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Machine learning with artificial neural networks is revolutionizing science. The most advanced
challenges require discovering answers autonomously. In the domain of reinforcement learning, control
strategies are improved according to a reward function. The power of neural-network-based reinforcement
learning has been highlighted by spectacular recent successes such as playing Go, but its benefits for
physics are yet to be demonstrated. Here, we show how a network-based “agent” can discover complete
quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require
feedback adapted to measurement outcomes. Finding them from scratch without human guidance and
tailored to different hardware resources is a formidable challenge due to the combinatorially large search
space. To solve this challenge, we develop two ideas: two-stage learning with teacher and student networks
and a reward quantifying the capability to recover the quantum information stored in a multiqubit system.
Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise
of neural-network-based reinforcement learning in physics.
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I. INTRODUCTION

We are witnessing rapid progress in applications of
artificial neural networks (ANNs) for tasks like image
classification, speech recognition, natural language process-
ing, and many others [1,2]. Within physics, the examples
emerging during the past two years range across areas like
statistical physics, quantum many-body systems, and quan-
tum-error correction [3–11]. To date, most applications of
neural networks employ supervised learning, where a large
collection of samples has to be provided together with the
correct labeling.
However, inspired by the long-term vision of artificial

scientific discovery [12,13], one is led to search for more
powerful techniques that explore solutions to a given task
autonomously. Reinforcement learning (RL) is a general
approach of this kind [2], where an “agent” interacts with
an “environment.” The agent’s “policy,” i.e., the choice of
actions in response to the environment’s evolution, is

updated to increase some reward. The power of this
method, when combined with ANNs, was demonstrated
convincingly through learning to play games beyond
human expertise [14,15]. In physics, RL without neural
networks has been introduced recently, for example, to
study qubit control [16,17] and invent quantum-optics
experiments [18]. Moving to neural-network-based RL
promises access to the vast variety of techniques currently
being developed for ANNs.
In this paper, we introduce network-based RL in physics

(Fig. 1) and illustrate its versatility in the domain of quantum
feedback. Specifically, we devise a unified, fully autono-
mous, human-guidance-free approach for discovering
quantum-error-correction (QEC) strategies from scratch in
few-qubit quantum systems subject to arbitrary noise and
hardware constraints. This approach relies on a network
agent that learns feedback strategies, adapting its actions to
measurement results. As illustrated in Figs. 1(b)–1(d), our
method provides a unified approach to protect a quantum
memory from noise. It covers a wide range of scenarios
where onewould otherwise have to select an existing scheme
(stabilizer codes, adaptive phase estimation, etc.) and adapt
it to the given situation. Our findings are of immediate
relevance to the broad field of quantum-error correction
(including quantum-error-mitigation techniques) and are
best suited to be used in few-qubit quantum modules.
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These modules could be used as stand-alone quantum
memory or be part of the modular approach to quantum
computation, which has been suggested for several leading
hardware platforms [19,20].
Given a collection of qubits and a set of available

quantum gates, the agent is asked to preserve an arbitrary
quantum state αj0i þ βj1i initially stored in one of the
qubits. It finds complex sequences including projective
measurements and entangling gates, thereby protecting the
quantum information stored in such a few-qubit system
against decoherence. This challenge is very complex,
where both brute-force searches and even the most straight-
forward RL approaches fail. The success of our approach is
due to a combination of two key ideas: (i) two-stage
learning with a RL-trained network receiving maximum
input acting as a teacher for a second network and (ii) a
measure of the recoverable quantum information hidden
inside a collection of qubits being used as a reward.

Recent progress in multiqubit quantum devices [21–30]
has highlighted hardware features deviating from often-
assumed idealized scenarios. These features include qubit
connectivity, correlated noise, restrictions on measure-
ments, or inhomogeneous error rates. Our approach can
help in finding “hardware-adapted” solutions, since it
builds on the main advantage of RL, namely, its flexibility:
It can discover strategies for such a wide range of situations
with minimal domain-specific input. We illustrate this
flexibility in examples from two different domains: In
one set of examples (uncorrelated bit-flip noise), the net-
work is able to go beyond rediscovering the textbook
stabilizer repetition code. It finds an adaptive response to
unexpectedmeasurement results that allows it to increase the
coherence time, performing better than any straightforward
nonadaptive implementation. Simultaneously, it automati-
cally discovers suitable gate sequences for various types of
hardware settings. In another very different example, the
agent learns to counter spatially correlated noise by finding
nontrivial adaptive phase-estimation strategies that quickly
become intractable by conventional numerical approaches
such as brute-force search. Crucially, all these examples can
be treated by exactly the same approach with no fine-tuning.
The only input consists in the problem specification (hard-
ware and noise model).
In a nutshell, our goal is to have a neural network which

can be employed in an experiment, receiving measurement
results and selecting suitable subsequent gate operations
conditioned on these results. However, in our two-stage
learning approach, we do not directly train this neural
network from scratch. Rather, we first employ reinforcement
learning to train an auxiliary network that has full knowledge
of the simulated quantum evolution. Later on, the exper-
imentally applicable network is trained in a supervised way
to mimic the behavior of this auxiliary network.
We emphasize that feedback requires reaction towards

the observations, going beyond optimal-control type chal-
lenges (like pulse-shape optimization or dynamical decou-
pling), and RL has been designed for exactly this purpose.
Specifically, in this work, we consider discrete-time digital
feedback of the type that is now starting to be implemented
experimentally [31–35], e.g., for error correction in super-
conducting quantum computers. Other widespread optimi-
zation techniques for quantum control, like gradient-ascent
pulse engineering (GRAPE), often vary evolution operators
with respect to continuous parameters [36,37] but do not
easily include feedback and are most suited for optimizing
the pulse shapes of individual gates (rather than complex
gate sequences acting on many qubits). Another recent
approach [38] to quantum-error correction uses the opti-
mization of control parameters in a preconfigured gate
sequence. By contrast, RL directly explores the space of
discrete gate sequences. Moreover, it is a “model-free”
approach [2]; i.e., it does not rely on access to the
underlying dynamics. What is optimized is the network
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FIG. 1. (a) The general setting of this work: A few-qubit
quantum device with a neural-network-based controller whose
task is to protect the quantum memory residing in this device
against noise. Reinforcement learning lets the controller (“RL
agent”) discover on its own how to best choose gate sequences,
perform measurements, and react to measurement results by
interacting with the quantum device (“RL environment”).
(b) visualizes the flexibility of our approach (schematic).
Depending on the type of noise and hardware setting, different
approaches are optimal (DD, dynamical decoupling; DFS,
decoherence-free subspace). By contrast, the RL approach is
designed to automatically discover the best strategy adapted to
the situation. In (c), we show the conventional procedure to select
some QEC algorithm and then produce hardware-adapted device
instructions (possibly reiterating until an optimal choice is
found). We compare this to our approach (d) that takes care of
all these steps at once and provides QEC strategies fully adapted
to the concrete specifications of the quantum device.
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agent. Neural-network-based RL promises to complement
other successful machine-learning techniques applied to
quantum control [39–42].
Conceptually, our approach aims to control a quantum

system using a classical neural network. To avoid con-
fusion, we emphasize that our approach is distinct from
future “quantummachine learning” devices, where even the
network will be quantum [8,43,44].

