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Abstract

Topology has appeared in different physical contexts. The most prominent application is topologically
protected edge transport in condensed matter physics. The Chern number, the topological invariant
of gapped Bloch Hamiltonians, is an important quantity in this field. Another example of topology, in
polarization physics, are polarization singularities, called Llines and C points. By establishing a
connection between these two theories, we develop a novel technique to visualize and potentially
measure the Chern number: it can be expressed either as the winding of the polarization azimuth
along Llines in reciprocal space, or in terms of the handedness and the index of the C points. For
mechanical systems, this is directly connected to the visible motion patterns.

1. Introduction

Ever since the discovery of the transverse wave nature of electromagnetic waves, the study of the polarization
properties of such vector waves has attracted a great deal of attention and led to the introduction of novel
mathematical concepts. For a generic plane wave, the tip of the electric field vector traces an ellipse that defines
the polarization state. In just the same way, we can describe the mechanical motion of a single pendulum that is
free to move along two orthogonal directions.

For an arbitrary (monochromatic) field, its polarization becomes position-dependent, and the resulting
polarizaton field can display complex spatial patterns. Again, there is a mechanical analogy, in the form of 2D
arrays of coupled mechanical oscillators. Such coupled oscillator arrays have already been used as a platform to
implement topologically protected transport of sound waves, using coupled pendula [1] and coupled gyroscopes
[2]. Eventually, they could also be realized on the nanoscale, e. g. using nanopillar arrays [3, 4]. The time-
evolution of such an array under monochromatic driving also exhibits elliptical motion that has the same
mathematical description as the electromagnetic polarization fields.

The study of the complex spatial polarization patterns in random electromagnetic waves hasled to
interesting topological concepts. The central objects of interest are lines where the polarization gets linear, and
points with circular polarization. These ‘Llines’ [5, 6] and ‘C points’ [6, 7] have been studied thoroughly in
random optical fields, but are still not widely known. However, they have been found in many different physical
contexts, for example the sunlight in the sky [8] and speckle fields [9]. In recent years, unconventional C points
in optical fields where the rotation of the electric field occurs in a plane containing the propagation direction of
light have been both predicted theoretically and verified experimentally [10-12].

There is, of course, another branch of physics where topology has become very prominent recently: the
analysis of band structures. According both to their phenomenology and their theoretical description, two
categories can be identified. On the one hand, there are the Chern insulators associated with the quantum Hall
effect [13, 14] and the anomalous quantum Hall effect [15]; they exhibit chiral edge transport as a result of a non-
trivial topological invariant, the Chern number [16—18]. On the other hand, topological insulators have been
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established by the discovery of the quantum spin Hall effect [ 19—23]; their edge channels are helical, and their
topological properties are encoded in a binary (Z,) topological invariant [24]. The importance of those
topological features on transport is by now well-documented [25].

In the present work, it is our aim to connect these two strands of topology, in a general way that is particularly
useful for mechanical systems. Our approach helps to visualize (and, in principle, measure) the Chern numbers
based on the polarization fields of bulk excitations. In fact, we offer two different approaches to extract the
Chern numbers of the band structure, one based on L lines and the other based on C points.

We will explain how this generalizes the well-known Skyrmion configuration method [26, 27]. Furthermore,
we will discuss that our method is an alternative to other recently explored techniques to obtain Chern numbers
for bosonic systems, both from bulk features [28, 29], from dynamics at the boundary [30] and in more general
settings [31, 32].

Besides the mechanical arrays of pendula and nanopillars mentioned above, we will also explain how our
method can be applied in general to arbitrary mechanical structures (e. g. phononic crystals), and also to the
electromagnetic fields in photonic structures. It is, thus, applicable in principle to a large class of the recently
proposed or implemented topological devices for sound waves [1, 2, 33—44], light waves [45—57], ultracold
atoms [58, 59], or magnons [60—64]. These include Chern insulators, as well as time-reversal preserving
topological insulators whose Hamiltonian can be decomposed into a pair of Chern insulator Hamiltonians with
opposite Chern numbers.

