
The dynamics and statistics of knots
in biopolymers

Saeed Najafi

DISSERTATION

zur Erlangung des Grades

“Doktor der Naturwissenschaften”

Johannes Gutenberg-Universität Mainz

Fachbereich Physik, Mathematik, Informatik

October 2017





Angefertigt am:

Max-Planck-Institut für Polymerforschung

Gutachter:
Prof. Dr. Kurt Kremer
Gutachterin:

Jun.-Prof. Dr. Marialore Sulpizi





Abstract

Knots have a plethora of applications in our daily life from fishing to securing
surgical sutures. Even within the microscopic scale, various polymeric systems
have a great capability to become entangled and knotted. As a notable instance,
knots and links can either appear spontaneously or by the aid of chaperones during
entanglement in biopolymers such as DNA and proteins. Despite the fact that
knotted proteins are rare, they feature different type of topologies. They span from
simple trefoil knot, up to the most complex protein knot, the Stevedore. Knotting
ability of polypeptide chain complicates the conundrum of protein folding, that
already was a difficult problem by itself. The sequence of amino acids is the most
remarkable feature of the polypeptide chains, that establishes a set of interactions
and govern the protein to fold into the knotted native state. We tackle the puzzle
of knotted protein folding by introducing a structure based coarse-grained model.
We show that the nontrivial structure of the knotted protein can be encoded as a
set of specific local interaction along the polypeptide chain that maximizes the
folding probability. In contrast to proteins, knots in sufficiently long DNA and
RNA filaments are frequent and diverse with a much smaller degree of sequence
dependency. The presence of topological constraints in DNA and RNA strands give
rise to a rich variety of structural and dynamical features. We show that the knotting
probability of a dsDNA, can be increased by introducing, along its sequence, two
adhesive regions. We show that entanglement pattern in links and knots, play a key
role in conformational properties of chains. In particular, we demonstrate that a
double knotted semi-flexible polymer chain under strong stretching possesses a free
energy minimum when the two knots are intertwined, and that the free energy of the
intertwined state is deepening when the relative chirality of the knots is opposite.
Additionally, we show that the braid of DNA rings with identical/non-identical
crossing pattern, enforces negative/positive and weak/strong correlation between
the entangled rings.





Zusammenfassung

Knoten haben von der Fischerei bis zur Schließung chirurgischer Nähte eine Fülle
von Anwendungen in unserem täglichen Leben. Auch auf mikroskopischer Skala
haben verschiedene polymere Systeme die Fähigkeit sich zu verschränken und zu
verknoten. Bemerkenswerterweise können Knoten und Verflechtungen entweder
spontan oder durch die Hilfe von Chaperonen während der faltung in Biopoly-
meren wie DNA und Proteinen auftreten. Obwohl Knoten in Proteinen selten
sind, haben Sie verschiedene Arten von Topologien. Diese reichen von einfachen
Kleeblattknoten bis zu dem komplexesten Protein Knoten, dem Stevedore-Knoten.
Die Fähigkeit der Polypeptide sich zu verknoten, erschwert das bereits komplexe
Problem der Proteinfaltung zusätzlich. Die Aminoäuresequenz der Polypeptide ist
das bedeutendste Merkmal, deren Wechselwirkungen das Falten in die verknoteten
Grundzustände des Proteins leiten. Wir gehen das Problem der Knotenbildung
durch die Einführung eines strukturbasierenden und grobkörnigen Modells an. Wir
zeigen, dass eine nicht triviale Struktur des verknotenden Proteins als eine Reihe
spezifischer lokaler Wechselwirkung entlang der Kette kodiert werden kann, um
die Faltung zu maximieren. Im Gegensatz zu Proteinen sind Knoten in hinreichend
langen DNA und RNA-Filamenten häufiger, vielfältiger, und mit einem viel gerin-
geren Grad von der Sequenz abhängig. Das Vorhandensein von topologischen
Randbedingungen in DNA und RNA-Stränge führt zu einer Fülle von strukturellen
und dynamischen Merkmalen. Wir zeigen, dass die Wahrscheinlichkeit zur Knoten-
bildung von dsDNA durch die Einführung von zwei haftenden Regionen erhöht
werden kann. Zudem zeigen wir, dass Kreuzungsmuster in Verflechtungen und
Knoten eine Schlüsselrolle bei Konformationseigenschaften der Kette spielen. Ins-
besondere zeigen wir, dass eine doppelt verknotete semi-flexiblen Polymerkette
unter starker Streckung sich in einem freien Energieminimum befindet, wenn
die beiden Knoten miteinander verflochten sind, und dass die freie Energie des
verflochtenen Zustandes niedriger ist, wenn die relative Chiralität der Knoten
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gegensätzlich ist. Darüber hinaus zeigen wir, dass das Geflecht von DNA-Ringen
mit identischen/nicht identischen Kreuzungsmustern eine negative/positive und
schwach/starke Korrelation zwischen den verstrickten Ringen erzwingt.
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Chapter 1

Introduction to polymer physics and
topology in polymers

1.1 Introduction

During polymerization, polymers with tremendous diversity in their structure and
functionality form from covalently-bonded discrete subunits, generically called
“monomers”. The degree of polymerization that by definition is the number of
monomers of the chain can determine the physical and chemical properties of
the polymers [5]. Mechanisms that control structure, dynamics, and rheology
of polymers are found to directly be affected by the type of monomers [1, 3, 5].
Liquid, glasses, crystals, and liquid crystals are some example of materials that
polymers can form. In Fig. 1.1 panel a and c, we show polymethylmethacrylate
and polystyrene that are some example of glassy polymers. Plastics and colors are
some example of artificial polymers. Biological macromolecules such as proteins,
DNA and RNA filaments are some example of bio-polymers [4, 5].

Polymeric materials with large variety of physical and chemical properties,
have fascinated scientists for more than a century. There are many types of models
that have been proposed to study the physics of polymers, where each model may
correspond to specific physiological conditions [1, 2]. In this thesis we study linear
chains with identical monomers. Although linear models of polymers may be an
oversimplified version of complex heteropolymers such as DNA and proteins, they
can still accurately describe the generic large-scale behavior of the system under
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Fig. 1.1 In panel a and b, we show Poly(methyl methacrylate) (PMMA) that
is a transparent thermoplastic glass polymer and a schematic view of globular
polymer, respectively. In panel c we show electron microscopy image showing the
segmented nature of polystyrene hybrid nano-fibers.

certain ambient conditions [6–9]. Here, we outline basic concepts of polymer
physics and introduce the methods that one can use to probe the physical features
of polymers.

1.2 Ideal and real chains

1.2.1 Ideal chain

The ideal chain model serves as an excellent foundation for polymer physics [1,
2]. In this model, there is no interaction between non-consecutive monomers of
polymer chains. This simplification never completely characterized for real chains,
but there are some situations in which the actual polymeric systems behavior
resembles ideal chains. While this model is unrealistic, practically, due to the
screening effect of the solvents with high concentrations of ions, nonbonded
interactions between monomers are negligible [1].
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In this section we introduce some models of ideal chains. In every model due
to the various chemical structures of the polymer, different assumptions for bend
and torsion angles are applied. However, in all systems modeled as an ideal chain,
the interactions between monomers separated by large distance is ignored.

Conformations of ideal polymer chain

Consider a linear polymer that consists of N monomers. The vector r⃗i from (i−1)th
to ith monomer called a bond vector, and the sum over all bond vectors on polymer
chain is known as the end-to-end distance of the polymer chain (R⃗):

R⃗ =
N−1

∑
i=1

r⃗i (1.1)

The mean square value of the end-to-end distance is given by:

< R⃗2 >=
N−1

∑
i=1

N−1

∑
j=1

< r⃗i.⃗r j > (1.2)

We assume that the distance between consecutive beads is constant and equal to
a. Thus, the scalar product of the bond vectors can be written as r⃗i .⃗r j = a2cos(θi j),
where θi j is the angle between i and jth bond vectors as shown in Fig 1.3. Since
there is no orientational correlation between the bonds in the free jointed chain,
then the off-diagonal values of < cos(θi j) > are zero. However the diagonal
values are 1, giving rise to < R2 >= (N − 1)a2. As already mentioned, there is
no orientational correlation in the ideal chain, meaning that one can consider it
as a free jointed chain that consists of N − 1 bonds with length of a, which its
maximum end-to-end distance is Rmax = (N −1)a.
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Fig. 1.2 The ideal chain consist of N monomers with bond vector r⃗i where |⃗ri|= a.
The end-to-end distance of the chain is R⃗, and θi j is the angle between the ith and
jth bond vectors.

Distribution of end-to-end distances

Here, we study the end-to-end distance distribution of an ideal chain. Considering
that every possible conformation of an ideal chain can be mapped onto a random
walk, in which the number of walk steps is equal to the number of bonds of the
chain [15]. In the freely jointed chain, the length of the bonds are constant and
the orientation of each bond vector is independent of the other bond vectors [1, 2].
Therefore, every conformation of an ideal chain can be mapped onto the trajectory
of random walk of a particle. We examine a symmetric one dimensional random
walk given N total steps. If we have n positive (right) steps and N−n negative (left)
steps with length a, then the net displacement is x = a(2n−N), and the probability
of such a displacement is given by:

Pn(N) =

(1
2

)N
N!

n!(N −n)!
(1.3)

Since a =
√

<x2>
N and subsequently n = N

2 + x
√

N
2
√
<x2>

, we have:
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Pn(N) =

(1
2

)N
N!

[N
2 + x

√
N

2
√
<x2>

]![N
2 − x

√
N

2
√
<x2>

]!
(1.4)

The displacement of the particle can be treated as a continuous variable when
the number of steps is large. By considering the limit Pn(N)dn → P(x)dx, one can
rewrite the probability density:

P(x) = limN→∞

[ √
N

2
√
< x2 >

Pn(N)

]
(1.5)

P(x) = limN→∞

 √
N

2
√
<x2>

(1
2

)N
N!

[N
2 + x

√
N

2
√
<x2>

]![N
2 − x

√
N

2
√
<x2>

]!

 (1.6)

In order to evaluate the probability density P(x) for large value of N, we use Stir-
ling’s approximation for factorial function n! → nne−n. After some manipulations,
the probability density can be written as:

P(x) = limN→∞

1√
2π < x2 >

1√
1− x2

N<x2>

(
1+

x√
N < x2 >

)−N
2 −

x
√

N

2
√

<x2>

×
(

1− x√
N < x2 >

)−N
2 +

x
√

N

2
√

<x2>

(1.7)
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P(x) = limN→∞

1√
2π < x2 >

(
1− x2

N < x2 >

)−N
2 −

1
2
(

1+
x√

N < x2 >

)− x
√

N

2
√

<x2>

×
(

1− x√
N < x2 >

) x
√

N

2
√

<x2>

(1.8)

We can further simplify the probability density function by using the limiting
definition of the exponential eb = limn→∞

(
1+ b

n

)n
. By using this limit, the two

last terms cancel each other, and we have:

P(x) =
1√

2π < x2 >
exp
(

−x2

2 < x2 >

)
(1.9)

Considering that < x2 >=< y2 >=< z2 >= Na2

3 and P(R⃗)=P(Rx)P(Ry)P(Rz),
the probability distribution function of the end-to-end distance of an ideal chain in
three dimension can be written as:

P(R⃗) =
(

3
2πNa2

) 3
2

exp

(
−

3(R2
x +R2

y +R2
z )

2Na2

)
(1.10)

=

(
3

2πNa2

) 3
2

exp

(
− 3R⃗2

2Na2

)
(1.11)

Freely-rotating chain model

In the freely-rotating model of polymer chains the torsion angle between monomers
can freely adapt any values [1]. Essentially, the probability distribution of the
torsion angles is distributed equally and independently between −π < φ < π for
each monomer. In this model, both the bond length (a), and the bond angle (θ ) are
fixed. In order to calculate the mean square end-to-end distance (Eq. 1.3) of the
chain, the correlation between bond vectors must be determined. The correlation is
defined as the projection of the r⃗ j vector on the r⃗ j−1 vector, that is equal to acos(θ).
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Bond vector r⃗ j−1 passes the correlation between monomer jth and ( j− 2)th to
a(cosθ)2, so that the correlation of ith and jth bond vectors will be equal to
a2(cosθ)|i− j|. Given these assumptions the mean square of end-to-end distance of
a freely-rotating chain can be written as:

< R⃗2 >=
N−1

∑
i=1

N−1

∑
j=1

< r⃗i.⃗r j >

=
N−1

∑
i=1

(
i−1

∑
j=1

< r⃗i .⃗r j >+< r⃗i.⃗ri >+
N−1

∑
j=i+1

< r⃗i.⃗r j >

)
(1.12)

=
N−1

∑
i=1

< r⃗i .⃗ri >+a2
N−1

∑
i=1

(
i−1

∑
j=1

(cosθ)|i− j|+
N−1

∑
j=i+1

(cosθ)| j−i|
)

(1.13)

= a2(N −1)+a2
N−1

∑
i=1

(
i−1

∑
k=1

(cosθ)k +
N−1−i

∑
k=1

(cosθ)k

)
(1.14)

Supposing that the decay of (cosθ)k is fast enough we can use the following
approximation:

N−1

∑
i=1

(
i−1

∑
k=1

(cosθ)k +
N−1−i

∑
k=1

(cosθ)k

)
≃ 2

N−1

∑
i=1

(
∞

∑
k=1

(cosθ)k

)
(1.15)

= 2(N −1)
∞

∑
k=1

(cosθ)k = 2(N −1)
cosθ

1− cosθ
(1.16)

< R⃗2 >= a2(N −1)
1+ cosθ

1− cosθ
(1.17)

Eq. 1.17, shows that the mean square end-to-end distance of the freely rotating
chain is a simple function of the number of bonds N −1, the length of each bond a,
and the fixed bond angle θ .
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Worm-like chain model

The worm-like chain, or Kratky-Porod chain, is similar to the freely-rotating model
but with very small bond angles [1]. This mean that the chain is fairly straight
and stiff, that makes this model a suitable choice for studying rod like chains. The
mean square end-to-end distance of the worm like chain can be approximated by
using the exponential decay of the correlation coefficient along the chain:

< R⃗2 >= a2
N−1

∑
i=1

N−1

∑
j=1

< cosθi j >= a2
N−1

∑
i=1

N−1

∑
j=1

exp
(
−| j− i|

lp
a
)

(1.18)

where lp =
−a

ln(cosθ) . The summation over all monomers can be changed into an

integration over the total length of the chain, so a∑
N−1
i=1 →

∫ Rmax
0 du and a∑

N−1
j=1 →∫ Rmax

0 dv.

< R⃗2 >=
∫ Rmax

0

[∫ Rmax

0
exp
(
−|u− v|

lp

)
dv
]

du (1.19)

= 2lpRmax −2l2
p

(
1− exp

(
−Rmax

lp

))
(1.20)

In the rod like limit the persistence length is much longer than the contour
length of the chain lp >> Rmax, therefore the exponential in the Eq. 1.20 can be
expanded as follow:

exp
(
−Rmax

lp

)
≃ 1− Rmax

lp
+

1
2

(
Rmax

lp

)2

+ .. (1.21)

By substituting the expanded expression in the Eq. 1.20 the end-to-end distance
of the rod like chain can be written as:
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< R⃗2 >≃ R2
max (1.22)

In the limit that the chain is flexible Rmax >> lp the end-to-end distance reduces
to ≃ 2lpRmax. Due to the bending modes, the end-to-end distance of a worm-like
chain varies between these two limited values. The important difference between a
worm-like chain and a freely jointed chain is that the former is flexible in the length
scales shorter than the Kuhn length of the chain lp, while the latter is assumed to
be completely rigid on the length scales shorter than its Kuhn length "a" [1].

Hindered rotation model

The hindered rotation model also assumes a constant bond length and angle [1]. In
this model the torsion angles are independently taken to be hindered by potential
U(φi), such that each microstates probability will be proportional to the Boltzmann
factor exp

(
−U(φi)

kBT

)
.

Depending on the functionality of the torsion potential, the hindered rotation
model predicts the following end-to-end distance for the polymer chain:

< R⃗2 >= a2(N −1)
(

1+ cosθ

1− cosθ

)(
1+< cosφ >

1−< cosφ >

)
(1.23)

where < cosφ > is the average cosine of the torsion angle that is populated by
Boltzmann factor:

< cosφ >=

∫ 2π

0 cosφexp
(
−U(φ)

kBT

)
dφ∫ 2π

0 exp
(
−U(φ)

kBT

)
dφ

(1.24)
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Free energy of ideal chain

The occurrence of a microstate of an ideal chain with a specific end-to-end distance
is proportional to the all microstates with that specific end-to-end distance over all
microstates for any value of R between 0 and Rmax. Considering the non-correlated
orientation in the bond vectors of the ideal chain, one can apply the statistics of
the random walk in the statistics of the ideal chains [1]. As already proved, the
end-to-end distance of such an ideal chain in 3D can be written as:

P(N,R) =
(

3
2πNa2

) 3
2

exp
[
− 3R2

2Na2

]
(1.25)

where N is the number of monomers. By using Eq. 1.25 and Eq. 1.26, the
Helmholtz free energy of the ideal chain can be derived explicitly:

F(N,R) =−kBT lnP(N,R) (1.26)

F(N,R) =−kBT ln

((
3

2πNa2

) 3
2

exp
[
− 3R2

2Na2

])
(1.27)

=
3kBT R2

2Na2 − 3
2

kBT ln
(

3
2Nπa2

)
(1.28)

=
3kBT R2

2Na2 +F(N,0) (1.29)

As shown in Eq. 1.29, the free energy of an ideal chain with end-to-end distance
R is similar to the energy of a 1D simple harmonic oscillator with relaxation length
and stiffness of 0 and 3kBT

Na2 , respectively.
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1.2.2 Real Chain: Excluded volume and Flory theory

So far we have studied ideal chains, with this particular feature that nonbonded
interactions between monomers of the polymer are negligible. However, in poly-
meric systems with low concentrations of ions in solvent, the monomers of the
chain that are not close in sequence can also interact and affect the dynamic of the
polymer [1]. The nonbonded interactions, essentially drive the chain to show a
variety of conformational features, hence, it is crucial to characterize them. Here
we introduce a well established method to accomplish the presence of nonbonded
interactions such as excluded volume interaction between monomers to study the
physics of real polymer chains.

Excluded volume→ In order to bring two monomers from infinity to within
distance r in a solvent, one have to pay U(r) energy that includes the steric repulsive
interaction of two overlapping beads. We assume that the solvent is athermal, which
implies that the molecules of the solvent interact with each monomer of the chain
by same potential. We use Boltzmann factor to show the probability of finding
two monomers within distance r at temperature T . When the monomers are fairly
close, the interaction energy between the overlapped beads is positive and strong,
that is similar to hard core repulsion interaction. Thus, it is very unlikely to find
two hardcore monomers within short distance from each other.

The excluded volume of each monomer is defined as:

v =
∫

∞

0

[
1− exp

(
−U(r)

kBT

)]
d3r (1.30)

this quantity is the consequence of nonbonded interactions among monomers.
Purely repulsive interactions increases the excluded volume, although attractive
interactions between monomers entails to decrease in the excluded volume.

Flory theory→ The real polymer chains in athermal and good solvent can
quantitatively be studied by probing the competition between the entropy and the
excluded volume interactions that tend to inflate the chain and reduce the number
of available conformations [1]. By making use of Flory theory that consider no
correlation between monomers, one can investigate in a simple way, the balance
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between the entropy and energy. Assume that we have a chain with N monomers,
the probability to find another monomer in the excluded volume of given monomer
(v), is the product of excluded volume v and the density of the monomers in
the pervaded volume of the chain N

R3 . Where R > R0 = aN
1
2 is the size of the

swollen polymer. The energetic cost of being excluded from this volume is kBT

per exclusion or kBT vN
R3 per monomer. If we have N monomer in our system then

the total energy due to the excluded volume interaction is:

Fint ≈ kBT v
N2

R3 (1.31)

In addition to the exclusive interaction between monomers, the entropic cost of
the real chain should be added to the total energy. Which basically is the energy that
is required to stretch the chain to the end-to-end distance of R. In Flory estimation
the total free energy of the chain can be written as:

Ftot = Fint +Fent ≈ kBT
(

v
N2

R3 +
R2

Na2

)
(1.32)

The end-to-end distance of the polymer at equilibrium can be obtained by
minimizing the total energy of the chain (∂Ftot

∂R = 0), that give rise to RF ≈ v
1
5 a

2
5 N

3
5 .

If the excluded volume interaction energy is smaller than kBT , the chain behave
mainly similar to an ideal chain. Although by increasing the strength of excluded
volume interaction, the chain inflate and swell up.

1.2.3 Real and Ideal chains under tension

Here, we study the behavior of an ideal and a real polymer chain under external
tension. The end-to-end distance of an ideal and real chain without any external
force, is given by:
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Fig. 1.3 In the top and bottom panels we show the ideal and real chains with same
counter length that are under tension f⃗ at the ends, respectively. ξ is the diameter
of the tension blobs, RReal

f and RIdeal
f are the end-to-end distance of the real and

ideal chains respectively.

RIdeal
0 ≃ aN

1
2 (1.33)

RReal
0 ≃ aN

3
5 (1.34)

where a is the length of the fixed bonds and N is the total number of monomers
of the chain.

By exerting an external force at the ends of the polymer chain, the monomers
only manifest the effect of the constraints above a certain length scale that is know
as tension blob. In the length scale smaller than the size of the tension blob, there
is no impact on the monomer’s motion due to the presence of external force at the
ends of the chain. Since both ideal and real polymer chains are self-similar fractals,
same scaling of the end-to-end distance can be applied to the end-to-end distance
of that portion of the polymer chain that form the tension blob [1]. Thus, the size
of the tension blobs for the ideal and real polymer chains can be written as:
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ξ
Ideal ≃ ag

1
2 (1.35)

ξ
Real ≃ ag

3
5 (1.36)

where g is the number of monomers inside the tension blobs.

One can derive the end-to-end distance of the ideal and real chains under
tension as follow:

RIdeal
f ≃ ξ

N
g
≃ Na2

ξ
(1.37)

RReal
f ≃ ξ

N
g
≃ Na

5
3

ξ
2
3

(1.38)

The incurred free energy to stretching the chains is order of kBT per each blob:

F Ideal ≃ kBT
N
g
≃ kBT

(
RIdeal

f

RIdeal
0

)2

(1.39)

FReal ≃ kBT
N
g
≃ kBT

(
RReal

f

RReal
0

) 5
2

(1.40)

the corresponding stretching force for each polymer can be obtained by free
energy differentiation with respect to end-to-end distance:



1.3 Rouse, Zimm, and Reptation dynamics 15

f Ideal ≃ kBT
RIdeal

0

RIdeal
f

RIdeal
0

(1.41)

f Real ≃ kBT
RReal

0

(
RReal

f

RReal
0

) 3
2

(1.42)

The force that is required to stretch a real polymer chain grows rapidly with its
end-to-end distance, although it always is smaller than the corresponding force in
the ideal chain. The reason for this discrepancy lies in the fact that stretching an
ideal chain remarkably decreases the number of available configurations, however
in the real chain, the presence of excluded volume interaction have already reduced
the number of available configurations.

