
METHODOLOGY ARTICLE Open Access

SLALOM, a flexible method for the
identification and statistical analysis of
overlapping continuous sequence elements
in sequence- and time-series data
Roman Prytuliak1, Friedhelm Pfeiffer1 and Bianca Hermine Habermann1,2*

Abstract

Background: Protein or nucleic acid sequences contain a multitude of associated annotations representing
continuous sequence elements (CSEs). Comparing these CSEs is needed, whenever we want to match identical
annotations or integrate distinctive ones. Currently, there is no ready-to-use software available that provides
comprehensive statistical readout for comparing two annotations of the same type with each other, which can be
adapted to the application logic of the scientific question.

Results: We have developed a method, SLALOM (for StatisticaL Analysis of Locus Overlap Method), to perform
comparative analysis of sequence annotations in a highly flexible way. SLALOM implements six major operation
modes and a number of additional options that can answer a variety of statistical questions about a pair of input
annotations of a given sequence collection. We demonstrate the results of SLALOM on three different examples
from biology and economics and compare our method to already existing software. We discuss the importance of
carefully choosing the application logic to address specific scientific questions.

Conclusion: SLALOM is a highly versatile, command-line based method for comparing annotations in a collection
of sequences, with a statistical read-out for performance evaluation and benchmarking of predictors and gene
annotation pipelines. Abstraction from sequence content even allows SLALOM to compare other kinds of positional
data including, for example, data coming from time series.

Background
Nearly all sequences have associated annotations, which
describe continuous sequence elements (CSEs) with a
specific function. In genomes, we have genes with their
associated labels (coding regions, introns, exons, 5′ and
3’ UTRs, etc.), mapped and predicted binding sites for
DNA-binding proteins (transcription factors, histone
marks or other epigenetic features), or regions with a
specific base composition or function (promoters, en-
hancers, CpG islands, repeat regions, etc.); in proteins,
we find annotations like transmembrane regions,

conserved domains, functional short linear motifs, or
sites for protein modifications.
We are often faced with the problem of comparing

such annotations. We need it whenever we want to com-
pare the outputs from two distinct origins, such as gen-
ome annotations from two different resources or protein
domains from two different predictors; or, when we want
to integrate independent annotations with each other,
such as transmembrane regions and motifs in proteins
or genes and promoters in DNA. Annotations from two
different origins may either be equally reliable, or one
may be more reliable and thus be used for benchmark-
ing. This is for instance the case, when we compare the
results of a predictor to a golden standard of manually
curated annotations. In this case, we want to compute
performance measures. The measures are based on such
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counts as true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN).
The terms ‘true positive’ and ‘false positive’ seem to be

understood intuitively and thus these computations may
seem to be a trivial task. However, considering different
scenarios of overlap and duplication of annotated CSEs,
their meanings may become quite ambiguous. Such am-
biguity sources can be described by the following ques-
tions: (i) How should duplicated or overlapping CSEs
within one annotation be resolved? (ii) What is a suffi-
ciently large overlap between CSEs from two different
annotations, so that they can be considered a match?
(iii) How should length diversity among CSEs be
treated? (iv) How should one account for the diversity in
overall length of the sequences that have a CSE to be
compared?
The answers to these questions depend on the particu-

lar problem under consideration. Let us first consider
the way, how we can measure the overlap between two
CSEs: one can either count a CSE as one single event,
which we refer to as ‘CSE-wise’ or ‘site-wise’; alterna-
tively, one can count each residue separately, so that the
count depends on the length of the CSE. We refer to
this as ‘symbol-wise’ or ‘residue-wise’. Depending on the
type of application, either of the two models is typically
used. For example, computing performance measures
for predictors of protein secondary structure or solvent
accessibility is usually done in a residue-wise manner,
with CSE counts being rather irrelevant [1, 2]. On the
other hand, in case of motif or domain predictions in
proteins or gene annotations in genomes, it is more rele-
vant to count CSEs as atomic units, without respect to
their length. When comparing predicted conserved do-
mains in proteins, Ghouila et al. [3] based their mea-
sures on the numbers of domains. The distance between
two genomes is normally measured in numbers of rear-
rangements, regardless of their length [4]; in compara-
tive genomics, it is more informative to compare
genomes of different species in terms of gene counts ra-
ther than numbers of base pairs [5, 6]. In such situa-
tions, questions (i) and (ii) on the overlap and
duplication of CSEs need to be carefully considered.
Song and Gu [7] generally outlined the approach for

benchmarking de novo motif search algorithms: in brief,
residue-wise measures complement the site-wise ones.
For site-wise comparison of predicted motifs to a set of
benchmark motifs, one must define a minimal overlap
between the two motifs so that they can be considered a
match. However, their proposed solution does not con-
sider all the details (e.g., dealing with overlapping bench-
mark CSEs). Furthermore, their benchmarking software
is not available as a standalone application.
Kalkatawi and colleagues [8] describe the problem of

genome annotation comparison and provide a context-

specific solution in the form of the software package
BEACON. They suggest applying the length percentage
threshold to classify a pair of compared genes as either
matching or discrepant. By default, genes must overlap
by at least 98% to be considered as a match. Their tool,
BEACON, outputs the site-wise similarity score as the
result. Other described solutions for comprehensive
comparison of gene annotations are: the software pack-
age ‘GenoMatrix’ [9], annotation enrichment analysis
[10], the GeneOverlap R package (part of Bioconductor
[11]) developed in the lab of Li Shen (e.g. was used in
[12]), diffReps – a specific solution for ChipSeq data
[13], or bedtools [14], a standalone tool for a wide range
of genomic analysis tasks. The most general existing so-
lution is the IRanges R package (part of Bioconductor).
Questions (iii) and (iv) on the difference in length of the

CSEs, as well as the full-length input sequences containing
CSEs to be compared are potentially not so important, if
one needs to compute performance measures for compar-
ing just a pair of already finalized annotations. However,
they become extremely important if one uses statistical
measures as optimization criteria. For example, optimizing
a motif predictor for a measure that includes residue-
based recall may lead to a situation, where only the lon-
gest motifs are correctly recovered, while the shortest ones
are being ignored. This is clearly not the desired behav-
iour. Optimizing for site-based measures, on the other
hand, usually leads to prediction of overly extended mo-
tifs, which have an increased probability of covering the
benchmark motifs just by chance.
Finally, one should consider, whether all sequences

under consideration should be treated equally, as simple
averaging of results across all sequences may not pro-
duce an adequate measure for the overall performance.
Group-wise macro-averaging could for instance be desir-
able, if a dataset contains clusters of highly similar se-
quences (e.g. clusters of closely related homologs). In
other cases, sequences may be grouped by a common
feature, such as protein sequences belonging to the same
complex, pathway, or the groups can represent regions
with different properties in the same sequences – so-
called class intervals [15]. To circumvent the grouping
problem, one could select a single representative from
each cluster or group. However, in this case, results
could be biased due to the chosen representatives.
Therefore, it is preferable to design the calculations such
that all data are considered. As was pointed out by Baker
et al. [16], estimation of statistics from grouped data
does not raise principally new issues. Yet, various formu-
lae need to be adjusted to reflect the nature of the data.
A motif search is a good example, as each type of motif
is normally present in more than one distinct sequence.
In this case, sequences are grouped by containing the
same type of motif.
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We have developed a method, SLALOM (StatisticaL
Analysis of Locus Overlap Method), for comparison of
sequence annotations. By providing a set of different in-
put options, SLALOM is tuneable to the relevant scien-
tific question with respect to overlap and duplication of
annotations, and provides the user with a number of
statistical parameters relevant for performance measures.
We have tested SLALOM on different annotation com-
parison scenarios, which we present in this manuscript.
Moreover, we have written SLALOM in such a way that
it cannot only be applied to positional data representing
sequence annotations, but can also be used for compar-
ing time-series data.

