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Abstract. Gravitational waves from merging neutron stars are expected to be

observed in the next 5 years. We explore the potential impact of matter effects on

gravitational waves from merging double neutron-star binaries. If neutron star binaries

exist with chirp masses less than roughly 1 solar mass and typical neutron-star radii

are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for

the chirp masses of galactic neutron-star binaries, then matter will have a significant

impact on the effectiveness of a point-particle-based search at Advanced LIGO design

sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s

first observing run, extreme matter effects lead to up to 10% potential loss in the most

extreme cases.
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1. Introduction

The first detections of gravitational waves from merging binary black holes [1–3] have

ushered in the era of gravitational-wave astronomy. The Advanced Laser Interferometer

Gravitational Wave Observatory (LIGO) [4], shortly to be joined by advanced Virgo [5]

and KAGRA [6], is also sensitive to gravitational waves from systems with lower

component masses, such as double neutron-star and black-hole/neutron-star mergers

[7, 8]. While no mergers involving neutron stars have yet been detected, upcoming

observing runs with increasing sensitivity and duration will increase LIGO’s chances of

such an observation [9]. Astrophysical estimates of double-neutron-star merger rates,

which are not yet constrained by the lack of LIGO detections, predict ∼ 0.2-200 detected

mergers per year once LIGO reaches design sensitivity near the end of this decade [8,9].

The detection of lower-mass binary neutron star (BNS) mergers will require

matched-filtering: comparing the detector output to a predicted signal [10] generated

for particular source parameters. The first instance of a detected signal found through

matched filtering was recorded in December of 2015 as a 22-solar-mass coalescence

(GW151226) [2]. LIGO’s compact binary coalescence matched-filter searches cover

binary component masses ranging from [1.0, 100]M� for core searches [7, 10], and have

also been used to search for higher-mass mergers [11].

Early investigations of gravitational waves from merging neutron stars [12–14]

predicted that tidal interactions would be small until the final stages before merger,

at high gravitational-wave frequencies. As a result, search strategies for gravitational

waves from binary neutron stars were developed using point-particle inspiral models

[15, 16]. The effectiveness of the point-particle search for initial LIGO was confirmed

in Berti et. al. [17]. However, the impact of matter on the final cycles continued to

drive interest in measuring neutron-star equation of state (EOS) or radius from the

detected signals [18]. Matter effects are now studied with a combination of analytic and

numerical investigations of the impact of the neutron-star equation of state on emitted

gravitational waves. Their signature provides a possible measurement of equation-of-

state related quantities. However, matter effects coming from the finite size of neutron

stars are not included in the Advanced LIGO template banks—the set of waveform

models that detected signals are compared to during matched-filtering.

In this work, we will explore the size of matter effects over the full low-mass

region targeted by ground-based detector searches, component masses of [1.0, 2.0]M�,

where both components are expected to be neutron stars and matter effects are most

significant.

Neutron stars have been observed with well-measured masses ranging from 1.17 to

2.0M� [19], with those in double-neutron-star binaries bounded by the most unequal-

mass system, J0453+1559, with component masses 1.174M� and 1.559M� [20]. With

a narrow observed range of masses in mind, and due to computational limitations, many

previous studies of the impact of matter effects have focused on canonical equal-mass

systems with 1.35M� or 1.4M� components.
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In this paper, we explore the relative sizes of waveform effects to determine the

potential impact of matter on Advanced LIGO searches and parameter estimation. We

compare the impact of incorporating matter into the waveforms to that of underlying

relativistic point-particle modeling choices, and we compare the impact of leading-order

post-Newtonian matter effects to that of a numerically simulated neutron-star merger.

We assess the importance of including matter effects for Advanced LIGO’s BNS search

as well as for parameter estimation.

2. Waveform models considered

LIGO uses a number of waveform approximants: approximate predictions for the

gravitational waves produced by an astrophysical system following the Einstein Field

Equations. We focus on three choices in this study, named TaylorF2, TaylorT4, and

EOBNRv2 in LIGO Algorithms Library (LAL), which are available for LIGO/Virgo

searches and analysis [21].