1.3 Rouse, Zimm, and Reptation dynamics

1.3.1 Rouse model

Rouse proposed the first successful realistic model of polymer chain dynamics in
solvent [1]. In the Rouse model the polymer chain is modeled as N beads that are
bonded by simple harmonic spring that its relaxation length is a. In this model
the beads can interact with each other only through the bonded potential. The
solvent assumed to drain through the chain as it moves, although the beads of the
chain can feel a dragging force from the solvent that is proportional to the friction
coefficient and the velocity. Considering that the beads of the polymer chain can
interact independently with the solvent, the total friction force on the chain can
be computed by summing over all friction forces on the beads, Ff riction =−Nζ v⃗,
where ζ is the friction coefficient and v⃗ is the velocity of the chain.

Due to the presence of thermal fluctuations in the system the chain can diffuse.
The diffusion coefficient of the polymer can be obtained from Einstein relation:
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DR =
kBT
Nζ

(1.43)

The polymer may exhibit peculiar viscoelastic properties in the time scales that
are smaller than the time that the polymer needed to diffuse in the distance of its
own size, this characteristic time scale τR is known as Rouse time:

τR ≃ R2

DR
≃ Nζ

kBT
R2 (1.44)

In the time scales lager than the Rouse time, viscoelastic features of the chain
disappear [1]. Therefore, the chain relieve the viscosity and there would not be any
memory in the motion of polymer chain due to the friction force. If we scale the
size of the chain by its end-to-end distance then the Rouse time can be rewritten as:

τR ≃ a2ζ

kBT
N1+2ν = τ0N1+2ν (1.45)

where τ0 is the relaxation time of a free monomer.

1.3.2 Zimm model

As already mentioned, in the Rouse model of polymer chains, we assume that
surrounding solvent of a monomer can not exert any additional force on the other
monomers of the chain. However, in realistic systems when a monomer of polymer
interact with the solvent molecules, it provides a velocity field that influences the
motion of the other monomers of the chain. This effective interactions between
the monomers of the polymer due to the presence of the solvent is know as
hydrodynamic interaction that just only decays slowly with the distance between
the monomers, (1

r ) [1].
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When the polymer chain drags the solvent into its pervaded volume, it moves
approximately as a solid object of size R ≃ aNν . The friction coefficient of a chain
of size R in a solvent with viscosity ηs is given by:

ζZ = Rηs (1.46)

The diffusion coefficient of the polymer chain in Zimm model can be obtained
by Einstein relation:

DZ =
kBT
ζZ

≃ kBT
Rηs

≃ kBT
aNνηs

(1.47)

The polymer chain in the Zimm model can diffuse as an individual particle
with volume proportional to its pervaded volume in the solvent. During the Zimm
time τZ , the polymer chain can diffuse a distance of its size:

τZ ≃ R2

DZ
≃ ηs

kBT
R3 ≃ ηsa3

kBT
N3ν ≃ τ0N3ν (1.48)

By comparing the Rouse and Zimm characteristic times, we find out that the
latter is smaller than the former. In Zimm model the chain feel lower friction force,
therefore, the faster process occurs during Zimm motion. In the Rouse model the
solvent can pass through the chain and exerts higher friction force on the polymer
chain, however in the Zimm model, the chain motion is roughly similar to a solid
particle with size of R.

1.3.3 Reptation in polymers

In melt and dense polymeric systems, polymers may share their pervaded vol-
ume [1]. Understanding the dynamic of dense polymers with this particular feature
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Fig. 1.4 Here we show a schematic view of the reptation model. The tube that is
imposed by surrounding chains is depicted by dotted curves, the red curve shows
the chain itself and the green part of the chain represents the loop that is created
during entanglement between the chain and the surrounding chains. < L > is the
average counter length of the tube, Ne is the number of beads in the loop and N is
the number of the chain beads.

is a difficult task. In such a melt system, the dynamic of polymers appears to be
similar to many body problem. However, by using Edwards tube concept one
can reduce the complexity of the problem to the motion of a single chain that is
confined into a tube which is formed by its surrounding chains. The simplest tube
model that is known as reptation model, is proposed by de Gennes in order to study
the dynamic of the linear entangled polymers [1]. In this model, the entangled
polymer chain moves along its confining tube due to the simple diffusion of the
small loops of the chain (that are formed during the polymer entanglement with
the surrounding chains) along the counter of the pervaded volume or permeative
path. The diffusion coefficient Dc of the chain along the tube is indeed the Rouse
diffusion coefficient:

Dc ≃
kBT
Nζ

(1.49)

The reptation time is the time that chain required to diffuse out of a tube with
average length < L >:
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τrep ≃
< L >2

Dc
≃ ζ a2

kBT
N3

Ne
=

ζ a2

kBT
N2

e

(
N
Ne

)3

(1.50)

here we used < L >≃ aN√
Ne

for the counter length of the tube, where Ne is the
number of Kuhn monomers in the loops.

The first part of the last term in the reptation time is simply the Rouse time of a
chain containing Ne monomers:

τe ≃
ζ a2

kBT
N2

e (1.51)

The ratio of the reptation time and τe is the cube of the number of entanglements
along the chain:

τrep

τe
≃
(

N
Ne

)3

(1.52)

In the reputation time, the chain diffuses a distance of its own size R:

Drep ≃
R2

τrep
≃ kBT

ζ

Ne

N2 (1.53)

1.4 Introduction to topology

Topology in general is a fascinating topic that has captured scientists attention
for more than two centuries and has progressed remarkably from its early rise.
Although the core question of how effectively classify knots and links is as elusive
as before [10–13]. Knot are complex 3D objects that mathematically are defined
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in closed arcs [10]. Sufficiently long strings such as ropes and whatever looks like
it can be knotted and exhibit a variety of features that are knot specific [12].

Fig. 1.5 (a) We show a trefoil knot on a rubber. Closing the ends of the chain that
are depicted as dark green spheres will fix the topology. (b) Top and bottom strings
are constrained knotted and unknotted chains respectively. Grafting one end of
the rubbers and pulling the other end by same force f , will accomplish a certain
end-to-end distance in the rubbers. In particular the rubber that contains a knot,
due to its self-entanglement exhibit smaller end-to-end distance in comparison to a
unknotted rubber.

Although every knot on a string has irregular conformation, topology of stiff
chains enforce almost a well formed geometrical structure; i.e. the geometry of the
knot can saliently be evident for simple knots on stiff rubbers, but as the rubber
gets more flexible the clarity of its structure will be lost. In Fig. 1.5 a, a trefoil
knot on a rubber is shown, by closing the two ends of the rubber that are depicted
as dark green spheres, the topology will be fixed. The latter implies that changing
the geometry of the closed rubber, would not affect its topology [11]. A very crude
way to find out if a rubber is self-entangled or knotted is to pull by its ends. Under
certain external tension f⃗ , the end-to-end distance of the knotted rubber would be
smaller than the other rubber that does not have any knot for sure. In Fig. 1.5b,
an illustration of the scheme is shown. The ratio of the end-to-end distance of the
knotted and unknotted rubber depends on the complexity of the embedded knot.

Here, we would like to provide a basic introduction to knot theory, and discus a
few examples of biological systems where knots can occur and affect the function
of the system.
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1.5 Topological invariants

To address the question of how the topology of a knot or entangled rubbers can
be determined, we need to study the methods that one can employ to identify
and classify the topological state of linked or knotted rubbers. Here, we aim to
introduce some topological invariants of entangled chains.

1.5.1 Gaussian link number

Fig. 1.6 C1 and C2 represent the intersected parts of simple closed curves whose
elements are dX⃗1 and dX⃗2.

In 1833, Gauss wanted to calculate the work that is required to be done on
a magnetic pole for moving it along a closed curve in the presence of a loop of
current. During his progress in the processing he discovered what is known as
Gauss Linking Number [11, 12].

In order to calculate the Gauss Linking Number of two intersected rings, we
consider two simple closed curves, C1 and C2. The Gaussian linking number of
entangled circles is an isotopy invariant that is defined as:

L12 =
1

4π

∮
C1

∮
C2

(X⃗1 − X⃗2).dX⃗1 ×dX⃗2

|X⃗1 − X⃗2|3
(1.54)

if we label r⃗ = X⃗1 − X⃗2 then:
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L12 =
∮

C1

∮
C2

r⃗.dX⃗1 ×dX⃗2

4πr3 (1.55)

we consider the apparent intersection between an element dX1 of C1 and an
element dX2 of C2 on a sphere whose radius is the distance between the segment
of the curves, thus the solid angle of the intersect of the two elements will be given
by:

dω = 2
r̂.dX⃗1 ×dX⃗2

4πr2 (1.56)

since by integrating once around C1 and once around C2, we contribute twice
to the solid angle, thus by assigning + and − to each apparent intersection that
are referring to over and under-crossings respectively, we can rewrite the Gaussian
link number as follow:

L12 =
1
2

∫
Ω

dω =
1
2 ∑

r∈C1C2

εr; εr =±1 (1.57)

The minimum number of crossings cmin over all possible projections of en-
tangled circles is a topological crossing number of the system and it is an in-
variant. In general for N curves in space the linking number can be written as:
Li j = L(Ci,C j); i ̸= j, hence for N component link, the Gaussian liking number
given by:

L =
N

∑
i ̸= j

Li j (1.58)
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Fig. 1.7 In figure a, b, c and d, we show two unlinked circles, two linked circles,
three Hopf-linked circles and the Borromean rings that consists of three entwined
rings, respectively. At each panel we show the crossing pattern of the circles by
making use of the right-hand rule that is depicted in the top of figure.

In Fig.1.7, we show some linked rings with different cmin and L:

• a) Two separated rings: cmin = 0, L(C1,C2) = 0

• b) Two Hopf-linked rings: cmin = 2, L(C1,C2) = +1

• c) Three Hopf-linked rings: cmin = 6, L(C1,C2,C3) = +3

• d) Borromean rings: cmin = 6, L(C1,C2,C3) = 0

1.5.2 Călugăreanu-White invariant

Gauss’s works motivated scientists to pursue links and knots in different fields
and employ them to understand the physical properties of the relevant systems.
Particularly in biology, because of the specific structure of DNA, it can be difficult
to understand the conformational features that are arising from topology, without
having clear insight of the underlying mechanisms that links DNA geometry to its
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Fig. 1.8 In panel a we show a writhed ribbon that is illustrated by blue and yellow
counterparts. In panel b the ribbon is twisted, t̂, N̂1, N̂2 are the tangential vector
on symmetry axis and the tangential vector on the edges of the blue and yellow
counterparts, respectively.

topology [10, 12]. One can study the physics of DNA by making use of a Ribbon-
model that is similar to the conformation of DNA. We facilitate the understanding of
DNA topology by considering two counterpart ribbons that represent the backbones
of double strand DNA, which are colored as blue and yellow in Fig. 1.8.

Writhe and twist are geometric quantities that one can use to characterize the
conformational properties of a ribbon modeled DNA molecule.

Writhe: We label the the two edges of the ribbon in Fig. 1.8a, by : C1 : X⃗1(s)

and C2 : X⃗2(s), where s is the arc length of the ribbon. The writhing number WR of
a single closed curve is defined by:

WR =
1

4π

∮
C

∮
C

(X⃗ − X⃗∗).dX⃗ ×dX⃗∗

|X⃗ − X⃗∗|3
(1.59)

where X⃗ is the vector coordinate to the symmetry axis of the Ribbon.

Twist: The total twist TR of the ribbon RC(t̂) is defined by:
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TR =
1
2

∮
C
(N̂1 × N̂2).t̂ds = τ(C)+Π (1.60)

where τ(C) is the total torsion and Π is the intrinsic twist of the ribbon.

The Călugăreanu-White linking number L of a ribbon RC(t̂) is the sum of the
writhe and twist numbers:

L =WR +TR (1.61)

that is an isotopy invariant of the ribbon [11, 13]. The Călugăreanu-White
linking number is an integer and as topological invariant does not depend on the
continuous deformation of the ribbon. Considering the fact that twist and writhe
are not a well defined intuitive concepts, what is remarkable about Călugăreanu-
White linking number is that the sum of these geometric quantities is an invariant
topological property.

1.5.3 The Alexander Polynominal

Several topological invariants such as knot groups, Jones, and Alexander Polyno-
mial are introduced to distinguish different type of knots.

The determination of the knot invariant require the projection of the three
dimensional conformation of the knot onto a plane, that is known as knot dia-
gram [10, 12, 13]. It is demanded that a knot diagram contain the information of
the over and under crossings, such that one can reconstruct the original knot from
its diagram [10]. As an example, the diagram of knot 31 with minimum number
of crossings is shown in the center of Fig. 1.9, that one can easily calculate the
number and the type of crossings. Assuming that t is the variable of the polynomial,
the Alexander polynomial of a knot can be determined based on the following
steps:
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Fig. 1.9 In the top and center of figure, the right hand rule and the diagram of knot
31 are depicted, respectively. The green, red and blue colored portions on the knot
show the three arcs separated by two consecutive under crossings.

1. Choose an arbitrarily orientation on the knot diagram and define the sign of
each crossing based on the right-hand rule that is shown in top of Fig 1.9.

2. Take an arbitrary point of the knot diagram that is not on the crosses, follow
the segment orientation and assign an increasing numbering index to all
under-crosses.

3. Consider the separate arcs as going from an under-cross to the next under-
cross and assign to each under-crosses arc a numbering index as shown in
Fig 1.9.

4. Define an n× n matrix P(t,τ). The rows of the matrix correspond to the
crossings in the knot diagram and the columns to the arcs. For each crossing
we assume that from definition the arc i passes over arcs j and k. First, we
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set all the elements of the matrix equal to zero, and construct the matrix of
the knot diagram with the following values in the entries P(c, i), P(c, j) and
P(x, j) of all crossings.

• If c is positive crossing, P(c, i) = 1− t, P(c, j) =−1, P(c,k) = t.

• If c is negative crossing, P(c, i) = 1− t, P(c, j) = t, P(c,k) =−1.

• If i = k or i = j, P(c, j) = 1 and P(c,k) =−1 in this condition the sign
of crossing does not matters.

5. Compute any minor of order n−1 of the matrix knot diagram and multiple
it by ±cm, −m ∈ N, in such a way that the resulting polynomial does not
contain negative powers, and has a positive constant elements. Such a minor
is the (irreducible) Alexander polynomial ∆(t;τ) of the knot.

As an instance, in Fig 1.9, we have computed the Alexander polynomial of
knot 31. As already mentioned the Alexander polynomial is a topological invariant
and does not depend on the geometry of the knot. The Alexander polynomial
can distinguish the topological invariant of the knot, but it can not determine the
chirality of the given topology, because swapping the positive and negative signs in
the matrix of the knot diagram can not change the resulted Alexander polynomial.

Different knots with complicated topologies may have same Alexander polyno-
mial, which makes the Alexander polynomial as a method that is not as powerful
as others ways that one can exactly determine the topological invariant of the knots.
Although, for the simple knots that have less than 11 crossings, only 6 topologies
have same Alexander polynomial [10]. The advantages of the Alexander polyno-
mial is that the required calculations and the computation cost for the related knot
is very short and straightforward.

1.6 Classification of knots

1.6.1 knots identification: closure scheme

The study of topological features of knotted object requires its exact definition.
Knot in mathematics is defined only for closed curves, however, in most physical
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Fig. 1.10 All knots with number of crossing less than 10.

systems that might come under study the chains are open. Therefore, for identifica-
tion of knot, it is crucial to find a way to closing the open knotted chains without
affecting the topology by this operation.

Different methods are introduced to identify the knots in open chains. In our
work we use a suitable closure scheme that based on this procedure the knot is
characterized by prolongating the terminus of the knot and closing them with an
arc in sufficiently far distance from the knot center, after the closure and circulation
of the knotted chain, one can classify the complexity of the knot by employing
Alexander Polynomial which as topological invariants does not depend on the
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geometry of the closed chain [151, 152]. In Fig. 1.10 we show the knots tabulation
whose number of crossing is less than 10.

1.6.2 Composite knots

Fig. 1.11 Here we show an example of composite knot on a ring. The cyan part of
the chain represent a trefoil knot and the black part is a 41 knot.

Multiple knots can occur in single polymer chain such as proteins and dsDNA.
The knots on the polymer chain can interact and enforce specific structural and
dynamical properties. No anti-knot exist; it is impossible to reduce the complexity
of a knot by embedding another knot in the same chain. Composite knot consists
of connected knots which are independent of each other, thus every composite
knot can be decomposed into its prime component that are well defined knots.
Composite knots are associative and also commutative. Multiple knots can locally
influence polymers conformation such that it could vary from one knotted portion
to other knotted part of the chain [10, 13, 151]. As an example of composite knots
in Fig. 1.11, we have shown a doubly knotted polymer ring that consists of knot 31

and knot 41.

1.7 Topology in biopolymers

Topological constraints are ubiquitous in soft materials such as liquid crystals
and biopolymers. Protein is linear polymer that consists of building blocks called
amino acid [16, 17, 19–23]. The sequence of bases along the DNA determines
the sequence of amino acids in proteins. There are 20 different amino acids in
proteins, however only 4 distinguished bases in DNA are exist. Each amino acid is
specified by a codon that is a group of three bases [7, 8]. Despite the fact that the
sequence of codons on DNA determines the sequence of amino acids in proteins,
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the DNA helix does not itself play a role in proteins synthesis. The translation
of the sequence codon into amino acid occurs by the third class of molecule-
messenger called RNAs [7]. During proteins, DNA and RNA transactions, the
topological constraints can form and determine the characteristic features of the
macromolecules and play pivotal role in their function in biological system. Here
we illustrate a few examples of topologically constrained proteins and DNAs.

b) YbeA

a) YibK Knotted part

Fig. 1.12 In panel a and b, we show a cartoon representation of two simple knotted
proteins, YibK from Haemophilus and YbeA from Escherichia coli, respectively.
Both proteins host a right handed trefoil knot that is shown in the right side of each
panel.

Knot in proteins→ The failed assumption that proteins folding avoids knots in
order to prevent kinetic traps was held until 2000 [18]. However during the
recent decade, advances in experimental tools reveals that proteins can form
complicated tertiary structures such as knots. A broad interdisciplinary community
spanning from theoretical physicists to experimental biologists have used their
own approaches to understand the mechanism that drives the proteins to fold into
knotted native state [16, 17, 19, 20]. In fact computational tools in many ways can
complement the elucidated observations by experiments, however contrasts can be
expected too.
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Knotted proteins are an elegant example of biologically self constrained sys-
tems [36, 40, 44, 60, 61]. Experimentally it has been shown that knots in proteins
occur in denatured state, and that the required denaturation rate to knot depends on
their structural complexity [89]. Among all protein knots, some of them are deeply
embedded into the polypeptide chain, while some of knots are shallow. The latter
knotted proteins have included most part of the polypeptide chain within the knot
and the topology is expanded, such that removing a few residues from the terminus
of the proteins unravel the knot.

A unifying comprehension of the functional role played by knots in proteins
has not found yet, although it is worth mentioning that topological constraints
affect the structural features of proteins by encompassing their polypeptide chain
which increases their thermodynamical and mechanical stability [89–92].

In fact, protein knotting is statistically and evolutionarily a rare event [89,
92]. There are notable differences between knotted proteins and other knotted
biopolymers; the length, the location and the type of knot always remains specific
for each knotted protein and also it is reproducible by repeating the folding process
from chemically denatured unfolded conformation [90, 91].

In Fig. 1.12 panel a and b, we show two examples of knotted proteins, the YibK
protein from Haemophilus and YbeA protein from Escherichia coli, respectively.
Both proteins host a right handed trefoil knot, where close to 40 sequence of amino
acids of their structure are similar (the knotted part of the proteins are shown in the
right panel of each protein).

Recent observations by Mallam and Jackson in the experimental study of YibK
and YbeA folding, provides crucial information regarding to the mechanisms of
knotting in proteins [89]. They claimed that the mentioned proteins can sponta-
neously fold into their knotted native state without the aid of chaperones. This
report, provides to us the clue that the internal interactions between the amino
acids of the polypeptide chain might be enough to drive the chain into the knotted
conformation.

Knot in DNA and RNA→ DNA at its equilibrium state has a right-handed
helical structure with a diameter of approximately 10A. Every pitch of the helix
includes 10 base pairs that giving to 34A for the length of the pitch [6, 8]. In human
nucleus, 46 chromosomes form 2m of tangled DNA. The chromosomes deliberately
tie themselves in knots and then untangled. During mitosis, topoisomerase cuts
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a)

c) d)

b)

Fig. 1.13 Here, we show some experimentally captured image of circulated DNAs.
In panel a, the DNA ring is unknotted, in panel c and d, the DNA ring host a 31
and 61 knot respectively, in panel d the DNA is knot free although it formed a
coil [14, 7].

the entangled DNAs at any place where the helix is bent or under strain. When
two chromosomes are tangled and exert stress on each other, topoisomerase cuts
the entangled DNAs in such a way that one DNA can pass through without being
hindered by the other DNA. During the passage, topoisomerase enzyme rejoins the
cut ends once again [8].

Prokaryotic genomic DNAs and many viral DNAs are circular; i.e. without free
ends. Knots in such a closed DNAs can form during replication, and transcription.
Unwinding of the circular knotted DNA molecule induces strain on the other
portion of DNA and form super coils. Topoisomerase are active in nucleus and
relieve any DNAs strain due to their entanglement [8]. It is worth to mention that
the release of the stress in the DNA super coil is a duty for topoisomerase I, that
operates by cutting and rejoining one strand of DNA. However topoisomerase II
relieve the DNA by cutting both strands of DNA. In Fig. 1.13, we show some
photo of DNA rings experiment, in panel a, DNA is knot free, in panel b and c
the DNA ring host a 31 and 61 knot respectively, in panel d the DNA formed a
coil [14, 7].

The structure of single-strand RNA is generally similar to DNA strand. Most
cellular RNAs are single strand and show a variety of conformations. Difference
in the length and various configurations that RNAs can adopt, allow them to
carry out many function in cells. The complementary bases of RNAs can stick to
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each other and form loops that are simplest secondary structure in single strand
RNAs [8, 7]. RNA is chemically active, that lead to many interactions between
different segments of the chain. Recently, it has been shown that the knotting
ability of RNA due to the presence of such a interaction along the chain is much
lower than DNA [104].

1.8 Outline

We devote the rest of this Thesis to understand the structural and dynamical features
of self-entangled and linked biopolymers such as proteins and DNAs. Thus, we
address the following questions: How do knots form in proteins? How likely is
DNA knot? What are characteristic properties of topologically constrained and
linked DNAs?