II. REINFORCEMENT LEARNING

The purpose of RL [Fig. 1(a)] is to find an optimal set of
actions (in our case, quantum gates and measurements) that
an agent can perform in response to the changing state of an
environment (here, the quantum memory). The objective is
to maximize the expected return R, i.e., a sum of rewards.
To find optimal gate sequences, we employ a widespread

version of reinforcement learning [45,46] where discrete
actions are selected at each time step t according to a
probabilistic policy πθ. Here, πθðatjstÞ is the probability to
apply action at, given the state st of the RL environment.
As we use a neural network to compute πθ, the multidi-
mensional parameter θ stands for all the network’s weights
and biases. The network is fed st as an input vector and
outputs the probabilities πθðatjstÞ. The expected return can
then be maximized by applying the policy gradient RL
update rule [45]

δθj ¼ η
∂E½R�
∂θj ¼ ηE

�
R
X
t

∂
∂θj ln πθðatjstÞ

�
; ð1Þ

with η the learning rate parameter and E the expectation
value over all gate sequences and measurement outcomes.
These ingredients summarize the basic policy gradient
approach. In practice, improvements of Eq. (1) are used;
for example, we employ a baseline, natural policy gradient,
and entropy regularization (see Appendix H). Even so,
several further conceptual steps are essential to have any
chance of success (see below).
Equation (1) provides the standard recipe for a fully

observed environment. This approach can be extended to a
partially observed environment, where the policy will then
be a function of the observations only instead of the state.
The observations contain partial information on the actual
state of the environment. In the present manuscript, we
encounter both cases.

III. REINFORCEMENT LEARNING APPROACH
TO QUANTUM MEMORY

In this work, we seek to train a neural network to develop
strategies to protect the quantum information stored in a
quantum memory from decoherence. This involves both
variants of stabilizer-code-based QEC [47–49] as well as
other more specialized (but, in their respective domain,
more resource efficient) approaches like decoherence-free

subspaces or phase estimation. We remind the reader that
for the particular case of stabilizer-code-based QEC, the
typical steps are (i) the encoding, in which the logical state
initially stored in one qubit is distributed over several
physical qubits, (ii) the detection of errors via measurement
of suitable multiqubit operators (syndromes), (iii) the
subsequent correction, and (iv) the decoding procedure
that transfers the encoded state back into one physical
qubit. We stress that no such specialized knowledge is
provided a priori to our network, thus, retaining maximum
flexibility in the tasks it might be applied to and in the
strategies it can encompass [Fig. 1(b)].
We start by storing an arbitrary quantum state αj0i þ

βj1i inside one physical qubit. The goal is to be able to
retrieve this state with optimum fidelity after a given time
span. Given hardware constraints such as the connectivity
between qubits, the network agent must develop an
efficient QEC strategy from scratch solely by interacting
with the quantum memory at every time step via a set of
unitary gates (such as controlled NOT gates and bit flips)
and measurements. They are chosen according to the
available hardware and define the action set of the agent.
Importantly, the network must react and adapt its strategy to
the binary measurement results, providing real-time quan-
tum feedback.
This particular task seems practically unsolvable for

the present reinforcement-learning techniques if no extra
precautions are taken. The basic challenge is also encoun-
tered in other difficult RL applications: The first sequence
leading to an increased return is rather long. In our
scenarios, the probability to randomly select a good
sequence is much less than 10−12. Moreover, any sub-
sequence may be worse than the trivial (idle) strategy: For
example, performing an incomplete encoding sequence
(ending up in a fragile entangled state) can accelerate
decay. Adopting the straightforward return, namely, the
overlap of the final and initial states, both the trivial
strategy and the error-correction strategy are fixed points.
These are separated by a wide barrier—all the intermedi-
ate-length sequences with lower return. In our numerical
experiments, naive RL was not successful, except for
some tasks with very few qubits and gates.
We introduce two key concepts to solve this challenge: a

two-stage learning approach with one network acting as
teacher of another and a measure of the “recoverable
quantum information” retained in any quantum memory.
Before we address these concepts, we mention that from

a machine-learning point of view there is another uncon-
ventional aspect: Instead of sampling initial states of the
RL environment stochastically, we consider the evolution
under the influence of the agent’s actions for all possible
states simultaneously. This is required because the quantum
memory has to preserve arbitrary input states. Our reward is
based on the completely positive map describing the
dissipative quantum evolution of arbitrary states. The only
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statistical averaging necessary is over measurement out-
comes and the probabilistic action choices. Further below,
we comment on how the time evolution is implemented in
practice.
As known from other RL applications (like board games

[15]), it helps to provide as much information as possible to
the network. In our case, this could mean providing the
multiqubit quantum state at each time step. However, that
information is not available in a real experiment. In order to
solve this dilemma, we train two different networks in
succession [Figs. 2(a) and 2(b)]: The first network is fully
state aware. Later on, we use it as a teacher for the second
network, which essentially gets only the measurement
results as an input (plus the information on which gate
or measurement has been applied in the previous step). This
approach splits the problem into two subproblems that are
easier to solve. In this approach, the main remaining
challenge is to train the state-aware network, while the
supervised training of the second network is fairly straight-
forward in our experience. In contrast, directly training the

second network via RL would be tremendously harder, if
not impossible, because the input would be significantly
less comprehensive than the completely positive map.
At this point, we see that evolving all initial states

simultaneously is not only more efficient but even required
to prevent the state-aware network from “cheating.”
Otherwise, it might simply memorize the initial state, wait
for it to relax, and then reconstruct it, which, of course, is not
a valid strategy to preserve a principally unknown quantum
state. Such a behavior is avoided when the network is asked
to preserve all possible logical qubit states with the same
gate sequence. It turns out that this can be implemented
efficiently by evolving just four initial quantum states ρ̂ (for
a single logical qubit); tracking their evolution fully char-
acterizes, at anypoint in time, the completely positivemapΦ
of the multiqubit system that maps ρ̂ð0Þ to ρ̂ðtÞ. Moreover,
we find it useful to apply principal component analysis, i.e.,
to feed only the few largest-weight eigenvectors of the
evolved ρ̂’s as input to the network (see Appendix F).
We are now ready to define our problem fully from the