2. Connecting topological bands to polarization fields

2.1.Polarization fields

In this section, we will very briefly provide a qualitative description of polarization fields, L lines [5, 6] and C
points [6, 7]. The prototypical example is a monochromatic electromagnetic wave. We observe a two-
dimensional cut through this field, and restrict to the projection on its in-plane components. For purely
transverse polarization, this is naturally given for a plane perpendicular to the propagation direction. Using the
common complex representation of the oscillating electric field, we are hence dealing with a (continuous) two-
component complex vector field in two spatial dimensions.

This situation can be depicted as follows: for each point in space, we draw the orbit that the electric field
vector traces during one cycle of oscillation. In general, this will be an ellipse (traversed with a certain
handedness). A typical example for a random polarization pattern is shown in figure 1. Two particular features
stand out: first, all the points with a linear polarization pattern (where the ellipse degenerates into a line) are
arranged on closed curves; these are called the L lines. Second, there are isolated points of circular polarization,
the so called C points.

Both Llines and C points are topologically robust in the sense that they are stable under smooth
deformations of the polarization field. That is, they will only deform and move around, but they cannot suddenly
appear or disappear. Destruction and creation of C points is only possible pairwise, i. e. two C points of the same
handedness (same circular polarization) have to annihilate, and always two C points of the same handedness are
created together. The only way for an L line to disappear is to contract down to a point, and new L lines can only
emerge in the inverse process; in addition, L lines can also merge and split.

2.2. Constructing an auxiliary polarization field in momentum space for Bloch bands
Now, we will look at a different situation and relate it to the polarization picture subsequently. We consider a
particle or excitation hopping around on a lattice in two dimensions. We will assume that there is some internal
degree of freedom associated with the particle, or, equivalently, a certain number of basis states situated at each
lattice site. The physical origin may vary: the spin of a particle, the atomic orbital for atoms in a crystal (s, p, d, ...),
the different oscillation directions of a mechanical resonator in a phononic lattice, the sense of circulation of the
whispering gallery modes in a lattice of coupled optical disk resonators [65], or the polarization of photon-
exciton polaritons in micropillars [66—68]. In addition, one unit cell might consist of multiple sites, depending
on the lattice geometry. For all these cases, we will speak of the ‘polarization degree of freedom’.

The total number N of basis states associated with a unit cell of the Bravais lattice determines the number of
bands. In the following, we will denote the real-space basis states as | j, s) where j € Z?2 labels the unit cell and

s € {1, ..., N} refers to the polarization degree of freedom.
The eigenmodes of every Hamiltonian H respecting the translational invariance are the Bloch states
|@,(K)) = 30 W (k) €715 5), )
J>s

where n is the index of the band (with1 < n < N)and ?} the position of the unit cell.
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Figure 1. Polarization singularities in a random field. We imagine a monochromatic electric field with two components in the usual
complex representation, & (%, ¥). The blue ellipses indicate the corresponding orbits E@) = Re(z' e~ 1wl of the electric field vector; we
can only draw a finite selection of points, here arranged on a square lattice, but note that the field itself is continuous and defined in
every intermediate point as well. The polarization becomes exactly linear on the Llines (green) which separate regions with opposite
handedness (white versus gray background), and perfectly circular in the C points (yellow).

In order to make a connection with the polarization fields introduced before, we need to identify a complex two-
component vector field which encodes the Bloch state. The projections of any Bloch wave function along two
arbitrary, linearly independent polarization directions define such a complex vector field in momentum space:

P (E)
—(n),7 s
vt =1

g C2. )
(k)

Without loss of generality, the two projections can always be chosen along orthogonal directions, which we will
assume in the following.

For particles with spin-1/2 or equivalent systems, like mechanical oscillators with two degrees of freedom
(oscillation directions), s; and s, can refer to the two basis states of the internal degree of freedom. If the lattice is a

non-Bravais lattice, the projection onto one sublattice is a natural choice. In the mechanical case, JJW (k) corresponds

to the directly visible motion pattern 7 (t) = Re(lz(n) (E e~ %) on the selected site. We note that, in the most general
case, the orbit will be elliptical, relating directly to the polarization patterns observed in electromagnetic waves.