In chapter 2, we study the folding mechanisms of two small knotted pro-
teins. In general protein folding depends both on the intrinsic properties of the
polypeptide chains and the effects of its environment. In fact, there are two main
reasons that govern the proteins to fold into their native structure from a denatured
conformation:

1. Interaction between the polypeptide chain and the surrounding

2. Interaction between residues of the protein:

• Bonded interaction

• Non-bonded interaction

Understanding the relation between local geometrical properties of knotted
proteins and their topology is a difficult task. It is a remarkable feature of the
primary structures of proteins that establishes a set of native and non-native inter-
actions to attain the correct topology in knotted proteins: i.e. specific short and
long range interaction between the residues of polypeptide chains can encode the
global informations of proteins such as tertiary structure and topology.

We use a structural-based coarse-grained model of proteins and introduce a
protocol which by stochastic search in angular elastic parameter space, it provides



34 Introduction to polymer physics and topology in polymers

the essential set of bending and torsional elastic properties of the chain that encode
the topology of the short knotted proteins.

In the aforementioned study in chapter 2, the knots were shallow and the most
parts of the polypeptide chains formed the knot. However, in some knotted proteins
with long polypeptide chain the topology is localized. Regarding to such a deep
knots in proteins, intuitively, we suggest that non-bonded interactions in the long
polypeptide chain may provide the knot in the early stage of folding, and thereafter,
the proteins can fold into the native structure and make the knot localized. In
chapter 3, we study the impact of two pairs of adhesive sites (two on the termini
and two along the chain) on the knotting probability of a polymer that can also
be modeled as DNA. Making use of extensive molecular dynamics simulations,
we show that there is a specific position of the adhesive sites that maximizes the
knotting probability of the polymer chain.

In the previous chapter we showed that knots are frequent in sufficiently long
DNA strand. In chapter 4, we study the interaction between two knots on a polymer
chain with fixed ends. The knots can pass through each other and form intertwined
states where one knot is inside the other knot. We found that the intertwined state
of two knots with opposite chirality is favored in comparison to the intertwined
knots with same chirality.

Additionally, in chapter 5 we study the interaction between two trefoil knots
tied on the same stretched polymer at different bending stiffness and we investigate
the impact of the chain geometry that is enforced by topology.

The rationale behind the favored intertwined state of the knots with opposite
chirality, can be understood by probing the effect of crossing pattern of the entwined
knots. For this purpose, in chapter 6 we study braids of entwined DNA rings. We
demonstrate that the crossing pattern of braid play a crucial role in its structural
and dynamical properties. In particular we show that the braid with non-identical
crossing pattern, that the latter is specified by comparing the partitioned inner
and outer cross sections, enforces a positive and stronger correlation between the
entangled rings.
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Abstract
A small but relevant number of proteins whose native structure is known features
nontrivial topology, i.e. they are knotted. Understanding the process of folding
from a swollen unknotted state to the biologically-relevant native conformation
is, for these proteins, particularly difficult, due to their rate-limiting topological
entanglement. To shed some light into this conundrum we introduced a structure-
based coarse-grained model of the protein, where the information about the folded
conformation is encoded in bonded angular interactions only, which do not favor
the formation of native contacts. A stochastic search scheme in parameter space
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is employed to identify a set of interactions that maximizes the probability to
attain the knotted state. The optimal knotting pathways of the two smallest known
proteins, obtained through this approach, are consistent with the results derived by
means of coarse-grained as well as full atomistic simulations.

2.1 Introduction

The three-dimensional organization of proteins, commonly described in terms
of the geometrical arrangement of their secondary structure elements (the fold),
can be characterized also by the topological state of their backbone. In fact,
while the vast majority of known protein structures doesn’t show complex self-
entanglement, a relatively small but non-negligible number of folds features a
knotted topology. To date, the number of knotted proteins in the Protein Data
Bank [154] as recorded in the KnotProt database [72] amounts at circa 800, with
varying degree of buriedness, localization and complexity. The latter, specifically,
spans with decreasing population from the simplest knot, the 31, up to the most
complex protein knot observed so far, a 61 [40].

Knotted structures were initially dismissed as undesired misfolded conforma-
tions or kinetic traps. The first systematic protein knot survey, carried out by
Mansfield in 1994 [93], returned only one ‘loosely formed’ (shallow) knot, thereby
raising perplexity about the existence of proteins with deeply entangled backbones.
Subsequently, since the discovery of the first of such conformations [147], pro-
tein knots have been recognized as legitimate albeit surprising native folds. The
rationale behind the self-entangled structure of these proteins has been related
in some cases to an increased stability of the enzymatic active site [148] and in
general of the native state [111], in other cases it has been interpreted as a harmless
mutation [125]. No unified picture, however, has emerged to explain the presence
of a knot in these biomolecules.

On the other hand, the predominance of unknotted native folds has been per-
ceived as equally puzzling. In the previously mentioned work [93], Mansfield
attributed the (quasi) absence of knotted proteins to a non-ergodic folding process.
More recent investigations [85, 164], however, suggest that the ordered structure
dictated by protein sequences tends to reduce the occurrence of knotted native
states. In contrast, those proteins possessing a knot have, at least in some cases, de-
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veloped specific sequences and structural elements tailored to fold in an entangled
conformation [125, 60].

Besides of the biological role played by the knotted conformation of a protein,
then, possibly even more complex to explain is the process that leads to it. This
problem has been studied both experimentally [89, 91, 88, 83] and by means of
computational approaches [62, 111, 161, 145, 125, 40, 166, 25, 47]. Experimental
investigations carried out for the YibK and YbeA proteins [89, 90, 92, 83] have
shown that their denatured state preserves the knotted topology, and that refolding
from this state to the native conformation can occur efficiently. It was also shown
that folding from a fully unknotted conformation is possible as well, albeit on larger
time scales, thus pointing at the knotting process as the rate limiting step of the
folding. This behavior complies with the mechanism, proposed by Mansfield [94],
by which the knotted state is inherited from the denatured protein and preserved
during the collapse towards the globular state. A crucial observation is that the
knotting event is preceded by a well-defined, specific sequence of steps, as it was
reported e.g. in an experimental study of Lim et al. [83] on YibK and YbeA. The
same property, namely a single dominant folding/knotting mechanism, has been
observed also in the context of all-atom Molecular Dynamics (MD) simulations
of another protein, MJ0366 [25]; in contrast, simulations of coarse-grained (CG)
models generally feature a higher plasticity of the folding landscape, that is, a
variety of alternative folding pathways.

CG models have been often used to investigate the folding of knotted pro-
teins [157, 161, 145, 117, 116, 46, 164]. The fewer degrees of freedom and the
simpler, smoother interactions in fact allow a reduction of the typical simulation
times required to observe the process. However, the success rate of these ap-
proaches in the context of knotted proteins is relatively limited [161, 40, 156].
Specifically in the case of models relying on the formation of the sole native con-
tacts, such as Gō models [64], the reason of this fairly low native folding rate can
be attributed to the frustration due to the high topological complexity of knotted
proteins. In fact, the knotting process requires an ordered folding pathway, and
most off-pathway arrangements represent kinetic traps. To obviate to this faux

pas the chain has to backtrack [145, 117, 111, 60] to a more swollen state and try
anew to fold along the correct path. Gō models are particularly sensitive to this
property, because interactions built upon the proximity of residues in the native
state are prone to establish prematurely the corresponding contacts, which then
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have to be undone by backtracking. This phenomenon has been made particularly
clear by the studies performed by Soler et al. [111], who demonstrated that the
folding (and unfolding) efficiency of trefoil and pentaknot lattice proteins is greatly
enhanced by structural mutations. The latter consist in the disruption of native
contacts that occur on regions critical for knotting, e.g. the threading terminus
and/or the knotting loop, yet are not directly involved in the folding process. By
removing these interactions the untimely formation of contacts and the occurrence
of kinetic traps is decreased, thereby reducing the need for backtracking.

Fig. 2.1 Cartoon representation of the two knotted proteins studied in this work,
namely the hypothetical protein MJ0366 (a), which is the smallest known protein
knot, and the Agrobacterium Tumefaciens virC2 protein (b).

Furthermore, native contacts-based models exclude from the game non-native
interactions, i.e. interactions between amino acid pairs that are not in contact in
the native conformation. This approach is generally sound since, e.g. according to
the results of Best and coworkers [36], these interactions do not play a major role
in the folding process of various proteins. This is, however, in contrast with recent
findings [61, 25, 47] indicating that non-native interactions are indeed a common
trait in the folding process of knotted proteins. The reason for this discrepancy is
likely to be found in the necessity, introduced by the nontrivial topology, to avoid
untimely access to regions of the conformational space where the formation of
native contacts, a rather positive step in an untangled protein, would represent a
major mistake for a knotted protein.

Summarizing, the picture that is emerging out of the body of investigation
carried out so far in vitro as well as in silico thus contains the following elements:
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• polarization: the topological entanglement, i.e. the formation of the knot,
occurs at a late stage of the folding process. However, it has to be preceded
by a well-defined sequence of events, leading to a simple, polarized pathway.

• non-native interactions: these play a relevant role in the promotion of the
knotted state, inasmuch as they can prevent the untimely formation of native
contacts before the correct topology has been established.

• optimality: since the polarized, ordered pathway is prone to kinetic traps
and backtracking, it also has to be optimized for folding efficiency.

Building on these observations, we explored the possibility of constructing
a coarse-grained model of knotted proteins that aptly entails the characteristic
features of these systems’ folding process. Specifically, we aimed at devising a
model of minimal complexity yet capable of providing useful information about
the most likely knotting path followed by the protein. To this end, we considered
a chain of beads, each representative of an amino acid, possessing only excluded
volume and angular -i.e. bending and torsion- interactions with the neighbors
in sequence. The latter potentials are employed as a basis set of functions on
which the whole complexity of the intramolecular interactions of the real system
is projected. The reference angles of these potentials are obtained from a target
conformation, e.g. the PDB crystal structure or one close to the latter. This choice
of interaction potentials is free from the bias towards the native contacts: in fact,
this model is based on a particular, target conformation of the protein, yet the
collapse towards it is only driven by concerted but local rearrangements of the
chain.

Another pivotal premise is the optimization of the folding process. As previ-
ously observed, the folding pathway of a knotted protein is simple and characterized
by a specific sequence of steps, likely resulting from the evolutionary pressure to
maximize the folding probability of a structure with an extra degree of complexity
with respect to unknotted proteins. Consequently, the interaction parameters of the
model, i.e. the strengths of bending and torsion potentials, have been obtained by
means of a stochastic search aimed at maximizing the successful knotting rate, a
strategy that is reasonable to assume has guided also the evolutionary selection of
these proteins.
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This optimality criterion thus provides us with an unbiased force-field that,
within the limitations of the specific interactions employed in the model, aims
at providing a mean field description of the folding process of a knotted protein:
along the route towards the target, entangled conformation, the out-of-path moves
leading to kinetic traps are suppressed, and the knotting pathway is the most direct
possible. The potential energy functions on which this model is based are not
realistic representatives of the elaborate interactions to which a protein is subject,
hence the dynamics it produces cannot be expected a priori to entail the full
complexity of folding. Nonetheless, this model can yield valuable insight about
the kinematics of the knotting process, that is, the optimal sequence of moves the
chain has to perform to collapse into its reference, entangled conformation.

In the next section, the details of the method and the parametrization procedure
are provided. The model, that we dub Elastic Folder Model (EFM), is first validated
on an unknotted globular protein, namely Adenylate Kinase (PDB code 4AKE);
subsequently, two cases are investigated and discussed: the hypothetical protein
MJ0366 (PDB code 2EFV) and the Agrobacterium Tumefaciens virC2 protein
(PDB code 2RH3), whose native structures are reported in Fig. 2.1.

2.2 Methods

The EFM employs a minimalistic representation of the protein based on the sole
Cα atoms, connected to their first neighbors by means of stiff bonds. The only non-
bonded interaction to which the centroids are subject is a short-ranged excluded
volume, enforcing steric hindrance and preventing the chain from crossing itself.
This tube-like model of the protein is then provided with bending and torsion
potentials, whose reference angles are parametrized on a target structure. The latter
could be, in principle, the PDB crystal structure; however, a slightly more swollen
conformation has been employed in our study, as it will be discussed hereafter.

By construction, the reference structure represents the global minimum of the
EFM; hence, the latter, being based on the folded (and knotted) conformation, falls
in the category of structure-based models. It is important to stress, however, that
the interactions in our system do not favor the formation of native contacts: the
effective energy is minimized only by the onset of the target local arrangement of
the residues.
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Fig. 2.2 Graphical representation of the iterative optimization procedure employed
to parametrize the CG model. The choice of the elastic coefficients is performed
solely on the basis of the successful collapse into the target conformation, so
that no bias favoring native or non-native contacts is introduced in the model
parametrization.

The reference angles represent the sole input parameters introduced in our
model. The strength of the bending and torsion potentials are in fact determined
by a Monte Carlo (MC) search, in which the set of parameters maximizing the
successful collapse in the reference state is obtained. The details of the model and
the MC optimization algorithm, graphically illustrated in Fig. 2.2, are described in
the following subsections.

2.2.1 Coarse-grained model

Following a principle of extreme generality, the core of the EFM is a simple Kremer-
Grest model [65]: the protein chain is described as a collection of identical beads,
each representing an amino acid and centered on its Cα atom, connected by FENE
bonds [65]. The only non-bonded interaction among the beads is a purely repulsive
Weeks-Chandler-Anderson (WCA) [163] potential. Triplets and quadruplets of
subsequent beads interact via bending and torsion potentials, respectively.

The total potential energy of the system is:

V =UWCA +UFENE +Ubending +Utorsion (2.1)
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The WCA potential is given by:
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where di,i+1 = |⃗ri − r⃗i+1| is the distance of the bead centers i and i+1, R0 is the
maximum bond length and κ f ene is the FENE interaction strength. Note that
the diameter σ of the beads is taken as the length unit, and corresponds to the
separation between two consecutive Cα atoms (roughly 3.8Å); all distances are
expressed in reduced units. The WCA strength ε is taken as the energy unit, and the
FENE bond constant κ f ene was set to 30ε as it is customary for the Kremer-Grest
model [65].

The bending and torsion potentials are:
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θ 0
i and φ 0

i are the bending and torsion angle of the i-th bead in the reference
states, respectively. κbend

i and κ tor
i are the corresponding bending and torsion

stiffness, respectively. Both types of coefficients were set, before the optimization,
to 50ε , a sufficiently strong value to keep the angle fluctuations in the target
conformation within 1 degree.



2.2 Methods 43

The potential of Eq. 6.2 is employed to perform overdamped Molecular Dynam-
ics simulations in implicit solvent by means of the following Langevin equations
of motion:

− ∂Vi

∂ r⃗i(t)
−mγ v⃗i(t)+ R⃗(t) = 0 (2.5)

where m, vi, Vi, γ , Ri and ri are the mass, velocity, local potential energy, friction
coefficient, random force and coordinate of the i-th bead, respectively. The equa-
tions of motion of the system are integrated with a symplectic, first order algorithm.
The system parameters are listed in Table 2.1.

Parameter Value
m 1
ε 1
MD time unit τMD = σ

√
m/ε 1

∆t [τMD] 5 ·10−4

R0 [σ ] 1.5
κ f ene [ε] 30
τ f rict [τMD] 1
κbend,κ tor[ε] (initial value) 50

Table 2.1 System parameters.

2.2.2 Quasi-native target structure

The EFM is characterized by a coarse description of the protein structure and
very simple interactions, which are not sufficient to, and indeed not expected
to, reproduce the whole complexity of the folding process: our aim is in fact to
obtain the most efficient path connecting a completely unstructured conformation
to the knotted state. To this end we employ as target structures, rather than
the native PDB crystal structure, slightly swollen conformations geometrically
and topologically close to the native state, that is, having a small root mean
square distance (RMSD) from it and featuring the same knot. These quasi-native

structures possess the same topological complexity of the native ones, but are less
compact. This procedure allows us to interpret the bonded potential of the EFM as
a mean-field approximation to the real intramolecular interactions that drive the
folding until the knotted topology has established.
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To obtain the quasi-native conformations we set up the CG model of Eq.
6.2 with angle parameters obtained from the PDB crystal structure and elastic
parameters of equal strength for all angular potential energy terms; this model is
then employed in a MD simulation at a temperature T = 0.5ε , which is verified a

posteriori to be sufficient to induce a mild swelling of the structure, yet without
changing the topological state with respect to the native conformation. For each
knotted protein under examination we extract, from the pool of swollen structures,
a subset of six conformations, each of which is employed as a target state for 1000
simulations at T = 0.1ε with uniform elastic parameters starting from stretched,
quasi-linear conformations. Out of the six target states, the single one that will be
subsequently employed in our study is chosen as the one maximizing the probability
to attain the target structure.

2.2.3 Monte Carlo search of the optimal model parameters

The following step consists in an iterative refinement of the set of elastic parameters
{κbend

i , κ tor
i }, to which we shall refer as the force field of the model. The refinement

is performed through a Monte Carlo exploration of the parameter space aimed at
maximizing the successful collapse into the target conformation.

The single Monte Carlo move is performed as follows. The value of the elastic
coefficients is constrained in the range [5ε,500ε]; at each step, the index and type
(i.e. bending or torsion) of a coefficient are chosen at random, and the selected
elastic parameter is added a value extracted from a uniform distribution in the range
[−2.5ε,2.5ε]. As the number of possible different force fields grows exponentially
with the number of residues, we resorted to the following simplification in order to
reduce the size of the combinatorial problem: instead of assigning to each residue
independent bending and torsion coefficients, we constrained pairs of neighboring
residues to possess identical values of the elastic parameters (each type separately).
Each move then attempts to change the coefficients of the randomly chosen pair of
residues.

During an optimization cycle, 8 independent MD simulations are concurrently
ran; the chain attains either the target state or a local free energy minimum from
which it cannot backtrack, thereby remaining “stuck”. The simulations then stop
when the RMSD with respect to the target state remains constant for a sufficiently
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long time. Specifically, the RMSD is measured every 25τMD: if its values in two
consecutive measures differ by less than 0.05σ the simulation is interrupted.

The average MSD between the configurations at the end of the simulations
and the target state is then measured; the new set of parameters is accepted with
probability P = min{1,exp(−(Fnew −Fold))}, with F = MSD(final|target)/σ2.

2.2.4 Computation of the mean field free energy

In order to quantitatively characterize the pathway leading the protein chain towards
the target structure, we have computed, for both MJ0366 and virC2, a mean field

free energy landscape, reported and discussed in the following sections. This
quantity is defined as:

F(x,y)
kBT

=− lnP(x,y) (2.6)

P(x,y) is the probability distribution of conformations in a reduced space of
collective coordinates. These conformations are obtained, for each protein, from
1000 trajectories, irrespective whether successful or not. The simulations were
ran at a temperature kBT = 0.1ε , a value at which the knotted proteins in the
target conformation stably fluctuate about the reference structure with a RMSD
≤ 1σ . The functional form of the collective coordinates (x,y) is system-specific,
in general however they correspond to the RMSD between the instantaneous and
the target conformations of the whole protein chain or part of it.

2.2.5 Knot analysis

The analysis of the topological state of the protein chains is performed by means
of the algorithm implemented in the KNOTFIND [68] package. To circularize
the protein chain we made use of the minimally interfering closure algorithm
introduced by Tubiana et al. [152].
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2.3 Results and discussion

2.3.1 Validation: unknotted Adenylate Kinase protein

To validate the EFM, and in particular its ability to collapse an unfolded chain
towards the desired target structure, we carried out simulations of the single chain,
open conformer of the Adenylate Kinase enzyme (PDB code 4AKE). This is a
214 residue, globular protein responsible for the energetic balance of the cell; the
absence of topological entanglement in the fold and its relatively small size -yet
more than double with respect to the knotted proteins under examination in the
following- make it a good case to put our model at test. We employed a setup in
which all elastic coefficients were given the same values, namely κbend

i = κ tor
i =

50ε , and the temperature was set to T = 0.2ε . The PDB crystal structure has been
employed as a target state. Each simulation was started from a stretched, linear
configuration.

As many as 70% of the 200 independent simulations collapsed into the target
state. In Fig. 2.3a we report the RMSD between the instantaneous configuration
and the native structure as a function of time for a typical successful trajectory. The
polymer smoothly collapses towards the target conformation without particular
features: only at t ∼ 400τMD the RMSD shows a very short, almost negligible
plateau. The normalized total energy time series, inset of Fig. 2.3a, highlights
brief, intermediate states of the collapse, of which the ‘jump’ at ∼ 600τMD is the
last; these sudden jumps in the energy can be associated to small rearrangements
of the local structure.

These results indicate that this very simple model is capable of driving a
relatively large protein towards its target structure. The absence of any topological
complexity results in a straightforward collapse with no intermediate transient
states.

2.3.2 Case study 1: MJ0366 knotted protein

The first nontrivial case considered is protein MJ0366 (PDB code 2EFV, Fig. 2.1a),
which, with only 82 amino acids and a shallow, right-handed trefoil knot distributed
along the whole length, is the shortest known knotted protein [40]. Because of
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Fig. 2.3 RMSD with respect to the native state (main plot) and normalized total
energy (inset) as a function of time during a typical collapse trajectory of Adenylate
Kinase (a), MJ0366 (b), and virC2 (c).

its small size, this polypeptide is well-suited to computational investigation, and
indeed has been the object of a number of coarse-grained as well as full atomistic
studies.

As a first step we obtained a knotted target conformation following the protocol
described in the Materials and Methods section. This structure is slightly more
swollen than the PDB crystal structure, having a RMSD of only 1σ with respect
to it, yet preserves all its fundamental geometrical as well as topological features.
The target state was employed to perform 1000 independent simulations with a
uniform-parameters force field. The success rate of this model amounted to 45%.

In order to increase this already fairly high figure, we refined the force field
by means of the stochastic optimization procedure previously discussed. The
improved quality of the resulting set of elastic coefficients, whose values are
plotted in Fig. 2.4a and provided in Table S1 of the Supplemental Material, was
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confirmed by the higher fraction of successful simulations, that was as large as
89%.

Fig. 2.4 Elastic coefficients of MJ0366 (a), and virC2 (b). Each panel shows
the value of the optimal elastic parameter for bending (subpanels i) and torsion
(subpanels ii) as a function of the bead index. Above each plot the secondary
structure elements of each protein are indicated, according to the following color
code: red for the α helices, yellow for the β strands, and brown for the unstructured
regions. The light cyan dashed lines are a guide to the eye.

In Fig. 2.3b we report the RMSD as a function of time for one of the runs
correctly attaining the target conformation. At variance with respect to the case
of 4AKE, here we can distinctly observe a transition in the RMSD, which clearly
correlates with a jump in the total energy. This sudden drop in the RMSD, preceded
by a short yet noticeable interval in which the decrease proceeded at a slower pace,
is suggestive of the existence of an intermediate state. In Fig. 2.5 (Multimedia
view) we illustrate a few relevant snapshots of a knotting trajectory (the full video is
provided as integral multimedia). The representation highlights the conformational
transitions the protein undergoes to reach the knotted target state: in each subpanel
(a-j) the structure before and after the transition is shown, to emphasize the specific
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changes that occurred. Additionally, the final conformation of each step is colored
according to the average strength of the elastic coefficients of the optimized force
field shown in Fig. 2.4a; the colors go from red through white to blue following
increasing values.