point of view of reinforcement learning. The state space of
the RL environment is the space of completely positive
maps. This information is not accessible in a real-world
experiment where the measurements provide partial infor-
mation about the RL environment. This reinforcement-
learning problem is therefore classified as a partially
observed Markov process. This is what is considered in
our second learning stage, and our method to solve it relies
on a recurrent network. In the modified input scheme of the
first learning stage, the agent observes the full state space,
and we therefore deal with a fully observed Markov
process. In both cases, the RL environment is stochastic
due to the measurements. As we describe above, the action
set is defined by the available hardware instructions
(unitary gates and measurements).
Two-stage learning with parallel evolution is essential

but not yet sufficient for our challenge. We now introduce a
suitable reward that indicates the likely final success of an
action sequence ahead of time. In our case, we follow the
intuitive idea that this reward should quantify whether
the original quantum information survives in the complex
entangled many-qubit state that results after application of
unitary gates and measurements and with the system
subject to decoherence.
We note that in the ideal case without decoherence, two

initially orthogonal qubit states are always mapped onto
orthogonal states. Therefore, they remain 100% distin-
guishable, and the original state can always be restored.
With a suitable encoding, this remains true even after some
errors have happened if a suitable error-detection and
decoding sequence is applied (“recovery”). By contrast,
irreversible loss of quantum information means that perfect
recovery becomes impossible. In order to make these
notions concrete, we start from the well-known fact that
the probability to distinguish two quantum states ρ̂1 and ρ̂2

State-aware network Recurrent network

Action probabilities

Measurement results

(a) (b)

Quantum states
(representing the map 
for evolution of arbitrary 
input state up to time t)

 z meas.Bit flipCNOT

FIG. 2. The neural networks. (a) At each time t, the “state-
aware” network receives a representation of the mapΦ describing
the quantum evolution of arbitrary initial logical qubit states up to
that time (represented by four evolved states ρ̂; see main text). It
outputs the probabilities for the different actions (gates) defining
the agent’s policy. Like any neural network, it is a nonlinear
function that can be decomposed into layerwise linear super-
position of neuron values using trainable weights (visualized
by connections) and the application of nonlinear activation
functions. Examples for actions are shown here (bit flip, CNOT,
measurement). Each of those can be applied to various qubits
(or qubit pairs), resulting in approximately 10–20 actions. (b) The
recurrent network receives the most recent measurement result
(if any) and also outputs the action probabilities. Its long short-
term memory (LSTM) neurons learn to keep track of information
accumulated in previous time steps (schematically indicated by
the recurrent connections here).
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by optimal measurements is given by the trace distance
1
2
kρ̂1 − ρ̂2k1. Let ρ̂n⃗ðtÞ be the quantum state into which the

multiqubit system has evolved, given the initial logical
qubit state of Bloch vector n⃗. We now consider the
distinguishability of two initially orthogonal states,
1
2
kρ̂n⃗ðtÞ − ρ̂−n⃗ðtÞk1. In general, this quantity may display

a nontrivial, nonanalytic dependence on n⃗. We introduce
the “recoverable quantum information” as

RQðtÞ ¼
1

2
minn⃗ kρ̂n⃗ðtÞ − ρ̂−n⃗ðtÞk1: ð2Þ

The minimum over the full Bloch sphere is taken because the
logical qubit state is unknown to the agent, so the success of
an action sequence is determined by the worst-case scenario.
In other words, RQ specifies a guaranteed value for the
remaining distinguishability for all possible logical qubit
states. Thus,RQ is a property of the completely positive map
that characterizes the dissipative evolution.
The recoverable quantum information RQ is much more

powerful than the overlap of initial and final states, as it can
be used to construct an immediate reward, evaluating a
strategy even at intermediate times. In the idealized case
where errors have occurred but they could, in principle, be
perfectly recovered by a suitable detection and decoding
sequence, RQ remains 1. As we see below, this behavior
steers the network towards suitable strategies. RQ can be
extended towards multiple logical qubits.
As far as RQ is concerned, error-correction steps are

required only to prevent the multiqubit system from
venturing into regions of the Hilbert space where any
further decoherence process will irreversibly destroy the
quantum information (and lower RQ). If one wants the
network to actually implement the final decoding sequence
to return back an unentangled state, this can be done by
adding suitable contributions to the reward (see below).

IV. RESULTS

We now apply the general approach to different settings,
illustrating its flexibility. The training of the state-aware
network is analyzed in Fig. 3. In the example, the qubits are
subject to bit-flip errors uncorrelated in space and time,
with a decay term _̂ρ ¼ T−1

dec

P
jðσ̂ðjÞx ρ̂σ̂ðjÞx − ρ̂Þ in the under-

lying master equation (see Appendix B). All of the four
qubits may be measured, and there is full connectivity.
During training [Figs. 3(a) and 3(b)], the network first
learns to avoid destructive measurements which reveal the
logical qubit state. Afterwards, it discovers a sequence of
CNOT gates that creates an entangled state, implementing
some version of the three-qubit repetition code [48,49]. The
particular CNOT sequence shown in the figure generates
one possible encoded state out of several equally good
ones. The symmetry between these alternative encodings
is broken spontaneously during training. The encoding
already increases the reward above the trivial level (obtained