Results
Results overview
When two annotations of CSEs are compared, different
scenarios of overlap and duplication may lead to quite
some ambiguity during evaluation. Several scenarios are
illustrated in Fig. 1. We start with a description of the
details of these scenarios, which is the motivation for all
other results that we have obtained.
We have designed and implemented comprehensive

overlap resolving and matching principles to cope with
the ambiguity during evaluation. Each CSE has its
length. Depending on the kind of analysis, it can be
viewed as a single event, independent of its length, or as
a multitude of events proportional to its length. In some
analyses, it is only relevant, if there is a CSE at a given
position or not (binary event), while in others, the exact
counts are important (e.g., so-called deepness in next-
generation sequencing (NGS)). Finally, a pair of CSEs
may come from two annotation origins with equal confi-
dence; or one of them might be more reliable (e.g., be con-
sidered the golden standard or benchmark). To address
these different analysis types, we have implemented three
count modes, which can each be combined with two
comparison modes, resulting in a total of six operation
modes (Table 1). Both, the count and the comparison
modes are mutually exclusive. Full details of these oper-
ation modes are presented below.
We demonstrate the applicability of our tool in three

case studies. The first case study deals with the annota-
tion of proteins. It analyses some details of the perform-
ance of our previously published method HH-MOTiF, a
de novo motif predictor [17]. We also compare the func-
tionality of SLALOM to other available tools by address-
ing specific questions within this case study. In the
second case study, we compare the annotations of two
prokaryotic (archaeal) genomes with respect to calling of
protein-coding genes. The third case study illustrates the
applicability of the tool to data from a time series. It is
an analysis of economic data, showing that our statistical
analysis tool is not restricted to biological data.

Identified sources of ambiguity when comparing CSEs
from two annotation origins
By carefully analysing examples of annotation compari-
sons available in literature, as well as in published soft-
ware solutions, we identified four distinct sources of
ambiguity:

1. Overlaps and duplications between CSEs in the
same annotation

2. Criteria for matching of CSEs from different
annotations

3. Length diversity among distinct CSEs
4. Length diversity among the annotated sequences

c

e

a

f

b

d

Fig. 1 Overview of possible ambiguities, when comparing two
annotations of CSEs (benchmark and predicted CSEs). Black lines
depict query sequences, blue lines indicate benchmark CSEs, red
and orange lines represent predicted CSEs. a Multiple true positive
sites (left) and a single false positiv site (right). b A true positive
matches to multiple, overlapping benchmark sites (left) or to a
single benchmark site (right). c The overlap between a predicted site
and a benchmark site may be large (left), minimal (center) or one
predicted site may patch multiple benchmark sites (right). d An
excessively large predicted site overlaps with a short benchmark site.
e Two predictors have one true positive and one false negative; the
matching benchmark site may be short (left) or long (right). f A
predictor finds a benchmark site in either a long sequence (top) or a
short sequence (bottom). For more details, see Main Text
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Thus, the four corresponding questions, which refer to
sources of ambiguity, should be clarified before calculat-
ing any performance measures.

1. How should duplicated and overlapping CSEs in the
same annotation be resolved? CSE overlaps and
duplications are integral to some problems, e.g.,
exon annotations. However, they may be unwanted
artefacts, as is the case for motif predictions. Let
us assume that there is only one benchmark
motif, which is correctly recovered by the
predictor; however, if the predictor outputs it
nine times (as duplicates) in addition to one
distinct false positive (see Fig. 1a), is the precision
of the predictor 90% (counting each duplicate
separately) or 50% (consolidating duplicates)? Or
maybe 100%, as one could discard the second
predicted motif as non-significant based on the
duplicate count? Moreover, how should one resolve
overlaps in the benchmark annotation itself (see
Fig. 1b): should one merge the overlapping sites or
treat them as distinct sites?

2. To which extend must the CSEs of two annotations
overlap to be considered a match? This question
addresses the problem of finding unequivocal
matches between the annotated CSEs. In case of
motif prediction, it is very convenient to speak about
certain benchmark motifs being either ‘correctly
recovered’ or ‘missed’ (see for instance [18]). It is a
clear-cut situation, when a benchmark motif almost
perfectly corresponds to a predicted one (Fig. 1c,
left). Yet, can one still count a motif as ‘correctly
recovered’, if it overlaps with a predicted motif only
to a small extent (Fig. 1c, centre)? Or if it is ‘patched’
by several different predicted motifs (Fig. 1c, right)?
If not, what threshold should be applied? A typical
sub-problem is dealing with predictors that output

very long motifs to hit the benchmark motifs just by
chance (Fig. 1d).

3. How should length diversity among annotated CSEs
be treated? This question deals with the problem
of considering a CSE as an atomic unit or as a
collection of the separate symbols it consists of.
Let us assume that two CSEs to be compared
have very different lengths. Does a prediction,
which recovers only the shorter CSE perform
equally well as a prediction, which recovers only
the longer one (Fig. 1e)?

4. How should length diversity among the compared
full-length sequences be treated? This question
addresses the statistical significance of a prediction
with respect to the sequence space it resides in:
returning to the problem of de novo motif
prediction, should a correct prediction of a motif in
a significantly longer sequence be considered
statistically more significant than another correct
prediction of the same motif in a much shorter
sequence (Fig. 1f )?

We do not pretend to provide an exhaustive list here.
Other potential sources of ambiguity can be identified,
when comparing two annotations of CSEs. In this study,
we focus our attention on those that have potentially the
largest impact with respect to biological data. However,
SLALOM can to some extend also handle other ambigu-
ity sources, such as missing values or group size inequal-
ity. For full details on the functionality of SLALOM
see Methods, Additional file 1: Table S1, and the user
manual in Additional file 2 (also downloadable from
GitHub).

Implemented operation modes and their applicability
The ambiguity source 1 – overlaps of CSEs within one
annotation – can be addressed in two ways according to

Table 1 Operation modes of SLALOM. Each input is parsed twice, so that each annotation is at one point the query and the
subject, respectively

Mode Description

Count modes (mutually exclusive, collectively exhaustive)

Symbol-resolved While calculating symbol-wise statistics, classify symbols to either present or absent in the query
annotation. Calculate site-wise statistics according to the overlap logic. This is the default mode.

Gross While calculating symbol-wise statistics, count each symbol gross, i.e., as many times as it occurs
in all sites from the query annotation. Calculate site-wise statistics according to the overlap logic.

Enrichment While calculating symbol-wise statistics, classify symbols to either enriched or non-enriched
(including completely absent) in the query annotation based on the user-provided threshold
on the number of occurrences. Do not calculate site-wise statistics.

Comparison modes (mutually exclusive, collectively exhaustive)

Equal Treat the two input annotations as equal. Calculate only symmetric (not influenced by swapping)
performance measures.