As a first event we observe a rapid, global formation of the secondary structure
elements, especially the helices. Subsequently (panels b-c) two regions with
high values of the elastic parameters, specifically residues 17 − 18 and, on a
lesser note, residues 65− 66, form sharply bent turns. The collapse proceeds
with the stabilization of the “white” regions having intermediate elastic strength
(panel d); further on, the weaker linker following the second α helix (residues
43−45) reaches its target conformation (panels e-f), thereby closing the hinge and
compacting the structure. Finally, the segments having weakest elastic parameters
(red) close down the terminal helix into the knotting loop, establishing the entangled
topology.

As expected, the time sequence of the events that lead the chain to relax into
the target conformation is aptly encoded in the strength of the angular potential’s
elastic coefficients, and the time order correlates with it: regions required to attain
earlier their target structure possess stronger elastic parameters. The optimization
procedure modulates the coefficients in order to impose the most efficient sequence
of events to the relaxation process.

Previous work on MJ0366 [25, 47] has demonstrated that its folding is indeed
characterized by a well-defined sequence of steps, and the folding mechanism
follows a consistent, polarized path. Specifically, by means of atomistic simulations
it was observed that the creation of a loop, stabilized by the formation of a native
β -sheet, invariably precedes the onset of the knotted state by threading of the
protein C terminus through the aforementioned loop. A plot of the β -sheet RMSD
vs. the total RMSD for the trajectories successfully folding towards the native state
showed [25] that the closure of the loop occurs when the global RMSD is still as
large as 12Å, and the knot formed in most cases after the loop.

To quantitatively compare this behavior to that of our coarse-grained system,
we performed a similar analysis on the trajectories obtained with the EFM. In
subpanel 1 of Fig. 2.7a we report the mean field free energy (see Methods section)
projected on the two collective variables represented by the total RMSD and the
RMSD relative to the β -sheet. These results are consistent with those obtained
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Fig. 2.5 Optimal knotting process of protein MJ0366 as obtained from a simu-
lation employing the refined force field of the EFM. The full video is available
as integral multimedia (Multimedia view). Each snapshot (a-j) shows a relevant
conformational transition from a given conformation to another. At each step,
the thin gray trace represents the structure before the transition, while the thicker
one is the structure after the transition. The final conformation of a given step is
the initial one of the following, and the time (in units of τMD) provided at each
transition indicates the onset of the final conformations. The initial structure in
panel (a) corresponds to t = 0. The color coding on the final structures maps the
local strength of the elastic parameters, measured as the average of the bending
and torsion coefficients of each bead. The color coding goes, for increasing values,
from red through white to blue. See main text for the discussion of the knotting
pathway.
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Fig. 2.6 Optimal knotting process of protein virC2 as obtained from a simulation
employing the refined force field of the EFM. The full video is available as inte-
gral multimedia (Multimedia view). As in Fig. 2.5, the relevant conformational
transitions occurring during the knotting are illustrated. The color coding on the
final structures maps the average elastic parameters, with increasing strength going
from red through white to blue.
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by means of full atomistic simulations. In fact, we observe a flat path leading to a
shallow local minimum, which corresponds to the formation of the β -sheet loop
(∼ 1σ ) while the global RMSD is still relatively large (∼ 3σ ). From these minima
the system can overcome a barrier of ∼ 2.5kBT and proceed to a second basin
related to the final stages of the collapse; during this process, the knot is finally
formed by threading the C-terminal helix through the loop closed by the β -sheet.

The absence, in the EFM, of any native contact interaction, and the smooth
relaxation dynamics towards the target conformation determine a less sharp sep-
aration between the time scales of the two collective variables with respect to
the atomistic simulations. It is however remarkable that the crude, simplified
model here discussed is capable of reproducing the overall behavior observed
in simulations employing a much more accurate and detailed description of the
system.

We can thus draw two main conclusions from these results. First, the capability
to systematically and reproducibly form a molecular knot can be embedded in local
angular interactions that do not account for the global geometry/topology of the
system. Second, we observe that, by construction, the folding pathway of MJ0366
is the most efficient one (in terms of knotting probability) given the underlying
model: in fact, this pathway was determined by a force field obtained by means of
a stochastic optimization criterion, and it is consistent with the one produced by
atomistic simulations. Hence, the folding process of this protein likely evolved to
follow a one-way-track pathway towards the native conformation.

It is worth noting here that, as already observed by other authors, the folding
pathway of MJ0366 is characterized by the presence of an intermediate state:
this fact is quite unusual for proteins this small size, typically featuring a two-
state folding mechanism. This property appears as a common feature of knotted
proteins [161, 89, 25, 83], and can be rationalized in terms of the necessity to
construct a folding pathway entailing a unique, well defined sequence of steps. In
this conditions backtracking is reduced, yet at the expenses of a broader variety of
paths connecting unfolded and folded states.

We conclude the discussion about the MJ0366 protein with a reference to
the specific mechanism it employs to form the knot. In fact, in the all-atom
simulations performed by a Beccara et al. [25] three possible ways in which the
knot can establish have been observed: the dominant threading mechanism, in
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which the C-terminal α helix pierces unbent through the loop; the slipknotting [117]
mechanism, where the tip of the helix is bent backwards; and the mouse-trap

mechanism, in which the loop snaps back onto the already formed helix. On the
contrary, simulations employing Cα Gō models [145] or all-atom resolution Gō
models [117] seem to favor the slipknotting process.

In the simulations performed with the EFM we uniquely observed the threading
mechanism: this fact can be understood considering that the target structure con-
tains a well-formed C-terminal helix. The latter forms very early (see panels a-c of
Fig. 2.5), since the terminal residues are more free to move with respect to the ones
in the center of the chain, and they can quickly reach the reference conformation.
We care to remark, however, that the threading mechanism emerges, in the case
of the EFM, from a combination of model-specific and target structure-specific
features, and should not be taken as an evidence to proof or confute one knotting
mechanism over another.

2.3.3 Case study 2: virC2 knotted protein

The second case under study is the C-terminal domain of Agrobacterium Tume-
faciens virC2 protein (PDB code 2RH3, Fig. 2.1b). The overall fold of this 121
residue long trefoil protein is similar to that of MJ0366, featuring a loop ‘sealed’ by
a β -sheet, a strand of which is located close to the N terminus. A helix, constituting
the C terminus, pierces through the loop thereby forming the knot.

The structural as well as topological similarity of these two proteins is sugges-
tive of comparable folding mechanisms. Indeed, simulations [143] employing a
coarse-grained, native contacts-based model of virC2 have highlighted a similarity
of its free energy landscape with the corresponding one of MJ0366. In these simu-
lations, the free energy was monitored in terms of two collective variables, namely
the overall folding progress (analogous to the total RMSD with respect to the native
state) and the folding progress of the sole β -sheet. The landscapes of both proteins
featured a prolate well favoring the formation of the sheet and, in proximity of
conformations corresponding to a stably formed loop, a deeper minimum centered
onto the native state. However, the way these two basins are connected is different
between the two proteins. In fact, the free energy landscape of protein MJ0366
imposes virtually no barrier in going from an unfolded conformation where the
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β -sheet has formed towards the native state basin; on the other hand, the sheet-
forming basin of virC2 is less pronounced and, most notably, separated from the
native state minimum by a ∼ 5 kBT high barrier. Given this pattern of similarities
and differences, it is legitimate to hypothesize that the knotting mechanism of
MJ0366, namely the early closure of the loop followed by the α-helix threading,
represents one possible folding pathway for virC2 protein, yet maybe not the only
one nor necessarily the most favorable.

Some insight in the understanding of virC2 folding can be provided by the
optimal pathway obtained by means of the EFM. The coarse-graining procedure
applied to virC2 returned a force field, plotted in Fig. 2.4b and provided in Table
S2 of the Supplemental Material, successfully driving the protein to the knotted
target conformation, which has a RMSD < 3σ with respect to the native structure,
in 82% of the cases. The total RMSD and total energy of the system vs. time
during a successful knotting trajectory, reported in Fig. 2.3c, highlights, also in this
case, the presence of an intermediate state. In Fig. 2.7b we illustrate the relevant
milestones of this trajectory, and in Fig. 2.6 (Multimedia view) a more detailed
time series of the knotting event can be appreciated; the full video is available as
integral multimedia. Visual inspection of these data shows that the collapse process
followed by this protein is not similar to that of MJ0366: in fact, the β -sheet closes
at a very late stage, when the knot has already formed. Hence, the β -sheet RMSD
is not, in this case, the optimal collective variable to pair to the global RMSD.

To better understand this process in terms of the collective variables appropriate
to it, we consider the RMSD of a chain subset that, as observed in the trajectory,
reaches very early a stable conformation, that is, the stretch of the chain roughly
corresponding to the C-terminal half. This segment quickly forms a loosely open
loop, not coinciding with the one bracketed by the β strands. A plot of the mean
field free energy in terms of total and loop RMSD, as reported in subpanel 1 of
Fig. 2.7b, shows that the collapse rapidly proceeds towards the stabilization of
the C-terminal part of the loop, including the helix; after a short transient, during
which the total RMSD decreases at roughly constant loop RMSD, the remaining
segment of the loop snaps back in a mouse-trap like mechanism (analogous to
the one observed in few atomistic simulation trajectories of MJ0366 [25, 47]) by
which the β -sheet loop and the knot are concurrently formed.
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The pathway followed by virC2 modeled with the EFM suggests an alternative
mechanism that can be employed by the protein to reach its topologically entangled
native state. The assumptions embedded in the model, namely the maximal effi-
ciency in collapsing the protein chain into the target state and the optimality criteria
employed to parametrize the force field, provide the basis to expect this pathway
to be the most efficient and straightforward. Most notably, this expectation is
consistent with the results obtained by means of more conventional coarse-grained
simulations [143], which suggest that the β -sheet closure of the loop as in MJ0366
is made difficult by the presence of a non negligible free energy barrier; the latter,
on the contrary, is absent in the case of MJ0366, for which our model indeed finds
a knotting pathway analogous to the one observed in atomistic simulations.

2.4 Conclusions

Understanding the folding mechanism of knotted proteins is a major endeavor. Two
reasons constitute the most part of the difficulty to reach this objective, a practical
one and a conceptual one. The practical reason is the fact that the knot formation
represents a rate-limiting step, which determines, for entangled proteins, longer
folding time scales with respect to similarly sized but unknotted ones. In order
to follow the process by means of simulations, larger computational resources
are hence required, dramatically limiting the access to realistic trajectories for
molecules larger than a few tens of amino acids.

The second, more profound limitation is represented by the conceptual difficulty
to understand how a system driven by relatively simple interactions can perform
a task that demands to a human a nontrivial degree of planning and accurate
execution. An unknotted folding pathway might be hard to dissect and describe,
but it is not difficult to ultimately interpret it as a downfall along the free energy
landscape. The folding of a knotted protein is somewhat closer to a mountain-
to-valley excursion with well planned stop-overs through necessary intermediate
steps.

In the present work we developed a very crude coarse-grained model aimed
at providing relevant information about the knotted protein folding with minimal
computational expenditure. Our model relies on two assumptions: that the complex
interactions driving the process can be projected onto, and approximated with,
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Fig. 2.7 Analysis of the collapse pathway for MJ0366 (a) and virC2 (b) towards
their respective target conformations. Each panel shows the mean field free energy
landscape (subpanels 1) as measured in terms of the collective variables best suited
to describe their folding pathways (see text for a detailed description). The target
conformation of each protein is shown in subpanels 2 in tube representation; the
corresponding native state aligned onto this structure is shown in transparent gray
cartoon representation. A few intermediate steps of the process are illustrated by
the corresponding snapshots of collapse trajectories of MJ0366 (as in Fig. 2.5
(Multimedia view)) and virC2 (as in Fig. 2.6 (Multimedia view)) provided as
integral multimedia. The collective coordinates corresponding to the most relevant
‘milestones’ are indicated in the free energy plots with letter labels referring to the
trajectory snapshots. The chain segments employed to define the second collective
coordinate (β -sheet RMSD for MJ0366 and loop RMSD for virC2) are highlighted
in dark green transparent material.
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effective potentials local in space and sequence; and that the free energy funnel
leading towards the native state is straightforward and polarized. The specific
parameters of the force field were obtained by means of an unsupervised, stochastic
optimization maximizing the probability to attain the target conformation; yet, the
potential energy of our model is not build to favor the formation of native contacts.
Hence, the forces driving the proteins toward their knotted conformations are a
mean field proxy of both native as well as non-native interactions.

This approach was proven to be capable of reproducing the optimal folding
pathway followed by the shortest known knotted protein, MJ0366, consistent with
realistic all atom simulations. In the next-to-simplest case, represented by the virC2
protein, the folding mechanism returned by the model here discussed is different
from what is observed in native contacts-based, coarse-grained simulations; how-
ever, these studies have also shown the presence of a free energy barrier absent in
the case of MJ0366, thus suggesting that the folding mechanism of the latter might
be accessible to virC2, yet subleading with respect to a more effective pathway.

In conclusion, it is reasonable to assume that the folding strategies developed
by knotted proteins are highly optimized in order to reduce the impact of the rate-
limiting topological complexity. The knowledge accumulated by studies employing
coarse-grained as well as more realistic computational descriptions have unveiled
the delicate interplay of native and non-native interactions and the polarization of
the folding pathways. In the future, further insight might be provided by simplified
models focusing on the optimality of the knotting mechanism, that is emerging to
be the unifying trait of knotted proteins.
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Abstract
Self-entanglement, or knotting, is entropically favored in long polymers. Relatively
short polymers such as proteins can knot as well, but in this case the entanglement
is mainly driven by fine-tuned, sequence-specific interactions. The relation between
the sequence of a long polymer and its topological state is here investigated by
means of a coarse-grained model of DNA. We demonstrate that the introduction
of two adhesive regions along the sequence of a self-avoiding chain substantially
increases the probability of forming a knot.
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3.1 Introduction

In the last few decades, concepts from Topology have increasingly gained ground
in the study of biopolymers, most notably in the case of proteins [147, 157, 91,
25, 40, 125] and DNA [123, 28, 27, 159, 107, 99, 127, 109]. These molecules, in
fact, can undergo the same fate of an everyday piece of rope: they can be knotted.
Characterized by a wealth of three-dimensional conformations and traditionally
described in structural terms, biopolymers have demonstrated to entail a similarly
rich variety of topological features, which largely affect their behavior [31, 124].
Knotted protein folds, for example, have long been associated only with folding
errors [93, 75], whether in vivo or in silico. To the date of writing, the KnotProt [72]
database lists about 800 protein entries with a proper knot (i.e. no slipknots), the
functional relevance of which is often under debate. On the contrary, a long polymer
chain such as DNA, with a much smaller degree of sequence-dependence with
respect to a protein, is expected to be knotted with high probability [52, 160, 144].
It is hence not surprising to find experimental as well as numerical evidence
of topological entanglement in DNA strands confined in viral capsids [27, 107].
On the other hand, it comes to much surprise that the 100 Mbp-long genetic
material contained in a human chromosome is knot-free [130]. Recently, the same
puzzling absence of knots has been observed also in RNA molecules [104]. The
well established biology paradigm sequence → structure → function [44] is then
enriched with topology, and it is of the greatest importance to understand the
interplay between these four instances. To shed light on this conundrum, a body
of work has been carried out especially by means of numerical simulations, with
focus on different aspects of the problem, for example knotted protein folding [161,
146, 78, 40, 25], DNA [159, 130, 107, 99, 127], knot-specific sequences in model
polymers [45, 46, 164], and equilibrium properties of knotted chains [160, 144,
110, 106, 120, 124, 31, 151].

In the present article, we focus our investigation on the relation between se-
quence and topology of DNA. Genetic material, in fact, is at the center of a broad
range of topology-related biological and material science problems. The self-
recognition of complementary sequences allows the formation of nontrivial two-
and three-dimensional structures. This property lies at the core of genetic recom-
bination, and enables the occurrence of secondary structure element formation in
RNA macromolecules, as is in the case e.g. of ribosomes. The possibility to form
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Fig. 3.1 Snapshot of the DNA model under exam. The orange beads, labeled A
and Ω, indicate the sticky patches at the termini of the polymer, while the blue
beads, labeled X and Y , represent those along the polymer chain. These two
pairs of regions do not attract each other. The chain segment comprised between
A and X (resp. Y and Ω) has length lx (resp. ly).

selective, sequence-dependent bonds has been widely exploited in the field of struc-
tural DNA nanotechnology to (self-)assemble DNA origami [139, 140, 42, 136],
DNA superlattices [86], Borromean rings [96] and complex-shaped nanoscale
objects [132], such as gears, stars and smileys. At a higher level of genetic material
organization, we find that the three-dimensional architecture of the 30 nm chro-
matin fiber is largely affected by the formation of loops [69, 38]. These structures
are stabilized by protein complexes, e.g. the CTCF transcription factor, selec-
tively bridging specific binding sites along the DNA sequence [77, 134, 67]. The
formation of these loops plays a crucial role in the regulation of gene expression.

Natural knots in the genetic material remain nonetheless elusive. As previously
noted, in fact, a survey of RNA molecules indicated a remarkable absence of
knotted structures [104], in spite of the capability, in principle, to exploit secondary
structure formation to achieve topologically entangled folds akin to those observed
in knotted proteins. Similarly, in the case of nuclear chromatin the length of
the fiber (which largely exceeds that of the CTCF-induced loops), the activity
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of topology-regulating enzymes such as topoisomerases [84, 43, 138], and non-
equilibrium dynamics [130] make it impossible for these loops to become elements
of topological entanglement, i.e. to knot the chromosome. However, the mech-
anisms underlying loop formation in both aforementioned cases are completely
general, and, if properly designed and applied to shorter fibers, could be exploited
to manipulate their knotted state.

Here we investigate what impact the formation of a loop can have on the
topology of a DNA fiber. Specifically, we consider a filament of double-stranded
DNA (dsDNA) modeled as a chain of beads with excluded volume [123, 130, 99,
82], and introduce two pairs of adhesive monomers, as illustrated in Fig. 6.1,
which permanently stick to each other when sufficiently close. One pair of such
monomers (labeled A ,Ω) is located at the termini, and has the role of circularizing
the polymer to freeze its topological state. A second pair of adhesive monomers
(labeled X ,Y ), not interacting with the first, is located along the chain. The
latter is initially set up in an open, linear conformation. A constant-temperature
molecular dynamics (MD) simulation is carried out until the termini become
close enough to stick and cyclize the polymer. The knotted state of the resulting
conformation is then analyzed as a function of the position of the X ,Y sticky
regions. Two types of DNA models, termed L-DNA and S-DNA, are employed,
both composed by polymer chains having the same number of monomers but
different persistence length. The first case models a dsDNA chain long enough so
that its persistence length is negligible; the second case corresponds, for dsDNA
at physiological salt conditions (0.15 M NaCl) [135], to a 7.5 kbp long filament,
roughly the length of the papillomavirus genome [50]. Further details on the model
and the simulation protocol are reported in the Material and Methods section.

3.2 Results and discussion

The sticky monomers X ,Y , located along the chain, identify two types of sub-
chains: the arms of the polymer, namely the chain segments between a terminus
and the closest sticky bead along the sequence ([A −X ] and [Ω−Y ]); and the
sticky loop, i.e. the segment comprised between the central sticky beads ([X −Y ]).
The chains are composed by N = 500 beads, along which the sticky monomers
can be located only at distances lx = 50nx, ly = 500− 50ny from the termini,
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with nx,ny = 1,2, · · · 9. Of the 9× 9 = 81 possible configurations we have to
exclude the ones in which the beads coincide and, for symmetry, the pairs in
which lx = l′y, ly = l′x. This leaves us with 20 non-redundant locations of the sticky
bead pairs along the chain. In Fig. 3.2 the configurations are distributed in the
lx, ly plane; along the positive-tangent diagonals (parallel to the A-B line) one has
configurations in which the length of the arms changes but it is the same for the
two arms, while along the negative-tangent diagonals (parallel to the C-B line)
the size of the loop stays constant, but its location along the chain changes. An
illustration of the three extreme cases is also provided.

0 50 100 150 200 250 300 350 400      500

l
x

0

100

200

300

400

500

l y

A

B

C
l
y

A

B

C

l
y

l
y

l
x

l
x

l
x

Fig. 3.2 The parameter space explored in the present study. The coordinate
on each axis represents the length of an arm, i.e. the number of polymer beads
between a terminus and the closest sticky bead along the sequence. The dots
indicate the values that have been investigated. In the right half of the plot, three
sketches of the polymer with closed sticky loop illustrate the A, B, C points.

For each of the 20 locations of the adhesive monomers we measured the relative
knotting probability (RKP) of the polymer, defined as:

RKP =
PK(lx, ly)

P0
K

(3.1)

where PK(lx, ly) is the knotting probability of the chain with both types of sticky
monomers, and P0

K is the (reference) knotting probability of an equivalent chain
with adhesive termini only. These probabilities are computed as the fraction
of knotted final configurations over the total. For the two types of chain under
exam, namely the L-DNA and the S-DNA, we performed 104 · 103 and 24 · 103

independent simulations, respectively; as discussed in the Materials and Methods
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section, the larger number of runs for the L-DNA with respect to the S-DNA is
required by the smaller knotting probability of the former over the latter [158].

As anticipated in the Introduction, the final configuration is defined as the last
frame of a MD simulation; the latter is interrupted when the terminal sticky beads
cyclize the chain, irrespective of whether the X ,Y sticky monomers are joint
or not. It has to be stressed that the presence of the adhesive termini restricts the
conformational space the polymers can sample. The circularization of the chain,
in fact, freezes the topology and prevents the polymer from changing its knotted
state, either by tying a more complex knot or by untying the existing one. This
constraint, however, reduces the complexity of the phenomenology under exam
and removes any possible source of ambiguity due to the detection of the knotted
state of an open chain [152].

The scheme in Fig. 3.2 allows us to predict the qualitative behavior of the
RKP as a function of the sticky monomer locations. First, we expect to observe an
overall increase of the knotting probability with respect to a chain without central
adhesive monomers: these, in fact, favor more dense configurations, thus “self-
confining” the polymer and enhancing its propensity to entangle [105]. Second,
in the configurations corresponding to the corners of the triangle the sticky beads
are very close to the termini (point A in Fig. 3.2) or to each other (point B) or
both (point C). Therefore, their effect on the topology will be negligible, and the
RKP should be almost unity in those points. Along the A-B and A-C segments
the size and position of the sticky loop can vary. For Rolle’s theorem [128], then,
we expect the presence, along these sides of the triangle, of a local maximum of
the probability. The case for the C-B side is different: along the latter, in fact, the
location of the sticky beads changes, but the size of the loop remains the same -
zero in the limiting case in which the two sticky monomers coincide. Hence, the
RKP should remain fixed at unity.