for storing the logical qubit in one physical qubit only).
Finally, the network starts doing repeated parity measure-
ments of the type CNOT ðB ↦ AÞ, CNOT ðC ↦ AÞ, MðAÞ,
flipping the state of ancilla A only if the states of B and C
differ (here,M is a measurement). This protocol implements
error detection, helping to preserve the quantum information
by preventing the leakage into states with two bit flips that
cannot be corrected if undetected. Figure 3(b) illustrates the
progression from random quantum circuits to a nearly
converged strategy. During any single trajectory, the recov-
erable quantum information can have sudden jumps when
measurements are performed [Fig. 3(c)] with collapses and
revivals (see also Sec. II of the SupplementaryMaterial [51]).
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FIG. 3. Reinforcement learning for the state-aware network
with a four-qubit setup (all qubits can be measured, as indicated
by the detectors and the red color; all qubit pairs can be subject to
CNOT gates, as indicated by the links). (a) Training progress in
terms of the average recoverable quantum information RQ
evaluated at the final step of a 200-step gate sequence. One
“epoch” involves training on a batch of 64 trajectories (gate
sequences). Eventually, the network performs even better than a
combination of encoding and periodic parity checks due to the
adaptive recovery sequences that are triggered by unexpected
measurements (i.e., upon error detection). In this example, that
leads to an approximate 15% increase of the decoherence time
over a nonadaptive scheme. (b) Typical gate sequences at
different training stages, mostly converged strategy at bottom.
Qubits participating in encoding (holding information about the
logical qubit state) are indicated with light blue background.
(c) Time evolution of RQ at the same three training stages (red,
blue, green) for individual trajectories (dashed: averaged over
many trajectories). Jumps are due to measurements. (d) Evolution
depending on stochastic measurement results indicated as “0” or
“1” and also via the color (red or orange) of the measurement gate
symbol. The policy strongly deviates between the different
branches, demonstrating that RL finds adaptive quantum-feed-
back strategies, where the behavior depends on the measurement
outcomes. Note that even the mostly converged strategy is still
probabilistic to some degree.
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Can we understand better how the network operates? To
this end, we visualize the responses of the network
responses to the input states [Fig. 4(c)], projecting the
high-dimensional neuron activation patterns into the 2D
plane using the t-distributed stochastic neighbor embedding
(t-SNE) technique [50]. Similar activation patterns are
mapped close to each other, forming clearly visible clusters,
each of which results in one type of action. During a gate
sequence, the network visits states in different clusters. The
sequence becomes complex if unexpected measurement
results are encountered [Fig. 4(b)]. In the example shown
here, the outcome of the first parity measurement is
compatible with three possibilities (one of two qubits is
flipped, or the ancilla state is erroneous). The network
learns to resolve the ambiguity through two further mea-
surements, returning to the usual detection cycle. It is
remarkable that RL finds these nontrivial sequences (which
would be complicated to construct ab initio), picking out
reward differences of a few percent.
The flexibility of the approach is demonstrated by

training on different setups, where the network discovers
from scratch other feedback strategies [Fig. 5(a)] adapted to
the available resources. For example, we consider a chain
of qubits where CNOT gates are available only between

nearest neighbours, and in addition, we fix a single meas-
urement location. Then, the network learns that it may use
the available CNOT gates to swap through the chain.
However, if every qubit can be measured, the net discovers
a better strategy with fewer gates, where the middle two
qubits of the chain alternate in playing the role of the ancilla.
We also show, specifically, the complex recovery sequences
triggered by unexpected measurements. They are a priori
unknown, and RL permits their discovery from scratch
without extra input. Generally, additional resources (such as
enhanced connectivity) are exploited to yield better
improvement of the decoherence time [Fig. 5(b)]. In another
scenario [Fig. 5(c)], we find that the network successfully
learns to adapt to unreliable measurements by redundancy.
In a separate class of scenarios, we consider dephasing of

a qubit by a fluctuating field (Fig. 6). If the field is spatially
homogeneous and also couples to nearby ancilla qubits,

then the dephasing is collective: ĤðtÞ ¼ BðtÞPj μjσ̂
ðjÞ
z ,

where BðtÞ is white noise and μj are the coupling strengths
(to qubit and ancillas). Note that in this situation, one can
use neither dynamical decoupling (since the noise is
uncorrelated in time) nor decoherence-free subspaces
(since the μj can be arbitrary, in general). However, the
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FIG. 4. Visualizing the operation of the state-aware network. (Same scenario as in Fig. 3) (a) Sequence of quantum states visited
during a standard repetitive detection cycle (after encoding) displayed for an initial logical qubit state jþxi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

in the
absence of unexpected measurement outcomes (no errors). Each state ρ̂ is represented by its decomposition into eigenstates, where, e.g.,
∘•••þ •∘•∘ ≡ j0111i þ j1010i. The eigenstates are sorted according to decreasing eigenvalues (probabilities). Eigenstates of less than
5% weight are displayed semitransparently. In this particular example, each eigenstate is a superposition of two basis states in the z basis.
(b) Gate sequence triggered upon encountering an unexpected measurement. Again, we indicate the states ρ̂ with bars now showing the
probabilities. By further measurements, this sequence tries to disambiguate the error. (c) Visualization of neuron activations (300
neurons in the last hidden layer), in response to the quantum states (more precisely, maps Φ) encountered in many runs. These
activations are projected down to 2D using the t-SNE technique [50], which is a nonlinear mapping that tries to preserve neighborhood
relations while reducing the dimensionality. Each of the 2 × 105 points corresponds to one activation pattern and is colored according to
the action taken. The sequences of (a) and (b) are indicated by arrows, with the sequence (b) clearly proceeding outside the dominant
clusters (which belong to the more typically encountered states). Qubits are numbered 1,2,3,4, and gate CNOT13 has control qubit 1 and
target 3. (d) The enlargement shows a set of states in a single cluster which is revisited periodically during the standard detection cycle;
this means we stroboscopically observe the time evolution. The shading indicates the time progressing during the gate sequence with a
slow drift of the state due to decoherence. (See the Supplemental Material [51] for an extended discussion.)
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same RL program used for the examples above also finds
solutions here (Fig. 6) without any input specific to the
situation (except the available gates). It discovers that the
field fluctuations can be tracked and corrected (to some
extent) by observing the evolution of the nearby ancillas,
measuring them in suitable time intervals. For more than
one ancilla, the network discovers a strategy that is adaptive:
The choice of measurement basis depends on the history of
previous observations. Brute-force searches in this setting
become quickly impossible due to the double-exponential
growth of possibilities. The computational effort involved

in such a brute-force approach is analyzed in detail in the
Supplemental Material [51].
Up to now, the network only encodes and keeps track of

errors by suitable collective measurements. By revising the
reward structure, we can force it to correct errors and finally
decode the quantum information back into a single physical
qubit. Our objective is to maximize the overlap between
the initial and final states for any logical qubit state (see
Appendix E). Moreover, we find that learning the decoding
during the final time steps is reinforced by punishing states
where the logical qubit information is still distributed over
multiple physical qubits. The corresponding rewards are
added to the previous reward based on the recoverable
quantum information. The network now indeed learns to
decode properly [Fig. 7(a)]. In addition, it corrects errors. It
does so typically soon after detecting an error, instead of at the
end of the gate sequence.We conjecture that this is because it
tries to return as soon as possible back to the known, familiar
encoded state. For the same reason, error correction some-
times even happens without an explicit reward.
So far, we have trained the state-aware network.