2.1. Waveforms without matter

TaylorF2 and TaylorT4 are, respectively, a frequency-domain and time-domain example

of a post-Newtonian (PN) expansion, used to quickly model the orbital phase of a system

and the resulting gravitational waveform [22]. By default, these approximants assume

the components are point particles and that the objects are moving slow relative to

the speed of light. These PN expansions are calculated to specific orders, and because

calculating higher order terms is difficult, different re-expansion techniques diverge when

the absent higher order terms become important. Because gravitational wave signals

from compact binary mergers chirp, or increase in frequency and amplitude as the

system evolves, these approximants break down near merger as the velocity of the

bodies approach the speed of light.However, since the merger of neutron stars is at

much higher frequency than LIGO’s most sensitive region, the TaylorF2 approximant is

the current model used to search for signals in the BNS region of the parameter space

(m1,m2 ≤ 2). A second PN choice, TaylorT4, gives a reference for the differences within

PN approximants when compared to TaylorF2. TaylorT4 was chosen in particular as it

agrees well with numerical results when the mass ratio q = m1

m2
≈ 1, which is true for

the space we are looking at as qmax = 2 for BNS. [23]

Effective-One-Body (EOB) models, or phenomenological waveforms calibrated to

numerical simulation results, are required to accurately capture the underlying matter-

free dynamics seen in a black hole merger. Here, we use an EOB approximant that is

calibrated to numerical relativity over a wide parameter space as an accurate inspiral,

merger, and ringdown for a matter-free binary black hole system [24].
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Figure 1. Curves illustrating the mass-radius relationship of the stars for the given

EOS. The gray band shows the full low-mass region that is explored throughout

this paper. The mass-radius relationships are calculated using lalsim-ns-params by

specifying the four parameters that make up the piecewise polytrope: see Table 1

2.2. Waveforms with matter

We explore both the leading-order tidal contributions of matter on the gravitational

waves and the additional impact of a fully relativistic merger from the numerical

simulations of [25].

The TaylorT4 and TaylorF2 approximant have the option implemented for the EOS

to be set which allows tidally effected PN waveforms to be studied [26]. The strength

of the tidal contribution is specified by a dimensionless tidal deformability parameter,

Λ. This tidal parameter is defined as

Λ ≡ 2

3
k2

(
R

M

)5

(1)

where R is the radius, M is the mass, and k2 is the quadrupole love number [27, 28].

It is determined by the EOS for a given mass of star. We determine the parameters

for a span of equations of state that range from a moderate APR4 equation of state,
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compatible with many modern astrophysical constraints, as well as more extreme cases

to show the effect of unexpectedly large-radii neutron stars on LIGO searches. Realistic

EOS are specified in the piecewise polytrope formalism using three adiabatic indices

and the pressure at the plane separating region 1 and 2 [29]. The Equations of State

used here are defined in [25,27,30].

EOS logP1(
dyne
cm2 ) Γ1 Γ2 Γ3

APR4 34.269 2.830 3.445 3.348

H 34.5036 3.0 3.0 3.0

H4 34.669 2.909 2.246 2.144

MS1 34.858 3.224 3.033 1.325

2H 34.9036 3.0 3.0 3.0

Table 1. Parameters of the piecewise polytrope EOS used in this work. These

quantities can be specified in the lalsim-ns-params command to give the Λ value

of the star. PyCBC’s get td waveform accepts this Λ quantity for certain PN

approximants, allowing us to study the gravitational wave output of tidally affected

stars.

The mass-radius relationship of the EOSs considered in this paper are shown in

Figure 1.

Finally, PN approximants diverge near merger, and nonlinear interactions between

the two neutron stars may produce additional effects on the orbits beyond the leading-

order tidal contributions. Numerical simulations of Einstein’s Field Equations with

relativistic hydrodynamics capture the stars’ full interaction as they merge, but are too

expensive to generate or to make enough simulations to sufficiently cover the entire

detectable parameter space. The current state of BNS numerical simulations organized

by component mass and number of simulations is summarized in Figure A1. Here,

we include representative examples of full numerical merger in this study using hybrid

waveforms constructed from the numerical mergers over a range of mass and mass ratio

in [25]. We employ the TaylorT4 post-Newtonian model for the early inspiral model,

but rely for the last orbits and the post-merger on Numerical simulations.