Benchmarking Treat the first input annotation as the benchmark; treat the second one as a prediction. Calculate
both symmetric and non-symmetric performance measures.
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the user’s choice. The first approach consists in resolving
the overlaps through either merging overlapping CSEs
or discarding the redundant ones. It is invoked through
changing the default of the options ‘-a1r/–anno1file_re-
solve’‘-a1r/–anno1file_resolve’ and ‘-a2r/–anno2file_re-
solve’ (see Additional file 1: Table S1). The second
approach consists in counting the number of CSEs tra-
versing each symbol. This counting may be done in three
modes (see Table 1 and Fig. 2): (1) by ‘presence’ (either
traversed or not, as if merging were performed). We refer
to this as symbol-resolved mode; (2) in ‘gross’ mode (each
symbol is counted as many times as it is traversed); or (3)
by ‘threshold’ (the symbol is counted as present if it is tra-
versed by at least some defined minimal number of CSEs).
We call this enrichment mode. Note that real explicit
merging and counting for presence, although producing
identical symbol-wise results, will lead to generally differ-
ent site-wise metrics. For the list of all metrics available
for calculation in each mode, see Table 2.
The ambiguity source 2 – matching criteria for CSEs

from two different annotation origins – is addressed by
allowing users to set the matching criteria: minimal num-
ber of symbols with the option ‘-Os/–overlap_symbols’
and minimal overlapping part (fraction) with the option
‘-Op/–overlap_part’. This standard functionality is also
available in other published tools. The possibility to unam-
biguously define, to which of the two CSEs these criteria
apply (the option ‘-Oa/–overlap_apply’), is, however, a
unique feature of SLALOM. It also offers the possibility to
define the desirable order of the CSE start positions or

which type of events should begin earlier in a time series.
In this case, two CSEs only match, if the CSE from the
second annotation begins before, after, or at the start pos-
ition of the corresponding CSE from the first annotation
(option ‘-On/–overlap_nature’). Moreover, the shift options
(‘-a1bs/–anno1file_begin_shift’, ‘-a1es/–anno1file_end_shift’,
‘-a2bs/–anno2file_begin_shift’, ‘-a2es/–anno2file_end_shift’)
allow matching of CSEs that are not overlapping but are
merely close to each other, as well as for compensating for
possible annotation skews. Such functionality is especially
useful for tasks like gene-promoter matching or gene
name mapping between two different genome annota-
tions based on their relative position in the genome.
The ambiguity source 3 – CSE length diversity – is ad-

dressed through computing both, residue-wise and site-
wise measures. The latter will show underperformance
in comparison to the former, if the predictor selectively
prefers longer CSEs.
The ambiguity source 4 – sequence length diversity

– is addressed through the choice between turning
the adjustment for the sequence length on (with the
option ‘-A/–adjust_for_seqlen’) or off (the default).
The former will convert the symbol counts (TP, FP,
etc.) into percentages (or shares) of the sequence
length for each sequence individually before averaging
them group-wide or dataset-wide. The latter will sum
up the counts group-wide before converting them
into shares. With adjustment for sequence length
turned on, the relative number of symbols is consid-
ered, rather than their absolute counts. As a result,
for CSEs of equal length, the performance in shorter
sequences outweighs the performance in longer se-
quences, if the adjustment is turned on. A schematic
example of the impact of sequence length adjustment
on the resulting metrics is shown on Fig. 3. Note that
although the adjustment for sequence length can be
viewed as macro averaging when calculating the
shares of TP, FP, etc. at the group level, we do not
use the term ‘macro averaging’ in this context in
SLALOM, to avoid confusion with averaging of per-
formance measures, which has a different impact on
results. For the performance measures, we implement
three averaging approaches: sequence-wide (macro-
macro), group-wide (micro-macro; the default) and
dataset-wide (micro-micro), which can be chosen with
the option ‘-a/–averaging’.
The detailed description of the options is provided in

Additional file 1: Table S1.

Case study 1: Protein motif prediction as exemplified by
application of the de novo predictor HH-MOTiF
Glossary
Sequences: protein sequences containing experimentally
verified motifs.

Fig. 2 Schematic representation of differences between the three
count modes. The grey line represents a query sequence; red lines
show overlapping CSEs in this sequence; circles illustrate distinct
symbols (residues, base pairs, time points, etc.) the sequence
consists of. The symbol-resolved mode counts presence of at least
one symbol in a position; the gross mode counts how often each
symbol position occurs; the enrichment mode is similar to the
symbol-resolved mode but counts presence only if there are at least
n symbols in a position
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Groups: separate motif classes (ELM [19] classes).
Benchmark annotation: ELM annotation of experi-

mentally verified motifs.
Predictor annotation: output of a computational motif

predictor (HH-MOTiF).

A previous version of SLALOM was used in an earlier
publication [17] to assess the performance of different
methods for de novo motif prediction in protein se-
quences, and to compare them between each other. In
brief, we used experimentally validated motifs stored in

Table 2 Performance measures availability in different modes. For the formulae of the metrics, see Module 4 and Module 6 of
Methods

Measure Symmetric Operation mode

Symbol-resolved Gross Enrichment

Equal Benchmarking Equal Benchmarking Equal Benchmarking

TPR no – + – + – +

PPV no – + – + – +

SPC no – + – + – +

NPV no – + – + – +

Informedness no – + – + – +

Markedness no – + – + – +

PC no – + – + – +

ACC yes + + – – + +

MCC yes + + – – + +

F1 yes + + + + + +

EAC yes – – – – + +

Site TPR no – + – + – –

Site PPV no – + – + – –

Site PC no – + – + – –

Site F1 yes + + + + – –

Site PCV yes + + + + – –

Fig. 3 Schematic example of evaluating a predictor with and without adjusting for sequence length. Black lines illustrate two query sequences (100
and 25 residues long). Two benchmark CSEs (both 5 residues long) are drawn as short blue lines; two predicted CSEs (also 5 residues long) are shown
as short red lines. In the upper panel, the prediction worked correctly in the longer sequence but not in the shorter, and vice versa in the lower panel.
With sequence length adjustment turned on, the actual residue counts are divided through the sequence length before proceeding to averaging and
calculating performance measures. Otherwise, residue counts are summed up. The precision is computed as TP/(TP + FP)
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the ELM database to develop, optimize and test the HH-
MOTiF algorithm. Our goal was to make our predictions
match benchmark motifs annotated in ELM as closely as
possible. The difficulties in scoring predicted short mo-
tifs in proteins are given by the following factors corre-
sponding to the ambiguity sources described in the
previous subsection:

1. The motif instances predicted by HH-MOTiF are
often overlapping or duplicated. Benchmark motifs
annotated in ELM are also sometimes overlapping,
even within the same motif class (e.g., in the ELM
class LIG_SH3_3). It is not initially obvious, if one
should merge the instances or treat them separately.

2. Sometimes benchmark and predicted motifs overlap
only to a small extent. It is not clear, if one should
still consider them as matches or simply ignore such
overlaps.

3. The length of benchmark motifs, as well as the
number of motif instances per class broadly varies.
This may skew the final score in favour of predicting
longer and/or more abundant motifs.

4. The length of proteins is highly diverse, also within
the same motif class. This means that in different
sequences, ratios between positive and negative
residues may be more than 10 times different. As
such ratios constitute the formulae of performance
measures, two predictions of the same motif with
equal absolute numbers of true positive and false
positive instances will show quite different scores,
depending on the distribution of the instances
among the proteins. Therefore, one has to decide
whether to focus on the motif count or the motif
residue count (see Fig. 3).

We chose to calculate different measures for estimat-
ing the accuracy of selected de novo motif predictors to
avoid biasing results in favour of one or the other
method. We calculated residue-wise recall, residue-wise
specificity, site-wise recall, site-wise precision, and site-
wise performance coefficient (PC) in the symbol-resolved
mode. Residue-wise precision was calculated in the
gross mode. For details on calculations, see Methods.
Let us first consider calculating residue-wise perform-

ance metrics. The choice of how to treat overlaps in pre-
dicted motifs with benchmark motifs and how to
calculate averages for performance metrics may seem
trivial at the beginning. However, the impact of these
choices may be as large as 2-fold. For example, precision
(PPV) is very sensitive to the way of treating nans during
averaging, while the false positive rate (FPR; FPR = 1-
SPC, with SPC being specificity) changes upon switching
between the symbol-resolved and gross modes (see
Table 3). Consequently, the performance values vary

with the chosen application logic. The choice of the op-
eration mode should be based on the question the re-
searcher wants to answer. In case of motif predictors, we
wanted the precision to answer the following question:
“What is the probability that a given predicted motif is
real?”. With this question, it is not important, if the
given motif overlaps with others from the same annota-
tion, and therefore we have chosen the gross mode to
calculate PPV. In this application logic, a duplicated false
positive prediction will decrease the precision. On the
other hand, while calculating residue-wise recall (TPR),
SPC and FPR, we wanted to answer the question: “What
share of motif/non-motif residues are predicted as posi-
tive/negative?”. This is not influenced by duplications of
some residues. Thus, we calculated TPR, SPC and FPR
in the symbol-resolved mode. Moreover, we did all the
calculations without adjusting for sequence length. This
prevents generally easier cases of short sequences from
outweighing the harder ones: we observed that it is
harder to find short motifs in long proteins than in short
ones. Without sequence length adjustment, the result
depends only on the number of true and false positives
in the group, regardless of their distribution between
distinct sequences. With sequence length adjustment
turned on, the sequence-based distribution of motifs
would impact the performance, which we consider as an
undesired effect in this situation. In our schematic ex-
ample in Fig. 3, the precision is identical (50%) when the
adjustment for sequence length is turned off but fluctu-
ates between 20% and 80% when it is turned on. Finally,
we did not treat nan values as zeros while calculating
PPV. These arise when a predictor returns no results
for a given motif class. We reasoned that it is better
for a tool to predict no motifs at all than only false
positives. If one treats nans as zeros, these two cases
become non-distinguishable. Taken together, our precision
value answers the question “What is the probability
that a given de novo predicted motif corresponds to a