2.3. Geometrical interpretation of the polarization
The vector field 1_/’1(”) (k) defined in equation (2) can be rewritten in the useful parameterization

I® = VS eieo(cos 6 —sin 9)( coX ) )

sinf cos @ J\isiny

In a mechanical setting, the angle 6 (k) gives the direction of the major axis of the elliptical orbit and is therefore
called the polarization azimuth, y (k) represents a measure of its ellipticity and handnedness, and S (the total
intensity along the two projections) is the squared diagonal of the axis-aligned bounding box, see figures 2(a) and
(b). In addition, ¢ is the oscillation phase which is a gauge freedom for the eigenstate.

One can characterize the polarization of the field 1_/3(”) (E ) by the Stokes parameters [69, 70]

So = il + 9o,

Si = |il* — [9al* = Spcos(2x)cos(26),

Sy = 2Re(¥f1),) = Sy cos(2x)sin(26),

S; = 2Im(¥1h,) = Sosin(2y). (4)
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Figure 2. (a) Parameterization of an elliptical motion pattern: Sy determines the scaling, 6 is the rotation angle of the main axes, and ¢
corresponds to a time offset. (b) Motion patterns for various values of the polarization altitude y which determines the handedness

and the ellipticity, ranging from circular right-handed (south pole, x = —%71’) over linear (equator, y = 0) to circular left-handed
polarization (north pole, x = iw). (c) Representation on the Poincaré sphere. The three coordinate axes S, S, and S; are the Stokes

parameters. A half rotation of the major axis in the two-dimensional physical space is already sufficient for a full rotation around the
S5 axis since it only gives rise to a global minus sign which can be absorbed into the complex phase ¢. Note that two orthogonal states
((alb) = 0) arelocated on opposite spots of the Poincaré sphere.

The parameters S, S, and S; can be identified with the coordinates on the Poincaré sphere, while Sy is the
corresponding radius, see figure 2(c).

2.4. Chern number

By now, it is well-established [25, 27] that Bloch wave functions defined on a two-dimensional momentum space
can be viewed as a mapping from a torus (the Brillouin zone) to a complex vector space, and that close inspection
of this mapping can be used to define topological invariants. We will now consider the situation of an arbitrary
periodic Hamiltonian where time-reversal symmetry is broken (e. g. due to application of a magnetic field, in the
case of electrons). Then, the topological invariant in question is the so-called Chern number (an integer). This
quantity is defined for band insulators where the bands remain distinct, i. e. there is a gap between those bands.
The Chern numbers of individual bands cannot change under smooth transformations of the Hamiltonian as
long as the bands do not touch.

Chern numbers derive their importance from the so-called bulk-boundary correspondence: they can be
used to predict whether there will be chiral, topologically protected edge channels located at the boundary of any
finite sample (and the net number of clockwise versus counter-clockwise channels). In this sense, a bulk
property (the Chern number associated to the infinitely extended periodic system) is connected to the boundary
properties of a finite sample.

The Chern number of the band # can be calculated as

_ 1 7w A (F)] .7 2
Co= 5 ffBZ[vkxAn(k)] ¢, &% € Z, ®)

where 21,1(12' )= —i <(I>n(lz ) |§E|(I)n (12' )) is the Berry connection and €, is the unit vector in the direction of the
z-axis.

The complex amplitudes ¥ (k) from equation (1) completely characterize the Bloch states in the band n.
They can already be deduced by inspecting a Bloch state in a single unit cell. Observation of the polarization
pattern within one unit cell as a function of k is therefore sufficient to determine the Chern number of the nth
band. This may even be of experimental relevance, for platforms like mechanical systems where direct
measurement of the motion pattern in a given Bloch state is feasible.