The hybrid waveforms used in this study were created by reading in an existing

numerical simulation and ‘stitching’ it onto the end of PN with the same parameters.

The procedure roughly follows [27], defining a match region where the waveforms are

aligned to be maximally correlated, then linearly turning on the numerical waveform

through a modified windowing function at the same rate the PN waveform is turned off,

over ≈ 5− 7 cycles. An example hybrid waveform is shown in Figure 2. The values of

each parameter for the corresponding EOS can be found in Table 1 [30].
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Figure 2. Illustration of the construction of a hybrid waveform. The numerical

simulation data is from [25]. This is a zoomed in window; note that the PN part of

the waveform extends to time t=0.

3. Size of waveform differences

In order to make statements about which waveform modeling choices have the greatest

effect on waveform variation and searches, we first define the ability to distinguish

between two different waveforms.

Take the noise weighted inner product between two waveforms h1 and h2, with a

noise power spectral density Sn(f),

〈h1|h2〉 ≡ 4Re

∫ ∞
0

h∗1(f)h2(f)

Sn(f)
df. (2)

The characteristic signal to noise ratio is ρ ≡ 〈h|h〉 12 . Two waveforms are estimated to

be indistinguishable if the quantity [27,31],

||δh|| ≡ ||h2 − h1|| ≡
√
〈h2 − h1|h2 − h1〉 ≤ 1. (3)

This quantity is essentially the signal to noise ratio of the difference between the two

waveforms that are being compared. If this quantity is less than 1, the waveforms’

differences are smaller than the noise. We record the maximum distinguishable distance

as the distance at which ||δh|| = 1, although of course it is not guaranteed that the effect

will be distinguishable in practice at that distance. For comparison, we also record the

maximum detectable distance of a set of BNS systems, where the characteristic signal

to noise ratio is ρ = 8, also referred to as the horizon distance Dhorizon.

In order to isolate which effects contribute the most to waveform variation, we

calculate these distances for a large set of example binary neutron star systems where
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component masses are uniformly drawn from the mass range [1.0, 2.0]M�. Component

masses are held constant between h1 and h2 and component stars are not given spin.

In Figure 3, characteristic distances are plotted as a function of the chirp mass of the

system, where chirp mass is given as

Mc =
(m1m2)

3
5

(m1 +m2)
1
5

. (4)

Appendix B compares results in terms of total mass and mass ratio.
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Figure 3. Maximum distinguishable distance between two given system as a function

of chirp mass. The purple solid line is the max detectable distance for a BNS system

at design sensitivity corresponding to a signal to noise ratio of 8. The gray region

represents the chirp mass of of previously observed BNS systems [19]. Note that a

1.4,1.4 M� system corresponds to a chirp mass of ≈ 1.22. Waveform models used in

this figure include the Effective One Body (EOB), TaylorF2 (F2), TaylorT4 (T4), and

a tidal TaylorT4 (TT4).

The maximum distinguishable distances can be compared to the horizon distance to

estimate what fraction of detected signals may be affected by a given waveform distance.

The horizon distance characterizes a volume containing detectable sources with the

detector at the center. Similarly, the distinguishable distances in Figure 3 characterize
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a volume of space within which the two systems being compared are distinguishable.

By taking the ratio of these two volumes, the fraction of the sensitive volume of the

detectors where two waveforms being compared are distinguishable can be found by

D3
distinguishable

D3
horizon

. (5)

This quantity is plotted as a function of the chirp mass in Figure 4. Note that when the

distinguishable distance goes past the detectable distance, as is the case for the tidal

curves in Figure 3, this means these two systems are distinguishable up to the horizon

distance. This is shown in Figure 4 by the two curves reaching 1 on the fraction of

sensitive volume where the two waveforms would be distinguishable.
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Figure 4. The fraction of the detector’s sensitive volume where differences between

the indicated waveform models would be indistinguishable, as a function of chirp mass.

The differences between matter-free approximants are indistinguishable for 70% or

more of the volume, but for low-mass systems, with an EOS-dependent mass cutoff,

all detected signals may be affected by tides.