However, this cannot yet be applied to an experiment,
where the quantum state is inaccessible to us. For this
purpose, we need a network whose only input consists of
the measurement results (and the selected gates, since the
policy is probabilistic), requiring some sort of memory. An
elegant solution consists of a recurrent neural network. We
use the widespread LSTM approach [52].
Once the first, state-aware network is trained success-

fully, it is used as a teacher in supervised learning to train
the second, recurrent network [Fig. 7(b)]. This network
could then be applied as a controller to experimental runs,
deciding on gate sequences depending on measurements. It
might also be refined by RL, e.g., to adapt to changes in the
parameters (decoherence rates, etc.). If the state-aware
network is taught to properly restore the original state at
the end of the time evolution, including corrections of
possible errors, the second network needs to acquire a long
memory time since it has to consider measurement results
distributed in time and deduce the proper corrective actions.
We train the recurrent network based on a fully con-

verged state-aware network. Inspecting the LSTM neuron
activations [Fig. 7(c)], we see that different neurons activate
for different events and some clearly display prolonged
memory (remaining active during certain time intervals
relevant for the strategy). For example, one neuron switches
on during the recovery sequence after an unexpected
measurement, while another seems like an internal counter
operating during the periodic detection sequence.
We now come back to the statement in the Introduction

that our approach is fully autonomous and can be applied
to a broad range of problems with small human effort. In all
the preceding examples, and also in general, the only
human input to our approach is the problem specification,
primarily the noise model (specifying the dissipative time
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FIG. 5. (a) Scenarios with different qubit connectivity. CNOT

gates are allowed only between qubits connected by a line. In
each case, we display the “standard” gate sequence discovered by
the net, as well as a sequence involving corrective actions
(triggered by an unexpected measurement). From top to bottom:
chain with fixed measurement location, chain with arbitrary
measurements, ring connected to an ancilla. The red rectangle
highlights an interval during which the quantum state is not
dominated by a single component, indicating that the precise
location of the error still must be pinpointed. These nontrivial
detection and recovery sequences are considerably more complex
than the periodic detection cycle. (b) The effective enhancement of
the decoherence timevia error correction for the different scenarios.
Here, Tdec ¼ 1200 is the single-qubit decoherence time (in units of
the gate time that defines the time step), and Teff is extracted from
the decay ofRQ after 200 time steps. The differences can be traced
back to the lengths of the detection cycles. (c) Behavior as a
function of the measurement error. The network discovers that
redundancy is needed; i.e., the number of measurements in the gate
sequences increases (in this plot, from one per cycle to about six).
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evolution governing the quantum state) and the particular
action set (i.e., the available hardware instructions related to
the setup and its connectivity). Importantly, fine-tuning the
hyperparameters (like learning rate, network architecture,
etc.) is not required; in the Supplemental Material [51], we

demonstrate that a common set of hyperparameters can be
used for all the scenarios.

V. POSSIBLE FUTURE APPLICATIONS

The physical setups considered in today’s quantum-
computing platforms containmany components and features
that go beyond the simplest scenario of short-range coupled
qubits. Conceptually, the approach developed in the present
work is general enough to find future application in any of the
following experimentally relevant domains.
An important example is cavities, which can be used as

long-lived quantum memory, especially in the microwave
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FIG. 7. (a) Training the state-aware network to implement
decoding back into the original data qubit near the end of a 200-
step gate sequence. Blue: recoverable quantum information RQ.
Orange: (rescaled, shifted) overlap OQ between final and initial
states of the data qubit. Inset displays the decoding gate sequence.
(b) Training the recurrent network in a supervised way to imitate
the state-aware network. Again, we show RQ and OQ evolving
during training. Dashed blue or orange lines depict the perfor-
mance of the state-aware network. (c) To investigate the workings
of the recurrent network, we display some of the LSTM neuron
activations in the second-to-last layer. Quantum states are
illustrated even though the network is unaware of them. The
network’s input consists of the observed measurement result (if
any) and of the actual gate choice (made in the previous time step,
here aligned on top of the current neuron activations). The
example gate sequence displayed here first shows the repetitive
standard error-detection pattern of repeated parity measurements
that is interrupted once an unexpected measurement is encoun-
tered, indicating an error. During error recovery (boxed region),
the network first tries to pinpoint the error and then applies
corrections. The neurons whose behavior changes markedly
during recovery are depicted in gray. Neuron 1r obviously keeps
track of whether recovery is ongoing, while 3r acts like a counter
keeping time during the standard periodic detection pattern. (See
the Supplemental Material [51] for more information.)
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FIG. 6. Countering dephasing by measurements (adaptive phase
estimation). (a) The setting: A data qubit whose phase undergoes a
random walk due to a fluctuating field. Since the field is spatially
correlated, its fluctuations can be detected by measuring the
evolution of nearby ancilla qubits, which can then be exploited
for correction. In this example, the allowed actions are measure-
ments along x, y (MX, MY), and the idle operation. (b) For one
ancilla, the network performs measurements periodically, finding
the optimal measurement interval. This can be seen by comparing
the coherence time enhancement as a function of the interval (in
units of the single-qubit decoherence time Tsingle) for the network
(circles) with the analytical predictions (curves; see the Supple-
mental Material [51]). The remaining differences are due to the
discretization of the interval (not considered in the analytics). The
coupling between noise and ancilla (μ2) is different from that
between noise and data qubit (μ1), and the strategy depends on the
ratio indicated here. (c) Coherence time enhancement for different
numbers of ancillas (here, μ2 ¼ μ3 ¼ μ4 ¼ 4μ1). (d) Gate sequen-
ces. For two ancillas, the network discovers an adaptive strategy,
wheremeasurements on qubit 2 are rare, and themeasurement basis
is decided based on previous measurements of qubit 3. The arrows
show the measurement result for qubit 3 in the equator plane of the
Bloch sphere. (e) The two-ancilla adaptive strategy (overview; see,
also, the Supplemental Material [51]). Here, a brute-force search
for strategies is still (barely) possible, becoming infeasible for
higher ancilla numbers due to the exponentially large search space
of adaptive strategies [μ2 ¼ 3.8μ1, μ3 ¼ 4.1μ1 in (d),(e)].
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domain. When they are coupled to qubits, nonlinear
operations can be performed that may aid in error correc-
tion of the cavity state, as the Yale group has demonstrated
(“kitten” and “cat” codes [53,54]). Our approach allows us
to cover such situations without any changes to the
reinforcement-learning method. Only the description of
the physical scenario via the set of available actions and, of
course, the physics simulation must be updated. Cavities
also give access to unconventional controls, e.g., naturally
occurring long-distance multiqubit entangling gates pro-
vided by the common coupling of the qubits to the cavity.
In addition, they permit direct collective readout that is
sensitive to the joint state of multiple qubits, which may
be used to speed up error-detection operations. Again,
RL-based quantum feedback of the type proposed here can
naturally make use of these ingredients.
Novel hardware setups, like cross-bar-type geometries