It turns out that the Chern number can even be calculated by knowing the projections (in polarization space)
of the Bloch state |, (k )) along just two linearly independent directions, as long as these projections do not both

vanish simultaneously for the same quasimomentum k (for a proof, see section 5). This fact is the basis for what
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Figure 3. Interpretation of the Chern number in terms of L lines. (a) Shows the polarization pattern 17}(1)(1_{ ) for the lowest-frequency
band of the mechanical model described in section 6 (¢ /t, = 0.2, fzeeman /1. = 0.02). The polarization is right-handed in an area
centered around the K’ point, and left-handed in the other part of the dashed hexagon. We have indicated the Lline, i. e. the boundary
of these regions where the polarization is linear. While traversing the L line in clockwise direction, the polarization azimuth § winds up

by m,s0z = 1 As explained in section 3, this can be used to predict the Chern number, which is —2z = —1.In order to make the L

line better visible, the plot does not show the basic Brillouin zone itself, but a shifted version as indicated in (b). (c) [llustrates the
general recipe: the traversal direction along the Lline is determined by the handedness of the polarization in the enclosed region, i. e.

counter-clockwise (clockwise) in two upper (lower) cases; the winding of the polarization azimuth 6 is 27z. Any z € %Z is allowed,
and the four examples display all the possibilities with z = :I:%. From the winding numbers z; for all the L lines in the Brillouin zone,
the Chern number C,, can be obtained according to equation (6).

we will discuss in the remainder of this article: the Chern number is directly related to the polarization pattern
encoded in the two-component complex vector field ;ﬁ(n) (k) introduced in equation (2).

3.Llines and Chern numbers

In the previous section, we have shown how to assign to each band # an auxiliary polarization field Fb(n) (l? ), see
equation (2). In the remainder of the paper, we will make use of this field and of the geometrical interpretation of
the polarization to provide a recipe to visualize the Chern number of the band.

A typical polarization pattern is shown in figure 3(a). There, it can be seen that the polarization gets perfectly
linear at the interfaces between the regions with left- and right-handed polarization. These interfaces are
therefore called Llines. They are a generic feature of continuous polarized fields. L lines have been studied
especially in polarized random fields [5, 6]. They are structurally stable upon small perturbations
1_/} (E ) — Fp (E ) + 61_/} (E ). Their robustness can be motivated by a topological argument: because the mapping on
the Poincaré sphere is continuous, any path between two points on different hemispheres, i. e. opposite
handedness, has to inevitably cross the equator where the polarization is linear.

Below, we explain how to simply read off the Chern numbers by inspecting the L lines of the polarization
field. This is possible under a basic assumption: there should be no amplitude vortex in the polarization field.
Amplitude vortices are the points where Sy vanishes. For a two-band model, this condition is equivalent to a
degeneracy point, i. e. the band gap has to be closed there, which implies that in this case the Chern number is
not well-defined anyway. Otherwise, it can always be argued that amplitude vortices are not topologically stable
in two dimensions because they require that four parameters vanish simultaneously (the real and imaginary part
of 11 and 1),). Thus, they do not appear in generic random fields. While they could emerge as a consequence of
some lattice point symmetry (for three or more bands), they will disappear in the presence of a small
perturbation that breaks that symmetry (and does not change the Chern number). Alternatively, one could
eliminate such structures even without modifying the underlying Hamiltonian, by choosing different
projections to define the auxiliary polarization field J)(H)(E ). For the above reasons, the scenario analyzed here
where no amplitude vortex is present is not a special case but rather a generic one.
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Figure 4. Interpretation of the Chern number in terms of C points. (a) Plots the polarization azimuth 6, i. e. how the major axes of the

polarization patterns are oriented, for the same field 12(1) (l? ) asin figure 3(a). The color wheel in (b) tells how to translate a color into
the corresponding direction; note that 6 is defined only up to 7 (not 27). We can see that the § field in (a) has six singularities

(vortices) per Brillouin zone; they correspond to the C points in Tp(l’ (k). The Lline, drawn in white (with arrows indicating the
handedness of the polarization field enclosed inside the Lline), separates the one right-handed (S; < 0) Cpointat K’ from the left-
handed (S3 > 0) C points, one at K and four near to I'. In addition to the handedness, each C point is attributed with an index I € %Z
which is determined by the winding of 6 around this singularity. The numbers near to each C point indicate the value of I - sgn(S;).
Their negative sum — I - sgn(S; (EC)) yields the Chern number, in this example C,, = —1. (c) Shows all the four combinations
with one topologically stable C point, i. e. I = i%: 0 winds up (down) for the upper left (right) and lower right (left) example, and the
two upper (lower) C points are left-handed (right-handed). The resultant value for I - sgn(S;) is given there. These schematic plots are
equivalent to figure 3(c).