The predicted behavior is confirmed by the heat-map plots shown in Fig. 3.3a-b,
which report the RKP for L-DNA and S-DNA, respectively. As expected, for all
points we have RKP≥ 1, which indicates an overall enhancement of the knotting
propensity in presence of the sticky monomers. The maximum relative increase
amounts to 11.6 for the L-DNA and 3.9 for the S-DNA.

A remarkable result is that, in spite of a noticeable difference in the absolute
numbers, the qualitative behaviors of the RKPs of L-DNA and S-DNA are decidedly
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Fig. 3.3 Heat-map representation of the simulation data as a function of the
sticky monomer location. Top row: data for the L-DNA. Bottom row: data for
the S-DNA. RKP: relative knotting probability. FCSL: fraction of knotted chains
with closed sticky loop. FTRSL: fraction of knotted chains with topologically
relevant sticky loops.

similar. Not only, in fact, both probability distributions comply with the expected
presence of maxima along the A-B and A-C segments; additionally, the absolute
maximum of the RKP occurs in the same point of the plane, namely the {50,300}
point, for both chain types. The fact that this particular pair of arm lengths
maximizes the knotting probability results from the interplay of two competing
effects: on the one hand, the size of the loop has to be sufficiently large in order to
allow and favor the threading of the arms through it; on the other hand, an adequate
length difference between the arms has to be guaranteed, so that one of them is
short enough to pierce through the loop before the terminal sticky monomers come
close together and freeze the topology in an unknotted state. As a matter of fact,
in this configuration the X ,Y sticky beads are only 150 monomers apart, so that
they can “find” each other before the termini do the same. At the same time, the
loop is large enough to allow either arm to go though it (if it were perfectly circular,
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its diameter would be roughly 50 beads). Consistently with these observation, we
also note that the relative maximum of the RKP along the A-B line (that is, for
equal length of the arms) is located at the {150,150} point: in this configuration,
the sticky loop is 200 beads long, very close to the optimal length.

As already noted, the location of the maxima is the same in the two cases under
exam, irrespectively of the persistence length of the chain. If we assume the same
fine-grained system to underlie both models, we can rephrase this observation by
saying that DNA chains of different length feature the same optimal location of the
sticky patches. From this perspective, we thus understand the optimization of the
knotting probability by means of the introduction of adhesive regions as a property
that only depends on their position relative to the chain length, with the latter only
affecting the absolute value of the enhancement of the knotting probability.

Further insight comes from the analysis of the knot complexity in the two
cases under exam (numerical values are reported in S1 Table). In fact, the vast
majority (> 98% on average) of the knots observed in the L-DNA are 31, while
in the S-DNA case the fraction of knots more complex than a 31 can be larger
than 8.4%. A possible explanation for this tendency towards complex knots in
the S-DNA is that some degree of bending rigidity allows for larger, more open
loops that favor multiple threading. More detail is provided in Fig. 3.4, where we
report the knot spectrum for the two chain types cumulated over all possible sticky
monomer location. (The break-down of the spectrum for all 20 sticky monomer
locations under exam is provided in Fig. B in S1 Text) From the S-DNA data we
see that the 52 knot type is more abundant than the 51 by approximately a factor
2. The same trend is observed [107] in simulations of DNA under confinement.
The knotting mechanism in the aforementioned condition cannot, obviously, be
compared with the knotting experienced by the chains under exam in the present
work. It is however interesting to observe how the same behavior can emerge by
means of the self-confinement introduced by the formation of the sticky loop. In
the L-DNA case we observe the opposite balance between 51 and 52 knots, but
their abundance is too small to rule out an insufficient sampling.

The data reported in Fig. 3.3a,b show that, in general, the presence of the
sticky monomers along the chain increases the relative knotting probability with
respect to equivalent chains having only the sticky termini. This observation alone,
however, does not provide any information about the role played by the formation
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Fig. 3.4 Cumulative knot spectrum of the L-DNA (blue) and S-DNA (red)
chains, irrespective of the sticky monomer location. The percentage refers to
the total number of knotted configurations. The fraction of 31 knots is ∼ 98% and
∼ 91.5% for L-DNA and S-DNA, respectively.

of a sticky loop. To ascertain this, we measured how many knotted configurations
involve the latter. These values are graphically illustrated in Fig. 3.3c,d for the
L-DNA and S-DNA, respectively. The fraction of knotted chains in which the
loop is closed ranges between 84% and 100% for 31 of the 40 cases under exam,
depending on the sticky monomer location. More specifically, and not surprisingly,
in both L-DNA and S-DNA we observe a positive gradient in the fraction of closed
loops in the direction of shorter distances between the X ,Y beads. In other words,
the closer the sticky beads are along the sequence, the higher the probability that
they will adhere. For the sticky bead location maximizing the RKP, namely the
{50,300} point, the fraction of knotted configurations involving a closed sticky
loop amounts to 96.6% for L-DNA and 98.1% for S-DNA.

Having assessed that the sticky loops are present in most of knotted configu-
rations, we need to discriminate between the case in which the loop and the knot
coexist without interfering and the case in which loop and knot are topologically
entangled. These two possibilities are depicted in Fig. 3.5. Given a closed, knotted
chain featuring a sticky loop, we deem the latter to be topologically relevant if its
removal determines a change in the topology of the chain (panels a to c). Alter-
natively, we consider the sticky loop irrelevant to the formation of the knot if the
latter is completely localized within the sticky loop or in the complementary loop
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obtained by removing the former (as illustrated in panels d to f). A more detailed
discussion of this algorithm is provided in section C in S1 Text.

Fig. 3.5 Illustration of the algorithm employed to determine whether a sticky
loop is relevant or not for the topological state of the polymer. If the sticky
loop (dark green segment) is entangled with the knot (panels a and b), its removal
determines a change in the chain topology (panel c). On the contrary, if no chain
segment pierces the sticky loop (panels d and e), its excision does not modify the
topological state of the whole polymer (panel f). In the figure, the sticky beads
at the termini are orange, while those along the sequence are blue. In the first
panel of both cases (a and d) the knotted region is inscribed in a circle. The two
configurations are obtained from simulations of S-DNA with sticky monomers
located at the {50,300} point.

As shown in Fig. 3.3e,f, the amount of loop-dependent knots is in general
large among the different sticky beads locations, half of them having a percentage
equal to or larger than 75%. Also much smaller values are present in some cases,
though never below 25%. The highest values are registered in proximity of the
RKP {50,300} maximum, namely 90.7% for L-DNA and 85.4% for S-DNA, thus
suggesting that the formation of a stable loop in the appropriate region of the chain
indeed enhances the probability to form a knot by threading a polymer terminus
through it.
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3.3 Conclusions

In summary, we have demonstrated that the knotting probability of a filament of
dsDNA, modeled as a thick self-avoiding chain, can be increased by introducing,
along its sequence, two adhesive regions. The extent of this enhancement depends
only on the location of the latter, and its qualitative pattern is the same for the two
chain types considered, namely with zero and finite persistence length.

The highest chance of self-entangling the polymer is obtained when the location
of the adhesive regions optimizes the interplay of two competing effects: one is
the enhancement of the threading probability, which is proportional to the loop
size; the other is the polymer circularization event, which is more probable when
the length difference between the two arms is small. Our data indicate that the
knotting probability is maximized, in both L-DNA and S-DNA, when the sticky
monomers allow the formation of a loop of length ∼ 1/3 of the whole polymer
located close to one of the termini.

Because of the generality of the model employed in this study, the presented
results are prone to verification and employment on a fairly broad range of length
scales: in fact, as mentioned in the Introduction, genetic material at different length
scales -from single-stranded RNA to 30 nm chromatin fibers- is provided with the
elements necessary to form loops. The knowledge of the mechanisms favoring the
realization of knotted topologies can, therefore, be employed not only to design
self-knotting structures, but also to rationalize the absence of entanglement in
otherwise knot-prone systems.

Understanding how the sequence of a polymer determines not only its geomet-
rical structure but also its knotted state is a relevant and difficult task. The model
discussed here aimed at reducing the complexity of the problem to the core by
introducing the smallest amount of sequence information in a plain polymer with
excluded volume. The rich behavior featured by this simple system proved useful
to build a basic understanding of the relation between the constituents of a complex
molecule and its topological state, and provided the instrument for future work that
will elucidate the knotting process.
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3.4 Materials and Methods

3.4.1 Model and simulation details

For our study we employed the well-established Kremer-Grest model of a coarse-
grained polymer [65]. Specifically, our polymer chain is modeled as a collection of
identical beads of unit mass, connected by anharmonic FENE bonds [65]. The non-
bonded interaction acting among the beads is a Weeks-Chandler-Anderson [163]
(WCA) potential, which enforces the excluded volume. The only beads featuring
a further non-bonded potential are the termini and the two sticky beads along the
chain. The most general form of the total potential energy of the chain is:

H =UWCA +UFENE +Ustick +Ubend (3.2)

The WCA potential is given by:

UWCA =
1
2

N

∑
(i, j), j ̸=i

V (di, j), (3.3)

V (r) =

{
4ε

[(
σ

r

)12 −
(

σ

r

)6
+ 1

4

]
for r ≤ 21/6σ

0 otherwise
(3.4)

where ε = 1 sets the energy scale. The FENE potential reads:

UFENE =−
N−1

∑
i=1

κ f ene

2

(
R0

σ

)2

ln

[
1−
(

di,i+1

R0

)2
]

(3.5)

where di,i+1 = |⃗ri − r⃗i+1| is the distance of the bead centers i and i+1, R0 = 1.5σ

is the maximum bond length and κ f ene = 30ε is the interaction strength.

The sticky interaction is modeled as a negative Gaussian short range potential
acting between sticky beads of like type. The potential is given by:

Ustick = G(|⃗rΩ − r⃗A |)+G(|⃗rY − r⃗X |) (3.6)

G(r) =

 −U0 exp
(
− (r−21/6σ)2

2λ 2

)
for 21/6σ ≤ r ≤ (21/6 +5)σ

0 otherwise
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where r⃗A , r⃗Ω, r⃗X and r⃗Y are the coordinates of sticky beads A , Ω, X and Y ,
respectively. The parameters U0 = 100ε and λ = 2.5σ are chosen so that the
interaction between sticky monomers is sufficiently strong, i.e. larger than thermal
fluctuations, when they are closer than 2−3σ .

The bending rigidity potential is defined as:

Ubend =
N−2

∑
i=1

κbend

2
(θi −π)2 (3.7)

where θi is the angle formed by a triplet of consecutive beads with the ith bead at
the center. The bending stiffness is κbend = 10kBT , with kB Boltzmann constant.

The constant-temperature MD simulations are carried out with an in-house code
integrating the Langevin equations of motion with kBT = ε and τ = σ

√
m/ε = 1

MD time units. In the L-DNA case (resp. the S-DNA case), a total number of
104 ·103 (resp. 24 ·103) simulations have been performed for each of the 20 central
sticky monomer locations. The factor ∼ 4 separating the numbers of individual runs
of the two sets depends on the different knotting probability between L-DNA and S-
DNA, respectively 1.9417 ·10−4 and 6.6680 ·10−3. Since the latter is much higher
than the former (as discussed e.g. in [158]) we performed a substantially larger
number of runs for the L-DNA case in order to obtain a statistically significant
number of knotted conformations for both polymer chain types.

3.4.2 Knot analysis

Knots are mathematically well-defined only for closed curves. As our simulation
protocol automatically returns circularized conformations, we are spared from
the need to perform a chain closure [152], a time-consuming and potentially
ambiguous procedure (especially in the case of buried termini). The topological
state of our closed chains has been obtained applying the algorithm implemented
in the KNOTFIND package.
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3.5 Supporting Information

3.6 Data summary

The numerical values of the results of the present work are listed in Table 3.1
hereafter.

3.7 Computation of the persistence length

The system under study is a 500 bead long polymer. The diameter σ of the
beads is taken as a length unit, and the same distance separates the centers of
consecutive beads. Because of the short-range WCA repulsion, the chain cannot
cross itself. Two types of polymer are employed in this work, namely one in which
no bending rigidity is present (the L-DNA), and one in which a three-body bonded
potential imposes a given stiffness. These two types of chain thus feature different
persistence length lP, that is, the characteristic decay length of the bond vector self
correlation.

In the first case the expression for lP is given by:

lP =− σ

ln(1− σ2

4∆2 )
(3.8)

where σ is the bond length and ∆ is the cross-sectional radius of the chain. In the
case under exam, we have ∆ ≃ σ/2: with this value in Eq. 3.8 we obtain lP = 0.

For the case in which a bending rigidity κbend is present (S-DNA), we impose
its strength based on the requirement to reproduce DNA in physiological salt
conditions, i.e. 0.15 M NaCl. We have that in this case the effective diameter of
DNA is σ = 5nm. Assuming a persistence length of 50 nm or 150 bp we obtain
the appropriate bending energy for this condition as:

κbend

kBT
≃ lP

σ
= 10 (3.9)

For a polymer of length L = 500σ as in our case, we obtain L/lP = 50, corre-
sponding to 150bp×L/lP = 7500bp.
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3.8 Simulation protocol

In order to investigate how the presence and location of the sticky beads along
the polymer chain affect the polymer’s topology we performed different sets of
simulations. Each of these corresponds to a particular location of the central sticky
beads. Specifically, we placed the sticky monomers in all possible, non-redundant
locations separated by 50 beads available on a chain of polymerization degree
N = 500. This choice leaves us with 20 possible locations.

For each position of the central sticky monomers, two different blocks of
simulations are performed, one for L-DNA and one for S-DNA. A single simulation
runs according to the following protocol:

1. the polymer chain is initialized in a randomized, extended conformation

2. the Langevin equations of motion are integrated

3. as soon as the two terminal beads “stick together” through the Gaussian
potential the simulation is interrupted - whether the central sticky beads have
adhered to each other or not

4. the final configuration of the polymer chain is stored; the trajectory is dis-
carded

3.9 Knot analysis

The topological state of our closed chains has been obtained applying the KNOTFIND
algorithm 1.

In our analysis, we had to take into account the fact that the overall topological
state of the chain might be independent of the loop formed by the central sticky
monomers. In order to ascertain the entanglement between knot and sticky loop
in a knotted configuration, we considered all those chains that have a nontrivial
topology and a sticky loop, i.e., the central sticky beads {X ,Y } have adhered
before the termini did. We then identify all monomers in the sticky loop (that is,

1J. Hoste and M. Thistlethwaite, KNOTFIND, 1999,
www.math.utk.edu/morwen/knotscape.html
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all monomers having index i ∈ (X ,Y )) and the complementary loop formed by
the two arms, and analyze their topology. If one of them is in the same knotted
state of the full chain, we deduce that the knot has formed deep into the loop but
not because of it, or equivalently on the arms. On the other hand, if both the sticky
loop and the loop formed by the two arms alone have a different topology with
respect to the full chain, the loop is deemed to be topologically relevant.

It is worth stressing here the the sticky loop can result to be topologically
relevant whether it was necessary to the formation of the knot or not. The closure
of the loop, in fact, can occur after the knotting of the chain and entangle it a

posteriori, so that the loop removal would result in a crossing, e.g. as illustrated
in Fig. 3.6. Our analysis, which is based on the sole final configuration, does
not explicitly identify these cases, rather it provides a measure of the overall
topological and geometrical entanglement in the polymer.

Fig. 3.6 Illustration of the process by which a the excision of a sticky loop results
in the swapping of two chain segments. For this to happen, the sticky loop has to
be pierced by another stretch of the chain.

3.10 Knot spectrum for all sticky bead positions

We report in Fig. 3.7 hereafter the break-down of the knot spectrum for the
two DNA types, separated by sticky bead position. The 0−0 label indicates the
reference chains without central (X ,Y ) sticky beads.
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Fig. 3.7 Knot spectrum of L-DNA (panel a) and S-DNA (panel b). The 0−0 label
indicates the reference simulations where only the terminal sticky monomers are
present.
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RKP Knots with more than 3 crossings (%) FCSL (%) FTRSL (%)

N lx ly L-DNA S-DNA L-DNA S-DNA L-DNA S-DNA L-DNA S-DNA

1 50 50 2.0 1.0 — 41 (6.4) 42.5 45.2 37.5 38.2
2 50 100 3.9 1.7 41 (1.2) 41 (9.1), 51 (1.5), 52 (0.4), 31#31 (0.4) 77.2 61.7 75.9 54.2
3 50 150 6.4 2.4 41 (3.1) 41 (5.7), 51 (0.5), 52 (0.8), 61 (0.5), 31#31 (0.6) 84.5 77.6 82.2 71.7
4 50 200 8.5 3.0 — 41 (5.5), 51 (0.6), 52 (0.8) 90.2 89.8 87.3 81.6
5 50 250 11.3 3.8 41 (0.4), 52 (0.4) 41 (6.0), 51 (0.3), 52 (1.3), 31#31 (0.5) 93.9 94.3 86.5 85.1

6 50 300 11.6 3.9 41 (2.5)
41 (5.5), 51 (0.6), 52 (0.9),

31#31 (0.2), 63 (0.2), 821 (0.2) 96.6 98.1 90.7 85.4

7 50 350 8.9 3.0 41 (0.6)
41 (5.8), 51 (0.4), 52 (0.4),

31#41 (0.4) 99.4 99.8 93.4 76.2

8 50 400 2.9 1.8 — 41 (6.2), 52 (0.3), 31#31 (0.3) 100 99.7 66.1 55.9
9 100 100 4.8 1.4 — 41 (4.3), 51 (0.9), 61 (0.5) 75.3 67.8 72.1 60.4

10 100 150 5.6 2.1 41 (2.7) 41 (8.0), 51 (0.3), 52 (1.2), 31#31 (0.3), 63 (0.3) 81.4 82.2 76.1 71.8
11 100 200 6.8 2.5 41 (2.9) 41 (10.5), 51 (0.5), 52 (2.5), 81 (0.3) 91.4 90.7 86.3 79.2

12 100 250 6.6 2.8 41 (4.5), 51 (0.8)
41 (6.5), 51 (1.1), 52 (1.6), 61 (0.2),

31#31 (0.5), 62 (0.2) 93.2 94.9 88.0 79.0

13 100 300 5.0 2.4 41 (1.0)
41 (4.8), 51 (1.0), 52 (0.5),

31#31 (0.8), 41#41 (0.3), 62 (0.3) 100 99.0 82.2 71.3

14 100 350 1.7 1.4 — 41 (4.0), 52 (0.9) 100 100 47.1 42.2
15 150 150 5.1 1.9 41 (3.8), 51 (1.0) 41 (6.7), 51 (0.7), 52 (0.3) 96.2 84.9 90.4 75.3
16 150 200 4.1 1.8 41 (2.4) 41 (11.8), 52 (0.7), 61 (0.7), 31#31 (0.7), 63 (0.3) 96.3 93.4 82.9 75.8
17 150 250 3.0 1.6 41 (4.6), 51 (0.9), 31#52 (0.9) 41 (7.5), 51 (0.4), 52 (0.4), 61 (0.3), 31#31 (0.4) 100 98.1 63.3 63.7
18 150 300 1.0 1.2 — 41 (8.3), 51 (0.5), 52 (2.1) 100 100 26.5 32.6
19 200 200 2.9 1.4 41 (5.7) 41 (9.2), 51 (0.5), 52 (1.8), 61 (0.4), 31#31 (0.5) 95.2 98.2 55.2 63.6
20 200 250 1.2 1.0 — 41 (6.5), 51 (0.6), 52 (0.6) 100 99.4 25.0 28.6

Table 3.1 Summary of the data presented in the present work. RKP: relative
knotting probability. FCSL: fraction of knotted chains with closed sticky loop.
FTRSL: fraction of knotted chains with topologically relevant sticky loops.
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Abstract
In this study we consider an idealization of a typical optical tweezers experiment
involving a semiflexible double-knotted polymer, with steric hindrance and per-
sistence length matching those of dsDNA in high salt concentration, under strong
stretching. Using exhaustive Molecular Dynamics simulations we show that not
only does a double-knotted dsDNA filament under tension possess a free energy
minimum when the two knots are intertwined, but also that the depth of this
minimum depends on the relative chirality of the two knots. We rationalize this
dependence of the effective interaction on the chirality in terms of a competition
between chain entropy and bending energy.
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4.1 Letter

The study of physical knots in polymers is an important emerging topic in bio-
physics and soft matter in general. Since the original conjecture that knots should
be ubiquitous in sufficiently long chains [52, 63], later proved by Sumners and
Whittington [144], knots have been found or tied in a variety of biopolymers,
from DNA [28, 27, 99, 98] to proteins [147, 157, 79, 125, 166, 25, 114] and
even actin filaments [26], and have been shown to have a large impact on the
biological function of proteins and DNA [33, 103]. More recently, several stud-
ies have shed light on the relevance of knots also in nanotechnological applica-
tions [26, 105, 108, 129, 46, 126].

Physical knots appear and diffuse spontaneously along polymer chains [35,
155, 153, 102, 159, 70], on which they acquire a metastable tightness [66, 48,
49], and can affect structural and dynamical properties like their radius of gyra-
tion [53, 113, 119, 95], tensile strength [137, 26], diffusion constants [142, 162],
and translocation dynamics through a pore [129].

Most studies up to now focused on the properties of single knots, investigating
how knot occurrence probability [81, 120], size [112, 97, 95], and dynamical prop-
erties [153, 54] depend on physical characteristics of the system under study, such
as polymer thickness [135, 141], confinement [27, 99, 108, 109, 124], stretching
force [59, 41, 70, 102], crowding and solution density [76, 131, 57]. Polymers,
though, can host multiple knots. These, referred to as composite knots, are actually
the most probable type of knots in the case of long polymers [144, 55]. The study
of composite knots is of great interest since the presence of interactions among their
prime components may alter the overall properties of the polymer. For example,
knot colocalization on a stretched polymer may significantly diminish its tensile
strength with respect to a chain with a series of localized, non-intertwined prime
knots.

Since prime knots tied on polymers in solutions or under weak mechanical
stretching are weakly localized, their length growing sublinearly with the length of
the polymer [59, 112, 97, 95, 41], when tied on the same polymer they are expected,
in the thermodynamic limit of infinitely long chains, to be statistically independent.
In fact, computational studies have shown that in the thermodynamic limit the
characteristic exponent, relating the configurational entropy of a polymer ring to
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Fig. 4.1 Snapshots from simulations of a chain with bending rigidity κ = 20kBT
containing two 31 knots of different chirality. The shortest knotted portions of
isolated prime components (zoomed in the right part of the figure) are highlighted
in red and grey. Yellow and orange beads, whose sizes were artificially increased
for clarity, mark the beginning and end of the composite knots, respectively.

its contour length, can be written as in the case of an unknotted ring augmented by
the number of knots that are present, and that the knotting probability of composite
knots factorizes into that of their prime knot components [30, 150]. However, in
finite-size polymers the situation can be quite different. In this case the size of knots
is non-negligible and therefore they can not be mapped onto independent point-like
decorations [133]. On the contrary, knots can be expected to be intertwined, so
that one is inside another, and to interact with each other. Dommersnes et al.

have shown that knots tied on a short unscreened charged ring become as tight as
possible and maximize their relative distances along the ring [56], while Virnau
and coworkers, simulating a double-knotted stretched dsDNA chain, have shown
that knots can become intertwined in a minimum free energy configuration [149].
Furthermore, a recent study by one of us [151] reported that knot size remains
an important factor in freely jointed rings of up to thousands of bonds, where
the probability of finding intertwined knots remains significant. These results
suggest that finite size effects are relevant in most biological phenomena and
nanotechnological applications involving stiff polymers such as dsDNA, and that
indeed the overall effect of knots may depend on some complex interaction between
them.