Table 3 Dependence of the core performance measures of HH-
MOTiF on the approach. Generation of this table is based on the
option set A1 and its variants, as specified in Additional file 1

Operating
count mode

Adjustment
for sequence
length

Treat nans
as zeros

Symbol-wise

TPR PPV FPR

Gross no no 0.211 0.420 0.011

yes 0.211 0.213 0.011

yes no 0.216 0.429 0.014

yes 0.216 0.217 0.014

Symbol-resolved no no 0.210 0.358 0.007

yes 0.210 0.181 0.007

yes no 0.215 0.367 0.009

yes 0.215 0.185 0.009
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benchmark motif, independent of other predicted mo-
tifs?”. In our opinion, this is the most likely question an
average user of such a tool will want to address.
Calculating site-wise TPR and PPV may be even more

relevant, as it is more interesting to evaluate entire mo-
tifs than individual residues. However, the calculation
of site-wise metrics is more ambiguous, as one needs to
set the minimal overlap criteria for assigning a match
between a predicted and a benchmark motif. There are
many opinions on how well a benchmark-prediction
motif pair should overlap to be counted as a match, or
if a match must be reciprocal. In the HH-MOTiF paper,
we chose the loosest definition, stating a reciprocal
match, if the pair overlapped by at least one residue.
With the newly implemented options in SLALOM, we
can conduct more in-depth investigation of the site-
wise performance. The options include not only the
minimal required number N of residues and the min-
imal percentage P of a matching CSE (motif ), which we
refer to as ‘the criteria’, but also how they should be ap-
plied to the query and subject CSE (motif ) to be com-
pared (Fig. 4). This is important to consider, when the
motifs are of different length. There are four possible
options available (note that the input is considered
twice, so that each annotation becomes the query and
the subject annotation at one time):

a) current: apply the criteria to the motif in the current
annotation being considered – the query annotation.

Consider only one motif from the other – the
subject – annotation at a time.

b) shortest: consider one motif at a time from the
subject annotation and apply the criteria to the
shorter of two motifs in the compared pair.

c) longest: similarly to the shortest, except apply the
criteria to the longer of two motifs in the compared
pair.

d) patched: apply the criteria to the motif in the
currently considered annotation. Consider all motifs
from the subject annotation cumulatively, allowing
single query motifs to be ‘patched’ by several motifs
from the subject annotation. The benchmark motif
in Fig. 1c (right) may be considered as not recalled if
the current is chosen but recalled if the patched is
chosen.

SLALOM allows the user to define the matching prin-
ciples according to his or her preference to obtain rele-
vant data on the site-wise performance of a predictor.
The dependence of performance measures of HH-
MOTiF on N, P and the chosen application logic is
shown in Table 4.
Data we received on the dependence of performance

on the chosen application logic is itself informative
about the properties of the input data. For instance, on
the basis of Tables 3 and 4, we could make some funda-
mental observations: first, there are not many overlaps
and duplications in the benchmark dataset in contrast to

Fig. 4 Schematic example illustrating principles of CSE matching criteria. The length of the CSE in the annotation being currently considered (the
query) is 10 symbols/residues. It partially overlaps with two CSEs - the match candidates - in the subject annotation: with a 12-symbol long CSE
by 5 symbols; and a 4-symbol long CSE by 3 symbols. In all four scenarios, both match candidates are evaluated to determine, if the current CSE
has a match or not. In the first three scenarios (current, longest, shortest), they are tested separately, while they are treated cumulatively, if patched
is selected. If at least one test succeeds, the current CSE has a match, otherwise - not. For example, if the user sets a length threshold of 60%, the
current CSE has no match when selecting current or longest, but has a match if shortest or patched is chosen
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the predicted dataset. This is based on the observation
that the residue-wise PPV is influenced to a much
greater extent than the TPR by switching between gross
and symbol-resolved modes. Closer inspection of the in-
put data confirms this hypothesis (see input files in Case
Study 1 in Additional file 1). Second, the predictor per-
forms better on shorter proteins. This is based on the
observation that the performance is slightly lower with
adjustment for sequence length turned on. This hypoth-
esis is consistent with our earlier observation that pre-
dictions in shorter proteins are easier, although the
effect is very small for HH-MOTiF. Third, the predictor
returns no results for about half of the groups: there is
an about 2-fold impact on the symbol-wise PPV by
treating nans as zeros. Indeed, HH-MOTiF returned no
results for 87 out of 176 tested motifs (see Additional
file 1: Table S3 of the HH-MOTiF paper). Fourth, the
predictor has generally no problems with correct posi-
tioning of the motifs (i.e., avoiding situations depicted in
Fig. 1c, centre). This is based on the observation that
both, site-wise TPR and PPV drop less than 10%, when
requiring at least 75% of the shortest motif in the
benchmark-prediction pair to overlap. Finally, the pre-
dictor often fails to reproduce precisely the annotated
length, predicting either too short or too long motifs
(Fig. 1d). This hypothesis is based on the significant

drop of site-wise PPV upon requiring at least 75% of
the longest motif in the benchmark-prediction pair to
overlap.
For details and files, see also Case Study 1 in

Additional file 1.

Case study 2: Comparison of ORF calling from two
independent genome annotations
Glossary
Sequence: chromosome sequence of the archaeon Natro-
nomonas pharaonis.
Groups: reading frame categories (which includes

strand selection).
First annotation: Genome annotated by manual cur-

ation in our previous works [20, 21] as submitted to
GenBank [22].
Second annotation: Genome annotated by RefSeq [23].
Rapid expansion of sequencing capacities allowed

for the rise of big data genomics. As of June 2017,
around 25,000 organisms were fully sequenced (data
from NCBI [24]). However, to extract useful biological
information, genomic sequences have to be annotated.
The process of annotation consists in marking posi-
tions of functional elements within genome se-
quences. The functional elements of the highest
interest are genes – the sequence stretches that en-
code proteins and other biologically active com-
pounds. In our case study, we looked at gene
prediction, which is a key step in genome annotation.
Because three genome residues encode one protein
residue without punctuation, there are six potential
reading frames, three in each direction, in every gen-
ome region. In eukaryotic organisms, genes can over-
lap and/or consist of several non-consecutive parts
(exons). Even the so well studied genome of fruit fly
(curated by FlyBase) is still subject to frequent revisions
[25]. In addition, assigned gene identifiers (accessions)
vary between different annotating bodies or even between
different releases by the same body (e.g., FlyBase). There-
fore, biological researchers often need to consider the
discrepancies, if several versions of the genome of their
interest are available. Here we demonstrate that the
presented method can deal with both, positional and
naming discrepancies of annotated genomic features,
given that the annotations are made for the same re-
lease of the genome. For reasons of simplicity we have
used a prokaryotic genome, more specifically the one
from the archaeon Natronomonas pharaonis.
SLALOM provides two useful results: overall statistics

of the annotation similarity, which is in this case usually
close to but not exactly 100%; and the list of CSE (gene)
matches between the two annotations. The latter can be
also used to map the names on the basis of positional
similarity. Alternatively, the list can be limited only to