[55,56], give rise to the challenge to exploit the unconven-
tional connectivity, for which our approach is well suited.
In the future, it may even become possible to cooptimize
the hardware layout (taking into account physical con-
straints) and the strategies adapted to the layout. In the
simplest case, this means discovering strategies for auto-
matically generated alternative layouts and comparing their
performance.
The actions considered by the agent need not refer to

unitary operations. They might also perform other func-
tions, like restructuring the connectivity itself in real time.
This is the case for the proposed 2D ion-trap architecture
where the ions are shuffled around using electrodes [19].
Similar ideas have been proposed for spins in quantum
dots, which can be moved around using electrodes or
surface-acoustic waves. Again, no changes to our approach
are needed. The modifications are confined to the physics
simulation. Depending on the present state of the con-
nectivity, the set of effective qubit gates will change.
Like any numerical approach, our method is invariably

limited to modest qubit numbers (of course, these will
increase with further optimizations, possibly up to about
ten). It is important, therefore, to recall that even an
improvement of the decoherence rate in an isolated few-
qubit module can have useful applications (as a quantum
memory, e.g., in a quantum repeater). More generally, it
is clear that classical simulation of a full-scale quantum
computer in the domain of quantum supremacy is out of
the question, by definition. This is a challenge widely
acknowledged by the entire community, affecting not only
optimization but also design, testing, and verification of a
quantum computer. One promising way to address this
challenge at least partially advocated by a growing
number of experimental groups is the so-called modular
approach to quantum computation and quantum devices.
This consists of connecting small few-qubit quantum
modules together via quantum network links [19,20].
The main advantage of this approach is the ability to

control and debug small quantum modules as opposed
to an entire large monolithic quantum computer. Our
approach is very well suited to this strategy. In principle,
one can even envision a hierarchical application of the
quantum-module concept (with error-correction strategies
applied to multiple modules coupled together), but for that
case, our approach needs to be extended (e.g., by using RL
to find one- and two-qubit gates acting on the logical
qubits stored inside the modules).

VI. CONCLUSIONS

We see how a network can discover quantum-error-
correction techniques from scratch. It finds a priori
unknown nontrivial detection or recovery sequences for
diverse settings without any input beyond the available
gate set. The trained neural networks can, in principle,
be used to control experimental quantum devices. The
present approach is flexible enough to be applied directly
to a range of further qualitatively different physical
situations, like non-Markovian noise, weak measure-
ments, qubit-cavity systems, and error-corrected transport
of quantum information through networks. An obvious
challenge for the future is to successfully discover strategies
on even more qubits, where eventually full protection
against all noise sources and multiple logical qubits can
be realized. There is still considerable leeway in improving
the speed of the physics simulation and of GPU-based
training (for further details on the current computational
effort, see Appendix L).
On the machine-learning side, other RL schemes can be

substituted for the natural policy gradient adopted here, like
Q learning or advantage-actor-critic techniques, or RL with
continuous controls. Recurrent networks might be employed
to discover useful subsequences. The two-stage learning
approach introduced here can also be applied in other RL
scenarios, where one first trains based on expanded state
information. In general, we show that neural-network-based
RL promises to be a flexible and general tool of wide-
ranging applicability for exploring feedback-based control of
quantum and classical systems in physics.
The data that support the plots within this paper and

other findings of this study are available from the authors
on request (florian.marquardt@mpl.mpg.de).
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APPENDIX A: PHYSICAL TIME EVOLUTION

To track the time evolution for an arbitrary initial logical
qubit state (identified by its Bloch vector n⃗), we start from
ρ̂n⃗ð0Þ ¼ 1

2
ð1þ n⃗ ˆσ⃗Þ ⊗ ρ̂rest, factorizing out the (fixed) state

of all the other qubits. Now, consider the four quantities

ρ̂0ð0Þ ¼
1

2
½ρ̂e⃗jð0Þ þ ρ̂−e⃗jð0Þ�; ðA1aÞ

δρ̂jð0Þ ¼
1

2
½ρ̂e⃗jð0Þ − ρ̂−e⃗jð0Þ�; ðA1bÞ

where j ∈ fx; y; zg and e⃗j are the basis vectors; note that
the right-hand side of Eq. (A1) is independent of j. ρ̂0 and
the δρ̂j are evolved stepwise for each time interval ½ti; tf�
according to the update rule

ρ̂0ðtfÞ ¼
ϕ½ρ̂0ðtiÞ�

trfϕ½ρ̂0ðtiÞ�g
; ðA2aÞ

δρ̂jðtfÞ ¼
ϕ½δρ̂jðtiÞ�

trfϕ½ρ̂0ðtiÞ�g
: ðA2bÞ

In the absence of measurements, ϕ is the completely
positive map for the given time interval. In the presence
of measurements, it is an unnormalized version (see
below). We explicitly renormalize such that always
tr½ρ̂0ðtÞ� ¼ 1. ρ̂0 and the δρ̂j give us access to the density
matrix for every logical qubit state, at any time t:

ρ̂n⃗ðtÞ ¼
ρ̂0ðtÞ þ

P
jnjδρ̂jðtÞ

1þ tr½Pjnjδρ̂jðtÞ�
: ðA3Þ

APPENDIX B: PHYSICAL SCENARIOS

We always start from the initial condition that the logical
qubit is stored in one physical qubit, and the others are
prepared in the down state (j1i). If explicit recovery is
desired, we use this original qubit also as the target qubit for
final decoding. The time evolution is divided into discrete
time steps of uniform length Δt (set to 1 in the main text).
At the start of each of these time slices, we perform the
measurement or gate operation (which is assumed to be
quasi-instantaneous) chosen by the agent; afterwards, the
system is subject to the dissipative dynamics. Thus, the
map ϕ for the time interval ½t; tþ Δt� is of the form
ϕ½ρ̂� ¼ eΔtDðÛ ρ̂ Û†Þ for unitary operations Û and ϕ½ρ̂� ¼
eΔtDðP̂mρ̂P̂

†
mÞ for projection operators P̂m (m indicates the

measurement results), where D is the dissipative part of
the Liouvillian (we consider only Markovian noise).
Note that the measurement results are chosen stochastically
according to their respective probability trðP̂mρ̂0Þ. In the
examples discussed in the figures, we use two different

error models, the bit-flip error (BF) and the correlated noise
error (CN),

DBFρ̂ ¼ T−1
dec

X
q

σ̂ðqÞx ρ̂σ̂ðqÞx − ρ̂; ðB1aÞ

DCNρ̂ ¼ T−1
dec

�
L̂CNρ̂L̂

†
CN −

1

2
fL̂†

CNL̂CN; ρ̂g
�
; ðB1bÞ

where σ̂ðqÞx;y;z applies the corresponding Pauli operator to

the qth qubit and L̂CN ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiP

qμ
2
q

q
ÞPqμqσ̂

ðqÞ
z . Here, μq

denotes the coupling of qubit q to the noise. Note that in the
bit-flip scenario, the single-qubit decay time Tsingle ¼ Tdec,
whereas in the presence of correlated noise, it is Tsingle ¼
Tdecð

P
qμ

2
qÞ=μ21.