We first note that the semi-analytic comparisons, EOB and TaylorF2 to TaylorT4,

are below the maximum detectable distance for all masses. In particular, the EOB

vs T4 (red) comparison shows the maximum distinguishable distance for these two

approximants ranges from ≈ 50−100 Mpc. This is roughly 1
4

to 1
3

of the horizon distance
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for any given mass combination. When converted to volumes, this indistinguishable

region corresponds to 98% to 96% of LIGO’s total sensitive volume. Therefore, for this

study, the difference between EOB and T4 approximants is insignificant. However, the

comparison of the two PN approximants TaylorT4 and TaylorF2 shows somewhat larger

impact, affecting ∼30% of LIGO’s sensitive volume–this is in line with previous studies

showing that systematic error from choice of PN approximants is comparable in size to

tidal effects for typical-mass systems.

The most significant waveform modeling effects that emerge from this study are the

leading-order tidal effects. The impact of neglecting tidal effects is shown in Figure 3 for

a moderate (APR4) and extreme (2H) EOS. For lower mass systems, these curves were

found to be marginally distinguishable well past the horizon distance. In particular,

it seems possible for large tidal waveform effects to bias parameter estimation for all

detected signals with support in the low-mass region of the BNS parameter space. Given

the significance of this difference, we also further investigate the tidal versus non-tidal

cases in terms of potential search impacts in the following sections.

The final check we make is to evaluate the relative impact of numerical merger

effects by introducing hybrid waveforms. These hybrids come from attaching the 33

numerical merger simulation waveforms of [25] to a tidal TaylorT4 waveform with the the

same parameters, and comparing that hybrid to a tidal TaylorT4 alone. The waveform

differences measured are thus the matter effects that come from the numerical merger

and post-merger. The maximum distinguishable distances for numerical waveforms,

marked in black in Figure 3, are comparable to the range of significance of varying the

PN approximants; they are comparable to the size of the pure PN tidal effects for the

moderate APR4 EOS and will be important to assess for systematic error in parameter

estimation.

4. Matter impact on Matched Filtering

We next turn to assess in more detail the effect of matter, using the dominant tidal

contributions established in the previous section, on the matched-filtering of signals.

This is a method used to find unknown signals in some noise by comparing it with a

known signal, or template. Candidates are identified using the filter output 〈s|h〉 (Eq.

2) with known signal s and a normalized template h.

4.1. Match calculations

We first evaluate the match between two waveforms h1 and h2 for comparison by taking

the overlap

O(h1|h2) =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
. (6)

The match is then defined by maximizing the overlap over the extrinsic arrival time and

phase of the signal,
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M(h1|h2) = max
φ,t
O(h1|h2(φ, t)). (7)

This quantity varies between 0 and 1, with 1 indicating that the two waveforms are

identical and 0 indicating they are orthogonal.
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Figure 5. Match of Tidal TaylorT4 with TaylorF2 as a function of chirp mass of

the system. LIGO’s standard 3% maximum mismatch is illustrated by the blue line.

The extreme EOS is below this for a large range of chirp masses, while the moderate

EOS is below for the lowest mass systems at design sensitivity. The integral quantities

calculated in this figure used a low cutoff frequency of 30 Hz. The gray region represents

the chirp mass of previously observed neutron stars [19].

We can make a first estimate of how many signals could be lost by recovering

signals with a template bank that does not include tidal effects. By taking the match

between a tidal TaylorT4 waveform with the existing template bank in a point by point

comparison, we can estimate the percentage loss in signals by calculating 1− (1−M)3,

where M is the match [31]. A match below the fiducial 0.97 that sets template-bank

spacing by allowing for ∼ 10% loss in signals indicates a potentially significant effect. A

more realistic assessment of search impact will be found with a more computationally

intensive template bank study of Section 4.2.
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Figure 5 shows how well the TaylorT4 waveform with tides matches with the

corresponding TaylorF2 template with identical mass parameters. Neutron-star EOS are

used to calculate the tidal deformability for the TaylorT4 signals. Results are labelled

in Figure 5 as point-particle (no tides), moderate EOS (APR4), and extreme EOS (2H),

where the 2H EOS effectively gives an upper bound on the tidal effects seen in realistic

EOS.