Table 4 Site-wise performance of HH-MOTiF depending on the
benchmark-prediction overlap logic. Generation of this table is
based on the option set A1 and its variants, as specified in
Additional file 1

N P Applying to TPR PPV

1 0 currenta 0.236 0.564

25 current 0.233 0.557

shortest 0.233 0.558

longest 0.231 0.557

patched 0.233 0.557

50 current 0.226 0.504

shortest 0.229 0.552

longest 0.214 0.484

patched 0.226 0.508

75 current 0.194 0.303

shortest 0.220 0.516

longest 0.136 0.226

patched 0.194 0.304

3 0 currentb 0.229 0.545

patched 0.229 0.545

5 0 currentb 0.178 0.397

patched 0.179 0.399
aall four options are equal for these N (minimal required number of residues)
and P (minimal percentage of a matching CSE)bcurrent, shortest, and longest
are equal for these N and P
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unmatched or discrepant genes to focus on the
differences.
In the provided example, we mapped 2694 protein-

coding genes from the GenBank annotations to 2608
genes from the RefSeq annotation of the genome se-
quence of Natromonas pharaonis. This genome is quite
dense, which is typical for microorganisms, as 89.79% of
all base pairs are part of an annotated gene in both an-
notations. We ran the comparison in the symbol-
resolved and the gross modes. Genes from compared an-
notations were matched, if they overlapped by at least
50% of the length of the gene under investigation
(current gene).
According to the expectations, the genomes are highly

similar (F1 and ACC exceeding 98% in all modes). As
part of the output, we obtained a map of gene identifiers
between the two annotation origins. We encountered a
few ambiguities, where SLALOM’s functionality came in
helpful. As it can be seen from Table 5, some overlap-
ping genes within the same genome were seen in both
annotations (otherwise there would be no difference be-
tween total gene length in the symbol-resolved and gross
modes, which treat overlaps in a different manner).
However, the overlaps can mostly be explained by differ-
ences in reading frames. Exceptions are just 4 base pairs
in the RefSeq genome, which arise from the overlap with
a pseudo gene.
The rise in ACC upon dividing the genes into 6

classes based upon the reading frame is attributed to
a form of the false positive paradox. While the total
sequence length remains unchanged, the number of
annotated residues is getting less. As the false positive
and false negative counts are more or less propor-
tional to the overall positive count, the accuracy rises
accordingly. The F1 score, on the other hand, is not
subjected to the false positive paradox and shows a
decrease upon the division into classes. This decrease
is caused by the fact that some matches between dif-
ferent classes are not counted any longer. Further-
more, the equality of F1 scores between symbol-
resolved and gross modes is not guaranteed; the fact
that they are equal up to the 4th point means that gene
overlaps are generally – or perhaps completely – the same
in the two annotations.

Examples files and further details can be found in Case
study 2 in Additional file 1.

Case study 3: Analysis of a time series as exemplified by
analysis of economical data
A potential application of SLALOM is to analyse data
from epidemiological studies as consecutive series of
events (e.g., decreases in temperature as putative causes
and spikes in disease or mortality rates as putative con-
sequences [26]), as well as from appearing and disap-
pearing of symptoms in the course of a disease
progression (or psychological condition, as, for example,
in [27]) in a cohort of patients. The options ‘shifting’
start and stop time point (see the option ‘-a1bs/–anno1-
file_begin_shift’ in Additional file 1: Table S1) allow de-
tecting events (CSEs) related by assumed causality even
with significant time lags. However, as we did not have a
large enough clinical dataset at our disposal, we show
the possibilities of the proposed method on non-
biological time series data, demonstrating the general
applicability of our tool. In brief, we looked for possible
causality relations between economical news releases
and movements in currency exchange rates. News data
were extracted from the event database (FXStreet.com).
For exchange rates (EUR to USD) we used open, high,
low and close (OHLC) values for 1-min intervals
throughout the calendar year (downloaded from HistDa-
ta.com). From the OHLC data we computed start and
finish time points of the trends (time intervals of rapid
directional price movements) and inspected, if such
trends would correlate with the appearance of eco-
nomical news. We demonstrate that there is no evi-
dence that news releases precede strong price
movements (which can be clearly seen from
Additional file 1: Table S3). Full details are provided
in Case study 3 in Additional file 1.

Comparison to other CSE analysis methods
Software tools, which are similar to SLALOM, assess
overlaps between annotation features and are freely
available, include BEACON, GeneOverlap (part of R Bio-
Conductor), and diffReps. Albeit performing similar cal-
culations to our methods, GeneOverlap and diffReps
evaluate the resulting statistics from a different angle

Table 5 Statistics on two genomes comparisons

Measure Without frame separation 6 distinct reading frames

Symbol-resolved(option set B1) Gross (option set B2) Symbol-resolved (option set B3) Gross (option set B4)

GenBank total gene length 2,360,518 2,367,915 2,367,915 2,367,915

RefSeq total gene length 2,336,204 2,339,349 2,339,345 2,339,349

Symbol-wise ACC 0.9861 – 0.9967 –

Symbol-wise F1 0.9923 0.9923 0.9892 0.9892

Site-wise F1 0.9779 0.9779 0.9751 0.9751
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and have different purposes than SLALOM. Both calcu-
late p-values to assess significance of isolated associa-
tions in gene annotations and/or ChIP-Seq peaks.
Moreover, both methods have a much narrower scope
of application. Therefore, we find them not generally
comparable with our method. However, BioConductor
contains other functions, which can replicate the func-
tionalities of SLALOM to a significant degree. Thus we
compared our method with BioConductor. Especially
close is the IRanges package. It should be noted that
working with BioConductor requires actual writing of R
scripts, including, among others, handling of data im-
port and export, and thus also basic knowledge of R as
a programming language. In contrast, our method oper-
ates as a standalone Python application and can do
complete analyses with only one command line. In
addition, we compared SLALOM to BEACON and bed-
tools. As one can see from our short summary on func-
tionality (see Table 6), BioConductor is the most
comprehensive package for annotation comparisons.
However, it is quite tricky to actually apply it for some
problems without writing a substantial amount of R
code, although it contains the library IRanges for gen-
eric types of data. Among others, evaluation of protein
motif predictors and time series correlation analysis,

which are illustrated by our case studies are not readily
doable with BioConductor.
We have developed a BioConductor-dependent R

script (available as Additional file 3) for answering the
three following questions: (1) What share of residues in
a motif-containing sequence does belong to motifs of a
specific type? (2) What share of motif instances de-
scribed in the older version of the ELM database has
exact matches in a newer version? (3) What share of
motif instances described in the older version of the
ELM database are at least to 50% covered by a distinct
motif instance of the same ELM class in the newer
version?
One single command choosing specific options (D1,

Additional file 1) addresses questions 1 and 2 using
SLALOM: on average, 1.23% for the older version and
1.18% for the newer version of the length of motif-
containing protein sequences contains a motif of a
specific type; 92.55% of the motif instances in the older
version of ELM have exact matches in the newer one.
Questions 3 can be addressed by choosing a different set
of command line options (D2, Additional file 1): 93.49%
of the motif instances in the older version are at least to
50% covered by a distinct motif instance of the same
ELM class in the newer version of ELM.

