日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Half-​Sandwich Ruthenium Carbene Complexes Link trans-​Hydrogenation and gem-​Hydrogenation of Internal Alkynes

MPS-Authors
/persons/resource/persons216853

Guthertz,  Alexandre
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons138473

Wolf,  Lawrence M.
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons185471

Gupta,  Puneet
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons133023

Rummelt,  Stephan M.
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58578

Goddard,  Richard
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58537

Farès,  Christophe
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)

ja8b00665_si_001.pdf
(付録資料), 8MB

ja8b00665_si_002.pdf
(付録資料), 554KB

4007860.zip
(付録資料), 23MB

引用

Guthertz, A., Leutzsch, M., Wolf, L. M., Gupta, P., Rummelt, S. M., Goddard, R., Farès, C., Thiel, W., & Fürstner, A. (2018). Half-​Sandwich Ruthenium Carbene Complexes Link trans-​Hydrogenation and gem-​Hydrogenation of Internal Alkynes. Journal of the American Chemical Society, 140(8), 3156-3169. doi:10.1021/jacs.8b00665.


引用: https://hdl.handle.net/21.11116/0000-0000-B8E4-F
要旨
The hydrogenation of internal alkynes with [Cp*Ru]-based catalysts is distinguished by an unorthodox stereochemical course in that E-alkenes are formed by trans-delivery of the two H atoms of H2. A combined experimental and computational study now provides a comprehensive mechanistic picture: a metallacyclopropene (η2-vinyl complex) is primarily formed, which either evolves into the E-alkene via a concerted process or reacts to give a half-sandwich ruthenium carbene; in this case, one of the C atoms of the starting alkyne is converted into a methylene group. This transformation represents a formal gem-hydrogenation of a π-bond, which has hardly any precedent. The barriers for trans-hydrogenation and gem-hydrogenation are similar: whereas DFT predicts a preference for trans-hydrogenation, CCSD(T) finds gem-hydrogenation slightly more facile. The carbene, once formed, will bind a second H2 molecule and evolve to the desired E-alkene, a positional alkene isomer or the corresponding alkane; this associative pathway explains why double bond isomerization and over-reduction compete with trans-hydrogenation. The computed scenario concurs with para-hydrogen-induced polarization transfer (PHIP) NMR data, which confirm direct trans-delivery of H2, the formation of carbene intermediates by gem-hydrogenation, and their evolution into product and side products alike. Propargylic −OR (R = H, Me) groups exert a strong directing and stabilizing effect, such that several carbene intermediates could be isolated and characterized by X-ray diffraction. The gathered information spurred significant preparative advances: specifically, highly selective trans-hydrogenations of propargylic alcohols are reported, which are compatible with many other reducible functional groups. Moreover, the ability to generate metal carbenes by gem-hydrogenation paved the way for noncanonical hydrogenative cyclopropanations, ring expansions, and cycloadditions.