Figure 5 shows that even in O1 sensitivity, there could have been a significant loss

in signals for the lower mass systems if the extreme 2H EOS described astrophysical

neutron-star matter. Furthermore, as LIGO gets more sensitive at higher frequencies at

design sensitivity, the fraction of potentially lost signals increases.

It is worth noting that the match is not directly linked to the overall sensitivity

(i.e. the horizon distance) of a given detector, but depends on the relative sensitivity at

different frequencies. This is notable in explaining the differences in match using the O1

Livingston and O1 Hanford noise curves. Hanford was more sensitive than Livingston

in the low frequency region below ∼ 100 Hz, so this region is more heavily weighted in

matches for Hanford than for Livingston. Since tidal effects come in at high frequencies,

they had a smaller relative impact with the Hanford sensitivity curve. Both O1 noise

curves refer to the average measured sensitivity during Sept 17th to Oct 20th, 2015 [32].

The variation in match and distinguishable distance that lie between the two given

Equations of State so far is illustrated in Figure 6 by showing a range of EOS. The

original curves for the APR4 and 2H equations of state are plotted, with the addition of

three others to fill in the approximate range of moderate to extreme tidal effects. In the

left subplot of Figure 6 we see the same match calculation as Figure 5 and in the right

subplot we see the same distinguishability calculations as Figure 3. This reinforces the

sensitivity of our results to the still-unknown neutron-star EOS.
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Figure 6. Calculation of matches (left) and maximum distinguishable distance (MDD)

(right) for the H4, MS1, and H equations of state as a function of chirp mass. All

calculations done in this figure are using design sensitivity noise curves.
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4.2. Template bank recovery

In practice, gravitational waves are not recovered using a template targeted precisely

to their mass and other parameters, but by a template bank constructed to discretely

sample a range of masses and spins. Here, we use the template bank used by LIGO to

search for BNS in the first observing run, which contains templates in the BNS mass

range [1, 2]M� with dimensionless spins ranging from [0, 0.05] [8], and quantitatively

estimate how well it would have captured signals with moderate or extreme tidal

contributions from matter effects. The evaluation of template banks involves injecting
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Figure 7. Injections of waveforms at fixed masses with matter effects predicted by a

range of equations of state. The template bank has been constructed with a minimal

fitting factor of 0.97, leading to an averaged “effective” fitting factor of roughly 0.985

in the absence of matter effects. The effective fitting factor for each point injection is

plotted as a function of chirp mass for different equations of state. The effective fitting

factor was calculated using noise curves from O1 [33].

simulated signals into noise and determining how well the template bank was able to

recover them [10]. The sensitivity of this bank to a gravitational waveform hs with

unknown parameters can be characterized by the fitting factor [34,35]

FF (hs) = max
h∈{hb}

M(hs, ht). (8)



Matter Effects on Searches for Gravitational Waves 13

The fitting factor is the match maximized over all templates in the bank. This

determines the maximum possible SNR with which a particular waveform can be

recovered, but does not necessarily identify the true parameters of the system.
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Figure 8. Injections of waveforms at fixed masses with matter effects predicted by

a range of equations of state. As in Fig. 7, the template bank has been constructed

with a minimal fitting factor of 0.97, yielding an effective fitting factor at each point

of 0.984. The effective fitting factor for each point injection is plotted as a function of

chirp mass for different equations of state for design sensitivity noise curves.

In Figure 9 we show how this fitting factor varies as a function of the two component

masses. In this Figure we have used an O1 sensitivity curve—an average of the

Livingston and Hanford curves used earlier—and chosen 100,000 points with component

masses chosen randomly from a uniform distribution between [1, 2]M�, component

dimensionless spin magnitudes are chosen to be aligned and uniformly between 0 and

0.05; the orientations and sky location parameters are chosen isotropically. This is

shown for both the APR4 and 2H equation-of-states. We see no clear pattern for the

moderate EOS (APR4), but a clear mass dependence on the fitting factor when using

the 2H equation-of-state.

In Figures 7 and 8 we show an averaged fitting factor as a function of chirp mass.