Table 6 Overview of the functionality of the discussed tools for comprehensive annotation comparisons

SLALOM (v2.1.4) Bioconductor
(version 10/2017)

bedtools (v2.25.0) BEACON
(as in [8])

Overlap sufficiency criteria to match Symbol count yes yes no no

Length share yes no yes yes

Order yes yes no no

Enrichment yes yes yes no

Match by proximity without overlap yes yes yes no

Application principle of the overlap criteria Shortest yes no no yes

Longest yes no no no

Current yes yes yes no

Patched yes yes no no

Resolving overlaps within single annotation Merge yes yes yes no

Disjoin no yes no no

Leave one yes no no no

By enrichment yes no yes no

Residue-wise statistics Symbol-resolved yes yes no no

Gross yes no no no

Site-wise statistics yes yes yes yes

Performance measures yes no no no

Jaccard statistics no yes yes no

Sequence grouping yes yes yes yes

Combining annotations yes yes yes no

Time series processing yes no no no
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We could execute most of the comparisons by using
BioConductor. However, there are two major implemen-
tation challenges in R, which we discuss briefly in the
next paragraphs.
There is no easy way in BioConductor to classify

ranges on the basis of overlap share with a potentially
matching range from another GRanges object. Only
classification on the basis of residue counts can be speci-
fied in the built-in functions (e.g., countOverlaps), by
using the keywords ‘maxgap’ and ‘minoverlap’ with inte-
ger numbers. The intersect function cannot be used for
this task, as it does not distinguish between matches for
repeated, perhaps even overlapping, motifs in the same
sequence. The pintersect function also cannot be used,
as an equal number of motifs in the old and new version
of the ELM database is not guaranteed. As a result, the
user would have to loop over all the motif instances in-
dividually to answer question 3, which goes beyond the
applicability of IRanges and GRanges objects. Therefore,
we consider this question unanswerable in a simple way
with BioConductor.
Second, large databases require additional handling.

The sequence length database is quite long (more than
90 million records), although only a few thousand re-
cords are relevant for the comparison discussed here.
There is no straightforward way to do the required filter-
ing while reading in the sequence length file in R. Here,
we first read the file into a data frame and then filter it
for better performance of consecutive operations. If the
file was even bigger, additional memory limitations could
arise depending on the computational setup available to
users. In this case, the BioConductor user needs to add-
itionally code a line-by-line reading of the file. This is
already implemented in SLALOM, so that the user can
work with original databases that are larger-than-
memory.
bedtools addresses the core of all three questions with

the sub-tool coverage. It is fast and optimized for hand-
ling of large files. It also has flexible options for specify-
ing overlap shares, although for some reason, the
options for determining overlaps on the basis of residue
counts are missing. In this sense, the functionality of
bedtools is complementary to that of BioConductor;
SLALOM, on the other hand, provides both possibilities
out-of-the-box.
Despite the good handling of the core overlap

counting problem, there are still two major challenges
for the user, who wants to answer the given questions
with bedtools. First, it accepts only specified formats;
therefore, the user will have to convert the ELM and
Uniprot [28] TSV files into one of the supported for-
mats, e.g., BED. Second, bedtools has a limited ar-
senal of summary statistics: for example, it does not
calculate averages and shares; therefore, the user will

have to post-process the output to actually obtain the
required numbers.
SLALOM has even more advantages, if one needs to

compare a predictor against a ‘golden-standard’ database
rather than comparing two datasets to each other. In
this case, one needs not only to handle the overlaps, but
also to calculate benchmark statistics, such as accuracy
or F1 values. Neither of these calculations in the com-
plexity we describe them here are easily doable with Bio-
Conductor or available for bedtools.
In general, one can observe that BioConductor and

bedtools represent powerful solutions for a broad scope
of genomic comparisons and analyses. In this area, their
functionality goes far beyond that of our method. How-
ever, they are not designed to answer a broad range of
statistical questions about the underlying data. For in-
stance, these tools are not designed to perform quality
assessment and benchmarking, while comparing a pair
of annotations. Another shortcoming is their heavy focus
on genomic data. Although through pre-processing of
the data and/or slight modification of the source code,
one can adjust them to process any kind of positional
data, there is currently a void in, for example, solutions
for working with annotations in protein sequences.

Discussion
In this study, we present the tool SLALOM for conduct-
ing in-depth comparative and statistical analyses of an-
notations of continuous sequence elements in a given
grouped collection of sequences, which has so far not
been available for this type of analysis on this level.
Our main goals for developing the method and con-

ducting the associated case studies were to provide a
software tool for quick performance and/or correlation
estimates of multiple sequence annotations, while imple-
menting the most suitable application logic of handling
ambiguities. We wanted to increase the awareness of the
user for possible implications of the overlap, grouping,
and averaging choices on the performance values. Fi-
nally, one of our goals was to provide the framework for
in-depth analyses of differences in performance values
upon changes in the chosen application logic.
SLALOM allows the user to choose the application

logic of treating overlaps and duplicates within individ-
ual CSE annotations, assigning matches between anno-
tated CSEs, treating missing values, grouping the
sequences, selecting the right measures, and averaging
the values to answer the question of interest.
The resulting values can vary strongly for the same in-

put data upon changes in the chosen application logic.
This phenomenon, however, does not indicate that SLA-
LOM functions improperly or that the analysed data are
of low quality. Instead, it means that the same data
might answer multiple questions, delivering different
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answers to different questions. On the contrary, SLA-
LOM should not be used to (over) fit the application
logic in order to achieve the best performance and/or
correlation values. For example, when evaluating a pre-
dictor, it is recommended to define the set of rules and
principles to follow in advance, before conducting actual
calculations of its performance.
The data returned by SLALOM allow further in-depth

analyses of the performance of predictors, beyond the
simple calculation of performance or similarity mea-
sures. These analyses are based on comparing the results
obtained by running SLALOM in different modes (as il-
lustrated by the provided case studies), or comparing the
values for separate groups. For instance, one can assess
the variance of performance across different groups or
to look at the correlations of performance with internal
group characteristics (e.g., group size or average bench-
mark CSE length). Such an analysis can, for example,
show that a predictor works well only with relatively
large group sizes (as was shown for SLiMFinder [29] in
[17]) or only with long CSEs (as was shown for MEME
[30]). Furthermore, due to the diverse set of proposed
measures one can easily see non-optimal aspects of a
predictor (e.g., high PPV in combination low TPR would
imply consistent under-prediction, while high ACC with
low F1 would unravel the vulnerability to the false posi-
tive paradox while working on unbalanced data). Thus,
SLALOM cannot only measure the performance, but
also help identify the reasons for underperformance.
The feature of flexible sequence grouping allows,

among others, to compare properties of proteins be-
tween different pathways, complexes, organelles or inter-
action networks. The properties that can be compared
include presence of specific motifs, domains or trans-
membrane regions.
Our method, although primarily designed to work with

protein sequences, does not depend on a particular al-
phabet and does not need to parse the sequences them-
selves. Instead, it operates exclusively with sequence and
group identifiers as well as integer values representing
sequence lengths and border positions of the annotated
elements. This level of abstraction grants two distinct
advantages. First, it provides versatility. The method can
be applied to any type of sequence data. In biology, this
includes protein, RNA, and DNA sequences. Second, its
runtime is generally not dependent on database size,
total sequence length or length of annotated elements.
Thus, SLALOM operates with high speed and low mem-
ory usage even on very large datasets, such as collections
of genomes.
While we have shown the applicability of our tool to

compare positional features in DNA or protein se-
quences, as well as time-series data, SLALOM itself is
very versatile and can be adapted to any comparison of

positional data and thus can address a multitude of
questions. One could for instance apply SLALOM to
evaluate the reproducibility of NGS ChIP-seq or RNA-
seq data between replicates or time points/conditions. In
addition, it can be used to map gene names or to associ-
ate genes with corresponding promoters. Furthermore,
any type of coinciding events in time series with basic
analysis of causality can be addressed, independent of
the field of research.

Conclusions
In this study, we present SLALOM, a method and its as-
sociated software package, for in-depth analysis of pos-
itional data annotating continuous sequence elements in
a grouped collection of sequences.
With our examples, we show that the choice of rules

and principles to treat duplications and overlaps can
affect the results to a significant extent. Furthermore, we
demonstrate that some statistical measures become un-
reliable if applied to data with some form of unbalance
in it. With this study, we not only increase awareness
about these statistical pitfalls, but also provide the
method to detect and deal with them.
With the implemented functionality, SLALOM effect-

ively fills the gaps in existing software solutions for com-
parative, statistical analysis of positional data.