To shed further light on the interactions between knots along a finite-size
polymer, we consider an idealization of a typical optical tweezers experiment [149,
59, 41] in which a semiflexible double-knotted chain is stretched between two
impenetrable walls, describing the effect of tweezer confinement on the terminal
polystyrene beads (see Fig. 1). The separation of the chain termini is such that the
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knotted polymer is in the high-force stretching regime in which knots are strongly
localized, their size showing only small fluctuations around an average size which
scales solely with the applied force [59, 41]. Using exhaustive Molecular Dynamics
(MD) simulations of polymers containing different pairs of prime knots, we show
that not only does a double-knotted dsDNA filament under tension possess a free
energy minimum when the two knots are intertwined [149], but also that the depth
of this minimum depends on the relative chirality of the two knots. We show that
this dependence of the effective interaction on the chirality originates from an
interplay between chain entropy and bending energy, which is dominated by the
latter.

The dsDNA is modeled as a chain of N = 300 beads of diameter σ connected
by FENE (finitely extensible nonlinear elastic) bonds [65, 82]. A Weeks-Chandler-
Anderson (WCA) potential enforces the excluded volume, and a harmonic bending
energy term induces a finite persistence length. The chain is stretched along the
X axis, and its termini are kept fixed in correspondence of two repulsive walls,
modeled as WCA potentials, which prevent the knots from untying. The total
potential energy of the system is thus:

Utot =UWCA +UFENE +Ubending +Uwalls (4.1)

where the WCA potential is taken as:

UWCA =
1
2

N

∑
(i, j), j ̸=i

V (di, j)

V (r) =

{
4ε

[(
σ

r

)12 −
(

σ

r

)6
+ 1

4

]
for r ≤ 21/6σ

0 otherwise
.

(4.2)

The WCA strength ε = 1kBT and the characteristic length scale σ are taken as
the energy and length units, respectively. All other dimensional quantities are
expressed in terms of reduced units defined through ε , σ and the bead unit mass m.
Time is measured in the MD time units τMD = σ

√
m/ε = 1. The FENE potential

reads:
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where u⃗i ≡ r⃗i+1 − r⃗i is the vector pointing to the bead i+1 from bead i, and |⃗ui| is
thus the distance of the bead centers i and i+1. The values of the maximum bond
length R0 = 1.5σ and the FENE interaction strength κ f ene = 30ε are the customary
ones for the Kremer-Grest model [65]. The harmonic bending potential is taken in
its standard form:

Ubending =
N−1

∑
i=1

κ

(
1− u⃗i · u⃗i+1

|⃗ui||⃗ui+1|

)
(4.4)

where κ = 20kBT is the bending stiffness of the chain, inducing a persistence
length lp = 20σ . Setting σ = 2.5 nm gives us lp = 50 nm, typical of dsDNA in
high monovalent salt concentrations [135].

The potential of Eq. 6.2 is used to perform underdamped MD simulations in an
implicit solvent with a Langevin thermostat and time step ∆t = 0.01τMD, with the
friction self-correlation time τ f rict = 103τMD.

To assign a topological state to subsections of the chain, we used the Mini-

mally Interfering Closure [152]. We define a knotted portion of the chain as the
shortest segment featuring a specific knotted topology upon closure according to
the Alexander polynomial1. With some abuse of language, we will refer to such
portions as “knots" in what follows. By applying this procedure to composite knots,
we are able to identify both the chain portion hosting the whole composite knot, as
well as those hosting its “isolated” prime components. Following ref. [151], we
consider a prime component to be isolated when it can be excised, and its ends
joined, without at the same time untying the second knot, see Fig 4.1.

Six topologically different setups have been investigated, namely: (3+1 3+1 ),
(3+1 3−1 ), (413+1 ), (413−1 ), (5

−
1 3−1 ), (5

−
1 3+1 ). The chirality of each prime knot has

been established using the writhe, that is, the sum of the signed crossings of the
knot in its minimal diagram. + and − superscripts refer to right and left handedness
according to the right-hand rule convention [105, 74]. In our setup, (++) and
(−−) composite knots are related by a mirror transformation; therefore, we do not
attach any importance to the overall chirality of the composite knot, but only on
the relative chirality of its prime components. Since no cross-passage is allowed
in our simulations, the chirality of all knots is preserved during the simulations.
In all setups, the termini of the chain were kept fixed at a distance of L = 205σ ,

1We remark that the inability of the Alexander polynomial to distinguish different chiralities
does not affect our results, since in our setups the chirality of the knots cannot change and is fixed
by the starting configuration.
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corresponding to forces of about 1-4 pN at T = 300K, depending on the knot
complexity, applied on both termini. At these forces, corresponding to a strong
stretching regime [41], the knot lengths show relatively small fluctuations around
their average values, as reported in Table 4.1. For each of the six topologies under
examination, 40 independent simulations were performed, each consisting of an
initial equilibration phase of 2×107 τMD and a production phase of 2×109 τMD.

Separated Intertwined
l31
k lother

k lincl
k lcomp

k
5−1 # 3−1 29.5±3.1 50.5±4.3 30.3±4.7 72.4±3.7
5−1 # 3+1 29.6±3.1 50.6±4.3 33.9±5.2 72.9±3.7
41 # 3+1 32.9±3.6 44.5±4.0 30.4±3.3 72.6±3.8
41 # 3−1 32.9±3.7 44.5±4.1 30.4±3.3 72.6±3.8
3+1 # 3+1 35.5±2.2 33.0±3.7 67.2±4.1
3+1 # 3−1 35.7±2.3 34.7±3.9 67.0±4.0

Table 4.1 Average knot lengths for different topologies. In the “Separated" columns
are reported the knot lengths for the prime components when they are not inter-
twined. The “Intertwined" columns report the average lengths of the isolated prime
component that has been included (labeled lincl

k ) and of the whole composite knot
in an intertwined configuration (labeled lcomp

k ). In those cases where the 41 is
entwined by the 31, constituting the 8% of the intertwined configurations for this
topology, the size of the 41 is 42.5±3.7, and the length of the whole composite
knot is 70.1± 3.6. We remark that the knots under investigation here are quite
tight, with lengths almost half (55%) those of the knots studied in ref. [149] in the
case of the 31#41 systems.

As a first case we investigate the 3±1 5−1 system, taking into account two different
chiralities of the trefoil knot: 3+1 and 3−1 . The fractions of intertwined states in the
3+1 and 3−1 cases are 0.585 and 0.447, respectively. In both setups the largest knot,
the 51, swells up to let the 31 knot in. The frequency with which the trefoil enters
or exits the 51 is 7.6×10−9 τ

−1
MD for the 5−1 3−1 (−−) pair, and 13.2×10−9 τ

−1
MD for

the 5−1 3+1 (−+) pair 2.

The data in Table 4.1 show that the length of separate prime components is
independent of their relative chirality for all topologies under study. This allows
us to introduce a collective descriptor, or an order parameter, D, defined as the
oriented distance between the knot centers. This is measured as the number of

2The number of observed events in which the trefoil knot enters into or exits an intertwined
state with the 51 knot is 580 out of ∼ 7.6×1010 time steps for the 5−1 3−1 (−−) pair, and 992 out of
∼ 7.5×1010 time steps for the 5−1 3+1 (+−) pair.
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chain beads from the center of the 51 knot to the center of the 31 knot, D= c31 −c51 .
A similar definition can be provided for the configurations in which the two knots
are intertwined and the knot identification algorithm allows us to identify only
one prime component, the one which has been entwined by the other knot. In
those cases we identify the center of the swollen knot with the center of the
whole composite knot in the expression for D [149]. Therefore, D = 0 in those
configurations in which the two knots are intertwined and the innermost knot is
located exactly at the center of the outermost knot. A schematic representation of
this collective descriptor is provided in Fig. 4.2.

ck1

ck2

dk1,k2

ck2

dk1,k2

k1c #k2

Fig. 4.2 Schematics of the collective order parameter D measuring the linear
distance between two prime knots, in this case a 51 and a 31. When both prime
components are isolated, the order parameter is given by D = ck2 − ck1 , where
cki = (eki + ski)/2 is the center of knot i on the chain. Here eki and ski stand for the
last and the first bead of the i-th isolated knotted portion. k1 is always taken to be
the most complex knot, in this case the 51. When the knots are intertwined, we
identify the center of the swollen knot with the center of the whole composite knot,
ck1#k2 .

By counting the relative number of MD configurations for which the knot
components are separated by a given distance D we can obtain the probability
distribution P(D) and, correspondingly, the free energy F(D) = −kBT lnP(D).
The latter is reported for the two 3±1 5−1 systems in Fig. 4.3a.
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Fig. 4.3 (a) Free energy, F(D), as a function of the linear distance between the
knots for 5−1 3−1 (blue solid line) and 5−1 3+1 (red dashed line). (b) Same as in (a) for
the knots 413+1 (blue solid line) and 413−1 (red dashed line). Note that in this latter
case the two quantities coincide. The free energies for the 413±1 reported in panel
(b) can be decomposed to distinguish the cases in which the 41 intakes the 31 in
and those in which the opposite happens; no substantial difference depending on
the relative chirality is to be observed (data not shown).

From the profiles in Fig. 4.3a we observe that F(D) increases with increasing
|D|, a behaviour that can be intuitively attributed to the entropic cost of placing
two knots at large distance on a long, yet finite chain [133]. Consistent also with
previous observations [149], for small values of |D| we detect two barriers and
two minima in the free energy, corresponding to configurations in which the two
knots are intertwined. Most interestingly and unexpectedly, we observe that the
depth of these minima depends on the relative chirality of the knots. When the two
components have opposite chirality, the corresponding free energy minimum is
∼ 1kBT deeper than for the system in which the two chiralities are identical.

This conclusion is reinforced by simulations performed on a 3±1 41 composite
knot, where one of the knots, the 41, is achiral. The free energy in this case,
reported in Fig. 4.3b, does not depend on the chirality of the 31 component, as
it is indeed expected since there are no other chiral entities in the setup. In the
simulations the intertwined states with the 41 including the trefoil are the most
probable, making for the 92% of observed configurations 3.

3For this topology we measure 1280 events in which the one knots enters or exits the other, over
a total of ∼ 7.5×1010 time steps.
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To understand if the sole relative chirality of two knots can mark a difference
in their preference to stay intertwined or to separate along a chain under tension,
we consider a system composed by two otherwise identical trefoil knots. In this
case we use as order parameter the absolute value of D, since when the two trefoil
knots have the same chirality they become effectively indistinguishable. The
free energy profiles, Fig. 4.4a, corroborate that also in this case the system with
two knots having opposite chiralities has a lower free energy minimum when
the two components are intertwined. We note here that the presence of the two
repulsive walls may impact the free energy profiles, since our parameter D does
not distinguish whether the knots are near the walls or far from them. In order to
rule out possible distortions due to the interactions between knots and walls, the
free energy profiles have also been computed excluding all those configurations in
which the knots were separated from each wall by a distance lower than 2lp. The
resulting profiles (data not shown) are perfectly consistent with the ones reported
in Figs. 4.3 and 4.4, thus validating the robustness of the observed behavior.

Further insight into the cause of this effect can be obtained by analyzing the
size of the intertwined configurations. As reported in Table 4.1, we find that for
all investigated topologies the length of the composite knot in the intertwined
state, lcomp, does not depend on the relative chirality of the prime components.
Interestingly, we observe that both for the 3±1 5−1 and for the 3±1 3−1 systems the
length of the nested, isolated prime components in the intertwined state is slightly
larger in the (+−) case 4.

We proceed to separate the free energy F(D) in its energetic and entropic
components, by first computing the average internal (potential) energy of the con-
figurations, and subsequently obtaining the entropy through the standard relation
F = Eint −T S. The results, reported in Fig. 4.4a-c, show two interesting features.
First, they confirm that the observed increase of F with |D| when the two knots are
separated is purely entropic. Secondly, and more importantly, they show that the
differences we observe in the free energies of the (+−) and (++) systems originate
from a complex interplay of internal energy and entropy. Specifically, the entropic
contribution is higher for the (++) case but is not high enough to overcome the
energetic contribution favoring the (+−) knot. The potential energy can be further

4In the case of the (+−) topology, we observe 3720 events out of ∼ 8.0×1010 time steps in
which one trefoil enters or exits the other; for the (−−) topology we have 3108 such events out of
∼ 8.0×1010 time steps.
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Fig. 4.4 Free energy of the 3131 system with same and opposite relative chirality,
as a function of the separation D between the two knots, decomposed in their
different energetic and entropic contributions. We report the free energy F(D)
(a), the entropy S (b), and the internal potential energy Eint (c). The entropy is
obtained through the relation F = Eint −T S. In panels (d) and (e) we show how
the internal potential energy is distributed, respectively, between the bending term
and the remaining two contributions, namely the FENE and WCA potentials. See
the main text for a discussion of the results.

decomposed into its main components: steric hindrance, bond extension, and
bending energy. The data presented in Fig. 4.4d-e clearly show that while all other
energetic contributions are similar, the bending energies of the (+−) and (++)
systems differ significantly at the position of the minimum of F(D) by the same
amount, ∼ 1.5kBT . The same qualitative result holds also for the 3±1 5−1 topologies
(data not shown).
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Given the observed competition between bending energy and entropy in the
intertwined state, with the (+−) system showing a lower bending energy but losing
more entropy than the (++) system, it is tempting to ascribe the difference in their
free energy profile to a significantly different arrangement of the nested knot within
the hosting knot in the two setups. However, further analyses and simulations are
required to elucidate the exact mechanics underlying the chiral contribution, which
is the object of an ongoing study.

Summing up, we have shown that a double knotted semiflexible polymer chain
under strong stretching possesses a free energy minimum when the two knots are
intertwined, showing that relatively tight knots can still pass through each other,
and also that the depth of this minimum depends on the relative chirality of the two
knots. In order to observe this effect, both knots must be chiral, with the knots of
opposite chirality displaying a higher preference to stay intertwined. Furthermore,
we showed that the major player in the chirality effect is the bending energy of the
chain, which, we recall, is set to the characteristic persistence length of dsDNA.

The question then emerges, as to what are the specific features of the bending
energy that would engender a chirality effect in knot interaction, and whether the
stretching of the chain enters in some way as a significant constraint. If the chirality
effect, described above, turns out to be robust and observable in a broad range of
parameters, one can speculate further as to its importance in particular for chiral
polymers such as dsDNA.

Acknowledgments
L. Tubiana and R. Podgornik acknowledge support from the Slovenian Agency for
Research and Development (ARRS grant No J1-4134). L. Tubiana acknowledges
also support from the Mahlke-Oberman Stiftung and the European Union’s Seventh
Framework Programme for research, technological development and demonstration
(grant No 609431). S. Najafi and R. Potestio are thankful to M. Heidari and R.
Menichetti for an attentive reading of the manuscript and useful comments.





Chapter 5

Role of bending energy and knot
chirality in knot distribution and
their effective interaction along
stretched semiflexible polymers

This Chapter has been published as a research paper in Polymers journal. It is
reprinted here with permission from the publisher.

Saeed Najafi, Rudolf Podgornik, Raffaello Potestio, and Luca Tubiana

Role of Bending Energy and Knot Chirality in Knot Distribution and Their
Effective Interaction along Stretched Semiflexible Polymers
Polymers 8, 347 (2016)
©MDPI, 2016

Abstract
Knots appear frequently in semiflexible (bio)polymers, including double-stranded
DNA, and their presence can affect the polymer’s physical and functional properties.
In particular, it is possible and indeed often the case that multiple knots appear
on a single chain, with effects which have only come under scrutiny in the last
few years. In this manuscript, we study the interaction of two knots on a stretched
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semiflexible polymer, expanding some recent results on the topic. Specifically,
we consider an idealization of a typical optical tweezers experiment and show how
the bending rigidity of the chainand consequently its persistence lengthinfluences
the distribution of the entanglements; possibly more importantly, we observe and
report how the relative chirality of the otherwise identical knots substantially
modifies their interaction. We analyze the free energy of the chain and extract
the effective interactions between embedded knots, rationalizing some of their
pertinent features by means of simple effective models. We believe the salient
aspect of the knot–knot interactions emerging from our study will be present in a
large number of semiflexible polymers under tension, with important consequences
for the characterization and manipulation of these systems—be they artificial or
biological in origin—and for their technological application.

5.1 Introduction

A general comprehension of the statistical behavior of semiflexible polymers
strongly stretched by an externally imposed tension is relevant to understanding
the details of DNA processing in cells [121], as well as to quantify their behavior
in single molecule experiments [100]. In the latter, DNA is standardly prepared
in a linear, topologically trivial form; on the contrary, the vagaries of the intra-
cellular [37, 103, 118, 33] and viral DNA environment [28, 27, 99, 98] suggest
that we also need to focus our attention on more complicated, knotted forms of
DNA [33, 52, 63]. In this context, the behavior of single isolated knots on DNA has
received plenty of attention [26, 32]; in particular regarding the size, distribution,
and dynamics of different prime knots [35, 59, 155, 159, 70, 102, 153, 124, 66, 48,
49, 41], while more probable [144] and experimentally observed [58] composite
knots—topological entanglements made of multiple prime knots—have remained
much less scrutinized.

When multiple knots are present on a finite-size polymer, they do not behave
like independent point-like decorations, as theorized for infinitely long polymer
rings [30, 150]. Instead, they show a propensity to either intertwine or repel each
other, which is controlled by the polymer size [151], its bending energy [149] and
its electrostatic self-repulsion [56]. These features suggest that finite size effects
are relevant in most biological phenomena and nanotechnological applications
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involving stiff polymers such as double-stranded DNA (dsDNA), and that indeed
the overall effect of the presence of knots on the chain may depend on some
complex interaction between them.

The questions we will address in what follows are connected with the details
of the free energy pertaining to composite knots tied on a semiflexible polymer,
which was shown to exhibit a minimum for intertwined knots [149]. Specifically,
we will be concerned with the nature of the effective interaction between prime
components of the composite knots that was recently discovered to exhibit unex-
pected features: apart from depending on the bending stiffness of the underlying
polymer, it was shown to depend also on the relative chirality of the interacting
knots [115]. In fact, in our recent work [115], we found that not only do two
knots on a stretched semiflexible polymer under external tension present a free
energy minimum when intertwined, but, more significantly, that the depth of this
minimum depends on the relative chirality of the two knots. This minimum is more
pronounced for knots of opposite chiralities, and the chirality-dependent features
of the interaction are present even for otherwise identical trefoil knots.

The chirality effect originates from a complicated dependence of the bending
energy on the configuration of the interacting knots, which, within the intertwined
knots, is arguably caused by a different arrangement of the inner (nested) knot. As
a corollary, this finding implies that torus knots with opposite chiralities should
remain intertwined longer than knots with the same chirality—a fundamental
feature of the interaction between knots that should change our perspective on their
overall importance and salient features.

In order to characterize the role of chirality and chain stiffness on the properties
of the composite knots, we simulate a typical optical tweezers experiment involving
a knotted polymer [59, 149, 41]. In particular, we consider two different topolo-
gies: A 3+1 3+1 and a 3+1 3−1 knot, distinguished only by the relative chiralities of their
components, for different degrees of polymer stiffness. By means of molecular
dynamics (MD) simulations in implicit solvent with an underdamped Langevin
thermostat, we show explicitly that indeed the effects of knot chirality become
more evident for larger chain stiffness.

The behavior of the two knots is described in terms of their linear distance along
the chain, and through the analysis of the system’s free energy (expressed in terms
of this measure), we are able to identify three different regimes. In the first regime,



92
Role of bending energy and knot chirality in knot distribution and their effective

interaction along stretched semiflexible polymers

the knots are separated along the polymer and the free energy is dominated by an
entropic interaction between them. The second regime appears when the knots are
close to each other but still not intertwined, and their interaction is dominated by
the steric repulsion of the loops. The third and most intriguing regime emerges
when the two knots are intertwined: in it, the free energy of the system depends on
both the bending energy of the polymer and on the relative chirality of the knots.

These three regimes are rationalized by means of simple, mechanistic models
based on the various contributions of different knotted configurations to the total
entropy and/or elastic energy of the chain. In spite of their crudeness, these
models illuminate the nature of chirality-dependent interactions between knots in
stretched stiff polymers, and provide a solid starting point for further theoretical
developments, as well as for the design of systems in vivo or in silico with specific,
tailored physical properties.

5.2 Materials and Methods

5.2.1 Model and Simulation Methodology

We model a single stiff linear polymer chain under external tension as a sequence of
N = 300 spherical beads attached to and stretched between two impenetrable planar
hard walls, approximating the polystyrene beads used in a typical optical tweezer
experiment [39]. The polymer excluded volume interaction is accounted for by a
purely repulsive WCA potential between each pair of beads, while the connectivity
of the chain is described by FENE bonds [65, 82]. The bending stiffness of the
polymer chain enters through an elastic filament curvature deformation energy
depending on the relative angle between two successive links along the chain.

The total potential energy of the system can therefore be expressed as a sum of
four components:

Utot =UWCA +UFENE +Ubending +Uwalls (5.1)
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where the WCA potential is taken as:

UWCA =
1
2

N

∑
(i, j), j ̸=i

V (ri, j) (5.2)

with

V (r) =

{
4ε

[(
σ

r

)12 −
(

σ

r

)6
+ 1

4

]
for r ≤ 21/6σ

0 otherwise
. (5.3)

The WCA interaction strength ε = 1kBT and the characteristic length scale
σ are taken as the energy and length units, respectively. All other dimensional
quantities are expressed in terms of reduced units defined through ε , σ , and the
bead unit mass m. Time is measured in the MD time units τMD = σ

√
m/ε = 1.

The FENE potential is given by:

UFENE =−
N−1

∑
i=1

κFENE

2

(
R0

σ

)2

ln

[
1−
(
|ui|
R0

)2
]

(5.4)

where ui ≡ ri+1−ri is the connecting vector between bead i+1 and bead i (directed
towards the former), and the modulus |ui| is thus the separation between the centers
of beads i and i+1. The value of the maximum bond length R0 = 1.5σ and the
FENE interaction strength κFENE = 30ε are the customary values pertinent to the
Kremer–Grest model [65]. Finally, the elastic bending potential is taken in the
form:

Ubending =
N−1

∑
i=1

κb

(
1− ui ·ui+1

|ui||ui+1|

)
(5.5)

where κb is the bending rigidity of the chain.