In these plots we have selected 150 unique values of component mass—from a uniform
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distribution between [1, 2]M�—and at each point simulated 2000 signals with the same

distribution of component dimensionless spins, orientation and sky location parameters

used in Figure 9. We then take the average of these fitting factor values before plotting

the data. In Figure 7 we use the O1 averaged sensitivity curve and plot results for the

five equation-of-states that we consider in this work, and in Figure 8 we show the same,

but instead using the Advanced LIGO design sensitivity curve.
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Figure 9. Template bank recovery of waveforms with tidal effects at O1 sensitivity

using moderate APR4 equation of state (left) and an extreme 2H equation of state

(right).

The rate of astrophysical events R can be related to the observed rate of BNS events

Λ by

Λ = R〈V T 〉, (9)

where the quantity 〈V T 〉 is the volume of space-time that the detectors are sensitive

to. Abbott et al [8] note that if the effect of tides is extreme, the true sensitive volume

〈V T 〉 will be smaller than calculated, roughly by a factor of the fitting factor cubed for

injections of the systems considered. We find here that this is limited by the matter

effects for the lowest-mass 1.0,1.0M� systems if typical radii are between 12 and 13

km, as in the H EOS. If neutron-star radii are larger, around the 14 km of the 2H

equation of state, all neutron-star chirp masses observed in galactic binaries will have

noticeable matter effects on the template bank fitting factors, with particularly large

impact (fitting factor down to 0.9) at low mass or with even larger radii like the 16

km of the 2H equation of state. This would translate into a low-mass rate constraint

that is only 0.93 ' 0.73 as strong as estimated using point-particle templates, an error

of up to ∼ 27%. Strong tidal effects would have a significant impact on estimated

〈V T 〉, however, note that the upper limits on rates from the first observing run [8] have

competing uncertainties of 18% from calibration uncertainties and 40% due to choices

of prior.
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5. Conclusions

Using approximant and hybrid waveforms we have shown that tidal effects are important

for BNS searches with advanced LIGO, and are more important than inter-approximant

differences or numerical effects. We show also that tidal effects are particularly

significant for low-mass systems and should be considered during parameter estimation.

We estimate the impact on searches by calculating the recovery of signals using realistic

template banks and find that for extreme EOSs, signal loss from tidal effects is significant

in O1 and will continue to matter at Advanced LIGO’s design sensitivity. Even for

moderate EOS, some signal loss is expected for the lowest mass systems.

6. Acknowledgements

This material is based upon work supported by the National Science Foundation under

Grant No. 1307545. Computational resources were provided by the ORCA cluster

at California State University, Fullerton (CSUF), supported by CSUF, NSF grant

No. PHY-142987, and the Research Corporation for Science Advancement. Results

were generated using the PyCBC software package [36–38]. The authors thank Kenta

Hotokezaka, Koutarou Kyutoku, and Masaru Shibata for kindly sharing numerical

waveform data.



Matter Effects on Searches for Gravitational Waves 16

Appendix A. BNS Simulations
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Figure A1. A collection of BNS simulations organized by component mass created by

taking data from Refs [39–51]. The size of the points indicate how many simulations

are known to have that mass combination, with a mode of 1.35, 1.35 M� (occurring 25

times). The data was organized such that m1 ≥ m2 regardless of how it was depicted

in the respective work. Note that other simulation parameters such as the different

equations of states of the stars (10+), initial gravitational-wave frequency (370-700+

Hz), duration of simulation (ranging from the order of milliseconds to seconds), or any

other relevant parameters are not shown.

Appendix B. Total mass versus chirp mass

We plot characteristic distances as a function of chirp mass. It turns out that the size

of the tidal effect is primarily determined as a function of chirp mass, leading to the

line-like plots of Figure 3; in contrast, the tidal distinguishability comparisons have a

distinct thickness to them when plotted as a function of total mass as seen in Figure

B1. At a total mass of 3 M�, where the potential mass ratio is largest, the distance

differs by about 100 Mpc between the cases of 1.5,1.5 M� and 1.0,2.0 M�. This means

that higher mass ratio systems have leading-order tidal effects that are distinguishable
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out to a farther distance.
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Figure B1. The tidal TaylorT4 vs TaylorT4 distinguishability calculation weighted

by mass ratio.
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Lippuner J, Muhlberger C D, Foucart F and Duez M D 2016 Phys. Rev. D 93 044064 (Preprint