APPENDIX C: RECOVERABLE QUANTUM
INFORMATION

Based on Eq. (A3), RQ as introduced in the main text
can be written as

RQðtÞ ¼ min
n⃗

����X
j

njδρ̂jðtÞ
����
1

ðC1Þ

in the (for us relevant) case that tr½δρ̂jðtÞ� ¼ 0 for all j.
The trace distance 1

2
kPjnjδρ̂jðtÞk1 has often a nontrivial

dependence on the logical qubit state n⃗, and finding
its minimum can become nontrivial. However, the
location of the minimum can sometimes be “guessed” in
advance. For any circuit that can be decomposed into
CNOT, Hadamard and RZðπ=2Þ gates (CHZ) [48], i.e., for
all the bit-flip examples considered here, the anticommu-
tator relation fδρ̂j; δρ̂kg ¼ 0 is satisfied for all distinct
j ≠ k; it can be shown that this circumstance restricts the
minimum to lie along one of the coordinate axes:
minn⃗k

P
jnjδρ̂jðtÞk1 ¼ minj∈fx;y;zgkδρ̂jðtÞk1. For the cor-

related noise, the trace distance 1
2
kPjnjδρ̂jðtÞk1 is sym-

metric around the z axis and takes its minimal value at the
equator.
After a measurement, the updated value ofRQ may vary

between the different measurement results. To obtain a
measure that does not depend on this random factor, we
introduce R̄Q as the average over all possible values ofRQ

(after a single time step) weighted by the probability to end
up in the corresponding branch. If the action is not a
measurement, there is only one option and, thus, R̄Q ¼ RQ.

APPENDIX D: PROTECTION REWARD

The goal of the “protection reward” is to maximizeRQ at
the end of the simulation; i.e., the ability to, in principle,
recover the target state. A suitable (immediate) reward is
given by
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rt ¼

8>>>>><
>>>>>:

1þ R̄QðtþΔtÞ−RQðtÞ
2Δt=Tsingle

þ0 if R̄QðtþΔtÞ> 0;

0 −P if RQðtÞ≠ 0

∧RQðtþΔtÞ¼ 0;

0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≕rð1Þt

þ0|{z}
≕rð2Þt

if RQðtÞ¼ 0

ðD1Þ

with RQ and R̄Q as defined above, Tsingle the decay time
for encoding in one physical qubit only (“trivial” encod-
ing), Δt the discrete time step of the simulation, and P a
punishment for measurements which reveal the logical
qubit state. Based on this reward, we choose the return (the
function of the reward sequence used to compute the policy
gradient) as

Rt ¼ ð1 − γÞ
� XT−t−1

k¼0

γkrð1Þtþk

�
þ rð2Þt ; ðD2Þ

where γ is the return discount rate; for more information on
the (discounted) return, see, e.g., Ref. [58].

APPENDIX E: RECOVERY REWARD

The protection reward does not encourage the network to
finally decode the quantum state. If this behavior is desired,
we add suitable terms to the reward (only employed for
Fig. 7):

rðrecovÞt ¼ βdecðDtþ1 −DtÞ þ βcorr CTδt;T−1; ðE1Þ

where Dt ¼ 1
2
ðIðq0Þt −

P
q≠q0I

ðqÞ
t Þ, unless t ≤ Tsignal, where

we set Dt ¼ 0. This means decoding is rewarded only after

Tsignal. We set IðqÞt ¼ 1 if trq̄½δρ̂jðtÞ� ≠ 0 for any j, and

otherwise IðqÞt ¼ −1. trq̄ denotes the partial trace over all
qubits except q, and q0 labels the target qubit. The condition
IðqÞt ¼ 1 implies that the logical qubit state is encoded in the
specific qubit q (this is not a necessary criterion). CT is 1 if
(at the final time T) the logical qubit state is encoded in the
target qubit only, and this qubit has the prescribed polari-
zation (i.e., not flipped), and otherwise 0.
As the return, we use

RðrecovÞ
t ¼ ð1 − γÞ

XT−t−1
k¼0

γkrðrecovÞtþk ðE2Þ

with the same return discount rate γ as for the protection
reward.
With this reward, we aim to optimize the minimum

overlap OQ ¼ minn⃗hϕn⃗jtrq̄0 ðρ̂n⃗Þjϕn⃗i between the (pure)
target state jϕn⃗i and the actual final state ρ̂n⃗ reduced to
the target qubit given by the partial trace trq̄0 ðρ̂n⃗Þ over all
other qubits.

APPENDIX F: INPUT OF THE
STATE-AWARE NETWORK

The core of the input to the state-aware network is a
representation of the density matrices ρ̂0, ρ̂1 ≔ ρ̂0 þ δρ̂x,
ρ̂2 ≔ ρ̂0 þ δρ̂y, and ρ̂3 ≔ ρ̂0 þ δρ̂z. Together, they re-
present the completely positive map of the evolution (for
arbitrary logical qubit states). For reduction of the input
size (especially in view of higher qubit numbers),
we compress them via principal component analysis
(PCA); i.e., we perform an eigendecomposition ρ̂j ¼P

k pkjϕkihϕkj and select the eigenstates jϕki with the
largest eigenvalues pk. To include also the eigenvalue in the
input, we feed all components of the scaled states jϕ̃ki ≔ffiffiffiffiffi
pk

p jϕki (which yield ρ̂j ¼
P

k jϕ̃kihϕ̃kj) into the network,
where the states are in addition sorted by their eigenvalue.
For our simulations, we select the six largest components,
so we need 768 ¼ 4 × 6 × 16 × 2 input neurons (four
density matrices, 16 is the dimension of the Hilbert space,
two for the real and imaginary parts).
In addition, at each time step, we indicate to the network

whether a potential measurement would destroy the quan-
tum state by revealing the quantum information. Explicitly,
we compute for each measurement whether trðP̂δρ̂jÞ ¼ 0

for all j ∈ fx; y; zg and every possible projector P̂ (i.e.,
every possible measurement result) and feed these Boolean
values into the network. Note that this information can be
deduced from the density matrix (so, in principle, the
network can learn that deduction on its own but giving it
directly speeds up training).
Because all relevant information for the decision about

the next action is contained in the current density matrix,
knowledge about the previous actions is not needed.
However, we find that providing this extra information
is helpful to accelerate learning. Therefore, we provide
also the last action (in a one-hot encoding). We note that it
is not necessary to feed the latest measurement result to the
network since the updated density matrix is conditional on
the measurement outcome and, therefore, contains all
relevant information for a future decision.
To train the state-aware network to restore the original

state at the end of a trajectory, it becomes necessary to add
the time to the input. It is fully sufficient to indicate the last
few time steps where t > Tsignal (when decoding should be
performed) in a one-hot encoding.