Methods
SLALOM produces a table with relevant statistics de-
scribing the input data on CSE, sequence, group or data-
set level and other optional output files that are derived
from the input pair (e.g., as union or intersection). The
method is initiated with four files: the sequence length
file (sequence identifiers – SIDs – with the associated
sequence lengths), two annotation files to be compared,
as well as the optional group-mapping file (group identi-
fiers – GIDs – mapped to member SIDs). The annota-
tion files are lists of records, each of which contain: SID,
GID, begin and end positions in the sequence, and op-
tionally the CSE names. If the group-mapping file is not
provided, GIDs are not read in and the whole input se-
quence collection is considered as a single group. If only
one sequence is analysed or all the sequences have the
same length, the sequence length file can be omitted
too. Both annotation files must be non-empty. The de-
sired overlap logic is set through the input options. De-
pending on the input options, the tool operates in one
of the six modes: three count modes, each of which can
be combined with two comparison modes. The modes
are listed in Table 1. The input options are listed in Add-
itional file 1: Table S1. The procedures described below
represent independent modules of the pipeline. Depend-
ing on the mode, some modules may not be called. The
pipeline is shown in Fig. 5.
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Module 1. Parsing the input.
The sequence length file and the group-mapping file (if
provided) are checked for their validity and read into in-
ternal objects.
The following criteria must be satisfied for the parsing

to complete:

a) SIDs as well as GIDs cannot contain double quote
signs (‘″’) as well as certain special characters

b) The same SID, if it occurs more than once, cannot
be assigned different length values

c) A sequence length must be a positive integer
d) There is at least one retained SID

The following records are ignored during the
parsing:

a) SIDs that do not belong to any retained group (if the
group-mapping file is provided)

b) GIDs that do not occur in the sequence length file
c) GIDs that mapped to too few or too many

retained SIDs, according to the user-defined
constraints

By default, the sequence length file is read before
the group-mapping file. However, if the former con-
tains many more SIDs than the latter (for instance
in case the database lists all Uniprot records and
the mapping consists of only few protein complexes
in a specific organism), it may be practical for per-
formance reasons to pre-parse the group-mapping
file. This option (invoked by the option ‘-preparse/–
preparse_mapfile’) does not influence the output,
but speeds up the calculations and reduces RAM
usage considerably in case of large sequence length
files.
Each of the annotation files is read into two distinct

internal objects: a list of sites (sequence identifier, begin,
end) and a map of residues (each residue from the data-
base is mapped to an integer, which represents the num-
ber of sites from the given annotation traversing this
residue).
The annotations are also checked for validity. The fol-

lowing criteria must be satisfied:

a) A start position is positive and an end position does
not exceed the sequence length, unless the

Fig. 5 The pipeline of SLALOM. The pipeline of SLALOM is shown, which is divided into nine separate modules (M1-M9). For further
information, see Main Text
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sequences are circular; alternatively, the overflowing
sites can be trimmed to fit the sequence

b) An end position is no less than the corresponding
start position

If an annotation record’s SID is not present in the se-
quence length file or the GID is not present in the
group-mapping file, the record is ignored and a warning
is issued.
All input files may contain duplicate records. In case

of the sequence length file and the group-mapping file,
duplicate entries are ignored; however, in the annotation
files, all duplicates are considered, which influences the
results.

Module 2. Calculating residue-wise basic Boolean
measures.
This module is called when the tool operates in the
symbol-resolved or gross mode. In the symbol-resolved
mode, all the residues in a particular sequence are
assigned to one of four categories: PP (present-present;
present at least once in both annotations), AA (absent-
absent; completely absent in both annotations), AP
(present exclusively in the second annotation), PA
(present exclusively in the first annotation). In the gross
mode, there are five categories: P1P2, P2P1, AP, PA, and
AA. In the benchmarking mode, these categories corres-
pond as following: PP to TP (true positives), AP to FP
(false positives), PA to FN (false negatives), AA to TN
(true negatives). In the gross mode, each residue tra-
versed by each CSE in the first annotation is sorted to
either P1P2 (if it is traversed by at least one CSE in the
second annotation) or PA. Similarly, the residues from
the CSEs of the second annotation are sorted to either
P2P1 or AP. The AA category is the same in both
symbol-resolved and gross modes. The counts are
summed up and then normalized to obtain respective
shares; if adjusting for sequence length or sequence-
wide averaging is selected, the shares are calculated dir-
ectly at the sequence level and then averaged at the
group level. The shares are averaged throughout all the
groups to form the basic measures PP, P1P2, P2P1, AA,
AP, PA. In the symbol-resolved mode, P1P2 and P2P1
take the value of PP and PP + AA+AP + PA = 1 irrespec-
tively of sequence lengths and group sizes. In the gross
mode, it is true that min (P1P2,P2P1) + AA+AP + PA >
=1; P1P2, P2P1, AP, PA ∈ [0,∞), while AA ∈ [0,1].

Module 3. Calculating residue-wise basic enrichment
measures.
This module is called when the tool operates in the en-
richment mode with a user-defined positive integer n
provided as parameter for the minimal occurrence of a
residue in the annotations. First, for all the residues in a

particular sequence, numbers of occurrences (consider-
ing all the overlaps and duplicates) in each annotation
are calculated cumulatively for all CSEs. Residues that
occur no less than n times in the first annotation are
counted as E1 (enriched in the first). Similarly, the E2
count is defined. Residues that qualify for both E1 and
E2 are additionally counted as EE (enriched-enriched),
while those qualified for none are counted as NE (not
enriched). Moreover, all the residues are assigned to one
of three categories. To do this, the difference d between
numbers of occurrences in the second and first annota-
tions is calculated for each residue. Those with d > =n
are classified as RE2 (relatively enriched in the second),
while those with d < = − n are classified as RE1. The rest
is classified as NRE (not relatively enriched). Similarly to
Module 2, the averaged measures E1, E2, EE, NE, RE1,
RE2, NRE are calculated for the groups and the whole
input dataset. It is true that E1 + E2-EE + NE = 1, RE1 +
RE2 + NRE = 1, E1 > =EE, E2 > =EE, E1 > =RE1, and E2 >
=RE2.

Module 4. Calculating residue-wise performance
measures.
This module is called in all modes; for an enrichment
mode, PP = EE, AA =NE, PA = E1-EE, AP = E2-EE.
These measures show, how good the annotations corres-
pond to each other and are calculated solely on the basis
of the residue-wise basic measures. The symmetric mea-
sures do not depend on the order, in which the annota-
tions are provided. Non-symmetric measures, on the
other hand, do, and thus are calculated only when the
tool operates in the benchmarking mode. For details see
Table 2.
The following measures are provided:

� TPR (true positive rate, a.k.a. recall/sensitivity, for
the second annotation, or how good the second
annotation finds the residues from the first
annotation):

TPR ¼ P1P2
P1P2þPA

� PPV (positive predictive value, a.k.a. precision, for
the second annotation, or the share of residues from
the second annotation, which also can be found in
the first annotation):

PPV ¼ P2P1
P2P1þAP

� SPC (specificity, a.k.a. negative rate, for the second
annotation, or how good the second annotation
avoids residues absent in the first annotation):
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SPC ¼ AA
AAþAP

� NPV (negative predictive value for the second
annotation, or the share of residues absent in the second
annotation that are also absent in the first annotation):

NPV ¼ AA
AAþPA

� In (informedness for the second annotation):

In = TPR + SPC − 1

� Mk (markedness for the second annotation):

Mk = PPV +NPV − 1

� PC (performance coefficient for the second
annotation):

