterns for each position of the predicted word form. The score is
calculated by dividing the number of correctly predicted sounds by the total number of sounds.

(# 719, # 654), Táiběi (# 1096), and Nánchāng (# 484), respectively, we can assign # 719
and # 1096 to # 718 and # 484 and # 654 to # 73. In patterns # 718 and # 747, only Fúzhōu
shows a different reflex. Since we have forms that are homophones in Middle Chinese
in both correspondence patterns ( in # 747 and in # 718 were both pronounced as
*dam in Middle Chinese), we cannot find a conditioning context that would explain this
difference from the perspective of Middle Chinese alone. We know, however, that the
Mǐn dialects (to which Fúzhōu belongs) reflect features that are more archaic than Mid-
dle Chinese. In this case, the difference between the patterns is regularly reflecting the
difference between plain voiced and breathy voiced initials in the ancestor of the Mı̌n
dialects, with the latter going back to complex onsets in Old Chinese, the predecessor of
all Chinese dialects (Baxter and Sagart 2014, page 171f). Furthermore, if we compare the
patterns # 747 and # 73 directly, we can see that, although only Fúzhōu has a direct reflex
of the original voiced sound in Middle Chinese, we can still find its traces in the different
correspondence patterns, since Běijı̄ng and Guǎngzhōu have contrastive outcomes in
both patterns ([th] versus [t]). When inspecting the tones that are reconstructed for the
different words in Middle Chinese, we can easily find a conditioning context where the
reflexes differ. The píng (flat) tone category in Middle Chinese correlates with aspiration,
while the other tone categories correlate with devoicing in the three dialects.25 If we had
no knowledge of Middle Chinese, it would be harder to understand that both patterns
correspond to the same proto-sound, but once assembled in such a way, it would still be
much easier for scholars to search for a conditioning context that allows them to assign
the same proto-sound to the two patterns in questions.

The example shows that, as far as the Middle Chinese dental stops are concerned,
we do not find explicit exceptions in our data, but can rather see that multiple corre-
spondence patterns for the same proto-sound may easily evolve. We can also see that a
careful alignment and cognate annotation is crucial for the success of the method, but

25 This phenomenon most likely goes back to an earlier phonation contrast between the first (píng) tone in
Middle Chinese and the other tones.
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Table 9
Contrasting inferred correspondence patterns with Middle Chinese reconstructions (MC) and
tone patterns (MC Tones: P: píng (flat), S: shǎng (rising), Q: qù (falling), R: rù (stop coda)) for
representative dialects of the major groups (Běijı̄ng, Sūzhōu, Chángshā, Nánchāng, Méixiàn,
Táoyuán, Guǎngzhōu, Fúzhōu, Táiběi).

even if the cognate judgments are fine, but the data are sparse, the method may propose
erroneous groupings.

In contrast to manual work on linguistic reconstruction, where correspondence pat-
terns are never regarded in the detail in which they are presented here, the method has
the potential to drastically increase both the transparency and the quality of linguistic
data sets, especially in combination with tools for cognate annotation, like EDICTOR, to
which we added a convenient way to inspect inferred correspondence patterns interac-
tively (see the example in Appendix A). Because linguists can run the new method on
their data and then directly inspect the consequences by browsing all correspondence
patterns conveniently in the EDICTOR, the method makes it a lot easier for linguists to
come up with first reconstructions or to identify problems in the data.

6. Conclusion and Outlook

This study has presented a new method for the inference of sound correspondence
patterns in multilingual wordlists. Thanks to its integration with popular software
packages, the method can be easily applied, both within automated, or computer-
assisted workflows. The usefulness of the method was illustrated by showing how it
can be used to predict missing words in linguistic data sets. The method, however, has
much additional potential. Since the method can impute words not attested in existing
languages, it could likewise be used for the automatic reconstruction of proto-forms, the
identification of cognates, or the assessment of the general regularity of a given data set.
In addition to revealing potential correspondence structures underlying a given data
set, the method can additionally help to assess how well a given data set has been
analyzed before. By helping to improve the quality and transparency of existing and
future data sets in historical linguistics in this way, we hope that the method will in the
long run also contribute to new and important findings about the past of our world’s
languages.
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Supplementary Material

The supplementary material accompanying this article contains the code and all in-
structions needed to repeat the experiments described in this article. The original
package for correspondence pattern detection is publicly available from GitHub under
https://github.com/lingpy/lingrex (Version 0.1.0). The package providing the sup-
plementary material with results and instructions for running the code is also available
via GitHub under https://github.com/lingpy/correspondence-pattern-paper
(Version 1.1.1) and has been archived with Zenodo at https://doi.org/10.5281/
zenodo.1544949.

Appendix A: Inspecting Correspondence Patterns in EDICTOR

The following screenshots show how the modified version of the EDICTOR allows for
an enhanced inspection of sound correspondence patterns inferred by the method.
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