The full interaction potential of Equation (6.2) is employed in underdamped
MD simulations in an implicit solvent. The simulation time step is ∆t = 0.01τMD,
and the friction self-correlation time is τfrict = 103τMD. For each system under ex-
amination, we run 30 independent simulations, each covering 2×107τMD, with an
initial equilibration phase of length 2×105τMD. The simulations were performed
making use of the LAMMPS [122] MD package.

The confining hard walls and the effective impenetrability of the chain bonds—
provided by the combination of the FENE potential and the WCA interaction—
ensure that the topology of the system remains fixed to the one set by the initial
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configuration of two trefoil knots; thus, either 3+1 3−1 (+−) or 3+1 3+1 (++). The +

and − superscripts indicate the handedness of the knots, right or left, according to
the sum of the signed crossings in their minimal diagrams [105, 74]. Since in our
setup (++) and (−−) knots are related by a mirror transformation, their physical
properties are equivalent, and we only simulate the former.

To study the dependence of the chirality effects on the bending energy, we
simulate each of the two setups with different chirality at various values of the
chain stiffness; namely, κb = 2.5 to 20.0 kBT . In all setups, the termini of the
chain are kept fixed at a distance of L = 205σ , corresponding to stretching forces
of about 1–7 pN at T = 300 K, depending on the bending rigidity of the chain,
and applied at both termini.

In order to study the statistical properties of the knots on the polymer chain,
we need to identify which portions of the chain host the knots. The identification
of the smallest knotted portion of the chain (that is, the segment that we define as
the knot) is enabled by the usage of the Minimally Interfering Closure [152] to
circularize open subsections of the chain into auxiliary arcs, whose topology is then
established by means of the Alexander determinants in −1 and −2. It is worth note
that the inability of the Alexander polynomial to distinguish different chiralities
does not affect our results, since we are interested only in the distance between the
two trefoil knots. We define a knotted portion of the chain as the shortest segment
featuring a specific knotted topology. With some abuse of language, we will
refer to such portions as “knots” in what follows. By applying this procedure
to composite knots, we are able to identify both the chain portions hosting the
whole composite knot, as well as those hosting its “isolated” prime components.
Following Ref. [151], we consider a prime component to be isolated when it can
be excised, and its ends joined, without at the same time untying the second knot
(as depicted in Figure 5.1).

5.3 Results

We investigate the behavior of two trefoil knots on semiflexible chains of different
bending rigidity, stretched between two impenetrable walls kept at fixed distance.
The investigated bending rigidities span the range from κb = 2.5 to κb = 20 kBT ,
corresponding to different stretching forces, all in the strong stretching regime
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Fig. 5.1 (a) An example of a configuration for the (++) system, with both knots
intertwined. In this configuration, only one prime component (marked in yellow) is
identified as “isolated” by our knot identification scheme based on the Minimally
Interfering Closure [152]; (b) A small portion of an MD trajectory for the (++)
system. Yellow shaded regions indicate the portions of the chain occupied by
the isolated prime knots, and red and blue lines indicate their first and last bead,
respectively. The portion of the chain taken up by the whole composite knot is
reported as a gray shaded area. When the knots are intertwined, our algorithm
identifies only one isolated knot, which can be seen in the trajectory as a single
yellow region surrounded by gray boundaries. Note that the intertwined composite
knot can still travel from one side of the chain to the other.

(see Methods). For each value of κb, we ran 30 independent simulations of
about 107τMD steps each. We sampled the system by storing the whole polymer
configuration every 100τMD. A typical portion of an MD trajectory for κb = 20 kBT

is reported in Figure 5.1b.

The knot localization scheme described in the Methods section allows us to
easily distinguish configurations in which the knots are intertwined; i.e., when one
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knot is inside the other, from configurations in which they are separated along the
chain. These states can be distinguished from the number of isolated components
identified by our knot localization algorithm: two, when the knots are separated,
and one—the nested knot—when the knots are intertwined. At κb = 2.5 kBT ,
we do not observe any crossing event in which the two knots would become
intertwined. Therefore, this value of κb is considered in the following only in
relation to the properties of the knots when they are separated along the polymer
chain. At κb = 5 kBT we observe ≈30 crossing events in which the two knots get
either intertwined or separated. The number greatly increases with κb, to reach
≈2500 events at κb = 20 kBT , for a simulation of about ∼5.6×108τMD.

5.3.1 Knot Sizes

The first observable on which we direct our attention is the size of the knots,
measured as the number of beads included in the entanglements—both in their
separated and intertwined states—in dependence of the bending stiffness κb. From
Figure 5.2a, we observe that the size of separated knots grows sublinearly with
increasing bending rigidity. This is consistent with a simple minimization of the
bending energy stored in the loop and braids of the knot, compounded with the
effective chain shortening as some of its length is used up by the knots [29, 73].
More interestingly, it appears that the size of the composite, intertwined knot,
(shown in Figure 5.2b) depends on the bending rigidity in a non-linear, possibly
also non-monotonic fashion, with the knot size deviating substantially from a linear
dependence for small values of κb. This may be related with recent observations by
Poier [124] and Caraglio [41], and points to the importance of the entropic effects
that become more important as the bending rigidity is diminished.

Neither the size of the separated knots nor that of the whole intertwined knots
manifest a dependence on the relative chirality. This is not the case for the size of
the nested knot, as can be appreciated from Figure 5.2b. Here, in contrast with the
whole intertwined knot, we have a substantially linear growth of the nested knot
size with κb, and the sizes of the nested knots for the different chirality—initially
having the same value, κb = 5 kBT —increase with different rates. Specifically,
the nested knot in the setup where both prime components have the same chirality
shows a smaller size with respect to the (+−) case. Albeit small, this discrepancy
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Fig. 5.2 (a) Size of separated trefoil knots, plotted as a function of κb; (b) Size of a
nested trefoil knot (circles) as well as of the composite knot (squares) when the
two trefoils are intertwined, plotted as a function of κb.

points to distinguishably different organizations of the intertwined knots depending
on their relative chirality, and we substantiate this expectation in the following.

5.3.2 Knot Free Energy

We proceed to study how the free energy of the (+−) and (++) configurations
depends on the different arrangements of the knots along the chain. To do so, we
investigate the free energy as a function of a collective order parameter |D|, defined
as the absolute linear distance between the centers of the two knots [149], see
Figure 5.3. Specifically, we identify the starting and ending beads si and ei of both
knots on the chain, where the index i pertains to the knot; the center of knot i along
the chain is then at ci = (si + ei)/2. When only one trefoil can be identified by the
Minimally Interfering Closure (see Methods section), the knots are intertwined and
we can take the starting and ending beads of the non-isolated knot to correspond to
those of the whole composite knot. Consequently, the collective order parameter
can be introduced as the absolute linear distance between the centers of the two
knots, defined as

|D|=

{
|c1 − c2| (separated knots)
|c1 − c1,2| (intertwined knots)

(5.6)

Starting from the definition of |D|, we evaluated the free energy F(|D|) =
−kBT log(ω(|D|;N,⟨lk⟩). The free energy profiles F(|D|) for the (++) and (+−)
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Fig. 5.3 Schematics of the collective order parameter |D| measuring the linear
distance between two prime knots. When both prime components are isolated, the
order parameter is given by |D|= |d1,2|= |c1 − c2|, where ci = (ei + si)/2 is the
center of knot i on the chain. Here ei and si stand for the last and the first bead of
the i-th isolated prime knot. When the two knots are intertwined, the center of the
hosting knot is taken to coincide with the center of the composite knot c1,2.

chirality configurations at various values of the polymer bending rigidity are
reported in Figure 5.4. Consistent with previous results [115], we observe that the
intertwined state with |D|= 0 becomes a global minimum only when the bending
rigidity κb reaches large enough values. We observe that such values differ for
knots with the same or different chiralities. In addition, due to the high stretching
of the polymer chain, the intertwined state of either chirality configuration becomes
a global minimum only when κb > 10 kBT , a higher value than the one observed
in Ref. [149] for a more complex setup (3141), but at lower stretching forces.

The plots of Figure 5.4 also indicate that the (+−) system always has a deeper
minimum than the (++) system, while the rest of the curves remain effectively
universal and independent of the bending rigidity, with a slow growth of the free
energy with increasing |D|. This universal behavior is eventually followed by a
small minimum for very high separations of the two knots, corresponding to states
in which each knot is localized in the vicinity of a confining wall. Increasing |D|
even further, the free energy monotonically increases with a slope that is dependent
on the bending rigidity, up to a point at which |D| is close to the maximum possible
separation between the knots. The different behaviors of F(|D|) for large values of
|D| are due to finite size effects. In particular, the minima and barriers at |D| close to
N = 300 are caused by the presence of the impenetrable walls, while the universal
slow growth of F(|D|) originates from the finite size of the chain itself and can
arguably also be observed on unstretched rings [151]. Similar results (excluding
the minima and the barriers due to the presence of the walls) were obtained by
excluding all configurations in which one knot was closer to the wall than ⟨lk⟩ (data
not shown).
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same relative chirality and (b) two trefoil knots with opposite relative chiralities.
In (c,d) we show the same free energies, but with subtracted entropic contribution
−kS(|D|), as defined in Equation (5.8).

The universal bending rigidity-independent part of the free energy as a function
of the order parameter |D|—in the range of values between the intertwined knot
state and the knot localization at the boundaries of the chain—can be understood
with simple scaling arguments. Assuming that the length of the a trefoil knot (lk)
does not fluctuate significantly from its average value ⟨lk⟩ when the knots are
separated, we can map the polymer chain onto a linear string of N beads, along
which two chosen segments of length s = ⟨lk⟩ (representing the knots) can slide
freely. From the definition of |D|, we can see that the two knots of equal length
separated by |D| beads take up a portion of the chain of size α = |D|+ ⟨lk⟩. An
explicit counting of the available microstates shows that there are N−⟨lk⟩+1−|D|
configurations in which the segments are separated by a distance |D| between
their centers, without any double counting, since the knots are indistinguishable
when separate. The fraction of microstates ω(|D|;N,⟨lk⟩) can then be written as:

ω(|D|;N,⟨lk⟩) =
(N −⟨lk⟩+1−|D|)

∑
N−⟨lk⟩+1
|D|=0 (N −⟨lk⟩+1−|D|)

=
2(N −⟨lk⟩+1−|D|)

(N −⟨lk⟩+2)(N −⟨lk⟩+1)

(5.7)
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and the entropy as a function of |D| reads:

S(|D|;N,⟨lk⟩) = lnω(|D|;N,⟨lk⟩). (5.8)

Subtracting this purely entropic contribution from the free energies in Fig-
ure 5.4a,b and making use of the values of ⟨lk(κb)⟩ reported in Figure 5.2, we
obtain a completely flattened-out free energy for |D| between the intertwined knot
state and the knot localization at the boundaries of the system. This simple transfor-
mation of the free energy accentuates those non-universal features that depend on
the bending rigidity, and consequently on the interactions between the two knots
or between the knots and the confining walls; see Figure 5.4c,d.

From the plots in Figure 5.4a,b, we extract the ∆F between the minimum and
the barrier (εd), the height of the barrier with respect to the entropic plateau (εb),
and the distance Dint at which the knots begin to interact. The latter is defined as
the value of |D| at which the F(|D|) starts to increase when |D| is reduced below
|D|= N/2, see Figure 5.5a. The results for ∆F , reported in Figure 5.5b, show that
the height of the barrier (εb), does not depend on the relative chirality of the two
knots, but displays an interesting dependence on κb. In fact, εb appears to have a
very broad minimum for κb ∼ 10 kBT . On the other hand, we observe that the depth
of the minimum (εd), increases monotonically with κb, and that the separation
between the εd curves for (++) and (+−) knots increases as well, confirming that
the emergence of the chiral effect is finally triggered by the bending rigidity of
the chain.
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In light of these results, one is naturally led to wonder if the bending energy
of the chain could be implicated in mediating an effective interaction between the
knots when they are separated as well. To investigate this aspect, we identified
the interaction distance between two well-separated knots. From the data reported
in Figure 5.6a, we can see that indeed the knots begin to interact at distances
|D|> ⟨lk⟩, the characteristic distance at which their ends along the chain coincide.
In order to see if this interaction is dictated by the curvature of the chain segment
connecting the two knots and its fluctuations, or by the steric interaction between
the two knot loops, we rescale Dint by ⟨lk(κb)⟩. The results reported in Figure 5.6b
show that Dint increases slightly slower than lk with k. Since lk grows sublinearly
with the persistence length Lp ∼ σκb/kBT , one can immediately see that Dint

Lp

decreases faster than Dint
lk

with κb. The same goes for the length of the segment
connecting the two knots, Dint − lk, as can be seen from Figure 5.6b. From this
analysis, we conclude that the interaction between two simple separate knots on
a stretched semiflexible polymer of bending rigidity up to Lp ∼ 20σ is dictated
primarily by the steric hindrance of their loops.

5.3.3 Relative Orientation of the Knots

An important descriptor of the organization of the knots is their relative orientation
when they are separated, as well as when they are nested. We thus introduce
the knot orientation director Uk, defined as the sum of the vector products of
consecutive bond vectors; the sum is extended to all bond vectors contained in the
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Fig. 5.7 Left-handed 31 knot configuration obtained by minimizing the energy
viewed from the side (a) and from the top (b); (c) Right-handed 31 knot viewed
from above. x indicates the pulling direction. In (a), the direction of the arc length
s is indicated by an arrow, and in all panels by the coloring of the knots, from green
to blue for increasing s. In panels (b,c), we reported the direction of the vector Uk
defined in Equation (5.9). Note that Uk · x changes sign with the handedness of the
knot; (d) A (+−) intertwined composite knot, with the nested knot highlighted
by a red shading. Note that when the loop of the nested knot lies inside the loop
of the outer knot, both orientation directors point out of the page. On the other
hand, when the loop of the two knots form an eight, the two directors point in
opposite directions.

knot:
Uk =

∑ j∈k u j ×u j+1

|∑ j u j ×u j+1|
. (5.9)

The direction of Uk is defined by the arc length along the knot k, according to
the right hand rule. In configurations obtained by minimizing the energy of the
knot, Uk identifies the normal to the plane passing trough the knot loop, as depicted
in Figure 5.7. Note that knots of different handedness have opposite projections of
Uk along the pulling direction X .

Using the knot orientation director, we introduce two order parameters, which
are based on idealizing the knot loops as rigid discs. The first such parameter, θ ,
captures the (instantaneous) angle between two knot loops, and is defined as:

θ = arccos(U1 ·U2). (5.10)
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Since θ measures only the aperture of the cone identified by U1 and U2, we
consider another parameter to fully capture the relative orientation of the two
knots, θ⊥, which captures the relative rotation of the knot loops with respect to the
stretching axis X :

θ⊥ = arctan2(sgn |V1 ×V2|,V1 ·V2) (5.11)

with:

Vi ≡
(0,Uy

i ,U
z
i )√

(Uy
i )

2 +(U z
i )

2

sgn = sign([U1 ×U2]
x)

In words, θ⊥ measures the angle between the projections of the U vectors on
the Y Z plane (that is, the plane perpendicular to the stretching direction). These
projections constitute the normalized two-dimensional vectors V. The sign of the
angle, which can be determined by means of the arctan2 function (analogous to the
two-argument FORTRAN routine ATAN2 for the inverse tangent), is determined by
the X component of the vector product between the full U vectors: if the resulting
vector points in the same direction as X , the sign is positive.

When the two knots are intertwined, U1 = Unested is defined for the bonds of
the nested knot, while U2 is defined for the bonds pertaining to the region of the
composite knot that is complementary to the nested knot. This allows us to use the
same orientational parameters both when the knots are separated, and when they
are nested.

We first study the relative orientation of the knots when they are separated.
From the data in Figure 5.8a, we notice that the projection of the free energy along
θ presents broad minima for angles close to π/4 for the (++) system and angles
close to 3π/4 for the (+−) system. The minimum energy angles θ ∗ for the two
systems are symmetric with respect to π/2; i.e., θ ∗

(++) = π −θ ∗
(+−). On the other

hand, it is clear from Figure 5.8b that there is no preferred relative orientation
of the two loops on the Y Z plane. The minima of F(θ) thus simply capture the
different alignment of the braids of the two knots, which depends on the chirality
of the knots, as shown in Figure 5.7.
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Fig. 5.8 Free energy of two separated trefoil knots projected along (a) θ and (b)
θ⊥ for four different values of polymer bending rigidity.

When the knots are intertwined, we expect that their arrangement will be
sensitive to the their relative chirality. Since the difference between the depth
of the minima of the (++) and (+−) systems increases with increasing bending
rigidity, we further expect the arrangement of the intertwined knots in the two
systems to become more distinguishable when the polymer stiffness is increased.
As shown in Figure 5.9, this is indeed the case. Interestingly, we observe that both
systems present a free energy minimum for a value of θ between 30◦ and 45◦,
indicating that their loops tend to be one inside the other; this minimum is more
pronounced and corresponds to smaller angles for the (+−) system, suggestive of
more planar configurations. Furthermore, the minimum energy angle θ ∗ decreases
with increasing bending energy, meaning that the aperture of the cone between the
two vectors decreases with increasing polymer stiffness. The knots therefore get
more aligned with increasing bending energy, and for opposite relative chiralities.

Investigating the behavior of θ⊥, we note that while the (++) system presents
a minimum in θ⊥ = 0, the (+−) system presents two minima for θ⊥ ∼±30◦. The
minima are shallow in both systems, and therefore all values of θ⊥ are easily
explored, although the barriers seem to be lower in the (+−) system. The presence
of two minima in the (+−) system can be understood considering that for it there
can be two distinct arrangements of the intertwined knots: one in which the 3+1 is
nested inside the 3−1 knot, and the other in which the opposite happens. For every
configuration with the 3+1 nested inside the 3−1 , there is a corresponding specular
configuration in which the handedness of the two knots is reversed and the 3−1
is nested inside the 3+1 . These specular configurations have the same Boltzmann
weight. Given our definition of the sign of θ⊥, these two arrangements (being



5.4 Discussion 105

-8

-6

-4

-2

0
F 

/ k
BT

-8

-6

-4

-2

0

F 
/ k

BT

-8

-6

-4

-2

0

F 
/ k

BT

0 30 60 90 120 150 180
θ

-8

-6

-4

-2

0

F 
/ k

BT

-120 -60 0 60 120
θ⊥

κb = 5kBT

κb = 10kBT

κb = 15kBT

κb = 20kBT

0 30 60 90 120 150 180
θ

-120 -60 0 60 120
θ⊥

a) b)

c) d)

e) f)

g) h)

Fig. 5.9 Free energy of two intertwined trefoil knots with the same handedness
(red curves) and opposite handedness (blue curves) as a function of θ (left column)
and θ⊥ (right column), for four different values of polymer bending rigidity: from
top to bottom, κb = 5, κb = 10, κb = 15, and κb = 20kBT . The free energies have
been shifted so that their maximum values correspond to zero.

specular) will correspond to opposite values of θ⊥. The values of θ⊥ in which two
minima are located are almost exactly coincident to those for which the free energy
of the (+−) system as a function of θ has its minima (see Figure 5.9a,c,e,g). This
is suggestive of the fact that the U directors lie mainly in the Y Z plane, so that their
projections form the same angle as the three-dimensional vectors themselves. On
the contrary, the broad, single minimum in θ⊥ = 0◦ of the free energy of the (++)
system is due to a more skewed arrangement of the nested knot, whose director—
together with that of the larger knot—identifies a plane roughly perpendicular to the
Y Z plane; the projections of the two directors thus form a quite small angle—zero
on average—in spite of a wider angle θ ∼ 45◦ in the three dimensional space. This
arrangement is consistent with the two intertwined prime components of the (++)
system to be less coplanar.

5.4 Discussion

The detailed analysis of the free energy of semiflexible chains under strong external
tension as a function of various collective order parameters has led us to identify
several different regimes:

• When the knots along the chain are clearly separated and sufficiently far
from the hard walls, the free energy is dominated by an entropic interaction
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between the knots, dependent on the absolute linear distance between them
as well as the length of the knots.

• As the knots get closer to one another, but can still be considered as two
simple separate knots, a repulsive interaction starts to dominate the free
energy, stemming primarily from the steric hindrance of the proximal loops
of the knots.

• Finally, as the knots become intertwined at yet smaller effective separations,
the absolute magnitude of the free energy—and consequently, the stability of
the knotted chain configuration—is dependent both on the bending stiffness
of the polymer chain as well as on the relative chirality of the two knots.

In what follows, we will provide simple, mechanistic reasons for this behavior
based on considerations of the various contributions of different knotted configura-
tions to the total elastic energy of the chain.

5.4.1 Elastic Energy Model for the Size of Two Separate, Non-
Interacting Knots

We start our discussion by observing that the behaviour of two separated knots
along a polymer, stretched by high enough imposed forces to localize the knot, is
essentially dictated by the knot length, as indicated both by Equation (5.8) and
by the fact that the interaction distance scales with the knot length, as reported in
Figure 5.6. It is therefore of interest to derive a simple expression for the expected
knot length as a function of the bending rigidity of the chain.

The bending rigidity of a knot can be computed by modeling it as a loop of
radius R, and taking into account that its length (as provided by the location algo-
rithm) is not equal to 2πR, but also includes the braided region. We approximate
the extent of the braided region with a segment of length ∼2R, and assume it has
the same curvature as the rest of the knot. These approximations lead to a knot
length L = (2π + 2)R, and the radius (expressed as a function of the length) as
R = L/(2π +2). The bending energy then follows as:

Eb =
∫

L
dl

1
2

κb

(
1
R

)2

=
2(π +1)2σκb

n
(5.12)
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where we used L = σn, with n number of beads of the knot and σ the bond length.

The (effective) free energy of the knotted chain as a function of the knot length
is given by the sum of the bending energy contribution of each knot, plus the
contribution of the whole chain due to external tension. For the latter, we assume
that a linear force acts on the knot as a function of its size, thus leading to a
quadratic free energy of the form [29]:

Et =
1
2

Qn2, (5.13)

where Q is an as-yet unspecified constant. The total free energy of two independent
and equivalent knots is then given by:

Etot = ∑
i=1,2

(
2(π +1)2σκb

ni
+

1
2

Qn2
i

)
. (5.14)

To compute the average size of the knots, we investigate the minimum of
Etot with respect to n1,n2. We get straightforwardly that the above free energy is
minimized by:

n⋆1,2 =
(

2(π +1)2σκb

Q

)1/3

. (5.15)

The value of Q can then be obtained by fitting the numeric knot size; e.g.,
taking the value of n ∼ 36 for κb = 20, see Figure 5.2a. This gives us Q = 0.015.
The resulting function, reported in Figure 5.2a, is in very good agreement with the
data obtained in the simulations.