In view of establishing a connection between the L lines and the Chern numbers, we define the winding
number z of the polarization azimuth along one L line. This is defined as follows: we observe how the linear
polarization direction changes as we traverse the closed L line in a specified sense. If the polarization turns
around the origin counterclockwise (clockwise), zacquires a positive (negative) sign, and its absolute value is
determined by the number of full turns. This value can be half-integer, since the linear polarization direction is
defined only modulo 180°. For our purposes, we specify that the traversal direction of the Lline should always be
chosen to match the handedness of the polarization field in the enclosed region (clockwise in the example of
figure 3(a)).

We now state (and later prove) one of the main messages of this paper: the winding number z of the
polarization azimuth along this L line is directly connected to the Chern number. In the simplest case with one L
line per Brillouin zone, it is directly given by C,, = —2z. If there are multiple L lines per Brillouin zone, their
contributions simply add up

Ci=-2) a (6)

leL,

In particular, the Chern number is automatically zero if there are no Llines at all.
4. Cpoint classifications and Chern numbers
Next, we show that the Chern numbers can also be related to the properties of the so-called C points [6, 7]. The C

points are the points where the polarization gets perfectly circular. In other words, they correspond to the poles
of the Poincaré sphere, and they are the nodes of the scalar field [71]

o =S + iS, = Sycos(2y) e’ (7)

whose complex phase is directly related to the polarization azimuth 6.

6
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It turns out that the C points can be classified according to four different criteria [7, 72, 73]. Below, we show
that two of these criteria are relevant in determining the Chern number. The first relevant criterium is based on
their handedness, i. e. whether the polarization is purely left-handed (S; > 0) or right-handed (S; < 0). The
other relevant criterium is based on the so-called I classification: the polarization azimuth 6 is not well-defined
ata Cpoint, and the index I counts its winding around the corresponding singularity (in counter-clockwise
direction)

1 1
I=— @ do € —Z. 8
277»¢ 2 ®

Its half-integer nature emerges from the fact that a half rotation of 6 corresponds to a full rotation around the S;
axis, 1. e. it is already sufficient to restore the original elliptical motion pattern. We note thata C point, by
definition, emerges at any crossing of the contours S; = 0 and S, = 0. Whenever any random perturbation is
introduced, all the crossings with T = :I:% are splitted into several C points (the sum over all C points of the I

indexes is conserved in this process). In contrast, those C points with I = :I:% are structurally stable, i. e. they will
not split, and they cannot be created or destroyed spontaneously; pairwise creation and annihilation is however
possible.

It turns out that also the sum of the I indexes weighted by the corresponding handedness (the sign of S; (k))is
conserved for all these continuous transformations. In other words, such a weighted sum over all C pointsis a
topological invariant. In the present setting where the polarization field is associated to the nth energy band of a
translationally invariant system, the topological invariant discussed above can be identified with the Chern
number

Co= Y I sgn(Ss(k)) = 3 2l = — 3 21, )
ceC ceC cely
where C, (C_) contains all the C points with sgn(S; (EC)) >0(0)andC=C; UC..

Equation (9) can be obtained from equation (6) by using that the winding of the polarization azimuth equals
the sum of the enclosed C point indices. The two last conversions in equation (9) are possible because the
winding number along the boundaries of the Brillouin zone has to vanish (contributions on opposite edges will
always cancel), so the unweighted index sum always vanishes: 3~ __.I. = 0.

Like equation (6), equation (9) applies only in the absence of amplitude vortices. Again, as we already
discussed above in the context of L lines, such amplitude vortices are not topologically stable and do not appear
generically. They can typically be eliminated by choosing a different projection. However, if needed, it is easy to
extend equation (9) by their contributions

Co= =2 I sgn($3(k) — > Joy (10)
ceC acA
where A consists of the labels for the amplitude vortices. The concrete value of ], cannot be deduced from the
values of \I/g’)(k) and \Ilgg)(k ) alone, but it can be determined if an additional projection \I/g’)(k) isknown (which
must not vanish at the same point k). Alternatively, J, can be interpreted as the contributions of the C points into

which the amplitude vortex decays under a small perturbation of the Hamiltonian. The treatment of amplitude
vortices is illustrated in figure 5.