APPENDIX G: LAYOUT OF THE
STATE-AWARE NETWORK

Our state-aware networks have a feedforward architec-
ture. Between the input layer and the output layer (one
neuron per action), there are two or three hidden layers
(the specific numbers are summarized in Appendix K).
All neighboring layers are densely connected, the activation
function is the rectified linear unit. At the output layer, the
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softmax function xj ↦ exj=
P

k e
xk is applied such that the

result can be interpreted as a probability distribution.

APPENDIX H: REINFORCEMENT LEARNING
OF THE STATE-AWARE NETWORK

Our learning scheme is based on the policy gradient
algorithm [45]. The full expression for our learning
gradient (indicating the change in θ) reads

g ¼ λpolF−1E

�X
t

ðRt − btÞ
∂
∂θ ln πθðatjstÞ

�

− λentrE

�X
a

∂
∂θ (πθðajsÞ ln πθðajsÞ)

�
; ðH1Þ

where Rt is the (discounted) return [compare Eqs. (D2) and
(E2)]. This return is corrected by an (explicitly time-
dependent) baseline bt, which we choose as the exponen-
tially decaying average of Rt; i.e. for the training update in

epoch N, we use bt ¼ ð1 − κÞPN−1
n¼0 κ

nR̄ðN−1−nÞ
t , where κ

is the baseline discount rate, and R̄ðnÞ
t is the mean return at

time step t in epoch n. We compute the natural gradient
[59–61] by multiplying F−1, the (Moore-Penrose) inverse
of the Fisher information matrix F¼Ef½ð∂=∂θÞlnπθðajsÞ�
½ð∂=∂θÞlnπθðajsÞ�Tg. The second term is entropy regulari-
zation [62]; we use it only to train the state-aware network
shown in Fig. 7. As update rule, we use adaptive moment
estimation (Adam) (see Ref. [63]) without bias correction.

APPENDIX I: LAYOUT OF THE
RECURRENT NETWORK

The recurrent network is designed such that it can, in
principle, operate in a real-world experiment. This means,
in particular, that (in contrast to the state-aware network)
its input must not contain directly the quantum state (or
the evolution map); instead, measurements are its only
way to obtain information about the quantum system.
Hence, the input to the recurrent network contains the
present measurement result (and, additionally, the pre-
vious action). Explicitly, we choose the input as a one-hot
encoding for the action in the last time step, and in case of
measurements, we additionally distinguish between the
different results. In addition, there is an extra input neuron
to indicate the beginning of time (where no previous
action is performed). Since this input contains only the
most recent event, the network requires a memory to
perform reasonable strategies; i.e., we need a recurrent
network. Therefore, the input and output layers are
connected by two successive LSTM layers [52] with tanh
interlayer activations. After the output layer, the softmax
function is applied (like for the state-aware network).

APPENDIX J: SUPERVISED LEARNING
OF THE RECURRENT NETWORK

The training data are generated from inference of a state-
aware network which is trained to sufficiently good
strategies (via reinforcement learning); for every time step
in each trajectory, we save the network input and the policy,
i.e., the probabilities for all the actions, and we train on
these data. It is possible to generate enough data such that
overfitting is not a concern (for the example in Fig. 7, each
trajectory is reused only five times during the full training
process). For the actual training of the recurrent network,
we use supervised learning with categorical cross-entropy
as the cost function (q is the actual policy of the recurrent
network to train, and p the desired policy from the state-
aware network):

Cðq; pÞ ¼ −
X
a

pðaÞ ln qðaÞ: ðJ1Þ

Because of the LSTM layers, it is necessary to train on full
trajectories (in the true time sequence) instead of indi-
vidual actions. Dropout [64] is used for regularization.
The training update rule is adaptive moment estimation
(Adam) (see Ref. [63]).

APPENDIX K: PHYSICAL PARAMETERS
AND HYPERPARAMETERS

The physical parameters used throughout the main text
are summarized in Table I. Times are always given in units
of the time step (gate time).
We use a few separately trained neural networks

throughout this work which differ slightly in hyper-
parameters (e.g., in the number of hidden layers and
neurons per layer). This is not due to fine-tuning, and in
the Supplemental Material [51], we demonstrate that we
can successfully train the neural networks in all scenar-
ios with one common set of hyperparameters. The
strategies found by the neural networks are not influ-
enced by using different sets of hyperparameters.
Different hyperparameters may influence the training
time, etc. In Table II, we summarize the architecture of
the networks; i.e., we list the number of neurons in
each layer.
Each output neuron represents one action that can be

performed by the agent, and, thus, the output layer size is

TABLE I. Physical parameters.

Figures 3–5,7 decoherence time Tdec 1200
Figure 6 single-qubit decoherence time Tsingle¼Tdec=μ21 500
Figures 3–5,7 number of time steps T 200
Figure 6 number of time steps T 100
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equal to the number of actions. In the bit-flip scenarios
(Figs. 3–5,7), the actions are CNOT gates according to
connectivity, measurements along z as indicated in the
corresponding sketches, deterministic bit flips on each qubit,
and idle. When dealing with correlated noise, cf. Fig. 6, the
available actions are instead measurements along x and y on
all ancilla qubits, and the idle operation. Note that our whole
approach is general and able in principle to deal with
arbitrary quantum gates.
The hyperparameters used for training the state-aware

networks are summarized in Table III.
The hyperparameters used for training the recurrent net-

work [cf. Figs. 7(b) and 7(c)] are summarized in Table IV.

Our RL implementation relies on the Theano framework
[65] (and Keras for defining networks).

APPENDIX L: COMPUTATIONAL RESOURCES

The computationally most expensive tasks in this paper
are the training runs of the state-aware networks depicted in
Figs. 3, 5, and 7(a). Full training for a given scenario can be
achieved using 1.6 × 106 training trajectories, which can be
run within 6 h on a single CPUþ GPU node (CPU, Intel
Xeon E5-1630 v4; GPU, Nvidia Quadro P5000). Currently,
more than 2=3 of the time is spent on the numerical
simulation of the physics time evolution, which is still
performed on the CPU. We expect that the total run-time
can be improved significantly by a more efficient imple-
mentation and more powerful hardware (including also an
implementation of the physics simulation on the GPU). The
memory consumption is very modest (for these examples,
below 200 MB) dominated mostly by the need for storing
the input to the network for all trajectories inside a batch
(here, 64 trajectories with 200 time steps each) and less by
the network weights (here, up to about 600 000). For a
more detailed discussion, we refer the reader to the
Supplemental Material [51] (Sec. VI).
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