5.4.2 Elastic Energy Model for Chirality Effects in Knot–Knot
Interaction

Having analytically characterized the behaviour of two separated knots on a semi-
flexible chain under external tension, we now proceed to discuss the underpinnings
of the dependence of the stability of the intertwined state on the relative chirality
of the two knots. While a general elucidation and the corresponding analytical
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formulation of this effect will be hard to come by—being dependent on the com-
plex details of the polymer configuration—we nevertheless offer a simple insight
which to some extent clarifies the ultimate mechanical reason giving rise to this
phenomenon, without delving too deeply into all the pertinent details.

We start by observing that a torus knot braid (portion of the knot containing its
essential crossings) can be modeled as a helix, as can be seen from Figure 5.10.
For simplicity, we envision the two trefoil knots as having their braids lying in the
same plane (i.e., the axes of their helices are coplanar). We now concentrate on
the portion of the chain connecting the two braids, colored in the upper part of
panels (b) and (c) of Figure 5.10. Rotating the axes of the braids in such a way
that they are directed into the page, we obtain the schematics of the lower part of
panels (b) and (c). Obviously, the trajectory of the chain segment connecting the
two is quite different for the case of opposite and equal chiralities, since the braids
are rotated around their axes by an angle π or 0 for opposite and same chiralities,
respectively. In order for the segment of the chain to seamlessly connect the two
braids, its spatial configuration must be fundamentally different, as indicated in the
bottom parts of panels (b) and (c).

The reason why two types of composite knots can have different elastic energies
can then be gleaned from a highly idealized configuration, where the composite
knot is presented by loops and braids (Figure 5.10). Preserving the chirality distri-
bution in the composite knot, one can discern that the elastic energy of a simplified
(+−) configuration has to be smaller than for the (++) configuration. Concentrat-
ing exclusively on the segment connecting the two braids in the composite knot,
we can write its bending energy as:

Eb =
∫

L
dl

1
2

κb

(
1
R

)2

=
∫

L
dl

1
2

κb

(
dψ(l)

dl

)2

, (5.16)

where ψ(l) is now the angle between the horizontal axis and a position on the
connecting segment at l. The minimization of this bending energy (leading to
d2ψ(l)/dl2 = 0) should be accompanied by the appropriate boundary conditions
and symmetry of the solution ψ(l). This problem also bears some distant similarity
to the wrapping transition and wrapping-mediated interactions for discrete binding
along an elastic filament [51], where the role of the wrapping adsorbands would be
played by the constituent braids of the knot.
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Fig. 5.10 (a) A trefoil knot can be decomposed into two loops and a braid. The
two enantiomers are defined by the braid. The circles indicate the orthogonal
components of the bending force vector. Following the usual conventions, crossed
circles indicate chain directors going into the page, while dotted circles indicate
chain directors coming out of the page; (b,c): Composing the intertwined knots
of equal and/or different chiralities. In an intertwined (+−) knot (b), the director
joins the junction between the braid and the loop in the same sense, while in
an intertwined (++) knot (c), it points in opposite sense at the two junctions;
(b,c) bottom: Schematic representation of the axial projection (in the direction
of the braid axes, assumed to coincide) for the (+−) and (++) composite knots,
respectively.

Clearly, the (++) configuration corresponds to a node of a curvature, while
the (+−) configuration does not. In general, nodes make the energy higher, and
we therefore conclude that the (++) configuration would have a higher bending
energy. One must anyway keep in mind that this argument is only approximate
and would need to be refined, since we are not allowing the braids to relax in order
to minimize the bending energy. Admittedly, then, the above argument is very
simplistic, but sufficiently robust to explain the observed knot interaction energies
obtained with a full MD tracing of the partition function of the knots.

5.5 Conclusions

By performing detailed underdamped MD simulations of a constrained semiflexible
chain under strong external tension, we investigated its free energy as a function of
a properly-defined collective order parameter, |D|, quantifying the absolute linear
distance between the centers of two knots along the chain. We discovered several
regimes in this dependence, characterized by the relative importance of entropy,
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bending energy, and end constraints. In each of these regimes, the free energy
depends in a characteristic way on |D|.

The first regime is characterized by knots being clearly separated along the
chain; i.e., no intertwining, with the free energy being dominated by a non-specific,
entropic interaction between them as well as by the end constraints when the knots
are close to the confining walls. When the separation between knots diminishes,
a repulsive interaction emerges due to the steric hindrance between close loops
of the knots. As the knots start to intertwine at smaller effective separations, the
free energy is dominated by the bending energy, dependent both on the bending
stiffness of the polymer chain as well as on the relative chirality of the two knots.

Emergence of chirality as the defining factor for the stability of intertwined
knots is the most important corollary of our work. In this sense, the knots behave
in a fundamentally different way from sliplinks [133], obviously bearing another
degree of freedom that affects their interaction in a fundamental manner.

We analyzed the intertwined state by introducing two further order parameters,
θ and θ⊥, which capture the relative orientation between the two knots. Mapping
the free energy of the system onto them, we observed that two intertwined trefoils
tend to have their loops one inside the other, and that this tendency increases with
increasing bending energy. Furthermore, two trefoil knots of opposite chirality tend
to be in a more planar configuration than two trefoils having the same chirality.

Finally, we identified the mechanistic basis for the chiral effect in the inter-
twined state by observing that the braids of two torus knots of opposite chirality
have different alignment with respect to the tensioned rope on which they are tied.
Because of this, two knots of opposite chirality can form an intertwined state in
which their braids are aligned without introducing any additional bending in the
chain, since they are the specular image of one another. The same cannot happen
for two knots of the same chirality, which can only be connected with their braids
lying on the same plane by introducing a node in the curvature of the segments
connecting the braids, thus increasing the bending energy.
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Entanglement of knotted DNA ring
and an entwined DNA loop
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Entanglement of knotted DNA ring and an entwined DNA loop

Abstract
By means of computer simulations, in this study we demonstrate that the crossing
pattern of a braid that consists of entwined DNA rings play a major role in its
structural and dynamical properties. In particular, we found that the braid with non-
identical crossing pattern, that the latter is specified by comparing the partitioned
inner and outer cross sections, enforces a positive and stronger correlation between
the entangled rings.

6.1 Introduction

Very recently, many scientists have been attracted to the mystery of knots and also
challenged by its difficulties. The entity of topology and the related geometry, is in
fact a matter of interest in different fields of Soft Materials from liquid crystals [165,
87], up to bio-polymers such as proteins, DNA and RNA filaments [157, 33, 40,
147, 160, 144, 110, 106, 105]. The conjunction of topologies and entanglement
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in bio-polymers are indeed ubiquitous in biological processes [33, 34, 149, 105,
52, 159, 46]. During Meiosis, genetic informations on the chromosomes are
believed to be inherited in cross-over process that is known as Prophase I; in such
a genetic exchange between DNAs, the impact of the entanglement pattern and
subsequently the effect of induced strain on the entangled chromosomes is largely
unknown [8, 6].

Geometrical and dynamical properties of DNA are presumably important
during replication, transcription and in the other aspects of its metabolism [101,
80, 31]. DNA can make unknotted loops and regulate its transcription [101],
however, it can also be knotted [33, 149, 107, 123, 152]. Braids of entangled knot
with unknotted DNA loop can be formed in DNA transactions [71], as well as
in bacteriophages [99, 27, 28]. Depending on the interplay between entwined
topological defects in the braid, the entangled DNAs can exhibit a variety of
conformations which permit them to carry out specific functions. Understanding
the relation that links the topological constrains to their structural and dynamical
features is a difficult task that can be investigated by means of computer simulations,
where various conformational features of topologies can be measured and related
to structure and dynamic emergent properties.

In this article, we attempt to study the impact of minimal crossing pattern of
braids of DNAs, on their structural and dynamical features. The braid consists of a
knot and a pierced unknotted DNA through the all polygons of the knot and then
closed, see Fig. 6.1. The corresponding crossing pattern of the braid can be drawn
by making use of the Right-hand rule as depicted in the top of Fig. 6.1. We use
the common bead-spring model of polymer chains that is introduced by Kremer
and Grest [65]. Additionally, we exert a bending potential to the chains and exam
our systems at different salt concentrations (at extremes: in poor solvent with no
salt κ = 0 and in good solvent at high salt κ = 20kBT , where κ is the bending
stiffness). The length of the knot in all setups is 70σ and the size of the entwined
loop is 30σ , where σ is the unit of the length.

In Fig 6.1, we illustrate a view of the systems that are under study. In panels
a, b, c and d the 3+1 , 3−1 , 5−1 and 5+1 knots with the entwined loop are shown,
respectively. The minimal crossing pattern of the braids is mapped onto the top
left of each panel. In the case of trefoil (resp-51) knot, the entwined loop has a
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Fig. 6.1 Snapshots of the systems under examination. In panel a, b, c and d we
show the 3+1 , 3−1 , 5−1 and 5+1 knots and the entwined loop, respectively. In the top
left of each panel we projected the minimal crossing pattern of the braid by using
the Right-hand rule that is depicted in the top of the figure. The length of the knot
in all setups is 70σ and the size of the loop is 30σ .

positive (resp-negative) crossing pattern, however, switching the knot chirality will
establish identical and non-identical crossing pattern for the braids.

6.2 Results and discussion

Energy Analysis → Topoisomerase proteins are responsible for DNA unknotting.
This has been speculated that topoisomerase has higher affinity to prebent domains
of DNA, meaning that knotted portion of DNA that is tightly bent is very likely to
be uncrossed by topoisomerase. Considering this relevance, we start our study by
probing the bending energy difference between the braid that consists of a knotted
DNA and an entwined DNA loop and the same system when the rings are separated
(δUbend =Uentwine

bend −U sep
bend). In Fig 6.2 plot a and b, we show the latter quantity

at different salt concentration of the systems that contains knot 31 and knot 51,
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Fig. 6.2 Plot a (resp-b), shows the bending energy difference between the braid
of knot 31 (resp-51) and the corresponded separated rings. The green and blue
curves indicates the bending energy difference of the braids with identical and
non-identical crossing pattern.

respectively. In both braids with identical and non-identical crossing pattern, a
phase transition occurs from energetically favored entangled conformation to a
tense phase that in which the bending energy of the entangled rings is higher than
the separated state. Specially, the braids of knot 51 due to the complexity of the
knot are remarkably tighter and tenser than the braids of knot 31 which indicates
an overall enhancement of the unknotting propensity in presence of topoisomerase.

The rationale behind the phase transition in the conformational energy as
function of salt concentration of the system, can be understood in terms of the
interplay between the conjuncted topologies that enforces the structure of the braids.
In fact at the low bending stiffness, the entangled knot and loop can give structure to
the braids that will prevent the steric interactions between the different segments of
entwined DNAs and leads to a decrease in the conformational energy. The presence
of the minimum reveals that the braids within given topologies can adequately
adjust their conformational energy with the related geometry and thereafter, as the
consequence of specific entanglement in the braids with non-identical crossing
pattern, the incurred bending energy cost of the entwinement grows rapidly. Here
one can conclude that depending on salt concentration of the system the crossing
pattern of entwined DNAs might either attenuate or facilitate the uncrossing process
by topoisomerase; we emphasize that the previous implications of conjuncted
topologies are doomed to be less evident in the braids with identical crossing
pattern.
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Dynamics and Structure → We quantify and capture the dynamics between
the entangled rings by studying the correlation coefficient of collective variables of
the system that are considered to be the radius of gyration of the knot (KRg) and
the radius of gyration of the loop (LRg). In Fig. 6.3, panel I (resp-II), plot a, we
show the correlation coefficient between knot 31 (resp-51) and the entwined loop
in different bending stiffness of the chains by making use of Eq. (6.1):

Corr(KRg,LRg) =

n
∑

i=1
∆i(KRg).∆i(LRg)√

(
n
∑

i=1
[∆i(KRg)]

2).(
n
∑

i=1
[∆i(LRg)]

2)

(6.1)

where ∆i refers to the difference between the ith sample and the average value.

As a remarkable result, the correlation coefficient in the braids with non-
identical crossing pattern are decidedly strong and positive, which a posteriori
enforces tuneful intra-dynamics between the knots and the entwined loop. Hence,
one can perceive that during Prophase I process, the non-identical crossing pattern
of entangled chromosomes might engender appropriate constrains for effective
genetic exchange between DNAs. In contrast, in the braids with identical crossing
pattern, we observe a purely negative correlation coefficient between knot 31 and
the entwined loop, particularly, in the braid of knot 51 the correlation coefficient
turns to positive values at ∼ 14kBT .

We provide a simple qualitative and intuitive explanation for the negative and
positive correlation coefficients of the dynamics between knot 31 and the entwined
loop. The topological constraints on the braids compels spontaneous negative and
positive curvatures in the linkage of the crosses. Specifically, those under-over
crosses of the loop-knot and knot-knot crosslet, where are in taken by the concave
of the mediated linkage (shown in the top of Fig. 6.4), effectively will enforce a
geometrical entanglement between the knot and the loop. The loop-knot and knot-
knot crosslet that enforces the effective entanglement between the knot and the loop
is indicated in the top of Fig. 6.4. The blue and red circles in the crosslet shows the
cross of the loop and knot, and the knot with itself, respectively, the crosses of the
crosslet that makes the effective entanglement must be under and over (or opposite)
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in respect to the mediated linkage, otherwise due to the geometry of the mediated
linkage which is enforced by the conjuncted topologies, there wouldn’t be any
effective entanglement between the crosses of the knot and loop in the braid. For
clarifying the appearance, this crosslet is encoded by a simple spring in the braids.
The red and blue sketches in bottom panel of Fig. 6.4 shows a surmised elastic rod
model for knot 31 and the loop, respectively. In panel a, in the braid with identical
crossing pattern one can clearly see that for instance by dragging the three corners
of the red shape that is equivalent to increasing the radius of gyration of the knot,
due to the specific entanglement the radius of gyration of the entwined loop (blue
dashed line) decreases, that entailing to a negative correlation coefficient. However
in panel b, in the braid with non-identical crossing pattern, increasing the radius of
gyration of the knot will lead to an increase in the radius of gyration of the loop as
well, that causes a positive correlation coefficient.

The non-monotonic behavior in the correlation profile can be understood by
investigating the relaxation length of the mediated springs that is essentially the
effective length of the linkage of the under-over crosses in the loop-knot and
knot-knot crosslet, which as a geometric feature depends on the relative length of
the knot and the entwined loop. In the current setups, in the braid with identical
crossing pattern, one can see that the minimum of the correlation coefficient
between knot 31 and the loop located at ∼ 5−6 lp

σ
, where lp is the persistent length

of the chain. However, in the braid with non-identical crossing pattern, due to the
closeness of under-over crosses in the loop-knot and knot-knot crosslet, reasonably,
the length of the related linkage should be shorter, that the predicted quantity is
confirmed by the position of the minimum correlation coefficient where is located
at ∼ 3−4 lp

σ
. Basically, same justification can be applied in the braids that contains

knot 51, however, because of the complexity of knot 51 the finite size effect will
play a crucial role.

The dynamical properties of the entwined rings provides specific structural
features for the braids. Here the latter is probed by characterizing the harmonious
modulation of the chains that is considered as the relative strain of the knot and
the entwined loop: ξ =

(
stdev.KRg
<KRg>

)
·
(

stdev.LRg
<LRg>

)−1
. In Fig. 6.3, panel I (resp-II),

plot b, we show the relative strain of knot 31 (resp-51) and the entwined loop.
Consistent with the correlation profile, in the braid with identical crossing pattern
by increasing the bending stiffness of the chains the difference in the strain of the
knot and the loop increases. However, in the braid with non-identical crossing



6.2 Results and discussion 119

pattern due to the strong correlation in the conformational changes, the relative
strain has this affinity to be close to 1.

Further insight comes from the analysis of the knots configuration in the braids.
In Fig. 6.3, panel I (resp-II), plot c and d, we investigate the free energy of the
knot at κ = 20kBT in the braids with identical and non-identical crossing pattern,
respectively, by considering the radius of gyration of knot 31 (resp-51) and the
absolute distance between center mass of the knot and the entwined loop as the
collective variables. In both braids, we distinctly observed a favored constricted
conformation of the knot, particularly in the braid with non-identical crossing
pattern the knot is strongly shrunk. As discussed earlier, a possible explanation
for the tendency of the knots toward the constricted conformation in the braids of
non-identical pattern is that the bending energy of the latter is much higher than the
other system, which enforces a narrow range for knots conformational fluctuations
that would leads to a sharper funnel of the free energy.

Discussion → In addition to the braids that consists of a knot and an entwined
loop, we would like to study other entangled chains and try to corroborate our claim
regarding the implications of crossing pattern. Intending to this aim, we consider
two systems of three linked rings with 6 minimal crossings, where the size of each
ring is 30σ . The first setup is three entangled rings that its link number is +3
(Hopf-linked rings), however, the link number of the next system is 0 (Borromean
rings). In Fig. 6.5, we report the radius of gyration of the Hopf-linked rings and the
Borromean rings, versus to bending stiffness of the chain, green and blue curves,
respectively. As it is clear from plot, the Hopf-linked rings with identical crossing
pattern shows a higher radius of gyration, in compare to the Borromean rings with
non-identical crossing pattern. The Borromean system is strongly constricted and
does a well formed structure at high bending stiffness that is known as Monkey

Fist. The fluctuations in the radius of gyration of the Borromean rings decreases
by increasing the bending stiffness of the chain, although the Hopf-linked rings
are highly fluctuative. The Borromean rings due to their non-identical crossing
pattern are strongly entangled, that the impact of this effect manifests itself mostly
in the pairwise distance between the entwined rings. As one can see from inset
plot of Fig. 6.5, the difference between the radius of gyration of a single ring in the
Hopf-linked and the Borromean systems is negligible, however, there is a drastic
difference in the radius of gyrations of the total linked rings.
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6.3 Concluding remarks

In conclusion, we found that by designing a specific crossing pattern the dynamics
of entwined polymers can subtly be modulated, that the latter essentially could
derive the entangled system to the certain structural properties. Since such a con-
formational features appears to be crucial in biological systems, this investigation
could be fruitful in understanding the role of entanglement in the function of
entwined biopolymers.

6.4 Materials and Methods

6.4.1 Model and simulation details

We use Kremer-Grest model for our polymer chains [65], that enforces the consec-
utive bounds between the beads by fene potential and the chains prevented to be
self crossed by employing repulsive Weeks-Chandlers-Anderson (wca) potential.
The total potential energy of the chains is:

H =Uwca +Ufene +Ubend (6.2)

The wca potential is given by:

Uwca =
1
2

N

∑
(i, j), j ̸=i

V (di, j), (6.3)

V (r) =

{
4ε

[(
σ

r

)12 −
(

σ

r

)6
+ 1

4

]
for r ≤ 21/6σ

0 otherwise
(6.4)

where ε = 1 sets the energy scale. The fene potential reads:

Ufene =−
N−1

∑
i=1

κfene

2

(
R0

σ

)2

ln

[
1−
(

di,i+1

R0

)2
]

(6.5)

where di = |⃗ri − r⃗i+1| is the distance of the bead centers i and i+1, R0 = 1.5σ is
the maximum bond length and κ f ene = 30ε is the interaction strength.
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The bending rigidity potential is defined as:

Ubend =
N−1

∑
i=1

κ

(
1− d⃗i · d⃗i+1

|d⃗i∥d⃗i+1|

)
(6.6)

where κ is the bending stiffness of the chain.

The MD simulations are carried out with Lammps package integrating the
Langevin equations of motion in constant temperature with kBT = ε and τ =

σ
√

m/ε = 1 MD time units.

For each setup in certain bending stiffness, we ran 5 independent simulations
that each covers 2.109 time steps, an equilibration short simulation that covers
106τ was also performed. The applied time step is ∆t = 0.01τ , and the analyzes
are carried out at every 100τ .

6.4.2 Computation of Free energy, Radius of Gyration and Cen-
ter of Mass

In order to characterize the free energy of the system, we have computed the
quantity that defined as:

F(x,y) =−kBT lnP(x,y) (6.7)

P(x,y) is the instantaneous probability distribution of collective variables that
are system specific.

The radius of gyration and center mass of the rings is computed as follow:

Rg =

√√√√〈 1
2M2

M

∑
i=0

M

∑
j=0

|⃗ri − r⃗ j|2
〉

(6.8)

CM =
1
M

M

∑
i=0

r⃗i (6.9)

where i and j are the index of the beads and M is the number of beads that is
system specific.
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Fig. 6.3 In panel I (resp-II), plot a and b shows the correlation coefficient and the
relative strain of the 31 (resp-51) knot and the entwined loop, versus to bending
stiffness of the chains, respectively. In plot c and d, we show the free energy
of the braids with identical and the non-identical crossing pattern at κ = 20kBT ,
respectively. The latter is carried out by studying the radius of gyration of the
knot (KRg) and the absolute distance between center mass of the knot and the loop
(DCMK,L).
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Fig. 6.4 Red and blue dashed lines shows a surmised elastic rod model for knot
31 and the loop, respectively. Red and blue circles shows the cross between the
knot and itself, and the loop with knot, respectively. The geometrical entanglement
between knot 31 and the entwined ring is encoded by the simple springs where are
depicted between the in taken crosses by the concave of the mediated linkage in the
braids with identical and non-identical crossing pattern, panel a and b, respectively.
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Fig. 6.5 Here we show the radius of gyration of three Hopf-linked rings with
identical crossing pattern and the radius of gyration of the Borromean rings with
non-identical crossing pattern versus to bending stiffness of the chains, green and
blue curves, respectively.



Chapter 7

Conclusion

Topological constraints, which often accompany biological activity, are at the core
of our study. The characterization of the structural and dynamical properties of
topological constraints can provide a comprehensive insight into their impact on
the function and duties of entangled macromolecules. In this thesis, we presented
numerical investigations to identify the key features of self-entangled and linked
bio-polymers in a variety of biological systems.

The sequence of a polymer not only determines its geometrical structure but
also its topology. In particular, understanding the folding of a polypeptide chain into
knotted conformation driven by relatively simple native and non-native interactions
is a major endeavor that demands an accurate explanation. We introduced a novel
protocol to encode global structure of knotted proteins as a set of local characteristic
information of the chain. Consistent with realistic all atom simulations, our
approach was capable of reproducing the optimal folding pathway of two short
knotted proteins.

We aimed to reduce the complexity of the knotting process in dsDNA by
introducing the smallest amount of sequence information along the chain. The rich
variety of the knot spectrum featured by simple DNA with site-specific interactions
reveals a remarkable insight to build a basic understanding of the relation between
the building blocks of a macromolecule and its topology.

Emergence of entanglement pattern as the control factor for the dynamical
and structural properties of topologically constrained biopolymers is an important
result of our study. In particular, we found that depending on the relative chirality
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of knots on a stretched chain, the knots can interact in a fundamentally different
way. Finally, to rationalize the chirality effect in the intertwined state of the knots,
we studied the braids of entwined knotted and unknotted DNA rings with identical
and non-identical crossing pattern.

Our result motivate further efforts, especially for experimentalist to elucidate
bimolecular knotting and also make further advancements toward designing topo-
logically constrained macromolecules with specific function in biological systems.
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