5. Connection to other methods and proof

We will now present a proof for our recipe in section 3 to obtain the Chern number from the Llines. In addition,
we will relate the schemes presented in sections 3 and 4 with another, well-known technique to visualize the
Chern number, the Skyrmion configuration method, and discuss common features and differences.

5.1. Kohmoto method

We will prove our main result formula, equation (6), for the Chern number by making a connection to the well-
known analytical method for calculating the Chern numbers which is due to Kohmoto [18]. In Kohmoto’s
method, one fixes a gauge by requiring that the overlap between the Bloch eigenstates of a particular band with a
fixed state, for example | j, s), is a real positive number. When this prescription is well defined in the whole
Brillouin zone, the Chern number can be interpreted as the flux of a curl piercing a closed surface (the Brillouin
zone which is a torus), see equation (5). In this case, Stokes theorem ensures that the Chern number will be zero.
Thus, in all topologically non-trivial cases the prescription will be ill-defined for one or more values of the quasi-
momentum k. These points are commonly referred to as obstructions. The reason why the gauge prescription is
ill-defined at an obstruction is simply that the corresponding overlap matrix element vanishes there. In this
situation, it is neccessary to divide the Brillouin zone into several regions where different gauge conditions are

7
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Figure 5. Interpretation of the Chern number in the presence of amplitude vortices. (a) Is similar to figure 4(a), but now for the field
fb(z) (k) associated to the second band. (b), (d) Zoom-ins at the K and I point, respectively. (b’), (d') Zoom-ins for a slightly modified

Hamiltonian, see below. (c) Amplitude of 7,_/}(2) (K). The crucial difference with respect to figure 4(a) is the presence of an amplitude
vortex, located directly at the K point (cmp. ¢). This point can be taken into account by an additional contribution J to the Chern
number (cmp. equation (10)), but it is impossible to determine its value if no additional component of the Bloch state | D, A )) is
known. Alternatively, the value of ] can be understood intuitively in the following way: the amplitude vortex is unstable and under a
small perturbation it decays into C points. Since the amplitude vortex in (b) is protected by rotational symmetry, it can be destroyed
only by some modification to the Hamiltonian which breaks this symmetry; (b’) and (d’) show the resulting 6 plots. Whereas nothing
significant happens from (d) to (d’), subplot (b’) shows how the amplitude vortex in (b) decays into two C points with contributions
—1/2 and +1/2 (the C point which stays at the K point is surrounded by a tiny L line, and hence left-handed). From this, it can be
concluded that ] = 0. Note that S - €% = ¢/ cos(2x) is discontinuous at C points, so Sp and 26 cannot simply be interpreted as the
amplitude and the phase of a scalar field.

applied. Then, the Chern number is encoded in the phase mismatches ¢, , at the interface between the different
regions, exp(ip,; (l? ) = (D (E )| Pp (E )) where |y p (l? )) is the wavefunction in the gauge chosen in the regions
A and B, respectively. If the subdivision into regions is chosen such that there are no trijunctions, i. e. all the
interfaces are closed loops, the Chern number is

Ci== % ¢ dou (1)
2T Ach
where the sum is taken over interfaces between neighboring regions A, B (where A is enclosed by B), and the
integral is along the respective interface line. In practice, an effective route to analytically calculate the Chern
number is to choose one gauge | D (k )), determine the corresponding obstructions, and, for each obstruction j,
fixa suitable gauge |94, (k )) in a small region around it. This procedure reduces the task of calculating the Chern
number to computing the phase mismatch in a few infinitesimally small regions. This often paves the way to an
analytical treatment.