1509.05782)

[24] Pan Y, Buonanno A, Boyle M, Buchman L T, Kidder L E, Pfeiffer H P and Scheel M A 2011 PRD

84 124052 (Preprint 1106.1021)

[25] Hotokezaka K, Kyutoku K and Shibata M 2013 87 044001 (Preprint 1301.3555)

[26] Wade L, Creighton J D E, Ochsner E, Lackey B D, Farr B F, Littenberg T B and Raymond V

2014 Phys. Rev. D 89 103012 (Preprint 1402.5156)

[27] Read J S, Baiotti L, Creighton J D E, Friedman J L, Giacomazzo B, Kyutoku K, Markakis C,

Rezzolla L, Shibata M and Taniguchi K 2013 88 044042 (Preprint 1306.4065)

[28] Pan Y, Buonanno A, Chen Y and Vallisneri M 2004 PRD 69 104017 (Preprint gr-qc/0310034)

[29] Read J S, Lackey B D, Owen B J and Friedman J L 2009 79 124032 (Preprint 0812.2163)

[30] Hotokezaka K, Kyutoku K, Okawa H, Shibata M and Kiuchi K 2011 83 124008 (Preprint

1105.4370)

[31] Lindblom L, Owen B J and Brown D A 2008 78 124020 (Preprint 0809.3844)

[32] Abbott B P, Abbott R, Abbott T D, Abernathy M R, Acernese F, Ackley K, Adamo M, Adams

C, Adams T, Addesso P and et al 2016 Classical and Quantum Gravity 33 134001 data can be

found on the DCC from document number LIGO-T1600030-v2 (Preprint 1602.03844)

[33] Barsotti L and P F Tech. Rep. T1200307, The LIGO Scientific Collaboration and the Virgo

Collaboration (2017), https://dcc.ligo.org/LIGO-T1200307/ public.

[34] Brown D A, Harry I, Lundgren A and Nitz A H 2012 Phys. Rev. D 86 084017 (Preprint 1207.6406)

[35] Harry I W, Nitz A H, Brown D A, Lundgren A P, Ochsner E and Keppel D 2014 Phys. Rev. D

89 024010 (Preprint 1307.3562)

[36] Dal Canton T et al. 2014 Phys. Rev. D90 082004 (Preprint 1405.6731)

[37] Usman S A et al. 2016 Class. Quant. Grav. 33 215004 (Preprint 1508.02357)

1607.07456
1304.0670
1705.01845
1704.04628
gr-qc/9609014
astro-ph/9208005
gr-qc/0509116
gr-qc/0208011
0709.1915
1603.02698
1509.08805
https://wiki.ligo.org/DASWG/LALSuiteInstall
https://wiki.ligo.org/DASWG/LALSuiteInstall
0907.0700
1509.05782
1106.1021
1301.3555
1402.5156
1306.4065
gr-qc/0310034
0812.2163
1105.4370
0809.3844
1602.03844
1207.6406
1307.3562
1405.6731
1508.02357


Matter Effects on Searches for Gravitational Waves 19

[38] Nitz A, Harry I, Biwer C M, Brown D, Willis J, Canton T D, Pekowsky L, Dent T, Williamson

A R, Capano C, De S, Machenschalk B, Kumar P, Cabero M, Massinger T, Lenon A, Fairhurst

S, Reyes S, Nielsen A, shasvath, Pannarale F, Singer L, Macleod D, Babak S, Gabbard H, Sugar

C, Zertuche L M, Khan S, couvares and Bockelman B 2017 ligo-cbc/pycbc: O2 production

release 12 URL https://doi.org/10.5281/zenodo.809404

[39] Lehner L, Liebling S L, Palenzuela C, Caballero O L, O’Connor E, Anderson M and Neilsen D

2016 Classical and Quantum Gravity 33 184002 (Preprint 1603.00501)

[40] Feo A, De Pietri R, Maione F and Löffler F 2017 Classical and Quantum Gravity 34 034001

(Preprint 1608.02810)
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