PC ¼ P2P1
P2P1þPAþAP

� F1 (F1 score):

F1 ¼ 2�TPR�PPV
TPRþPPV ¼ 2�P1P2�P2P1

2�P1P2�P2P1þP2P1�PAþP1P2�AP

� ACC (accuracy):

ACC ¼ PPþAA
PPþPAþAPþAA ¼ PP þ AA

� MCC (Matthews correlation coefficient):

MCC ¼ PP�AA−AP�PA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PPþPAð Þ� PPþAPð Þ� AAþPAð Þ� AAþAPð Þ
p

These calculations are conducted for each sequence
group separately. If division by zero is encountered, a
nan value is assigned. The measures are averaged across
all the groups, applying simple averaging if either se-
quence- or group-wide averaging is chosen and micro
averaging, if dataset-wide averaging is chosen. Nan
values are by default ignored during the averaging; how-
ever, the user can also enforce counting them as zeros
(for details, see Additional file 1: Table S1).
Note that there are a few small differences from the

metrics used to originally evaluate the HH-MOTiF web-
server in our earlier publication. First, the calculation of
residue-wise PC did not consider the overlaps in the
benchmark (ELM) annotation, which was implemented in
the current version of SLALOM. Second, the balanced ac-
curacy was phased out and replaced with informedness.

Module 5. Calculating site-wise basic Boolean measures.
This module is called when the tool operates in a non-
enrichment mode. For both annotations, each CSE is

classified into one of two categories because a CSE ei-
ther has a match in the other annotation or it has not.
The classification is performed on the basis of the user-
defined overlap logic. To execute this, two criteria –the
minimal number of symbols and the minimal part –
are tried for each CSE. For a CSE to have a match, both
criteria must be satisfied, although the user can effect-
ively switch them off by setting sufficiently low
thresholds.
The minimal number of symbols criterion can be one

of the following:

a) There exists at least one CSE in the other
annotation that has at least r (r > =1) common
residues with the current CSE (this is the criterion
used by default, with r = 1)

b) There exist at least r (r > =1) residues contained in
the CSE from the other annotation that are
contained in the current CSE (the patched
matching)

The minimal part criterion can be one of the
following:

a) There exists at least one CSE in the other
annotation that covers at least p% residues of the
current CSE

b) There exists at least one CSE in the other
annotation that has at least p% of residues of the
shortest of two CSEs (the current and the matching
candidate) in common

c) There exists at least one CSE in the other
annotation that has at least p% of residues of the
longest of two CSEs (the current and the matching
candidate) in common

d) There exist enough residues contained in the CSEs
of the other annotation that can cover at least p% of
the current CSE (the patched matching)

For the relevant input options, see Additional file 1:
Table S1. For a schematic example, see Fig. 4.
Four counts are calculated: M1 (matched for the first,

number of CSEs in the first annotation that have
matches in the second annotation), NM1 (not matched
for the first), M2, NM2. In the benchmarking mode,
NM1 becomes FN (false negatives) and NM2 becomes
FP (false positives), while both M1 and M2 – depending
on the metric being calculated – can be considered as
TP (true positives). If no CSEs are annotated for the cor-
responding sequence in the annotation x, then Mx =
NMx = 0. These counts are never averaged at the se-
quence or group level, but always simple-averaged to
produce dataset-wide averages. Thus, they are not influ-
enced by the averaging approach.
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Module 6. Calculating site-wise performance measures.
This module is called only when the tool operates in a
non-enrichment mode. The calculated measures follow
the similar logic, as the residue-wise ones. Note, how-
ever, that there is no analogue for AA (true negatives).
Therefore, some measures cannot be calculated (for de-
tails see Table 2). To compensate for considerably lower
number of measures, a new measure (positive correl-
ation value) is introduced.
This results in the following list of site-wise measures (the

counts M1, M2, NM1, NM2 are introduced in Module 5):

� Recall for the second annotation:

SiteTPR ¼ M1
M1þNM1

� Precision for the second annotation:

SitePPV ¼ M2
M2þNM2

� Performance coefficient for the second annotation:

SitePC ¼ M2
M2þNM1þNM2

� F1 score:

SiteF1 ¼ 2�M1�M2
2�M1�M2þNM1�M2þNM2�M1

� Positive correlation value (an author-defined
measure):

SitePCV ¼ M1þM2
M1þM2þNM1þNM2

Zero division resolving and dataset-wide averaging are
conducted as for the residue-wise measures (see Module 4).

Module 7. Calculating residue-wise enrichment
coefficients
This module is called only in the enrichment mode. The
only measure calculated is based on the residue-wise
basic enrichment measures:

� Enrichment asymmetry coefficient, or share of
absolutely enriched residues that are also enriched in
one of the annotations over the other (the measures
E1, E2, EE, RE1, RE2 are introduced in Module 3):

EAC ¼ RE1þRE2
E1þE2−EE

Zero division resolving and database-wide averaging
are conducted as for the residue-wise performance mea-
sures (see Module 4).

Module 8. Calculating internal group characteristics
This module is called in all modes. However, some char-
acteristics are calculated mode-specifically.
It has the following list of characteristics:

a) Number of sequences. If there are sequences in the
sequence length file and the mapping file, for which
no CSEs were annotated, they are still counted. If
the same sequence belongs to multiple groups, it is
counted the corresponding number of times.

b) Number of CSEs in each annotation. Duplicated
CSEs are counted separately. This measure is not
calculated in the enrichment mode.

c) Total length of CSEs in each annotation. Cases of
overlap and duplication are treated according to the
operation mode (symbol-resolved vs. gross); in the
gross mode, the total length may exceed the
sequence length. This measure is not calculated in
the enrichment mode.

d) Share of symbols belonging to the CSEs in each
annotation. This share is always symbol-resolved,
both in symbol-resolved and gross modes; in the en-
richment mode, it is replaced with the share of
enriched residues.

These characteristics are not subject to either
sequence-wide or group-wide averaging. They, however,
are macro-averaged dataset-wide along with the per-
formance measures, regardless of the averaging approach
selected.

Module 9. Formatting the output
All the calculated measures according to the user set-
tings are displayed in form of a table for each sequence,
as well as for each sequence group separately. An op-
tional detailed output file describing all the detected
matches on CSE and sequence level is generated on user
demand. In addition, several new annotation files are
generated on demand, namely:

1. Boolean union: residues present in at least one of
the input annotations

2. Boolean intersection: residues present in both input
annotations

3. Boolean complement of the first: residues present
exclusively in the second annotation

4. Boolean complement of the second
5. Enrichment union: residues enriched in at least one

of the input annotations
6. Enrichment intersection: residues enriched in both

input annotations
7. Enrichment complement of the first: residues

enriched exclusively in the second annotation
8. Enrichment complement of the second
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9. Relative enrichment for the first: residues that are
enriched in the first annotation over the second
annotation

10.Relative enrichment for the second

For the relevant input options, see Additional file 1:
Table S1.
All the annotations are formatted as CSE records, i.e.,

neighbouring annotated residues are merged to form the
lines with tab-separated GID, SID, and begin and end
residues in this order.

Additional file

Additional file 1: Contains the following supplementary information: •
Command line options for SLALOM (in tabular format), • Supplementary
Information for use cases 1 and 2, including the SLALOM command line
options used for producing the data, • A detailed description of use case 3, •
Supplementary information for the comparison of SLALOM to BioConductor
and bedtools, • Supplementary references. (PDF 559 kb)

Additional file 2: Contains the python code of SLALOM, the test data
required to reproduce the data presented in this manuscript, as well as
the User Manual for SLALOM. (ZIP 3622 kb)

Additional file 3: Contains the R-script for addressing the three questions
raised on comparison of ELM motifs in the chapter Comparison to other
CSE analysis methods. (R 2 kb)
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CSE (continuous sequence element): A non-empty group of neighboring sym-
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identifier): A non-empty string unequivocally relating to a specific input
sequence.
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