Our scheme discussed in section 3 can be viewed as a variation of Kohmoto’s method where rather than
trying to fix the same gauge in the whole Brillouin zone and inserting patches where this does not work, we focus
from the very beginning on two different gauge choices. For this purpose, we define the left- and right-handed
components of an eigenstate |®) (here, we omit the band index ) using the corresponding auxiliary polarization
field from equation (2)

1
V2

L

U [®] ==
L[P] N

(T [@] — 1, [@])  WR[P] i= —= (T [P] + 1W,[D)). (12)
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Demanding either ¥ or Uy to be real, we obtain two distinct gauge conditions for the state | )
- ! N |
[P (k)] € RY Up[Pr(k)] € RT. (13)

This implicitely defines the gauge @1 (Pg) by demanding its component ¥; (Ug) to be real-positive; starting
from an arbitrary gauge |®(k)), this can always be achieved by the choices

* * r

— |y (K)). (14)
| [ <1>o<k>]| [Wr[ Do (K)] |

|B(k)) =

We will fix the gauge using the condition for ¥; when the state |®) is in the northern hemisphere of the
Poincaré sphere (corresponding to ¥y | > [¥g], 1. e. left-handed polarization), and otherwise the one for Wy.
This construction is possible because we have assumed that there are no amplitude vortices, so the larger
component can never become zero.

By applying equation (11) to this situation, we see the remarkable fact that knowing two components of the
Bloch band |®), here ¥ and Wy, is sufficient to determine its Chern number as they fix the gauges ®; and Py,
respectively. This already confirms our claim from section 2 that we need the projections along only two linearly
independent polarization directions.

What remains is to show that the phase mismatch between these two gauges, defined by
exp(ipyL (E ) = (Pr (E )| D1 (E )), is directly related to the polarization azimuth: y; = 26. For this purpose, we
firstapply (®g|®;) = UiWg /|¥Uy|. By inserting equation (12) into the numerator and comparing the result
with the definition of o in equatlon (7) rewritten in terms of W, and W;, using equation (4), we find that
o = 2UTy. So, exp (ipgL (k ) =0 / |o| = exp(2if) according to the last equality in equation (7). This directly
leads to the result of this calculation which has been already stated in equation (6).

5.2. Skyrmion number
Ithas been discussed before [26, 27] that in a two-band model, the Chern number can be related to the skyrmion
number: every eigenstate is represented by a Bloch vector d which is analogous to the vector (S, S, S3) here; the

skyrmion number
/f od a2k (15)
BZ Ox 8}/

counts how many times the mapping d (E ) wraps the Bloch sphere, and is identical to the Chern number of the
corresponding energy band. The skyrmion number has been developed in the context of magnetic skyrmions,
quasiparticles which appear in special magnetic materials [74].

In that sense, our method generalizes this ‘skyrmion method’ to models with an arbitrary number of bands.
In addition, it connects the Chern number to the theory of L lines and C points, and it provides an interpretation
of the Chern number in terms of directly visible features.

6. Application to mechanics and optics

The illustrative examples in figures 3—5 have actually been calculated for a specific model which has already been
implemented for gyroscopic pendula [2] and proposed for photon-exciton polaritons [66—68, 75]. This tight-
binding model features a C? polarization degree of freedom on a honeycomb lattice. The on-site polarization
degree of freedom represents two in-plane directions of motion of a two-dimensional mechanical (e. g.
gyroscopic) oscillator or two directions of the field distributions in the case of photon-exciton polaritons.
Because of the two sublattices in a honeycomb lattice, there are in total four energy/frequency bands in such a
tight-binding model. For a pair of sites, the longitudinal (transversal) mode is defined such that it is parallel
(perpendicular) to the connecting line. The longitudinal (transversal) modes of nearest neighbor sites are
coupled with coupling strength # (#1). The toy model for this interaction in mechanics are two-dimensional
mass-spring networks. In this setting, additional on-site Zeeman splitting—breaking the time-reversal
symmetry—gives rise to AQHE edge channels [38, 75].

Because of its simple conception and the possibility to directly observe the polarization patternsin a
mechanical system, such a system is a promising platform to demonstrate the determination and visualization of
the Chern number with the technique described in this article. Whereas a macroscopic implementation of this
model seems straightforward, a mesoscopic or microscopic one is more challenging due to the difficulties to
fabricate springs at these lengthscales. However, there might be some more easily fabricated systems which
intrinsically have this kind of interaction, e. g. arrays of nanopillars [3, 4]. Unpublished experimental data [76]
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s}

Figure 6. Several options to implement Zeeman splitting in a nanopillar array. (a) Interaction between a charged nanopillar and a
homogeneous external magnetic field B perpendicular to the surface. (b) Precession induced by the angular momentum of a magnetic
tip (cmp. Einstein—de Haas effect [77, 78]) whose magnetic moment corresponds to the one of the magnet indicated in the figure. (c)
Global rotation of the nanopillar array. As observed in the co-rotating frame, there is the centrifugal force pointing directly away from
the rotation axis (blue). Additionally, a relative movement of a pillar (indicated for one example) will induce a force perpendicular to
its direction of motion, the Coriolis force, giving rise to Zeeman splitting.

indicate that the motion of neighboring nanopillars is coupled, and the described coupling type is the only linear
interaction model which respects all the present symmetries.

Conceptually, there are different options to implement Zeeman splitting including charged nanopillarsin a
homogeneous magnetic field, the conserved angular momentum [2] of magnetic tips in analogy to the Einstein—
de Haas effect [77, 78], and the Coriolis force [38] (cmp. figure 6). However, order-of-magnitude estimates
indicate that in a nanopillar setup only the latter one can be strong enough to overcome the effect of dissipation
and disorder.

Another possible application, in the context of optics, are dielectric materials with a discrete translational
symmetry in two dimensions; chiral edge channels analogous to the QHE have already gained experimental
verification in photonic crystals [48]. In these systems, the (complex) electric field E (x, y) takes over the role of
the electron wave function. If arbitrary quasimomentum states can be excited and the resultant polarization of
the electric field E (x, %) can be measured at one single point (xo, y,) which is fixed previously, mapping these
polarization patterns onto the Brillouin zone allows to directly read off the Chern number. Note that although
the degree of polarization of the field E is only two, the dimension of the Bloch space is infinite due to the
dependency on the two (continuous) coordinates x and y. This is one example where the generalization to an
arbitrary number of bands, compared to the Skyrmion method (see section 5), becomes important.

7. Measuring the Chern number

Due to its outstanding role in the description of topologically protected edge transport, the measurement of the
Chern number may be a crucial point in an experimental analysis of a Chern insulator.

One possible approach to obtain the Chern numbers is to measure the quantized Hall conductance in the
band gaps. For example, this measurement works with very high precision in the original setup, the quantum
Hall effect [13, 14]. However, there might be some situations in which wrong results are obtained due to
technical limitations, e. g. if edge states in one band gap exist in principle, but they have a too large penetration
length compared to the system size to be detectable. Or, if there is only a local, but not a global band gap, the
Chern number is well-defined, but cannot be measured this way. More importantly, this method is by a
fundamental reason restricted to fermionic systems as it relies on the quantized Hall conductance. Since there is
no equivalent quantity in a bosonic system, different approaches to measure the Chern number for those had to
be developed [28-32].

Our method could serve as an alternative to these techniques as it offers a very direct approach: experimental
techniques like Fourier transform spectroscopy or the excitation with quasimomentum modes give full access to
the Bloch states; this is sufficient input to identify the L lines and C points, and to determine their relevant
properties. Therefore, straightforward application of the schemes in sections 3 and 4 can also be used to measure
the Chern numbers for any type of Chern insulator.

Its universality and directness could be a great advantage in comparison to other strategies. We also
emphasize that, as opposed to, for example, a numerical calculation using a band structure simulation (there are
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both analytical [18, section III] and numerical [79] methods), our method requires neither precise knowledge of
the actual system parameters nor even the understanding of the underlying microscopic mechanisms.

8. Conclusion

The central aspect of this article is the connection between two topological concepts in modern physics: we have
related the Chern number, one of the central quantities in the context of the QHE and the AQHE, to Llines and
C points, the structurally stable objects known from random fields in polarized optics. What we obtain is a
graphical interpretation of the Chern number which makes this abstract quantity a bit more tangible.

The term polarization is fundamental in the geometric description of oscillating electromagnetic fields. Even
more, we can directly see what it means to a mechanical system by looking at the trajectories. This intuition
makes these two classes of systems play an exclusive role for the scheme presented here.

Besides the visualization, we have also discussed the possibility to use this technique as a tool to measure the
Chern number in an experiment.
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